Nothing Special   »   [go: up one dir, main page]

JP2019068517A - Electric actuator - Google Patents

Electric actuator Download PDF

Info

Publication number
JP2019068517A
JP2019068517A JP2017189030A JP2017189030A JP2019068517A JP 2019068517 A JP2019068517 A JP 2019068517A JP 2017189030 A JP2017189030 A JP 2017189030A JP 2017189030 A JP2017189030 A JP 2017189030A JP 2019068517 A JP2019068517 A JP 2019068517A
Authority
JP
Japan
Prior art keywords
shaft
central axis
motor
axial direction
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017189030A
Other languages
Japanese (ja)
Inventor
秀一 金城
Shuichi Kinjo
秀一 金城
豊 上松
Yutaka Uematsu
豊 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Powertrain Systems Corp
Original Assignee
Nidec Tosok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Tosok Corp filed Critical Nidec Tosok Corp
Priority to JP2017189030A priority Critical patent/JP2019068517A/en
Priority to CN201821576351.7U priority patent/CN208806710U/en
Publication of JP2019068517A publication Critical patent/JP2019068517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To provide an electric actuator capable of suppressing vibrations accompanying eccentric motion while maintaining an axial length.SOLUTION: There is provided an electric actuator 10 comprising a speed reduction mechanism 30 connected to a motor shaft 21, and a case 11 for storing a motor and the speed reduction mechanism. The motor shaft comprises: an eccentric shaft part 21b for rotatably supporting a gear 31 in the speed reduction mechanism; and a weight attaching shaft part 21c having a larger diameter than that of the eccentric shaft part which is arranged between the eccentric shaft part and the motor. A balance weight 24 having a centroid axis which is eccentric to a central axis is attached to the weight attaching shaft part. The weight attaching shaft part is circularly cylinder shaped around the central axis provided with a first plane part 21e on a part of a peripheral surface. The first plane part is located on a side opposite to a center of the eccentric shaft part against the central axis. The balance weight comprises: a through-hole 24a for inserting the weight attaching shaft part; and a second plane part 24b opposed to the first plane part which is provided on an inner peripheral surface of the through-hole.SELECTED DRAWING: Figure 3

Description

本発明は、電動アクチュエータに関する。   The present invention relates to an electric actuator.

従来から、電動アクチュエータに用いられる減速機として、偏芯型減速機が知られている。特許文献1には、ギアの偏芯運動に伴う振動および騒音を抑制するために、ギア内部にバランス用のウェイトが配置された減速機が開示されている。   2. Description of the Related Art An eccentric reducer is conventionally known as a reducer used for an electric actuator. Patent Document 1 discloses a reduction gear in which a balance weight is disposed inside a gear in order to suppress vibration and noise accompanying eccentric movement of the gear.

特開2001−336587号公報JP 2001-336587 A

ギアの内部にウェイトが配置される構成では、ギア内部にウェイトを回転可能な状態で内蔵し、しかもウェイトの軸方向両側に軸受を設ける必要があった。そのため、減速機および電動アクチュエータの軸方向長さが大きくなる課題があった。   In the configuration in which the weight is disposed inside the gear, it is necessary to incorporate the weight inside the gear in a rotatable state, and to provide bearings on both sides in the axial direction of the weight. Therefore, there is a problem that the axial length of the reduction gear and the electric actuator becomes large.

本発明の一態様は、軸方向長さを維持しつつ偏芯運動に伴う振動を抑制可能とした電動アクチュエータを提供することを目的の一つとする。   An object of one aspect of the present invention is to provide an electric actuator capable of suppressing vibration accompanying eccentric movement while maintaining axial length.

本発明の第1の態様によれば、中心軸に沿って延びるモータシャフトを有するモータと、前記モータシャフトの軸方向一方側の部分の径方向外側に配置され、前記モータシャフトに連結される減速機構と、前記モータおよび前記減速機構を収容するケースと、前記減速機構の軸方向一方側において前記モータシャフトを支持する第1ベアリングと、前記モータの軸方向他方側において前記モータシャフトを支持する第2ベアリングと、を備え、前記モータシャフトは、前記減速機構のギアを回転可能に支持し中心軸に対して偏芯する偏芯軸部と、前記偏芯軸部と前記モータとの間に配置され前記偏芯軸部よりも大きい径を有するウェイト取付軸部と、を有し、前記ウェイト取付軸部には、中心軸に対して偏芯する重心軸を有するバランスウェイトが取り付けられ、前記ウェイト取付軸部は、周面の一部に第1の平面部を有する中心軸周りの円柱状であり、前記第1の平面部は、中心軸に対して前記偏芯軸部の中心と反対側に位置し、前記バランスウェイトは、前記ウェイト取付軸部が挿入される貫通孔と、前記貫通孔の内周面に設けられ前記第1の平面部と対向する第2の平面部と、を有する、電動アクチュエータが提供される。   According to a first aspect of the present invention, there is provided a motor having a motor shaft extending along a central axis, and a reduction gear disposed radially outward of a portion on one axial side of the motor shaft and coupled to the motor shaft A mechanism for accommodating the motor and the reduction mechanism, a first bearing for supporting the motor shaft on one axial side of the reduction mechanism, and a motor shaft for supporting the motor shaft on the other axial side of the motor The motor shaft includes an eccentric shaft that rotatably supports the gear of the reduction mechanism and that is eccentric with respect to a central axis, and is disposed between the eccentric shaft and the motor. A weight mounting shaft portion having a diameter larger than the eccentric shaft portion, and the weight mounting shaft portion has a balance shaft having a center of gravity axis eccentric to a central axis. The weight attachment shaft portion is a cylindrical shape around a central axis having a first flat surface portion at a part of the circumferential surface, and the first flat surface portion is eccentric to the central axis The balance weight is disposed on the opposite side to the center of the shaft, and the balance weight is provided in the through hole into which the weight attachment shaft is inserted, and the inner peripheral surface of the through hole and is opposed to the first flat portion An electric actuator is provided.

本発明の態様によれば、軸方向長さを維持しつつ偏芯運動に伴う振動を抑制可能とした電動アクチュエータが提供される。   According to an aspect of the present invention, there is provided an electric actuator capable of suppressing vibration accompanying eccentric movement while maintaining axial length.

図1は、本実施形態の電動アクチュエータを示す斜視図である。FIG. 1 is a perspective view showing the electric actuator of the present embodiment. 図2は、本実施形態の電動アクチュエータを示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the electric actuator of the present embodiment. 図3は、図2のIII-III断面を示す横断面図であり、減速機構を軸方向一方側へ向けて見た図である。FIG. 3 is a cross-sectional view showing the III-III cross section of FIG. 2, and is a view of the speed reduction mechanism as viewed in the axial direction. 図4は、第1変形例の電動アクチュエータにおけるロータを示す側面図である。FIG. 4 is a side view showing a rotor in the electric actuator of the first modified example. 図5は、第2変形例の電動アクチュエータに備えられるロータを示す図である。FIG. 5 is a view showing a rotor provided in the electric actuator of the second modification.

以下、図面を用いて本発明の実施の形態について説明する。
図1および図2に示すように、本実施形態の電動アクチュエータ10は、ケース11と、モータ20と、減速機構30と、出力部40と、回転検出装置60と、第1配線部材91と、第2配線部材92と、第1ベアリング51と、第2ベアリング54と、第3ベアリング55と、第4ベアリング56と、を備える。モータ20は、ロータ22と、ステータ23と、制御基板70と、バスバー80と、回転検出部75と、を備える。ロータ22は、第1中心軸(中心軸)J1に沿って延びるモータシャフト21を有する。つまりモータ20は、モータシャフト21を有する。減速機構30は、モータシャフト21に連結される。出力部40は、減速機構30を介してモータシャフト21の回転が伝達される出力シャフト部41を有する。出力シャフト部41は、第1中心軸J1の軸方向に延びる。出力シャフト部41は、モータシャフト21が配置される軸方向の位置とは異なる軸方向の位置に配置される。本実施形態の例では、第1中心軸J1の軸方向が、上下方向である。
Hereinafter, embodiments of the present invention will be described using the drawings.
As shown in FIGS. 1 and 2, the electric actuator 10 according to the present embodiment includes a case 11, a motor 20, a reduction mechanism 30, an output unit 40, a rotation detection device 60, and a first wiring member 91. A second wiring member 92, a first bearing 51, a second bearing 54, a third bearing 55, and a fourth bearing 56 are provided. The motor 20 includes a rotor 22, a stator 23, a control board 70, a bus bar 80, and a rotation detection unit 75. The rotor 22 has a motor shaft 21 extending along a first central axis (central axis) J1. That is, the motor 20 has a motor shaft 21. The reduction mechanism 30 is coupled to the motor shaft 21. The output unit 40 has an output shaft portion 41 to which the rotation of the motor shaft 21 is transmitted via the speed reduction mechanism 30. The output shaft portion 41 extends in the axial direction of the first central axis J1. The output shaft portion 41 is disposed at an axial position different from the axial position at which the motor shaft 21 is disposed. In the example of the present embodiment, the axial direction of the first central axis J1 is the vertical direction.

本実施形態では、第1中心軸J1に平行な方向を単に「軸方向」と呼ぶ。軸方向のうち、モータシャフト21から出力シャフト部41へ向かう方向を軸方向一方側と呼び、出力シャフト部41からモータシャフト21へ向かう方向を軸方向他方側と呼ぶ。軸方向一方側は、第1中心軸J1に沿ってモータ20から減速機構30および出力部40へ向かう方向である。軸方向他方側は、第1中心軸J1に沿って出力部40および減速機構30からモータ20へ向かう方向である。本実施形態の例では、軸方向一方側が下側であり、図1および図2の下側である。軸方向他方側は上側であり、図1および図2の上側である。なお、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。   In the present embodiment, the direction parallel to the first central axis J1 is simply referred to as the “axial direction”. Among the axial directions, the direction from the motor shaft 21 to the output shaft portion 41 is referred to as one axial direction side, and the direction from the output shaft portion 41 to the motor shaft 21 is referred to as the other axial direction side. One side in the axial direction is a direction from the motor 20 to the speed reduction mechanism 30 and the output unit 40 along the first central axis J1. The other side in the axial direction is a direction from the output unit 40 and the reduction mechanism 30 toward the motor 20 along the first central axis J1. In the example of this embodiment, one side in the axial direction is the lower side, and is the lower side in FIGS. 1 and 2. The other axial side is the upper side, which is the upper side of FIGS. 1 and 2. The upper side and the lower side are simply names for describing the relative positional relationship of each part, and the actual positional relationship may be a positional relationship other than the positional relationship etc. indicated by these names. .

第1中心軸J1を中心とする径方向を単に「径方向」と呼ぶ。径方向のうち、第1中心軸J1に接近する方向を径方向内側と呼び、第1中心軸J1から離れる方向を径方向外側と呼ぶ。第1中心軸J1を中心とする周方向を単に「周方向」と呼ぶ。   The radial direction centering on the first central axis J1 is simply referred to as "radial direction". Among the radial directions, the direction approaching the first central axis J1 is referred to as the radially inner side, and the direction away from the first central axis J1 is referred to as the radial outer side. The circumferential direction centering on the first central axis J1 is simply referred to as "circumferential direction".

ケース11は、モータ20、減速機構30、出力部40および回転検出装置60を収容する。ケース11は、モータケース12と、減速機構ケース13と、を有する。モータケース12および減速機構ケース13は、樹脂製である。つまり、ケース11は樹脂製である。図1に示すように、ケース11は、ブリーザ部17を有する。ブリーザ部17は、ケース11の内部と外部とを繋ぐ呼吸孔を有する。図2に示すように、モータケース12は、軸方向一方側に開口する第1開口部12iを有する。減速機構ケース13は、軸方向他方側に開口する第2開口部13jを有する。ケース11は、モータケース12と減速機構ケース13とが、各々の開口部を軸方向に対向させた状態で固定される構成を有する。つまり、モータケース12と減速機構ケース13とは、第1開口部12iと第2開口部13jとが軸方向に対向した状態で互いに固定される。モータケース12と減速機構ケース13とが互いに固定された状態において、第1開口部12iの内部と第2開口部13jの内部とは、互いに通じる。   The case 11 accommodates the motor 20, the speed reduction mechanism 30, the output unit 40, and the rotation detection device 60. The case 11 has a motor case 12 and a reduction mechanism case 13. The motor case 12 and the reduction mechanism case 13 are made of resin. That is, the case 11 is made of resin. As shown in FIG. 1, the case 11 has a breather unit 17. The breather unit 17 has a breathing hole that connects the inside and the outside of the case 11. As shown in FIG. 2, the motor case 12 has a first opening 12 i that opens to one side in the axial direction. The speed reduction mechanism case 13 has a second opening 13 j that opens to the other side in the axial direction. The case 11 has a configuration in which the motor case 12 and the reduction mechanism case 13 are fixed in a state in which the respective openings face each other in the axial direction. That is, the motor case 12 and the reduction mechanism case 13 are fixed to each other in a state where the first opening 12i and the second opening 13j are opposed in the axial direction. With the motor case 12 and the reduction mechanism case 13 fixed to each other, the inside of the first opening 12i and the inside of the second opening 13j communicate with each other.

モータケース12には、モータ20、第1配線部材91および第3ベアリング55が収容される。モータケース12は、周壁部12aと、蓋体12gと、仕切り壁部12dと、ベアリング保持部12eと、コネクタ部12cと、第1配線保持部14と、を有する。   The motor 20, the first wiring member 91, and the third bearing 55 are accommodated in the motor case 12. The motor case 12 has a peripheral wall 12 a, a lid 12 g, a partition wall 12 d, a bearing holder 12 e, a connector 12 c, and a first wiring holder 14.

周壁部12aは、第1中心軸J1を中心として軸方向に延びる筒状である。周壁部12aは、円筒状である。周壁部12aは、軸方向一方側の端部が開口する。周壁部12aは、軸方向他方側の端部が開口する。周壁部12aの軸方向一方面および軸方向他方面は、それぞれ開口する。つまり周壁部12aは、軸方向の両側に開口する。周壁部12aは、第1中心軸J1に沿って第1中心軸J1の周囲を覆う。   The peripheral wall portion 12a has a tubular shape extending in the axial direction centering on the first central axis J1. The peripheral wall portion 12a is cylindrical. The end portion on one axial side of the peripheral wall 12a is open. The end portion of the other side in the axial direction of the peripheral wall portion 12a is open. The one axial direction surface and the other axial direction surface of the peripheral wall portion 12a are respectively opened. That is, the peripheral wall portion 12a opens on both sides in the axial direction. The peripheral wall portion 12a covers the periphery of the first central axis J1 along the first central axis J1.

周壁部12aには、ステータ23が収容される。周壁部12aは、ステータ23の径方向外側を囲む。周壁部12aの内部は、後述する仕切り壁部12dにより軸方向一方側の部分と軸方向他方側の部分とに仕切られる。周壁部12aの内部のうち、仕切り壁部12dよりも軸方向一方側の部分は、ステータ収容部である。周壁部12aの内部のうち、仕切り壁部12dよりも軸方向他方側の部分は、制御基板収容部12fである。本実施形態の例では、制御基板収容部12fの内径が、ステータ収容部の内径よりも大きい。   The stator 23 is accommodated in the peripheral wall portion 12a. The circumferential wall 12 a surrounds the radially outer side of the stator 23. The inside of the peripheral wall portion 12a is divided into a portion on one axial side and a portion on the other axial side by a partition wall 12d described later. Of the inside of the peripheral wall portion 12a, a portion on one axial side of the partition wall portion 12d is a stator accommodating portion. Of the inside of the peripheral wall portion 12a, the portion on the other side in the axial direction with respect to the partition wall portion 12d is a control substrate storage portion 12f. In the example of the present embodiment, the inner diameter of the control substrate housing portion 12 f is larger than the inner diameter of the stator housing portion.

図1および図2に示すように、蓋体12gは、板状である。蓋体12gは、周壁部12aの軸方向他方側に開口する開口部を塞ぐ。蓋体12gは、制御基板収容部12fの軸方向他方側の開口を塞ぐ。周壁部12aに対して蓋体12gは、ネジ16を用いて取り外し可能に装着される。   As shown in FIGS. 1 and 2, the lid 12 g has a plate shape. The lid 12g closes an opening that opens to the other side of the peripheral wall 12a in the axial direction. The lid 12g closes the opening on the other side in the axial direction of the control substrate housing 12f. The lid 12 g is removably attached to the peripheral wall 12 a using a screw 16.

図2に示すように、仕切り壁部12dは、周壁部12aの内周面から径方向内側に広がる円環板状である。仕切り壁部12dは、ステータ23を軸方向他方側から覆う。仕切り壁部12dは、ロータ22およびステータ23と、制御基板70と、の間に位置する。仕切り壁部12dは、軸方向に沿うロータ22およびステータ23と、制御基板70と、の間に配置される。仕切り壁部12dには、仕切り壁部12dを軸方向に貫通する貫通孔が設けられる。貫通孔には、例えばコイル線等が通される。コイル線は、後述するステータ23のコイルから延び、貫通孔内を通って、制御基板70に電気的に接続される。   As shown in FIG. 2, the partition wall portion 12 d has an annular plate shape that extends inward in the radial direction from the inner peripheral surface of the peripheral wall portion 12 a. The partition wall 12 d covers the stator 23 from the other side in the axial direction. The partition wall 12 d is located between the rotor 22 and the stator 23 and the control board 70. The partition wall 12 d is disposed between the rotor 22 and the stator 23 in the axial direction and the control board 70. The partition wall portion 12d is provided with a through hole which penetrates the partition wall portion 12d in the axial direction. For example, a coil wire or the like is passed through the through hole. The coil wire extends from a coil of the stator 23 described later, passes through the through hole, and is electrically connected to the control board 70.

ベアリング保持部12eは、筒状である。ベアリング保持部12eは、第1中心軸J1を中心として軸方向に延びる。ベアリング保持部12eは、仕切り壁部12dの径方向内縁部に設けられる。ベアリング保持部12eの内周面には、第3ベアリング55が固定される。ベアリング保持部12eは、第3ベアリング55を保持する。   The bearing holding portion 12e is cylindrical. The bearing holding portion 12e extends in the axial direction centering on the first central axis J1. The bearing holding portion 12e is provided on the radially inner edge portion of the partition wall portion 12d. The third bearing 55 is fixed to the inner circumferential surface of the bearing holding portion 12e. The bearing holder 12 e holds the third bearing 55.

図1に示すように、コネクタ部12cは、周壁部12aの外周面から径方向外側に突出する。コネクタ部12cは、径方向に延びる筒状である。コネクタ部12cは、径方向外側に開口する。本実施形態の例では、コネクタ部12cが、長円筒状である。コネクタ部12cの開口部の形状は、周方向の長さが軸方向の長さよりも長い長円形である。図2に示すように、コネクタ部12cは、仕切り壁部12dと径方向に重なる位置に配置される。コネクタ部12cは、後述するバスバー80を保持する。コネクタ部12cは、ケース11外の電気的配線との接続が行われる部分である。コネクタ部12cには、外部電源(図示省略)が接続される。   As shown in FIG. 1, the connector portion 12c protrudes radially outward from the outer peripheral surface of the peripheral wall portion 12a. The connector portion 12c has a tubular shape extending in the radial direction. The connector portion 12c opens radially outward. In the example of the present embodiment, the connector portion 12c has an elongated cylindrical shape. The shape of the opening of the connector portion 12c is an oval having a circumferential length longer than an axial length. As shown in FIG. 2, the connector portion 12 c is disposed at a position overlapping the partition wall portion 12 d in the radial direction. The connector portion 12c holds a bus bar 80 described later. The connector portion 12c is a portion where connection with the electrical wiring outside the case 11 is performed. An external power supply (not shown) is connected to the connector portion 12c.

図2および図3に示すように、第1配線保持部14は、周壁部12aから径方向外側に突出する。図2に示すように、第1配線保持部14は、軸方向に延びる。第1配線保持部14は、軸方向一方側に開口する。第1配線保持部14の軸方向他方側の端部の軸方向位置は、仕切り壁部12dの軸方向位置と同じである。第1配線保持部14の周方向位置は、コネクタ部12cの周方向位置と異なる。   As shown in FIGS. 2 and 3, the first wiring holding portion 14 protrudes radially outward from the peripheral wall portion 12 a. As shown in FIG. 2, the first wiring holding portion 14 extends in the axial direction. The first wiring holding portion 14 opens in one side in the axial direction. The axial position of the other axial end of the first wiring holding portion 14 is the same as the axial position of the partition wall 12 d. The circumferential position of the first wiring holding portion 14 is different from the circumferential position of the connector portion 12c.

減速機構ケース13には、減速機構30、出力部40、回転検出装置60、第2配線部材92、第1ベアリング51、第2ベアリング54および第4ベアリング56が収容される。図1および図2に示すように、減速機構ケース13は、底壁部13aと、支持筒部13dと、取付け壁部13hと、突出筒部13cと、カバー筒部13bと、第2配線保持部15と、脚部13mと、を有する。   In the reduction gear mechanism case 13, the reduction gear mechanism 30, the output unit 40, the rotation detection device 60, the second wiring member 92, the first bearing 51, the second bearing 54 and the fourth bearing 56 are accommodated. As shown in FIGS. 1 and 2, the reduction mechanism case 13 includes a bottom wall portion 13a, a support cylindrical portion 13d, an attachment wall portion 13h, a protruding cylindrical portion 13c, a cover cylindrical portion 13b, and a second wiring holding member. It has the part 15 and 13 m of legs.

図2に示すように、底壁部13aは、第1中心軸J1を中心とする円環板状である。底壁部13aは、減速機構30を軸方向一方側から覆う。底壁部13aの軸方向他方側を向く面は、減速機構30と軸方向に対向する。底壁部13aは、ケース11の内面のうち、減速機構30の軸方向一方側に位置する部分である。底壁部13aには、支持筒部13dが設けられる。支持筒部13dは、底壁部13aの軸方向他方側を向く面から軸方向他方側に突出する筒状である。支持筒部13dは、円筒状である。支持筒部13dは、底壁部13aの径方向内縁部から軸方向他方側へ延びる。支持筒部13dは、軸方向他方側に開口する。支持筒部13dの軸方向他方側を向く端面13iは、第1中心軸J1に垂直に広がる平面状である。端面13iは、円環状の平面である。端面13iの軸方向位置は、後述するカバー筒部13bの軸方向他方端の軸方向位置よりも、軸方向一方側に配置される。   As shown in FIG. 2, the bottom wall portion 13 a has an annular plate shape centered on the first central axis J <b> 1. The bottom wall portion 13 a covers the speed reduction mechanism 30 from one side in the axial direction. The surface of the bottom wall portion 13a facing the other side in the axial direction is opposed to the reduction mechanism 30 in the axial direction. The bottom wall portion 13 a is a portion of the inner surface of the case 11 located on one side in the axial direction of the speed reduction mechanism 30. The bottom wall 13a is provided with a support cylinder 13d. The support cylindrical portion 13 d has a cylindrical shape that protrudes from the surface facing the other side in the axial direction of the bottom wall portion 13 a to the other side in the axial direction. The support cylinder portion 13d is cylindrical. The support cylindrical portion 13d extends from the radial inner edge of the bottom wall portion 13a to the other side in the axial direction. The support cylindrical portion 13d is open to the other side in the axial direction. An end surface 13i facing the other side in the axial direction of the support cylindrical portion 13d is a planar shape that extends perpendicularly to the first central axis J1. The end face 13i is an annular flat surface. The axial position of the end face 13i is disposed on one side in the axial direction relative to the axial position of the other axial end of the cover cylindrical portion 13b described later.

取付け壁部13hは、底壁部13aの軸方向他方側を向く面から軸方向他方側に突出する。取付け壁部13hは、支持筒部13dの外周面から径方向外側に延びる。取付け壁部13hは、支持筒部13dから後述する第2配線保持部15内へ向けて延びる。取付け壁部13hの径方向内縁部は、支持筒部13dの外周面に接続する。取付け壁部13hの径方向外縁部は、第2配線保持部15内に配置される。取付け壁部13hの径方向外縁部の径方向位置は、後述するカバー筒部13bの内周面の径方向位置よりも、径方向外側に配置される。取付け壁部13hの軸方向他方側を向く面は、支持筒部13dの端面13iよりも軸方向一方側に位置する。図示しないが、底壁部13aの軸方向他方側を向く面において取付け壁部13hは、周方向に互いに間隔をあけて複数設けられる。本実施形態の例では、取付け壁部13hが2個で一組とされ、一組の取付け壁部13h同士が、一定の間隔をあけて互いに平行に延びる。取付け壁部13hは、支持筒部13dから径方向外側に延びる例えば2本のリブである。取付け壁部13hは、後述する第1回転センサ62を周方向に挟んで固定する。   The mounting wall 13 h protrudes from the surface facing the other side in the axial direction of the bottom wall 13 a to the other side in the axial direction. The mounting wall 13 h extends radially outward from the outer peripheral surface of the support cylinder 13 d. The mounting wall portion 13 h extends from the support cylindrical portion 13 d into the second wiring holding portion 15 described later. The radially inner edge portion of the mounting wall portion 13 h is connected to the outer peripheral surface of the support cylindrical portion 13 d. The radially outer edge portion of the mounting wall portion 13 h is disposed in the second wiring holding portion 15. The radial direction position of the radial direction outer edge portion of the mounting wall portion 13 h is disposed radially outward of the radial direction position of the inner peripheral surface of the cover cylindrical portion 13 b described later. The surface of the mounting wall 13 h facing the other side in the axial direction is located on one side in the axial direction with respect to the end face 13 i of the support cylinder 13 d. Although not shown, a plurality of mounting wall portions 13h are provided in the circumferential direction at intervals in a surface facing the other side in the axial direction of the bottom wall portion 13a. In the example of the present embodiment, two mounting wall portions 13 h form one set, and one set of mounting wall portions 13 h extend in parallel with each other at a constant interval. The mounting wall portion 13 h is, for example, two ribs extending radially outward from the support cylindrical portion 13 d. The mounting wall 13 h sandwiches and fixes a first rotation sensor 62 described later in the circumferential direction.

突出筒部13cは、底壁部13aの径方向内縁部から軸方向一方側に突出する筒状である。突出筒部13c内には、出力シャフト部41が配置される。カバー筒部13bは、底壁部13aの径方向外縁部から軸方向他方側に突出する筒状である。カバー筒部13bは、円筒状である。カバー筒部13bは、軸方向他方側に開口する。カバー筒部13bは、第1中心軸J1に沿って第1中心軸J1の周囲を覆う。カバー筒部13bの軸方向他方側の端部は、周壁部12aの軸方向一方側の端部に接触して固定される。   The protruding cylindrical portion 13c has a cylindrical shape that protrudes in one axial direction from the radial inner edge portion of the bottom wall portion 13a. The output shaft portion 41 is disposed in the projecting cylindrical portion 13c. The cover cylinder portion 13b has a cylindrical shape that protrudes from the radial outer edge portion of the bottom wall portion 13a to the other side in the axial direction. The cover cylinder 13b is cylindrical. The cover cylinder portion 13b is open to the other side in the axial direction. The cover cylinder 13b covers the periphery of the first central axis J1 along the first central axis J1. The end of the cover cylinder 13b on the other side in the axial direction is fixed in contact with the end on one side of the peripheral wall 12a in the axial direction.

図2および図3に示すように、第2配線保持部15は、カバー筒部13bから径方向外側に突出する。図2に示すように、第2配線保持部15は、軸方向他方側に開口する箱状である。第2配線保持部15の内部は、カバー筒部13bの内部と通じる。第2配線保持部15の軸方向一方側の端部の軸方向位置は、底壁部13aの軸方向位置と同じである。第2配線保持部15は、第1配線保持部14と軸方向に対向する。第2配線保持部15の内部は、第1配線保持部14の内部と通じる。   As shown in FIGS. 2 and 3, the second wiring holding portion 15 protrudes radially outward from the cover cylindrical portion 13 b. As shown in FIG. 2, the second wiring holding portion 15 is in the form of a box that opens to the other side in the axial direction. The inside of the second wiring holding portion 15 communicates with the inside of the cover cylindrical portion 13b. The axial position of the end portion on one axial side of the second wiring holding portion 15 is the same as the axial position of the bottom wall portion 13a. The second wiring holding portion 15 axially faces the first wiring holding portion 14. The inside of the second wiring holding portion 15 communicates with the inside of the first wiring holding portion 14.

図1および図3に示すように、脚部13mは、カバー筒部13bから径方向外側に突出する。カバー筒部13bの外周面において脚部13mは、周方向に互いに間隔をあけて複数設けられる。本実施形態の例では、3個の脚部13mが、周方向に互いに不等間隔をあけて配置される。また、3個の脚部13mのカバー筒部13bからの突出長さが、互いに異なる。脚部13mを用いて、電動アクチュエータ10を例えば車両等の対象物に装着することができる。   As shown in FIGS. 1 and 3, the leg 13m protrudes radially outward from the cover cylinder 13b. A plurality of leg portions 13m are provided in the circumferential direction on the outer peripheral surface of the cover cylindrical portion 13b at intervals. In the example of the present embodiment, the three legs 13m are arranged at unequal intervals in the circumferential direction. Moreover, the protrusion length from the cover cylinder part 13b of three leg parts 13m mutually differs. The electric actuator 10 can be attached to an object such as a vehicle by using the leg 13m.

図2に示すように、ロータ22は、モータシャフト21と、ロータコア22aと、ロータマグネット22bと、バランスウェイト24と、を有する。モータシャフト21は、第1ベアリング51および第3ベアリング55によって、第1中心軸J1回りに回転可能に支持される。第1ベアリング51は、モータシャフト21の軸方向一方側の端部に嵌め合わされる。第3ベアリング55は、モータシャフト21の軸方向他方側の部分に嵌め合わされる。モータシャフト21と減速機構30とは、第4ベアリング56を介して、第2中心軸J2回りに相互に回転可能に連結される。第4ベアリング56は、軸方向に沿う第1ベアリング51と第3ベアリング55との間に配置されて、モータシャフト21に嵌め合わされる。第1ベアリング51、第3ベアリング55および第4ベアリング56は、例えば、ボール軸受である。モータシャフト21の軸方向他方側の端部は、ベアリング保持部12e内から軸方向他方側に突出する。モータシャフト21の軸方向他方側の端部は、仕切り壁部12dよりも軸方向他方側に突出する。   As shown in FIG. 2, the rotor 22 has a motor shaft 21, a rotor core 22 a, a rotor magnet 22 b, and a balance weight 24. The motor shaft 21 is rotatably supported by the first bearing 51 and the third bearing 55 about the first central axis J1. The first bearing 51 is fitted to one axial end of the motor shaft 21. The third bearing 55 is fitted to a portion on the other side in the axial direction of the motor shaft 21. The motor shaft 21 and the reduction gear mechanism 30 are rotatably connected to each other around the second central axis J2 via the fourth bearing 56. The fourth bearing 56 is disposed between the first bearing 51 and the third bearing 55 along the axial direction, and fitted to the motor shaft 21. The first bearing 51, the third bearing 55, and the fourth bearing 56 are, for example, ball bearings. The other axial end of the motor shaft 21 projects from the inside of the bearing holding portion 12 e to the other axial side. The end of the motor shaft 21 on the other side in the axial direction protrudes on the other side in the axial direction with respect to the partition wall 12 d.

モータシャフト21は、ロータコア固定軸部21aと、偏芯軸部21bと、ウェイト取付軸部21cと、大径部21dと、を有する。ロータコア固定軸部21aは、第1中心軸J1を中心として軸方向に延びる。ロータコア固定軸部21aの外周面には、ロータコアが固定される。ロータコア固定軸部21aにおいてロータコア22aよりも軸方向他方側に位置する部分には、第3ベアリング55が嵌め合わされる。   The motor shaft 21 has a rotor core fixed shaft 21a, an eccentric shaft 21b, a weight mounting shaft 21c, and a large diameter portion 21d. The rotor core fixed shaft portion 21a extends in the axial direction centering on the first central axis J1. The rotor core is fixed to the outer peripheral surface of the rotor core fixing shaft portion 21a. A third bearing 55 is fitted to a portion of the rotor core fixed shaft portion 21a located on the other axial side with respect to the rotor core 22a.

偏芯軸部21bは、ロータコア固定軸部21aよりも軸方向一方側に位置する。偏芯軸部21bは、第1中心軸J1に対して偏芯する。偏芯軸部21bは、第1中心軸J1に対して偏芯した第2中心軸J2を中心として延びる。第2中心軸J2は、第1中心軸J1と平行である。よって偏芯軸部21bは、軸方向に延びる。偏芯軸部21bには、第4ベアリング56の内径側が嵌め合わされる。偏芯軸部21bは、第4ベアリング56を介して、減速機構30の後述する外歯ギア31を回転可能に支持する。   The eccentric shaft 21b is positioned on one side in the axial direction with respect to the rotor core fixing shaft 21a. The eccentric shaft 21b is eccentric to the first central axis J1. The eccentric shaft portion 21b extends around the second central axis J2 which is eccentric to the first central axis J1. The second central axis J2 is parallel to the first central axis J1. Thus, the eccentric shaft 21b extends in the axial direction. The inner diameter side of the fourth bearing 56 is fitted to the eccentric shaft 21b. The eccentric shaft 21 b rotatably supports an external gear 31 described later of the speed reduction mechanism 30 via the fourth bearing 56.

ウェイト取付軸部21cは、軸方向に沿うロータコア固定軸部21aと偏芯軸部21bとの間に配置される。ウェイト取付軸部21cは、偏芯軸部21bに軸方向他方側から接続する。ウェイト取付軸部21cは、偏芯軸部21bよりも大きい径を有する。ウェイト取付軸部21cは、第4ベアリング56の軸方向他方側に隣接して配置されて、ウェイト取付軸部21cの軸方向一方側端部は第4ベアリング56の内輪と軸方向に対向する。   The weight mounting shaft 21c is disposed between the rotor core fixing shaft 21a and the eccentric shaft 21b in the axial direction. The weight mounting shaft 21c is connected to the eccentric shaft 21b from the other side in the axial direction. The weight mounting shaft 21c has a diameter larger than that of the eccentric shaft 21b. The weight mounting shaft 21c is disposed adjacent to the other axial side of the fourth bearing 56, and one axial end of the weight mounting shaft 21c axially faces the inner ring of the fourth bearing 56.

大径部21dは、ウェイト取付軸部21cの軸方向他方側に配置される。大径部21dは、ウェイト取付軸部21cに軸方向他方側から接続する。大径部21dは、ロータコア固定軸部21aの軸方向一方側に配置される。大径部21dは、ロータコア固定軸部21aに軸方向一方側から接続する。大径部21dは、ウェイト取付軸部21cよりも大きい径を有する。本実施形態の例では、大径部21dが、モータシャフト21において最も大径の部分である。   The large diameter portion 21 d is disposed on the other side in the axial direction of the weight attaching shaft portion 21 c. The large diameter portion 21 d is connected to the weight mounting shaft portion 21 c from the other side in the axial direction. The large diameter portion 21 d is disposed on one side in the axial direction of the rotor core fixed shaft portion 21 a. The large diameter portion 21 d is connected to the rotor core fixed shaft portion 21 a from one side in the axial direction. The large diameter portion 21 d has a diameter larger than that of the weight attaching shaft portion 21 c. In the example of the present embodiment, the large diameter portion 21 d is the portion of the motor shaft 21 having the largest diameter.

ロータコア22aは、筒状であり、ロータコア固定軸部21aの外周面に固定される。ロータマグネット22bは、ロータコア22aの外周面に固定される。図2および図3に示すように、バランスウェイト24は、バランスウェイト24を軸方向に貫通する貫通孔24aを有する。バランスウェイト24は、貫通孔24aにウェイト取付軸部21cが圧入されることによりモータシャフト21に固定される。   The rotor core 22a has a tubular shape, and is fixed to the outer peripheral surface of the rotor core fixing shaft portion 21a. The rotor magnet 22b is fixed to the outer peripheral surface of the rotor core 22a. As shown in FIGS. 2 and 3, the balance weight 24 has a through hole 24 a axially penetrating the balance weight 24. The balance weight 24 is fixed to the motor shaft 21 by press-fitting the weight attachment shaft portion 21c into the through hole 24a.

バランスウェイト24は、貫通孔24aが設けられる部位から径方向外側へ扇状に広がるウェイト本体部24cを有する。バランスウェイト24は、第1中心軸J1に対して偏芯する重心軸J3を有する。バランスウェイト24の重心軸J3は、第1中心軸J1を中心として、偏芯軸部21bの重心軸(第2中心軸J2)と周方向に180度間隔をあけて配置される。本実施形態では、バランスウェイト24の第1中心軸J1からの径方向の最大長さは、ロータ22の半径よりも小さい。この構成によれば、バランスウェイト24をステータ23の径方向内側に配置することが可能になる。バランスウェイト24とステータ23とを径方向に見て重なる位置に配置すれば、電動アクチュエータ10の軸方向長さの短縮を図れる。   The balance weight 24 has a weight main body portion 24c that fans out radially outward from the portion where the through hole 24a is provided. The balance weight 24 has a center of gravity axis J3 eccentric to the first central axis J1. The center of gravity axis J3 of the balance weight 24 is disposed at an interval of 180 degrees in the circumferential direction from the center of gravity (the second center axis J2) of the eccentric shaft portion 21b about the first center axis J1. In the present embodiment, the maximum radial length of the balance weight 24 from the first central axis J 1 is smaller than the radius of the rotor 22. According to this configuration, it is possible to arrange the balance weight 24 inside the stator 23 in the radial direction. If the balance weight 24 and the stator 23 are disposed in a position where they overlap in the radial direction, the axial length of the electric actuator 10 can be shortened.

図2に示すように、バランスウェイト24は、大径部21dの軸方向一方側を向く面に接触する。大径部21dが設けられることで、バランスウェイト24をモータシャフト21における所定の軸方向位置に位置決め可能である。   As shown in FIG. 2, the balance weight 24 is in contact with the surface of the large diameter portion 21 d facing one side in the axial direction. By providing the large diameter portion 21 d, the balance weight 24 can be positioned at a predetermined axial position on the motor shaft 21.

ウェイト取付軸部21cは、周面の一部が切り欠かれたDカット部(第1の平面部)21eを有する第1中心軸J1周りの円柱状である。Dカット部21eは、第1中心軸J1に対して偏芯軸部21bの第2中心軸J2と反対側に位置する。なお、ウェイト取付軸部21cは、Dカット部21e以外の平面部を有していてもよい。バランスウェイト24は、貫通孔24aの内周面に平面部(第2の平面部)24bを有する。
ウェイト取付軸部21cのDカット部21eに対して、貫通孔24aの平面部24bが径方向に対向して配置されることにより、バランスウェイト24がモータシャフト21に対して回り止めされる。
The weight attachment shaft portion 21c has a cylindrical shape around a first central axis J1 having a D-cut portion (first flat portion) 21e in which a part of the circumferential surface is cut away. The D-cut portion 21e is located on the opposite side of the second central axis J2 of the eccentric shaft portion 21b with respect to the first central axis J1. The weight attachment shaft portion 21c may have a flat portion other than the D cut portion 21e. The balance weight 24 has a flat portion (second flat portion) 24 b on the inner peripheral surface of the through hole 24 a.
The balance weight 24 is prevented from rotating with respect to the motor shaft 21 by arranging the flat portion 24b of the through hole 24a to face the radial direction with respect to the D cut portion 21e of the weight attachment shaft portion 21c.

本実施形態では、減速機構30と連結される偏芯軸部21bのモータ20側にウェイト取付軸部21cが設けられ、ウェイト取付軸部21cにバランスウェイト24が固定される。この構成によれば、モータ20と減速機構30との間のスペースを、バランスウェイト24の設置領域として有効に利用でき、減速機構30ギア構造も変更不要である。したがって、電動アクチュエータ10の軸方向長さを大きくすることなく振動を抑制できる。   In the present embodiment, the weight mounting shaft 21c is provided on the motor 20 side of the eccentric shaft 21b connected to the speed reduction mechanism 30, and the balance weight 24 is fixed to the weight mounting shaft 21c. According to this configuration, the space between the motor 20 and the reduction mechanism 30 can be effectively used as an installation area of the balance weight 24, and the reduction mechanism 30 gear structure also does not need to be changed. Therefore, the vibration can be suppressed without increasing the axial length of the electric actuator 10.

また、ウェイト取付軸部21cの軸方向の端面には偏芯軸部21bが配置されており、偏芯軸部21bが配置されていない領域の面積が比較的大きい。本実施形態では、ウェイト取付軸部21cの偏芯軸部21bと反対側に位置する部分にバランスウェイト24を回転止めするためのDカット部21eを設ける。この構成により、偏芯軸部21bとDカット部21eとが干渉しにくい配置となり、モータシャフト21の製造が容易になる。   Further, the eccentric shaft 21b is disposed on the axial end face of the weight mounting shaft 21c, and the area of the region where the eccentric shaft 21b is not disposed is relatively large. In the present embodiment, a D-cut portion 21e for stopping the balance weight 24 is provided at a portion of the weight attachment shaft portion 21c opposite to the eccentric shaft portion 21b. With this configuration, the eccentric shaft 21b and the D-cut 21e are less likely to interfere with each other, and the manufacture of the motor shaft 21 is facilitated.

ステータ23は、ロータ22と径方向に隙間をあけて対向する。ステータ23は、ロータ22の径方向外側を囲む環状のステータコアと、ステータコアに装着される複数のコイルと、を有する。図示しないが、ステータコアは、バックヨークと、ティースと、を有する。バックヨークは、周方向に延びる環状である。ティースは、バックヨークから径方向内側へ向けて延び、周方向に互いに間隔をあけて複数配置される。   The stator 23 opposes the rotor 22 with a gap in the radial direction. The stator 23 has an annular stator core surrounding the radially outer side of the rotor 22 and a plurality of coils mounted on the stator core. Although not shown, the stator core has a back yoke and teeth. The back yoke is an annular shape extending in the circumferential direction. The teeth extend radially inward from the back yoke and are spaced apart from one another in the circumferential direction.

制御基板70は、板状である。制御基板70の板面は軸方向を向き、軸方向に垂直に広がる。制御基板70は、制御基板収容部12f内に収容される。制御基板70は、仕切り壁部12dの軸方向他方側に配置される。本実施形態の例では、制御基板70が、仕切り壁部12dから軸方向他方側に離れて配置される。制御基板70は、ステータ23と電気的に接続される。制御基板70には、ステータ23のコイルのコイル線が接続される。制御基板70には、例えば、インバータ回路が搭載される。   The control board 70 is plate-shaped. The plate surface of the control board 70 is directed in the axial direction and spreads perpendicularly to the axial direction. The control board 70 is accommodated in the control board accommodation portion 12 f. The control board 70 is disposed on the other side in the axial direction of the partition wall 12 d. In the example of the present embodiment, the control substrate 70 is disposed apart from the partition wall 12 d on the other side in the axial direction. Control board 70 is electrically connected to stator 23. A coil wire of a coil of the stator 23 is connected to the control board 70. For example, an inverter circuit is mounted on the control board 70.

バスバー80は、コネクタ部12cに保持される。バスバー80は、コネクタ部12cに埋め込まれる。バスバー80の両端部のうち、第1端部は、制御基板70に固定される。図1に示すように、バスバー80の両端部のうち、第2端部は、コネクタ部12cの径方向外側の開口部内に配置されて、ケース11の外部に露出する。バスバー80は、コネクタ部12cに接続される外部電源と電気的に接続される。バスバー80および制御基板70を通して、外部電源からステータ23のコイルに電源が供給される。   The bus bar 80 is held by the connector portion 12c. The bus bar 80 is embedded in the connector portion 12c. Among the both ends of the bus bar 80, the first end is fixed to the control board 70. As shown in FIG. 1, of the both ends of the bus bar 80, the second end is disposed in the radial outer opening of the connector portion 12 c and exposed to the outside of the case 11. The bus bar 80 is electrically connected to an external power supply connected to the connector portion 12c. Power is supplied to the coils of the stator 23 from an external power supply through the bus bar 80 and the control board 70.

回転検出部75は、ロータ22の回転を検出する。図2に示すように、回転検出部75は、制御基板収容部12f内に配置される。回転検出部75は、仕切り壁部12dと制御基板70との間のスペースに配置される。回転検出部75は、取付部材73と、第2マグネット74と、第2回転センサ71と、を有する。   The rotation detection unit 75 detects the rotation of the rotor 22. As shown in FIG. 2, the rotation detection unit 75 is disposed in the control substrate storage unit 12 f. The rotation detection unit 75 is disposed in the space between the partition wall 12 d and the control substrate 70. The rotation detection unit 75 includes an attachment member 73, a second magnet 74, and a second rotation sensor 71.

取付部材73は、例えば、非磁性体製である。なお取付部材73は、磁性体製であってもよい。取付部材73は、第1中心軸J1を中心とする円環状である。取付部材73の内周面は、モータシャフト21の外周面における軸方向他方側の端部に固定される。取付部材73は、第3ベアリング55およびベアリング保持部12eの軸方向他方側に配置される。取付部材73の径方向外縁部は、径方向外縁部の径方向内側に位置する部分よりも軸方向一方側に位置する。   The attachment member 73 is made of, for example, a nonmagnetic material. The mounting member 73 may be made of magnetic material. The mounting member 73 has an annular shape centered on the first central axis J1. The inner circumferential surface of the mounting member 73 is fixed to the other axial end of the outer circumferential surface of the motor shaft 21. The mounting member 73 is disposed on the other axial side of the third bearing 55 and the bearing holder 12e. The radially outer edge portion of the mounting member 73 is located on one side in the axial direction relative to the radially inner portion of the radially outer edge portion.

第2マグネット74は、周方向に延びる環状である。第2マグネット74は、第1中心軸J1を中心とする円環板状である。第2マグネット74の板面は軸方向を向き、軸方向に垂直に広がる。第2マグネット74は、周方向に沿って交互に配置されるN極とS極とを有する。第2マグネット74は、取付部材73に取り付けられる。第2マグネット74は、取付部材73の径方向外縁部において軸方向他方側を向く面に固定される。第2マグネット74は、例えば接着剤等により、取付部材73に固定される。第2マグネット74の軸方向他方側および径方向外側は、マグネットカバーによって覆われる。取付部材73および第2マグネット74は、モータシャフト21とともに第1中心軸J1回りに回転する。   The second magnet 74 is annular and extends in the circumferential direction. The second magnet 74 has an annular plate shape centered on the first central axis J1. The plate surface of the second magnet 74 is directed in the axial direction, and spreads perpendicularly to the axial direction. The second magnet 74 has N poles and S poles alternately arranged along the circumferential direction. The second magnet 74 is attached to the attachment member 73. The second magnet 74 is fixed to a surface facing the other side in the axial direction at the radial outer edge portion of the mounting member 73. The second magnet 74 is fixed to the mounting member 73 by, for example, an adhesive. The other axial side and the radially outer side of the second magnet 74 are covered by a magnet cover. The mounting member 73 and the second magnet 74 rotate around the first central axis J1 together with the motor shaft 21.

第2回転センサ71は、第2マグネット74に隙間をあけて対向する。第2回転センサ71は、第2マグネット74と軸方向に対向する。第2回転センサ71は、第2マグネット74の軸方向他方側に位置する。第2回転センサ71は、第2マグネット74によって生じる磁界を検出する。第2回転センサ71は、例えばホール素子である。第2回転センサ71は、周方向に互いに等間隔をあけて複数設けられる。第2回転センサ71は、例えば、周方向に互いに120度間隔をあけて3個設けられる。   The second rotation sensor 71 opposes the second magnet 74 with a gap. The second rotation sensor 71 axially faces the second magnet 74. The second rotation sensor 71 is located on the other side in the axial direction of the second magnet 74. The second rotation sensor 71 detects a magnetic field generated by the second magnet 74. The second rotation sensor 71 is, for example, a Hall element. A plurality of second rotation sensors 71 are provided at equal intervals in the circumferential direction. For example, three second rotation sensors 71 are provided at intervals of 120 degrees in the circumferential direction.

減速機構30は、モータシャフト21の軸方向一方側の部分に連結される。減速機構30は、モータシャフト21の軸方向一方側の部分の径方向外側に配置される。減速機構30は、径方向から見て偏芯軸部21bに重なる位置に配置される。減速機構30は、軸方向に沿う底壁部13aとステータ23との間に配置される。   The reduction mechanism 30 is connected to a portion on one axial side of the motor shaft 21. The speed reduction mechanism 30 is disposed radially outward of a portion on one axial side of the motor shaft 21. The speed reduction mechanism 30 is disposed at a position overlapping with the eccentric shaft 21b when viewed from the radial direction. The speed reduction mechanism 30 is disposed between the bottom wall 13 a and the stator 23 in the axial direction.

図2および図3に示すように、減速機構30は、外歯ギア31と、内歯ギア33と、環状板部40cと、を有する。外歯ギア31は、第2中心軸J2を中心とする略円環板状である。外歯ギア31の板面は軸方向を向き、軸方向に垂直に広がる。外歯ギア31の外周面には、歯車部が設けられる。外歯ギア31は、偏芯軸部21bに第4ベアリング56を介して接続する。つまり減速機構30は、第4ベアリング56を介してモータシャフト21に連結される。第4ベアリング56は、外歯ギア31内に嵌め合わされる。第4ベアリング56は、モータシャフト21と外歯ギア31とを、第2中心軸J2回りに相互に回転可能に連結する。   As shown in FIGS. 2 and 3, the speed reduction mechanism 30 has an external gear 31, an internal gear 33, and an annular plate portion 40 c. The external gear 31 has a substantially annular plate shape centering on the second central axis J2. The plate surface of the external gear 31 faces in the axial direction and spreads perpendicularly to the axial direction. A gear portion is provided on the outer peripheral surface of the external gear 31. The external gear 31 is connected to the eccentric shaft 21 b via a fourth bearing 56. That is, the reduction mechanism 30 is coupled to the motor shaft 21 via the fourth bearing 56. The fourth bearing 56 is fitted in the external gear 31. The fourth bearing 56 connects the motor shaft 21 and the external gear 31 rotatably around the second central axis J2.

外歯ギア31は、複数のピン32を有する。ピン32は、外歯ギア31の軸方向一方側を向く面から軸方向一方側に突出する円柱状である。複数のピン32は、第2中心軸J2を中心とする周方向に沿って等間隔に配置される。本実施形態の例では、ピン32が8個設けられる。   The external gear 31 has a plurality of pins 32. The pin 32 has a cylindrical shape that protrudes from the surface facing the axial direction one side of the external gear 31 to the axial direction one side. The plurality of pins 32 are arranged at equal intervals along the circumferential direction around the second central axis J2. In the example of the present embodiment, eight pins 32 are provided.

内歯ギア33は、外歯ギア31の径方向外側を囲んで減速機構ケース13に固定される。内歯ギア33は、第1中心軸J1を中心とする円環状である。内歯ギア33は、カバー筒部13bの内周面の窪み部13n内に配置されて、カバー筒部13bに固定される。窪み部13nは、カバー筒部13bの内周面における軸方向他方側の端部に位置し、軸方向他方側および径方向内側に開口する。   The internal gear 33 is fixed to the speed reduction mechanism case 13 so as to surround the radially outer side of the external gear 31. The internal gear 33 has an annular shape centered on the first central axis J1. The internal gear 33 is disposed in the recess 13 n of the inner peripheral surface of the cover cylinder 13 b and is fixed to the cover cylinder 13 b. The recess 13 n is located at the other axial end of the inner circumferential surface of the cover cylinder 13 b and opens in the other axial direction and radially inward.

内歯ギア33は、外歯ギア31と噛み合う。内歯ギア33の内周面には、歯車部が設けられる。内歯ギア33の歯車部は、外歯ギア31の歯車部と噛み合う。内歯ギア33の歯車部は、周方向の一部(図2および図3の各左側部分)において外歯ギア31の歯車部と噛み合う。内歯ギア33の歯車部の歯数と、外歯ギア31の歯車部の歯数とは、互いに異なる。内歯ギア33の歯車部の歯数は、外歯ギア31の歯車部の歯数よりも多い。   The internal gear 33 meshes with the external gear 31. A gear portion is provided on the inner peripheral surface of the internal gear 33. The gear portion of the internal gear 33 meshes with the gear portion of the external gear 31. The gear portion of the internal gear 33 meshes with the gear portion of the external gear 31 in a part in the circumferential direction (the left portions in FIGS. 2 and 3). The number of teeth of the gear portion of the internal gear 33 and the number of teeth of the gear portion of the external gear 31 are different from each other. The number of teeth of the gear portion of the internal gear 33 is larger than the number of teeth of the gear portion of the external gear 31.

環状板部40cは、出力部40の一部である。環状板部40cは、減速機構30と出力部40とを連結する連結部である。図2に示すように、環状板部40cは、外歯ギア31の軸方向一方側に配置される。環状板部40cは、第1中心軸J1を中心とする円環板状である。環状板部40cのうち径方向外側の部分は、径方向内側の部分よりも軸方向他方側に位置する。環状板部40cの径方向外側の部分は、環状板部40cの径方向内側の部分よりも軸方向の厚さが厚い。環状板部40cは、環状板部40cを軸方向に貫通する複数の孔40dを有する。孔40dは、環状板部40cの径方向外側の部分に配置される。   The annular plate portion 40 c is a part of the output portion 40. The annular plate portion 40 c is a connecting portion that connects the speed reduction mechanism 30 and the output portion 40. As shown in FIG. 2, the annular plate portion 40 c is disposed on one side in the axial direction of the external gear 31. The annular plate portion 40c has an annular plate shape centered on the first central axis J1. The radially outer portion of the annular plate portion 40c is located on the other axial direction side of the radially inner portion. The radially outer portion of the annular plate portion 40c is thicker in the axial direction than the radially inner portion of the annular plate portion 40c. The annular plate portion 40c has a plurality of holes 40d axially penetrating the annular plate portion 40c. The holes 40d are disposed in the radially outer portion of the annular plate portion 40c.

図3に示すように、複数の孔40dは、第1中心軸J1を中心とする周方向に沿って等間隔に配置される。本実施形態の例では、孔40dが8個設けられる。孔40dの数は、ピン32の数と同じである。孔40dは、円孔状である。孔40dの内径は、ピン32の外径よりも大きい。複数の孔40dには、複数のピン32がそれぞれ挿入される。ピン32の外周面は、孔40dの内周面と内接する。つまりピン32の外周面と、孔40dの内周面とは、周面の一部において接触する。孔40dの内周面は、ピン32を介して、外歯ギア31を揺動可能に支持する。   As shown in FIG. 3, the plurality of holes 40d are arranged at equal intervals along the circumferential direction centering on the first central axis J1. In the example of the present embodiment, eight holes 40 d are provided. The number of holes 40d is the same as the number of pins 32. The holes 40d are circular holes. The inner diameter of the hole 40 d is larger than the outer diameter of the pin 32. The plurality of pins 32 are respectively inserted into the plurality of holes 40 d. The outer peripheral surface of the pin 32 is inscribed in the inner peripheral surface of the hole 40d. That is, the outer peripheral surface of the pin 32 contacts the inner peripheral surface of the hole 40d at a part of the peripheral surface. The inner circumferential surface of the hole 40 d pivotally supports the external gear 31 via the pin 32.

出力部40は、電動アクチュエータ10の駆動力を出力する部分である。図2に示すように、出力部40は、筒状壁部40bと、環状板部40cと、出力シャフト部41と、を有する。筒状壁部40bは、第1中心軸J1を中心として軸方向に延びる筒状である。筒状壁部40bは、環状板部40cの径方向内縁部から軸方向一方側に延びる円筒状である。筒状壁部40bは、軸方向他方側に開口する有底の円筒状である。筒状壁部40bの内周面における軸方向一方側の端部には、第1ベアリング51が嵌め合わされる。これにより第1ベアリング51は、モータシャフト21と出力部40とを相互に回転可能に連結する。第1ベアリング51は、モータシャフト21と出力部40とを、第1中心軸J1回りに相対的に回転可能に連結する。筒状壁部40bの内部には、モータシャフト21の軸方向一方側の端部が位置する。モータシャフト21の軸方向一方側を向く端面は、筒状壁部40bの底部の軸方向他方側を向く面に、隙間をあけて対向する。   The output unit 40 is a portion that outputs the driving force of the electric actuator 10. As shown in FIG. 2, the output unit 40 includes a cylindrical wall 40 b, an annular plate 40 c, and an output shaft 41. The cylindrical wall portion 40b has a cylindrical shape extending in the axial direction centering on the first central axis J1. The cylindrical wall portion 40b has a cylindrical shape extending in the axial direction from the radially inner edge portion of the annular plate portion 40c. The cylindrical wall portion 40 b has a bottomed cylindrical shape that opens to the other side in the axial direction. The first bearing 51 is fitted to the end portion on one side in the axial direction of the inner peripheral surface of the cylindrical wall portion 40 b. Thus, the first bearing 51 rotatably connects the motor shaft 21 and the output unit 40 to each other. The first bearing 51 couples the motor shaft 21 and the output unit 40 relatively rotatably around the first central axis J1. An end of the motor shaft 21 on one side in the axial direction is located inside the cylindrical wall portion 40 b. The end face of the motor shaft 21 facing in the axial direction is opposite to the surface of the bottom of the cylindrical wall 40 b facing the other in the axial direction with a gap.

筒状壁部40bは、支持筒部13d内に配置される。筒状壁部40bと支持筒部13dとの間には、第2ベアリング54が配置される。支持筒部13dには、第2ベアリング54が嵌合される。つまり支持筒部13d内に、第2ベアリング54が嵌め合わされる。第2ベアリング54内には、筒状壁部40bが嵌め合わされる。第2ベアリング54は、筒状壁部40bの外周面と、支持筒部13dの内周面との間に挟まれる。第2ベアリング54は、ケース11に対して出力部40を回転可能に支持する。   The cylindrical wall portion 40b is disposed in the support cylindrical portion 13d. A second bearing 54 is disposed between the cylindrical wall portion 40b and the support cylindrical portion 13d. The second bearing 54 is fitted to the support cylindrical portion 13 d. That is, the second bearing 54 is fitted in the support cylindrical portion 13d. The cylindrical wall portion 40 b is fitted in the second bearing 54. The second bearing 54 is sandwiched between the outer peripheral surface of the cylindrical wall portion 40b and the inner peripheral surface of the support cylindrical portion 13d. The second bearing 54 rotatably supports the output unit 40 with respect to the case 11.

第2ベアリング54は、ベアリング筒部54aと、ベアリングフランジ部54bと、を有する。ベアリング筒部54aは、第1中心軸J1を中心として軸方向に延びる円筒状である。ベアリング筒部54aは、筒状壁部40bと支持筒部13dとの間に径方向から挟まれる。   The second bearing 54 has a bearing cylinder 54 a and a bearing flange 54 b. The bearing cylindrical portion 54a has a cylindrical shape extending in the axial direction centering on the first central axis J1. The bearing cylindrical portion 54a is sandwiched between the cylindrical wall portion 40b and the support cylindrical portion 13d in the radial direction.

ベアリングフランジ部54bは、第1中心軸J1を中心とする円環板状である。ベアリングフランジ部54bは、ベアリング筒部54aの軸方向他方側の端部から径方向外側に広がる。ベアリングフランジ部54bの板面は軸方向を向き、軸方向に垂直に広がる。ベアリングフランジ部54bは、支持筒部13dの軸方向他方側を向く端面13iと、環状板部40cとの間に軸方向から挟まれる。   The bearing flange portion 54b is in the form of an annular plate centered on the first central axis J1. The bearing flange portion 54 b extends radially outward from the other axial end of the bearing cylindrical portion 54 a. The plate surface of the bearing flange portion 54b faces in the axial direction and extends perpendicularly to the axial direction. The bearing flange portion 54b is sandwiched in the axial direction between an end face 13i facing the other side in the axial direction of the support cylindrical portion 13d and the annular plate portion 40c.

出力シャフト部41は、軸方向に延び、モータシャフト21の軸方向一方側に配置される。出力シャフト部41は、第1中心軸J1を中心とする円柱状である。出力シャフト部41は、筒状壁部40bの底部から軸方向一方側に延びる。出力シャフト部41は、突出筒部13c内に挿入される。出力シャフト部41の軸方向一方側の部分は、突出筒部13cよりも軸方向一方側に突出する。出力シャフト部41の軸方向一方側の部分には、電動アクチュエータ10の駆動力が出力される他の部材が取り付けられる。本実施形態において出力部40は、単一の部材である。   The output shaft portion 41 extends in the axial direction and is disposed on one side in the axial direction of the motor shaft 21. The output shaft portion 41 has a cylindrical shape centered on the first central axis J1. The output shaft portion 41 extends in the axial direction from the bottom of the cylindrical wall portion 40b. The output shaft portion 41 is inserted into the projecting cylindrical portion 13c. A portion on one axial side of the output shaft portion 41 protrudes on one axial side with respect to the projecting cylindrical portion 13 c. Another member to which the driving force of the electric actuator 10 is output is attached to a portion on one side in the axial direction of the output shaft portion 41. In the present embodiment, the output unit 40 is a single member.

モータシャフト21が第1中心軸J1回りに回転させられると、偏芯軸部21b(第2中心軸J2)は、第1中心軸J1を中心として周方向に公転する。偏芯軸部21bの公転は、第4ベアリング56を介して外歯ギア31に伝達され、外歯ギア31は、内歯ギア33内で第1中心軸J1回りに公転する。外歯ギア31は、孔40dの内周面とピン32の外周面との内接する位置が変化しつつ、揺動する。このとき、外歯ギア31の歯車部と内歯ギア33の歯車部とが噛み合う位置が、周方向に変化する。外歯ギア31の歯数と内歯ギア33の歯数とは互いに異なり、かつ、内歯ギア33は、減速機構ケース13に固定されて回転しない。このため、外歯ギア31が、内歯ギア33に対して第2中心軸J2回りに自転する。   When the motor shaft 21 is rotated about the first central axis J1, the eccentric shaft 21b (second central axis J2) revolves circumferentially about the first central axis J1. The revolution of the eccentric shaft 21b is transmitted to the external gear 31 through the fourth bearing 56, and the external gear 31 revolves around the first central axis J1 in the internal gear 33. The external gear 31 swings while the inscribed position of the inner peripheral surface of the hole 40 d and the outer peripheral surface of the pin 32 changes. At this time, the position at which the gear portion of the external gear 31 meshes with the gear portion of the internal gear 33 changes in the circumferential direction. The number of teeth of the external gear 31 and the number of teeth of the internal gear 33 are different from each other, and the internal gear 33 is fixed to the reduction mechanism case 13 and does not rotate. Therefore, the external gear 31 rotates about the second central axis J2 with respect to the internal gear 33.

外歯ギア31が自転する向きは、モータシャフト21が回転する向きと反対方向となる。外歯ギア31の第2中心軸J2回りの回転(自転)は、孔40dとピン32とを介して、環状板部40cに伝達される。これにより、環状板部40cが第1中心軸J1回りに回転し、出力部40が第1中心軸J1回りに回転する。このように、モータシャフト21の回転が、減速機構30を介して出力シャフト部41に伝達される。   The direction in which the external gear 31 rotates is opposite to the direction in which the motor shaft 21 rotates. The rotation (rotation) of the external gear 31 around the second central axis J2 is transmitted to the annular plate portion 40c via the hole 40d and the pin 32. As a result, the annular plate portion 40c rotates around the first central axis J1, and the output unit 40 rotates around the first central axis J1. Thus, the rotation of the motor shaft 21 is transmitted to the output shaft portion 41 via the speed reduction mechanism 30.

出力部40の回転は、減速機構30によって、モータシャフト21の回転に対して減速される。具体的に、本実施形態の減速機構30では、モータシャフト21の回転に対する出力部40の回転の減速比Rが、R=−(N2−N1)/N2で表される。減速比Rを表す式の右辺の先頭の負符号は、モータシャフト21の回転方向に対して、減速される出力部40の回転方向が逆向きになることを示す。N1は、外歯ギア31の歯数であり、N2は、内歯ギア33の歯数である。一例として、外歯ギア31の歯数N1が59で、内歯ギア33の歯数N2が60の場合、減速比Rは、−1/60となる。このように、本実施形態の減速機構30は、モータシャフト21の回転に対する出力部40の回転の減速比Rを大きくできる。これにより、出力部40の回転トルクを大きくできる。   The rotation of the output unit 40 is decelerated by the reduction mechanism 30 with respect to the rotation of the motor shaft 21. Specifically, in the reduction gear mechanism 30 of the present embodiment, the reduction ratio R of the rotation of the output unit 40 with respect to the rotation of the motor shaft 21 is represented by R = − (N2−N1) / N2. The negative sign at the top of the right side of the equation representing the reduction ratio R indicates that the rotational direction of the output unit 40 to be decelerated is opposite to the rotational direction of the motor shaft 21. N1 is the number of teeth of the external gear 31, and N2 is the number of teeth of the internal gear 33. As an example, when the number N1 of teeth of the external gear 31 is 59 and the number N2 of teeth of the internal gear 33 is 60, the reduction ratio R is −1/60. Thus, the reduction mechanism 30 of the present embodiment can increase the reduction ratio R of the rotation of the output unit 40 with respect to the rotation of the motor shaft 21. Thereby, the rotational torque of the output unit 40 can be increased.

回転検出装置60は、出力部40の回転を検出する。図2に示すように、回転検出装置60は、第1マグネット(マグネット)63と、第1回転センサ(回転センサ)62と、を有する。回転検出装置60の少なくとも一部は、支持筒部13dの径方向外側に対向する位置に配置される。   The rotation detection device 60 detects the rotation of the output unit 40. As shown in FIG. 2, the rotation detection device 60 has a first magnet (magnet) 63 and a first rotation sensor (rotation sensor) 62. At least a part of the rotation detection device 60 is disposed at a position facing the radially outer side of the support cylindrical portion 13 d.

第1配線部材91および第2配線部材92は、制御基板70と第1回転センサ62とを電気的に接続する。第1配線部材91および第2配線部材92は、3本の配線をそれぞれ有する。第1配線部材91は、モータケース12に保持される。第1配線部材91は、第1配線保持部14を通る。第1配線部材91の少なくとも一部は、第1配線保持部14に埋め込まれる。第1配線部材91は、制御基板70と第2配線部材92とに電気的に接続される。第2配線部材92は、減速機構ケース13に保持される。第2配線部材92は、第2配線保持部15を通る。第2配線部材92の少なくとも一部は、第2配線保持部15に埋め込まれる。第2配線部材92は、第1回転センサ62と第1配線部材91とに電気的に接続される。モータケース12と減速機構ケース13とが組み立てられることで、第1配線部材91と第2配線部材92とは、互いに電気的に接続される。   The first wiring member 91 and the second wiring member 92 electrically connect the control substrate 70 and the first rotation sensor 62. The first wiring member 91 and the second wiring member 92 each have three wires. The first wiring member 91 is held by the motor case 12. The first wiring member 91 passes through the first wiring holding portion 14. At least a portion of the first wiring member 91 is embedded in the first wiring holding portion 14. The first wiring member 91 is electrically connected to the control substrate 70 and the second wiring member 92. The second wiring member 92 is held by the speed reduction mechanism case 13. The second wiring member 92 passes through the second wiring holding portion 15. At least a portion of the second wiring member 92 is embedded in the second wiring holding portion 15. The second wiring member 92 is electrically connected to the first rotation sensor 62 and the first wiring member 91. By assembling the motor case 12 and the reduction mechanism case 13, the first wiring member 91 and the second wiring member 92 are electrically connected to each other.

なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。   The present invention is not limited to the above-described embodiment. For example, as described below, changes in configuration and the like are possible without departing from the spirit of the present invention.

(第1変形例)
図4は、第1変形例の電動アクチュエータに備えられるロータを示す図である。
第1変形例の電動アクチュエータは、図4に示すモータシャフト21Aの構成において先の実施形態と異なり、モータシャフト以外の構成は先の実施形態と共通である。
(First modification)
FIG. 4 is a view showing a rotor provided in the electric actuator of the first modified example.
The electric actuator of the first modification differs from the previous embodiment in the configuration of the motor shaft 21A shown in FIG. 4, and the configuration other than the motor shaft is common to the previous embodiment.

図4に示すロータ22Aは、モータシャフト21Aを有する。モータシャフト21Aは、ロータコア固定軸部21aと、ウェイト取付軸部21cとの間に、大径部21Dを有する。大径部21Dは、第1中心軸J1から径方向に見て偏芯軸部21bが位置する側の外周部に、他の部位よりも径が小さい減肉部21Eを有する。減肉部21Eの外周面は、平坦部であっても曲面形状であってもよい。   The rotor 22A shown in FIG. 4 has a motor shaft 21A. The motor shaft 21A has a large diameter portion 21D between the rotor core fixed shaft portion 21a and the weight mounting shaft portion 21c. The large diameter portion 21D has a thinned portion 21E having a diameter smaller than that of other portions on the outer peripheral portion on the side where the eccentric shaft portion 21b is located when viewed in the radial direction from the first central axis J1. The outer peripheral surface of the thinned portion 21E may be a flat portion or a curved surface.

上記構成によれば、大径部21Dに減肉部21Eが設けられていることで、大径部21Dの重心軸は、第1中心軸J1に対して、偏芯軸部21bの中心軸(第2中心軸J2)と反対側に偏芯する。したがって、大径部21Dがバランスウェイトの一部として機能する。これにより、バランスウェイト24の小型化が可能である。   According to the above configuration, by providing the reduced-thickness portion 21E in the large diameter portion 21D, the center of gravity axis of the large diameter portion 21D is the central axis of the eccentric shaft portion 21b with respect to the first central axis J1. Eccentric on the opposite side to the second central axis J2). Therefore, the large diameter portion 21D functions as part of the balance weight. Thereby, the balance weight 24 can be miniaturized.

(第2変形例)
図5は、第2変形例の電動アクチュエータに備えられるロータを示す図である。
第2変形例の電動アクチュエータは、図5に示すモータシャフト21Bの構成において先の実施形態と異なり、モータシャフト以外の構成は先の実施形態と共通である。
(2nd modification)
FIG. 5 is a view showing a rotor provided in the electric actuator of the second modification.
The electric actuator of the second modification differs from the previous embodiment in the configuration of the motor shaft 21B shown in FIG. 5, and the configuration other than the motor shaft is common to the previous embodiment.

図5に示すロータ22Bは、モータシャフト21Bを有する。モータシャフト21Bは、ロータコア固定軸部21aと、偏芯軸部21bとの間に、ウェイト取付軸部21cを有する。第2変形例のモータシャフト21Bでは、先の実施形態の大径部21dに相当する部分は設けられない。ウェイト取付軸部21cに取り付けられるバランスウェイト24は、軸方向他方側(図示左側)を向く面において、ロータコア22aの軸方向一方側を向く面に接触可能に配置される。すなわち、バランスウェイト24は、ロータコア22aと軸方向に直接対向する。バランスウェイト24は、ロータコア22aと接触する位置で軸方に位置決めされる。第2変形例の構成によれば、ロータコア22aと減速機構30との間のスペースが狭い場合でもバランスウェイト24を配置できる。   The rotor 22B shown in FIG. 5 has a motor shaft 21B. The motor shaft 21B has a weight attachment shaft 21c between the rotor core fixed shaft 21a and the eccentric shaft 21b. In the motor shaft 21B of the second modification, the portion corresponding to the large diameter portion 21d of the previous embodiment is not provided. The balance weight 24 attached to the weight attachment shaft portion 21c is disposed so as to be in contact with the surface facing the one axial side of the rotor core 22a in the surface facing the other axial side (left side in the drawing). That is, the balance weight 24 directly faces the rotor core 22a in the axial direction. The balance weight 24 is axially positioned at a position in contact with the rotor core 22a. According to the configuration of the second modification, even when the space between the rotor core 22a and the speed reduction mechanism 30 is narrow, the balance weight 24 can be disposed.

前述の実施形態および変形例では、出力部40が単一の部材であるが、これに限定されない。例えば、出力部40の環状板部40cおよび筒状壁部40bと、出力シャフト部41とが、溶接等により固定されてもよい。
減速機構30は、モータシャフト21の回転を減速させて出力部40に伝達することで、トルクを増大させる機能を有すればよく、前述の実施形態で説明した構成に限定されない。
Although the output part 40 is a single member in the above-mentioned embodiment and modification, it is not limited to this. For example, the annular plate portion 40c and the cylindrical wall portion 40b of the output portion 40 and the output shaft portion 41 may be fixed by welding or the like.
The reduction mechanism 30 only needs to have a function of increasing the torque by reducing the rotation of the motor shaft 21 and transmitting it to the output unit 40, and is not limited to the configuration described in the above embodiment.

その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例およびなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。   In addition, without departing from the spirit of the present invention, each configuration (component) described in the above-described embodiment, modification, and note may be combined, and addition, omission, replacement, and other configurations can be made. Changes are possible. Moreover, this invention is not limited by embodiment mentioned above, It is limited only by the claim.

10…電動アクチュエータ、11…ケース、20…モータ、21,21A,21B…モータシャフト、21b…偏芯軸部、21c…ウェイト取付軸部、21d,21D…大径部、21e…Dカット部(第1の平面部)、21E…減肉部、22,22A,22B…ロータ、22a…ロータコア、24…バランスウェイト、24a…貫通孔、24b…平面部(第2の平面部)、30…減速機構、40d…孔、51…第1ベアリング、54…第2ベアリング、J1…第1中心軸(中心軸)、J3…重心軸   DESCRIPTION OF SYMBOLS 10 ... Electric actuator, 11 ... Case, 20 ... Motor, 21, 21A, 21B ... Motor shaft, 21b ... Eccentric shaft part, 21c ... Weight attachment axial part, 21d, 21D ... Large diameter part, 21e ... D cut part ( First flat portion), 21E: reduced thickness portion 22, 22, 22A, 22B: rotor, 22a: rotor core, 24: balance weight, 24a: through hole, 24b: flat portion (second flat portion), 30: deceleration Mechanism, 40d: hole, 51: first bearing, 54: second bearing, J1: first central axis (central axis), J3: central axis of gravity

Claims (7)

中心軸に沿って延びるモータシャフトを有するモータと、
前記モータシャフトの軸方向一方側の部分の径方向外側に配置され、前記モータシャフトに連結される減速機構と、
前記モータおよび前記減速機構を収容するケースと、
前記減速機構の軸方向一方側において前記モータシャフトを支持する第1ベアリングと、
前記モータの軸方向他方側において前記モータシャフトを支持する第2ベアリングと、
を備え、
前記モータシャフトは、
前記減速機構のギアを回転可能に支持し中心軸に対して偏芯する偏芯軸部と、
前記偏芯軸部と前記モータとの間に配置され前記偏芯軸部よりも大きい径を有するウェイト取付軸部と、
を有し、
前記ウェイト取付軸部には、中心軸に対して偏芯する重心軸を有するバランスウェイトが取り付けられ、
前記ウェイト取付軸部は、周面の一部に第1の平面部を有する中心軸周りの円柱状であり、
前記第1の平面部は、中心軸に対して前記偏芯軸部の中心と反対側に位置し、
前記バランスウェイトは、前記ウェイト取付軸部が挿入される貫通孔と、前記貫通孔の内周面に設けられ前記第1の平面部と対向する第2の平面部と、を有する、
電動アクチュエータ。
A motor having a motor shaft extending along a central axis;
A reduction mechanism disposed radially outward of a portion on one axial side of the motor shaft and coupled to the motor shaft;
A case for housing the motor and the reduction mechanism;
A first bearing for supporting the motor shaft on one side in the axial direction of the speed reduction mechanism;
A second bearing that supports the motor shaft on the other axial side of the motor;
Equipped with
The motor shaft is
An eccentric shaft portion rotatably supporting the gear of the reduction mechanism and eccentric to the central axis;
A weight mounting shaft portion disposed between the eccentric shaft portion and the motor and having a diameter larger than that of the eccentric shaft portion;
Have
The weight mounting shaft portion is mounted with a balance weight having a center of gravity axis eccentric to a center axis,
The weight attachment shaft portion has a cylindrical shape around a central axis having a first flat portion on a part of the circumferential surface,
The first flat portion is located on the opposite side of the center of the eccentric shaft with respect to the central axis,
The balance weight has a through hole into which the weight attachment shaft portion is inserted, and a second flat portion provided on an inner peripheral surface of the through hole and facing the first flat portion.
Electric actuator.
前記第1の平面部は、Dカット部である、請求項1に記載の電動アクチュエータ。   The electric actuator according to claim 1, wherein the first flat portion is a D-cut portion. 前記モータシャフトは、前記ウェイト取付軸部の軸方向他方側に、前記ウェイト取付軸部よりも大きい径を有する大径部を有し、
前記バランスウェイトは、前記大径部の軸方向一方側を向く面に接触する、
請求項1または2に記載の電動アクチュエータ。
The motor shaft has, on the other axial side of the weight mounting shaft, a large diameter portion having a diameter larger than that of the weight mounting shaft.
The balance weight is in contact with a surface of the large diameter portion facing one side in the axial direction,
The electric actuator according to claim 1.
前記大径部は、中心軸に対して偏芯する重心軸を有する、請求項3に記載の電動アクチュエータ。   The electric actuator according to claim 3, wherein the large diameter portion has a center of gravity axis eccentric to a central axis. 前記大径部は、中心軸から径方向に見て前記偏芯軸部が位置する側の外周部に、他の部位よりも径が小さい減肉部を有する、請求項4に記載の電動アクチュエータ。   The electric actuator according to claim 4, wherein the large diameter portion has a thinned portion with a diameter smaller than that of the other portion on the outer peripheral portion on the side where the eccentric shaft portion is located when viewed radially from the central axis. . 前記モータシャフトに連結されるロータコアを有し、
前記バランスウェイトは、前記ロータコアの軸方向一方側を向く面に接触可能に配置される、請求項1または2に記載の電動アクチュエータ。
A rotor core connected to the motor shaft;
The electric actuator according to claim 1, wherein the balance weight is disposed so as to be in contact with a surface facing one axial side of the rotor core.
前記バランスウェイトの中心軸からの最大長さは、前記モータにおけるロータの半径よりも小さい、請求項1から6のいずれか1項に記載の電動アクチュエータ。   The electric actuator according to any one of claims 1 to 6, wherein a maximum length from the central axis of the balance weight is smaller than a radius of a rotor in the motor.
JP2017189030A 2017-09-28 2017-09-28 Electric actuator Pending JP2019068517A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017189030A JP2019068517A (en) 2017-09-28 2017-09-28 Electric actuator
CN201821576351.7U CN208806710U (en) 2017-09-28 2018-09-26 Electric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017189030A JP2019068517A (en) 2017-09-28 2017-09-28 Electric actuator

Publications (1)

Publication Number Publication Date
JP2019068517A true JP2019068517A (en) 2019-04-25

Family

ID=66238583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017189030A Pending JP2019068517A (en) 2017-09-28 2017-09-28 Electric actuator

Country Status (2)

Country Link
JP (1) JP2019068517A (en)
CN (1) CN208806710U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090060A (en) * 2020-12-22 2022-06-29 인지컨트롤스 주식회사 Actuator for vehicle coolant control valve
KR20220117494A (en) * 2021-02-17 2022-08-24 인지컨트롤스 주식회사 Actuator for vehicle coolant control valve
US11906073B2 (en) 2022-06-21 2024-02-20 Inzicontrols Co., Ltd. Actuator for vehicle coolant control valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256971A (en) * 1996-03-19 1997-09-30 Tokico Ltd Scroll type fluid machinery and manufacture thereof
JPH1051999A (en) * 1996-08-06 1998-02-20 Sumitomo Heavy Ind Ltd Geared motor adopting inner-gearing planetary gear structure
JP2000257676A (en) * 1999-03-08 2000-09-19 Sumitomo Heavy Ind Ltd Inscribed meshing planetary gear structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256971A (en) * 1996-03-19 1997-09-30 Tokico Ltd Scroll type fluid machinery and manufacture thereof
JPH1051999A (en) * 1996-08-06 1998-02-20 Sumitomo Heavy Ind Ltd Geared motor adopting inner-gearing planetary gear structure
JP2000257676A (en) * 1999-03-08 2000-09-19 Sumitomo Heavy Ind Ltd Inscribed meshing planetary gear structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090060A (en) * 2020-12-22 2022-06-29 인지컨트롤스 주식회사 Actuator for vehicle coolant control valve
KR102437290B1 (en) 2020-12-22 2022-08-30 인지컨트롤스 주식회사 Actuator for vehicle coolant control valve
KR20220117494A (en) * 2021-02-17 2022-08-24 인지컨트롤스 주식회사 Actuator for vehicle coolant control valve
KR102571337B1 (en) 2021-02-17 2023-08-29 인지컨트롤스 주식회사 Actuator for vehicle coolant control valve
US11906073B2 (en) 2022-06-21 2024-02-20 Inzicontrols Co., Ltd. Actuator for vehicle coolant control valve

Also Published As

Publication number Publication date
CN208806710U (en) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6844710B2 (en) Electric actuator
US10591031B2 (en) Electric actuator
JP7110872B2 (en) electric actuator
JP6819411B2 (en) Electric actuator
JP2006062476A (en) Housing structure of in-wheel motor
JP7230352B2 (en) electric actuator
WO2018180924A1 (en) Rotor and motor
JP2019068517A (en) Electric actuator
JP7155569B2 (en) drive
JP7234662B2 (en) electric actuator
JP2020005432A (en) Electric actuator
JP7047309B2 (en) Motor, electric actuator
JP7206967B2 (en) electric actuator
JP2019118195A (en) Electric actuator, and rotation control mechanism
JP2019068520A (en) Motor and electric actuator
JP7192538B2 (en) electric actuator
JP7537209B2 (en) Electric Actuator
JP2020054121A (en) Electric actuator
JP7059551B2 (en) Electric actuator
JP6965710B2 (en) Electric actuator
JP2022113322A (en) electric actuator
JP2020045985A (en) Electric actuator
JP2019068518A (en) Electric actuator
JP7512807B2 (en) Electric Actuator
JP7533085B2 (en) Electric Actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211207