Nothing Special   »   [go: up one dir, main page]

JP2019056678A - Target cell detection method - Google Patents

Target cell detection method Download PDF

Info

Publication number
JP2019056678A
JP2019056678A JP2017182675A JP2017182675A JP2019056678A JP 2019056678 A JP2019056678 A JP 2019056678A JP 2017182675 A JP2017182675 A JP 2017182675A JP 2017182675 A JP2017182675 A JP 2017182675A JP 2019056678 A JP2019056678 A JP 2019056678A
Authority
JP
Japan
Prior art keywords
cell
cells
target
sample
target cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017182675A
Other languages
Japanese (ja)
Other versions
JP7062901B2 (en
Inventor
俊樹 後藤
Toshiki Goto
俊樹 後藤
篤史 森本
Atsushi Morimoto
篤史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017182675A priority Critical patent/JP7062901B2/en
Publication of JP2019056678A publication Critical patent/JP2019056678A/en
Application granted granted Critical
Publication of JP7062901B2 publication Critical patent/JP7062901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】試料中に含まれる目的細胞および夾雑細胞を正確に標識することで、当該目的細胞を高精度に検出する方法を提供する。【解決手段】試料中に含まれる目的細胞および夾雑細胞を0.03%(w/v)から0.15%(w/v)のTriton X−100(商品名)処理により膜透過し、当該目的細胞および当該夾雑細胞にそれぞれ特異的に有するタンパク質を認識する物質で標識後、標識の有無に基づき目的細胞を検出する。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for detecting a target cell and a contaminating cell contained in a sample with high accuracy by accurately labeling the target cell and the contaminating cell. SOLUTION: Target cells and contaminating cells contained in a sample are permeated into a membrane by treatment with 0.03% (w / v) to 0.15% (w / v) of Triton X-100 (trade name). After labeling with a substance that recognizes a protein specifically possessed by the target cell and the contaminant cell, the target cell is detected based on the presence or absence of the label. [Selection diagram] None

Description

本発明は、試料中に含まれる目的細胞を検出する方法に関する。特に本発明は、試料中に含まれる目的細胞の膜透過工程を最適化することで、目的細胞を高精度に検出する方法に関する。   The present invention relates to a method for detecting a target cell contained in a sample. In particular, the present invention relates to a method for detecting target cells with high accuracy by optimizing the membrane permeation process of target cells contained in a sample.

近年、血液などの体液や、臓器などの組織を溶液に懸濁もしくは分散して得られる組織懸濁液や、細胞培養液といった試料から細胞を選択的に分離回収し、当該分離回収した細胞を基礎研究や臨床診断、治療へ応用する研究が進められている。例えば、癌患者より採取した血液から腫瘍細胞(Circulating Tumor Cell、以下CTCと表記)を採取し、当該細胞について形態学的分析、組織型分析や遺伝子分析を行ない、前記分析により得られた知見に基づき治療方針を判断する研究が進められている。   In recent years, cells have been selectively separated and collected from samples such as body fluids such as blood, tissue suspensions obtained by suspending or dispersing tissues such as organs, and cell culture solutions. Research that applies to basic research, clinical diagnosis, and treatment is underway. For example, a tumor cell (Circulating Tumor Cell, hereinafter referred to as CTC) is collected from blood collected from a cancer patient, and morphological analysis, tissue type analysis or gene analysis is performed on the cell. Research to determine treatment policy based on this is underway.

しかしながら、CTCは存在確率が非常に少なく(試料が癌患者由来の全血の場合、全血1mLあたり数個程度)、高感度な検出を必要とする。CTCは通常、DAPI(4’,6−DiAmidino−2−PhenylIndole)などの核標識試薬で標識され、細胞内にサイトケラチン(CK)やp63など上皮系細胞に特異的に有するタンパク質(CKとp63は細胞内に発現に発現)に対する標識抗体で標識され、かつCD45など白血球に特異的に有するタンパク質(マーカー)に対する標識抗体では標識されない細胞をCTCとして判定している。しかしながらCTCの中には前記上皮系細胞に特異的に有するタンパク質に対する標識抗体では標識されないCTCもあり(特許文献1)、当該CTCを検出するには、偽陽性・偽陰性を無くすために、CTC以外の夾雑細胞(例えば、白血球)も明瞭かつ正確に標識し、高精度に細胞を検出する必要がある。   However, CTC has a very low probability of existence (in the case where the sample is whole blood derived from a cancer patient), and requires high-sensitivity detection. CTC is usually labeled with a nuclear labeling reagent such as DAPI (4 ′, 6-DiAmidino-2-PhenylIndole), and a protein (CK and p63) that is specifically contained in epithelial cells such as cytokeratin (CK) and p63 in the cell. Is labeled with a labeled antibody against the expression (expressed in the cell) and not labeled with a labeled antibody against a protein (marker) specific to leukocytes, such as CD45, as CTC. However, some CTCs are not labeled with a labeled antibody against the protein specifically possessed by the epithelial cells (Patent Document 1). In order to detect the CTCs, in order to eliminate false positives and false negatives, It is necessary to clearly and accurately label other contaminating cells (for example, leukocytes) and detect the cells with high accuracy.

WO2015/112955号WO2015 / 112955

本発明の課題は、試料中に含まれる目的細胞および夾雑細胞を明瞭かつ正確に標識することで、当該目的細胞を高精度に検出する方法を提供することにある。   An object of the present invention is to provide a method for detecting a target cell with high accuracy by clearly and accurately labeling a target cell and a contaminated cell contained in a sample.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied to arrive at the present invention.

すなわち本発明は以下の通り例示できる。
[1]
試料中に含まれる目的細胞および夾雑細胞を検出する方法であって、
1)試料中の目的細胞および夾雑細胞膜透過する工程、
2)当該目的細胞および当該夾雑細胞にそれぞれ特異的に有するタンパク質を認識する物質で標識する工程、および
3)これら標識の有無に基づき前記目的細胞を検出する工程、
を含み、目的細胞および夾雑細胞の膜透過を0.03%(w/v)から0.15%(w/v)のTriton X−100(商品名)で処理することで行なう、検出方法。
[2]
目的細胞が腫瘍細胞であり、目的細胞に特異的に有するタンパク質が上皮系の細胞内タンパク質であり、夾雑細胞の標識を夾雑細胞膜に特異的に有するタンパク質を認識する物質で行なう、[1]に記載の検出方法。
[3]
試料が血液試料であり、夾雑細胞が白血球であり、夾雑細胞に特異的に有するタンパク質が白血球の膜タンパク質であり、目的細胞の標識を目的細胞内に特異的に有するタンパク質を認識する物質で行なう、[1]または[2]に記載の方法。
That is, the present invention can be exemplified as follows.
[1]
A method for detecting target cells and contaminating cells contained in a sample, comprising:
1) a step of permeating through a target cell and a contaminated cell membrane in a sample;
2) a step of labeling with a substance that recognizes the protein specifically possessed by the target cell and the contaminating cell, and 3) a step of detecting the target cell based on the presence or absence of these labels,
And a membrane permeation of target cells and contaminating cells is treated with 0.03% (w / v) to 0.15% (w / v) Triton X-100 (trade name).
[2]
[1] The target cell is a tumor cell, the protein specifically possessed by the target cell is an epithelial intracellular protein, and the labeling of the contaminated cell is performed with a substance that recognizes the protein specifically possessed by the contaminated cell membrane. The detection method described.
[3]
The sample is a blood sample, the contaminating cell is a leukocyte, the protein specifically possessed by the contaminated cell is a membrane protein of leukocyte, and the target cell is labeled with a substance that specifically recognizes the protein having the label in the target cell. [1] or [2].

本発明は、試料中に含まれる目的細胞および夾雑細胞を膜透過し、当該目的細胞および当該夾雑細胞にそれぞれ特異的に有するタンパク質を認識する物質で標識後、これら標識の有無に基づき前記目的細胞を検出する方法において、目的細胞および夾雑細胞の膜透過を0.03%(w/v)から0.15%(w/v)のTriton X−100(商品名)で処理することで行なうことを特徴としている。本発明の検出方法は、特に試料中に含まれる目的細胞数が少なく、かつ夾雑細胞数が当該目的細胞数と比較して極めて多い場合に有用であり、例えば、本発明を血液中に含まれる血中循環腫瘍細胞(CTC)の検出に適用することで、CTC検出結果に対する信頼性が向上し、精度高く癌を検出できる。   The present invention permeates the target cells and contaminated cells contained in the sample through a membrane, and labels them with substances that specifically recognize the target cells and the contaminated cells, respectively, and then based on the presence or absence of these labels, the target cells In the method for detecting urine, the membrane permeation of target cells and contaminating cells is treated with 0.03% (w / v) to 0.15% (w / v) of Triton X-100 (trade name). It is characterized by. The detection method of the present invention is particularly useful when the number of target cells contained in a sample is small and the number of contaminated cells is extremely large compared to the number of target cells. For example, the present invention is contained in blood. By applying to the detection of circulating tumor cells (CTC) in the blood, the reliability of the CTC detection result is improved, and cancer can be detected with high accuracy.

本発明の検出方法で利用可能な、細胞保持装置の一例を示す図である。It is a figure which shows an example of the cell holding | maintenance apparatus which can be utilized with the detection method of this invention. 本発明の検出方法で利用可能な、細胞保持装置の別の態様を示す図である。It is a figure which shows another aspect of the cell holding | maintenance apparatus which can be utilized with the detection method of this invention. 図1に示す細胞保持装置を用いた、細胞の保持および検出を示した図である。It is the figure which showed the holding | maintenance and detection of a cell using the cell holding | maintenance apparatus shown in FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における試料の一例として、全血、希釈血液、血清、血漿、髄液、臍帯血、成分採血液、尿、唾液、精液、糞便、痰、羊水、腹水、腹腔洗浄液などの生体試料や、肝臓、肺、脾臓、腎臓、皮膚、腫瘍、リンパ節などの組織の一片を懸濁して得られる組織懸濁液や、前記生体試料または前記組織懸濁液より分離して得られる、前記生体試料または前記組織由来の細胞を含む画分や、あらかじめ単離した細胞の培養液、があげられる。このうち生体試料または組織由来の細胞を含む画分の一例として、生体試料や組織懸濁液を密度勾配形成用媒体の上に重層後、密度勾配遠心することで得られる画分があげられる。   As an example of the sample in the present invention, biological samples such as whole blood, diluted blood, serum, plasma, spinal fluid, umbilical cord blood, component blood collection, urine, saliva, semen, feces, sputum, amniotic fluid, ascites, peritoneal washing fluid, Tissue suspension obtained by suspending a piece of tissue such as liver, lung, spleen, kidney, skin, tumor, lymph node, or the biological sample obtained by separating from the biological sample or the tissue suspension Or the fraction containing the cell derived from the said tissue and the culture solution of the cell isolated previously are mention | raise | lifted. Among these, an example of a fraction containing a biological sample or tissue-derived cells is a fraction obtained by overlaying a biological sample or tissue suspension on a density gradient forming medium and then performing density gradient centrifugation.

試料が血液試料である場合の、試料中に含まれる目的細胞の一例としては、血液循環腫瘍細胞(CTC)などの腫瘍細胞、循環血液内皮細胞(CEC)、循環血管内皮細胞(CEP)、循環胎児細胞(CFC)、各種幹細胞があげられる。一方、試料中に含まれる夾雑細胞は目的細胞以外の細胞を指し、試料が血液試料である場合の夾雑細胞の具体例としては、前記試料中に含まれる細胞である白血球、赤血球、血小板および小胞、ならびにこれら細胞または前述した目的細胞由来のデブリがあげられる。なお本発明における血液試料は、全血、血清、血漿、臍帯血、成分採血液といった血液検体に限らず、当該血液検体を生理食塩水などで希釈した試料や、当該血液検体より分離して得られる、前記血液検体由来の細胞を含む画分も、血液試料に含まれる。   Examples of target cells contained in the sample when the sample is a blood sample include tumor cells such as blood circulating tumor cells (CTC), circulating blood endothelial cells (CEC), circulating vascular endothelial cells (CEP), and circulation. Examples include fetal cells (CFC) and various stem cells. On the other hand, the contaminating cells contained in the sample refer to cells other than the target cells. Specific examples of the contaminating cells when the sample is a blood sample include leukocytes, erythrocytes, platelets and small cells that are contained in the sample. And debris derived from these cells or the aforementioned target cells. The blood sample in the present invention is not limited to a blood sample such as whole blood, serum, plasma, umbilical cord blood, and component blood collection, but can be obtained by diluting the blood sample with a physiological saline solution or the like and separating it from the blood sample. A fraction containing cells derived from the blood sample is also included in the blood sample.

本発明では、試料中に含まれる目的細胞および夾雑細胞の膜透過処理を行なう。しかしながら膜透過処理は膜タンパク質の損傷や溶出のおそれがある。そのため、細胞内タンパク質および膜タンパク質を標識する際は、膜透過試薬およびその濃度の最適化が必要である。本発明者らは前記膜透過試薬の最適化検討を行なった結果、膜透過試薬として0.03%(w/v)から0.15%(w/v)のTriton X−100(商品名、以下略)を用いて細胞を処理することで、膜タンパク質の損傷や溶出を最小限にしつつ、効率的な細胞膜透過が行なえることを見出した。Triton X−100の濃度は前述した濃度範囲であればよいが、0.03%(w/v)から0.1%(w/v)までの範囲がより好ましく、0.03%(w/v)から0.08%(w/v)までの範囲がさらに好ましい。本発明の方法は、目的細胞と夾雑細胞を分離せずに、双方とも標識する際に特に有用である。例えば、目的細胞が特異的に有するタンパク質と夾雑細胞が特異的に有するタンパク質が、それぞれ細胞内と細胞膜に存在する場合、認識物質が膜透化することを可能にし、かつ、膜タンパク質の損傷を抑制する必要があるためである。   In the present invention, membrane permeabilization of target cells and contaminated cells contained in a sample is performed. However, membrane permeation treatment may damage or elute membrane proteins. Therefore, when labeling intracellular proteins and membrane proteins, it is necessary to optimize the membrane permeation reagent and its concentration. As a result of studying optimization of the membrane permeation reagent, the present inventors have determined that 0.03% (w / v) to 0.15% (w / v) Triton X-100 (trade name, It was found that the cell membrane can be efficiently permeated while minimizing damage and elution of membrane proteins. The concentration of Triton X-100 may be within the above-described concentration range, but a range from 0.03% (w / v) to 0.1% (w / v) is more preferable, and 0.03% (w / v) A range from v) to 0.08% (w / v) is more preferred. The method of the present invention is particularly useful for labeling both target cells and contaminating cells without separating them. For example, when the protein specifically possessed by the target cell and the protein specifically possessed by the contaminated cell are present in the cell and in the cell membrane, respectively, the recognition substance can be permeabilized and damage to the membrane protein can be prevented. This is because it is necessary to suppress.

本発明では、前述した膜透過処理後、試料中に含まれる目的細胞および夾雑細胞を当該目的細胞および当該夾雑細胞にそれぞれ特異的に有するタンパク質を認識する物質で標識し、当該標識の有無に基づき試料中に含まれる目的細胞を検出する。   In the present invention, after the membrane permeation treatment described above, the target cells and contaminating cells contained in the sample are labeled with a substance that recognizes the target cell and the protein specifically present in the contaminating cells, respectively, and based on the presence or absence of the labeling The target cell contained in the sample is detected.

本発明において、目的細胞(夾雑細胞)に特異的に有するタンパク質とは、目的細胞(夾雑細胞)に特異的に存在するタンパク質であって、目的(夾雑)細胞の識別を可能にするタンパク質のことをいう。ここで、目的細胞(夾雑細胞)に特異的に存在する、とは、
目的細胞(夾雑細胞)には存在し、かつ夾雑細胞(目的細胞)には存在しないこと、または、目的細胞(夾雑細胞)における存在量が夾雑細胞(目的細胞)よりも多いこと、を意味する。
In the present invention, a protein that is specifically present in a target cell (contaminated cell) is a protein that is specifically present in the target cell (contaminated cell) and that enables identification of the target (contaminated cell). Say. Here, it exists specifically in the target cell (contaminated cell).
It means that it exists in the target cell (contaminated cell) and does not exist in the contaminated cell (target cell), or the abundance in the target cell (contaminated cell) is larger than that of the contaminated cell (target cell). .

本発明において、目的細胞(夾雑細胞)に特異的に有するタンパク質を認識する物質として好ましくは、前記タンパク質と特異的に結合可能な物質(以下、特異的結合物質、とも表記する)と光学的に検出可能なシグナルを発することが可能な標識物質との複合体が挙げられる。特異的結合物質の一例として、前記タンパク質に対する抗体や、前記タンパク質と特異的に結合可能なリガンド/レクチンがあげられる。標識物質は、光学的に検出可能なシグナル(蛍光、化学発光、燐光など)を発することが可能な物質であれば特に限定はなく、一例として、FITC(フルオレセインイソシアネート)、PE(フィコエリスリン)、APC(アロフィコシアニン)、ローダミンといった蛍光色素や、ペルオキシダーゼ、β−ガラクトシダーゼ、アルカリフォスファターゼ、ルシフェラーゼといった化学発光基質との反応を触媒する酵素があげられる。   In the present invention, a substance that specifically recognizes a protein specifically contained in a target cell (contaminated cell) is preferably a substance that can specifically bind to the protein (hereinafter also referred to as a specific binding substance) and optically. And a complex with a labeling substance capable of emitting a detectable signal. Examples of the specific binding substance include an antibody against the protein and a ligand / lectin that can specifically bind to the protein. The labeling substance is not particularly limited as long as it can emit an optically detectable signal (fluorescence, chemiluminescence, phosphorescence, etc.). For example, FITC (fluorescein isocyanate), PE (phycoerythrin) And enzymes that catalyze the reaction with fluorescent dyes such as APC (allophycocyanin) and rhodamine, and chemiluminescent substrates such as peroxidase, β-galactosidase, alkaline phosphatase, and luciferase.

特異的結合物質と標識物質との複合体形成は、公知の方法により両物質を化学的に直接結合させてもよいし、特異的結合物質にビオチン(アビジンまたはストレプトアビジン)を、標識物質にアビジンまたはストレプトアビジン(ビオチン)を、それぞれ結合させた後、ビオチン−アビジン(ビオチン−ストレプトアビジン)結合を介して間接的に両者を結合させてもよいし、
特異的結合物質と特異的に結合可能な物質(抗体、リガンド、レクチン)を標識物質に結合させた後、特異的結合物質と前記物質との相互作用(抗原抗体反応など)により間接的に両者を結合させてもよい。
The complex formation between the specific binding substance and the labeling substance may be performed by chemically bonding both substances directly by a known method, biotin (avidin or streptavidin) as the specific binding substance, and avidin as the labeling substance. Alternatively, streptavidin (biotin) may be bonded to each other, and then both may be indirectly bonded via a biotin-avidin (biotin-streptavidin) bond,
After binding a specific binding substance (antibody, ligand, lectin) with a specific binding substance to the labeling substance, both of them indirectly by the interaction (such as antigen-antibody reaction) between the specific binding substance and the substance. May be combined.

本発明で実施する、試料中に含まれる目的細胞および夾雑細胞の膜透化は、具体的には以下の(I)または(II)に示す標識において好適である。
(I)試料中に含まれる目的細胞内に特異的に有するタンパク質を認識する物質および試料中に含まれる夾雑細胞膜に特異的に有するタンパク質を認識する物質で標識
(II)試料中に含まれる目的細胞膜に特異的に有するタンパク質を認識する物質および試料中に含まれる夾雑細胞内に特異的に有するタンパク質を認識する物質で標識
本発明で実施する標識の具体例を以下に示す。
The membrane permeabilization of the target cells and contaminating cells contained in the sample, which is carried out in the present invention, is particularly suitable for the label shown in the following (I) or (II).
(I) Labeled with a substance that specifically recognizes a protein specifically contained in a target cell contained in a sample and a substance that recognizes a protein specifically contained in a contaminated cell membrane contained in the sample (II) A purpose contained in the sample Labeling with a substance that specifically recognizes a protein that has a cell membrane and a substance that specifically recognizes a protein that is contained in a contaminated cell contained in a sample Specific examples of the labeling performed in the present invention are shown below.

試料が前述した血液試料であり、目的細胞が腫瘍細胞(CTC)であり、夾雑細胞が白血球である場合は、CTC内に特異的に有するタンパク質であるサイトケラチン(CK)やp63を認識する物質、および白血球膜に特異的に有するタンパク質であるCD45(Leucocyte Common Antigen:LCA)やCD50(InterCellular Adhesion Molecule−3:ICAM−3)を認識する物質で標識すればよい。なおCKにはCK1からCK20まで20種類のタンパク質が知られているが、そのいずれもがCTC内に特異的に有するタンパク質として使用可能である。   A substance that recognizes cytokeratin (CK) or p63, which is a protein specifically contained in CTC, when the sample is the blood sample described above, the target cell is a tumor cell (CTC), and the contaminating cell is a leukocyte. And a substance that recognizes CD45 (Leucocyte Common Antigen: LCA) and CD50 (InterCellular Adhesion Molecule-3: ICAM-3), which are proteins specifically possessed in the leukocyte membrane. In addition, although 20 kinds of proteins from CK1 to CK20 are known as CK, any of them can be used as a protein specifically included in CTC.

試料が腫瘍組織の懸濁液であり、目的細胞が腫瘍関連線維芽細胞(CAF)であり、夾雑細胞が白血球である場合は、CAF内に特異的に有するタンパク質であるα−SMA(α−smooth muscle actin)を認識する物質、および白血球膜に特異的に有するタンパク質であるCD45やCD50を認識する物質で標識できる。   When the sample is a suspension of tumor tissue, the target cells are tumor-associated fibroblasts (CAF), and the contaminating cells are leukocytes, α-SMA (α-SMA, which is a protein specifically contained in CAF) It can be labeled with a substance that recognizes smooth muscle actin) and a substance that recognizes CD45 and CD50, which are proteins specifically possessed by leukocyte membranes.

試料がiPS細胞を内胚葉に分化させた後の溶液であり、目的細胞が未分化のiPS細胞であり、夾雑細胞が前記内胚葉である場合は、iPS細胞膜に特異的に有するタンパク質であるSSEA−3(Stage−specific Embryonic Antigen−3)やTRA−1−60を認識する物質、および内肺葉内に特異的に有するタンパク質であるSOX17やHNF−3(Hepatocyte Nuclear Factor−3)を認識する物質で標識できる。   When the sample is a solution after the iPS cells are differentiated into endoderm, the target cell is an undifferentiated iPS cell, and the contaminating cell is the endoderm, SSEA which is a protein specifically included in the iPS cell membrane -3 (Stage-specific Embryonic Antigen-3) and TRA-1-60, and a substance that recognizes SOX17 and HNF-3 (Hepatocyte Nuclear Factor-3), which are specific proteins in the inner lobe Can be labeled with.

本発明では、前述した標識の有無に基づく検出の他に、追加の検出を行なってもよい。追加検出の一例として、DAPI(4’,6−DiAmidino−2−PhenylIndole)、ヘマトキシリン、Hoechst 33342(商品名)などの核標識試薬を用いた有核細胞の検出や、オレンジG、ライトグリーン、エオシンなどの細胞質標識試薬を用いた細胞検出や、明視野像に基づく細胞の大きさ/形状/模様の違いによる検出があげられる。   In the present invention, in addition to the detection based on the presence or absence of the label described above, additional detection may be performed. Examples of additional detection include detection of nucleated cells using nuclear labeling reagents such as DAPI (4 ′, 6-Diamidino-2-phenylIndole), hematoxylin, Hoechst 33342 (trade name), orange G, light green, eosin Cell detection using a cytoplasmic labeling reagent such as the above, and detection based on differences in cell size / shape / pattern based on bright-field images.

本発明を実施する際、細胞検出までの間に、劣化した細胞の形状崩壊や、劣化した細胞内のDNAやRNA等の遺伝子やタンパク質等が分解する現象が生じると、溶液からの目的細胞および夾雑細胞に含まれるタンパク質を用いた検出・解析能が低下する。そのため、前述した膜透過処理の前または前述した膜透過処理と同時に、前記細胞の劣化を抑制する固定処理を行なうと好ましい。固定処理用試薬としては、アルデヒド類、酸類、アルコール類などの有機溶剤、重金属元素などが挙げられるが、本発明はこれに限定されない。   When practicing the present invention, if a phenomenon occurs in which the shape of a deteriorated cell collapses or a gene or protein such as DNA or RNA in the deteriorated cell is degraded before cell detection, the target cell from the solution and Detection / analysis ability using proteins contained in contaminated cells is reduced. Therefore, it is preferable to perform a fixing treatment for suppressing the deterioration of the cells before the membrane permeation treatment described above or simultaneously with the membrane permeation treatment described above. Examples of the fixing treatment reagent include organic solvents such as aldehydes, acids, and alcohols, and heavy metal elements, but the present invention is not limited thereto.

アルデヒド類は、タンパク質の既存の結合様式(例えば、ジスルフィド結合や水素結合など)を解離させ、新たな結合を形成する。その結合は、リジン、アルギニン等のアミノ基末端やトリプトファン、チロキシン等の芳香族活性炭素との共有結合であったり、別のアミノ酸末端残基と連結して形成されるメチレン架橋であったりする。これらの新たな結合によってタンパク質の高次構造を変化させたり、このような結合や架橋に関与しない遊離分子もポリペプチド鎖をホールドすることによってさらなる変性を防いだりすることができ、タンパク質構造を安定化するとともに、細胞原形質をゲル化して酵素活性を抑えることができる。固定処理用試薬として利用可能なアルデヒド類としては、ホルムアルデヒドが代表的であり、グルタルアルデヒドやグリオキサールなども含まれる。また、直接作用するものではないが、それ自体が加水分解等を受けることによってホルムアルデヒド等の安定化剤を遊離する、ホルムアルデヒドドナー(ホルムアルデヒド供与体)なども、固定処理用試薬として利用できる。ホルムアルデヒドドナーの一例として、イミダゾリジニル尿素、ベンジルヘミホルマール(フェニルメトキシメタノール)、5−ブロモ−5−ニトロ−1,3−ジオキサン、ブロノポール(2−ブロモ−2−ニトロプロペイン−1 ,3−ジオール)、ジアゾリジニル尿素、DMDMヒダントイン(1,3−ジメチロール−5,5−ジメチルヒダントイン)、メセナミン(ヘキサメチレンテトラミン)、クオタニウム−15(メセナミン 3−クロロアリロクロリド)、ヒドロキシメチルグリシンナトリウム、アミンやアミドのメチロール、ヒドロキシメチル誘導体、メチロール、メテンアミン、パラホルムアルデヒドが挙げられる。   Aldehydes dissociate existing binding modes of proteins (for example, disulfide bonds and hydrogen bonds) to form new bonds. The bond may be a covalent bond with an amino group terminal such as lysine or arginine, an aromatic activated carbon such as tryptophan or thyroxine, or a methylene bridge formed by linking with another amino acid terminal residue. These new bonds can change the higher-order structure of the protein, and free molecules that are not involved in such bonds and cross-links can also hold the polypeptide chain to prevent further denaturation, thereby stabilizing the protein structure. And the cytoplasm can be gelled to suppress enzyme activity. As aldehydes that can be used as a reagent for fixing treatment, formaldehyde is representative, and glutaraldehyde, glyoxal, and the like are also included. In addition, although not directly acting, formaldehyde donors (formaldehyde donors) that liberate stabilizers such as formaldehyde by themselves undergoing hydrolysis or the like can also be used as fixing treatment reagents. Examples of formaldehyde donors include imidazolidinyl urea, benzyl hemiformal (phenylmethoxymethanol), 5-bromo-5-nitro-1,3-dioxane, bronopol (2-bromo-2-nitropropyne-1,3-diol) , Diazolidinyl urea, DMDM hydantoin (1,3-dimethylol-5,5-dimethylhydantoin), mesenamine (hexamethylenetetramine), quaternium-15 (mesenamine 3-chloroallylochloride), hydroxymethylglycine sodium, amines and amides Examples include methylol, hydroxymethyl derivatives, methylol, methenamine, and paraformaldehyde.

酸類は、強いタンパク質凝固作用があるため、固定処理用試薬として利用できる。一例として、ピクリン酸、タンニン酸、オスミウム酸、酢酸、氷酢酸、三塩化酢酸(トリクロロ酢酸:TCA)、クロム酸などやその塩が挙げられる。   Since acids have a strong protein coagulation action, they can be used as a reagent for immobilization treatment. Examples include picric acid, tannic acid, osmic acid, acetic acid, glacial acetic acid, trichloroacetic acid (trichloroacetic acid: TCA), chromic acid, and salts thereof.

アルコール類は、強力な脱水と脂質溶解によりタンパク質を不溶化・変性させる作用があるため、固定処理用試薬として利用できる。中でも、エタノール、メタノール、アセトンが非常によく用いられる。またクロロホルムのような有機溶剤も、アルコール類と同様な効果を有しており、固定処理用試薬として利用できる。   Alcohols have the effect of insolubilizing and denaturing proteins through powerful dehydration and lipid dissolution, and therefore can be used as fixing treatment reagents. Of these, ethanol, methanol, and acetone are very often used. An organic solvent such as chloroform has the same effect as alcohols and can be used as a reagent for immobilization treatment.

重金属元素としては、クロム、マンガン、亜鉛などが固定処理用試薬として利用できる。   As the heavy metal element, chromium, manganese, zinc or the like can be used as a fixing treatment reagent.

本発明を、例えば血液試料中に含まれるCTCの検出のような、試料中に含まれる目的細胞数が少ない、および/または夾雑細胞数が極めて多い系に適用する場合、あらかじめ試料中に含まれる目的細胞を濃縮する、および/または夾雑細胞を低減させる工程(以下、目的細胞濃縮工程という)を行なうと、目的細胞の検出を効率的に行なえる点で好ましい。目的細胞濃縮工程は、試料中に含まれる目的細胞以外の成分(夾雑細胞など)を低減することで目的細胞をより選択的に回収できれば特に制限はない。例えば、目的細胞と目的細胞以外の成分(夾雑細胞など)との大きさの違いを利用して分離濃縮するフィルター法、細胞表面の抗体発現プロファイルの違いを利用し、前記抗体を結合した磁性粒子を用いて目的細胞を分離濃縮する磁気ビーズ法、細胞間の比重差を利用した比重差分離法が例示できる。なかでも比重差分離法は、短時間で選択的に目的細胞を濃縮できることから、目的細胞濃縮工程として特に好ましい。   When the present invention is applied to a system in which the number of target cells contained in the sample is small and / or the number of contaminated cells is extremely large, such as detection of CTC contained in a blood sample, for example, it is contained in the sample in advance. Performing a step of concentrating target cells and / or reducing contaminating cells (hereinafter referred to as target cell concentration step) is preferable in that the target cells can be detected efficiently. The target cell concentration step is not particularly limited as long as the target cells can be collected more selectively by reducing components other than the target cells (contaminated cells and the like) contained in the sample. For example, a filter method that separates and concentrates using the difference in size between the target cell and a component other than the target cell (such as contaminated cells), and a magnetic particle that binds to the antibody using the difference in the antibody expression profile on the cell surface. Examples thereof include a magnetic bead method for separating and concentrating target cells using, and a specific gravity difference separation method using a specific gravity difference between cells. Of these, the specific gravity difference separation method is particularly preferable as the target cell concentration step because the target cells can be selectively concentrated in a short time.

以下、比重差分離法による目的細胞濃縮工程について詳細を示す。   Hereinafter, details of the target cell concentration step by the specific gravity difference separation method will be described.

比重差分離法による目的細胞の濃縮(夾雑細胞の低減)は、目的細胞と目的細胞以外の成分(夾雑細胞など)が比重差によって分離できれば特に制限はない。例えば、密度勾配溶液が入った遠沈管に目的細胞を含む試料を重層後、遠心分離操作を行なうことで、目的細胞を含む画分と目的細胞以外の成分(夾雑細胞など)を含む画分とに分離させ、前記目的細胞を含む画分を回収することで、目的細胞を濃縮(夾雑細胞の低減)させればよい。ここで用いる密度勾配溶液は、それ自身でまたは遠心分離によって密度勾配を形成する液体状の物質であり、目的細胞の密度(比重)を特定し、その分離に適当なものを選択して使用すればよい。選択の指標としては、例えば栄養成分、pH、等張性があげられる。密度勾配溶液の具体例としては、ショ糖、グリセロール、デキストラン、メトリザミド、イオディキサノール、ショ糖とエピクロロヒドリンの共重合体、ポリビニルピロリドンの被膜をもつコロイド状シリカ粒子、スクロースポリマー、ジアトリゾ酸、イオヘキソールがあげられ、市販品として、Ficoll、Ficoll−Paque、Percoll(以上、GEヘルスケア製)、Lymphoprep、Polymorphprep、OptiPrep、Nycodenz(以上、Axis−Shield製)などが知られている。   The concentration of the target cells by the specific gravity difference separation method (reduction of contaminating cells) is not particularly limited as long as the target cells and components other than the target cells (such as contaminating cells) can be separated by the specific gravity difference. For example, a sample containing target cells is layered on a centrifuge tube containing a density gradient solution, and then subjected to centrifugation, whereby a fraction containing target cells and a fraction containing components other than target cells (contaminated cells, etc.) And collecting the fraction containing the target cell to concentrate the target cell (reducing contaminated cells). The density gradient solution used here is a liquid substance that forms a density gradient by itself or by centrifugation. The density (specific gravity) of the target cell is specified, and an appropriate one for the separation is selected and used. That's fine. Examples of selection indicators include nutrient components, pH, and isotonicity. Specific examples of density gradient solutions include sucrose, glycerol, dextran, metrizamide, iodixanol, a copolymer of sucrose and epichlorohydrin, colloidal silica particles with a polyvinylpyrrolidone coating, sucrose polymer, diatrizo Acids, iohexol, and the like are commercially available, such as Ficoll, Ficoll-Paque, Percoll (manufactured by GE Healthcare), Lymphoprep, Polymorphprep, OptiPrep, Nycodenz (manufactured by Axis-Shield).

遠心分離操作は、一般には1000×gから2000×g程度の低速で実施すればよいが、目的細胞の密度や使用する密度勾配溶液の密度を勘案し、当該目的細胞が密度勾配溶液の上に維持される条件を選択すればよい。例えば目的細胞がCTCなどの腫瘍細胞であり、上記条件で遠心分離操作を行なう場合、濃縮対象である腫瘍細胞の種類に応じて密度勾配溶液の密度を1.060から1.105g/mLまでの範囲に設定することができる。中でも、腫瘍細胞の濃縮率を高める観点から、密度勾配溶液の密度は1.075g/mL以上が好ましく、1.080g/mL以上とするとより好ましい。一方、同じ理由から、密度勾配溶液の密度は1.100g/mL以下が好ましく、1.096g/mL以下とするとより好ましく、1.093g/mL以下とするとさらにより好ましい。腫瘍細胞の濃縮に最も好ましい密度勾配溶液の密度は、1.082から1.091g/mLまでの範囲である。   Centrifugation is generally performed at a low speed of about 1000 × g to 2000 × g, but the target cells are placed on the density gradient solution in consideration of the density of the target cells and the density gradient solution to be used. What is necessary is just to select the conditions maintained. For example, when the target cell is a tumor cell such as CTC, and centrifugation is performed under the above conditions, the density of the density gradient solution is 1.060 to 1.105 g / mL depending on the type of tumor cell to be concentrated. Can be set to a range. Among these, from the viewpoint of increasing the concentration rate of tumor cells, the density of the density gradient solution is preferably 1.075 g / mL or more, and more preferably 1.080 g / mL or more. On the other hand, for the same reason, the density of the density gradient solution is preferably 1.100 g / mL or less, more preferably 1.096 g / mL or less, and even more preferably 1.093 g / mL or less. The most preferred density gradient solution density for tumor cell enrichment ranges from 1.082 to 1.091 g / mL.

密度勾配溶液の浸透圧は、200mOsm/kgから450mOsm/kgまでの範囲で適宜設定すればよいが、300mOsm/kgから400mOsm/kgまでの範囲とするとより好ましい。密度勾配溶液のpHは、目的細胞が損傷を受けない範囲で任意に選択することができ、通常の細胞の場合、pH6.8からpH7.8までの範囲に設定すればよい。   The osmotic pressure of the density gradient solution may be appropriately set in the range from 200 mOsm / kg to 450 mOsm / kg, but more preferably in the range from 300 mOsm / kg to 400 mOsm / kg. The pH of the density gradient solution can be arbitrarily selected as long as the target cells are not damaged. In the case of normal cells, the pH may be set in the range from pH 6.8 to pH 7.8.

比重差分離法による目的細胞濃縮工程を行なう際、目的細胞に特異的に結合する物質または目的細胞以外の成分(夾雑細胞など)に特異的に結合する物質を添加することにより、目的細胞を更に効率的に分離することができる。なお、前記特異的に結合する物質と多孔質シリカ粒子等比較的密度が小さい物質とを結合させれば、見かけ上の密度を小さくすることができる。前記特異的に結合する物質としては、目的細胞(または夾雑細胞など目的細胞以外の成分)と特異的に結合可能な抗体、抗原、ペプチド、ポリペプチド、成長因子、サイトカイン、レクチンといった生体高分子を例示できる。また前述した密度を調整する目的で使用可能な物質としては、前述した多孔質シリカ粒子の他に、ポリエチレン、ポリプロピレン、ポリビニルクロリド、ポリアクリロニトリル、ポリアクリレート、ポリメタクリレート、ポリカルボネート等のポリビニル化合物に代表される有機ポリマー、ポリスチレンラテックス、ナイロン、ポリテレフタレート等の共重合体、ガラス、シリカ、ジルコニア等の無機材料、セルロース、デキストラン、アガロース、セルロース、セファロース等の生体ポリマー、赤血球などの生体試料が例示できる。   When performing the target cell concentration step by the specific gravity difference separation method, the target cell is further added by adding a substance that specifically binds to the target cell or a substance that specifically binds to components other than the target cell (such as contaminated cells). It can be separated efficiently. The apparent density can be reduced by combining the substance that specifically binds with a substance having a relatively low density such as porous silica particles. Examples of the substance that specifically binds include biopolymers such as antibodies, antigens, peptides, polypeptides, growth factors, cytokines, and lectins that can specifically bind to target cells (or components other than target cells such as contaminated cells). It can be illustrated. In addition to the porous silica particles described above, substances that can be used for the purpose of adjusting the density described above include polyvinyl compounds such as polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polyacrylate, polymethacrylate, and polycarbonate. Examples include organic polymers, copolymers such as polystyrene latex, nylon, and polyterephthalate, inorganic materials such as glass, silica, and zirconia, biological polymers such as cellulose, dextran, agarose, cellulose, and sepharose, and biological samples such as red blood cells. it can.

比重差分離法による目的細胞濃縮工程を行なう際、夾雑細胞を積極的に除去する操作を追加してもよい。例えば、血液試料から比重差分離法によりCTCの濃縮操作を行なう際、赤血球を積極的に除去する溶血操作を追加してもよい。前記夾雑細胞を積極的に除去する操作は、遠心分離操作前に行なってもよいし、遠心分離操作後に行なってもよい。なお夾雑細胞を積極的に除去する操作を遠心分離操作前に行なう場合は、その後遠心分離操作を追加すると好ましい。   When the target cell concentration step by the specific gravity difference separation method is performed, an operation of positively removing contaminating cells may be added. For example, a hemolysis operation that positively removes red blood cells may be added when a CTC concentration operation is performed from a blood sample by a specific gravity difference separation method. The operation of positively removing the contaminating cells may be performed before the centrifugation operation or after the centrifugation operation. In addition, when the operation which removes a contaminated cell actively is performed before centrifugation operation, it is preferable to add centrifugation operation after that.

本発明により目的細胞を検出するには、例えば、目的細胞を含む試料(または当該試料をあらかじめ前述した目的細胞濃縮工程により濃縮した試料)を希釈、懸濁などの処理をした後、スライドに塗布または保持部を有した基板に展開し、塗布された、または保持部に保持された細胞を顕微鏡などの光学的手段を用いて検出すればよい。前述した検出方法のうち、保持部を有した基板に試料を展開し、保持部に保持された細胞を検出する方法は、高感度かつ高精度に1細胞ごとを観察/解析できる点、および後の検出で細胞の再標識を行なう際、保持された細胞が剥離されるおそれが軽減される点で好ましい。   In order to detect a target cell according to the present invention, for example, a sample containing the target cell (or a sample obtained by concentrating the sample in advance through the above-described target cell concentration step) is diluted, suspended, and then applied to the slide. Alternatively, the cells spread on a substrate having a holding portion, coated, or held in the holding portion may be detected using an optical means such as a microscope. Among the detection methods described above, the method of developing a sample on a substrate having a holding unit and detecting the cells held in the holding unit is capable of observing / analyzing each cell with high sensitivity and high accuracy, and later. When the cells are relabeled by detection, it is preferable in that the possibility that the retained cells are detached is reduced.

本発明において、目的細胞を含む試料を展開し検出するのに好ましい装置の一例として、図1から図3に示す細胞保持装置があげられる。
図1および図3に示す細胞保持装置100は、
貫通孔111を有した平板状の絶縁膜110と、
貫通孔121を有した平板状の遮光膜120と、
導入口131および排出口132を有した平板状のスペーサ130と、
遮光膜120の下面およびスペーサー130の上面と密着するよう設けた電極141・142と、
電極141・142同士を接続する導線150と、
電極141・142に信号を印加する交流電源160と、
を備えている。絶縁膜110が有する貫通口111と遮光膜120が有する貫通孔1221とは互いに同一の寸法および形状であり、かつそれぞれの貫通孔の位置が一致するよう絶縁膜110および遮光膜120を備えている。貫通孔111、貫通孔121および遮光膜120の下部に密着して設けた電極141により、細胞保持装置100内に細胞を保持可能な保持部170が構成され、導入口131から細胞を含む液体を導入すると保持部170へ細胞が導入される。遮光膜120は、絶縁膜110自体の自家蛍光に起因するバックグラウンドノイズや隣接する保持部170からの漏れ光に起因するクロストークノイズなどの光ノイズを低減することができ、各保持部170に保持された細胞由来の光のみを高感度かつ高精度に検出することができる。電極142はスペーサ130上面に密着して備えており、導入口131から導入した、目的細胞を含む試料の飛散や蒸発を防止している。なお保持部170に保持した細胞の回収を容易にするため、電極142はスペーサ130から取り外し可能な構造となっている。また電極141・142をITO(酸化インジウムスズ)などの透明電極にすると、保持部170に保持された細胞を、顕微鏡や光学検出器を用いて検出可能となるため、好ましい。
In the present invention, as an example of a preferable apparatus for developing and detecting a sample containing target cells, the cell holding apparatus shown in FIGS. 1 to 3 can be mentioned.
The cell holding device 100 shown in FIG. 1 and FIG.
A flat insulating film 110 having a through-hole 111;
A flat light-shielding film 120 having a through-hole 121;
A flat spacer 130 having an inlet 131 and an outlet 132;
Electrodes 141 and 142 provided in close contact with the lower surface of the light shielding film 120 and the upper surface of the spacer 130;
A conductive wire 150 connecting the electrodes 141 and 142;
An AC power supply 160 for applying a signal to the electrodes 141 and 142;
It has. The through hole 111 provided in the insulating film 110 and the through hole 1221 provided in the light shielding film 120 have the same size and shape as each other, and are provided with the insulating film 110 and the light shielding film 120 so that the positions of the respective through holes coincide. . The electrode 141 provided in close contact with the lower part of the through-hole 111, the through-hole 121, and the light-shielding film 120 constitutes a holding unit 170 capable of holding cells in the cell holding device 100, and a liquid containing cells is introduced from the inlet 131. When introduced, the cells are introduced into the holding unit 170. The light shielding film 120 can reduce optical noise such as background noise due to autofluorescence of the insulating film 110 itself and crosstalk noise due to leakage light from the adjacent holding unit 170. Only the retained cell-derived light can be detected with high sensitivity and high accuracy. The electrode 142 is provided in close contact with the upper surface of the spacer 130, and prevents scattering and evaporation of the sample containing the target cell introduced from the inlet 131. Note that the electrode 142 has a structure that can be detached from the spacer 130 in order to facilitate the collection of the cells held in the holding unit 170. In addition, it is preferable that the electrodes 141 and 142 are transparent electrodes such as ITO (indium tin oxide) because the cells held in the holding unit 170 can be detected using a microscope or an optical detector.

前述した細胞保持装置100のうち、電極基板については、図1に示す装置のように絶縁膜110、遮光膜120およびスペーサ130を上下方向に挟むよう備えてもよいし、図2に示す装置のように遮光膜120の下面のみに+極141aおよび−極141bを設けた櫛形電極の態様で電極141を備えてもよい。   In the cell holding device 100 described above, the electrode substrate may be provided so as to sandwich the insulating film 110, the light shielding film 120, and the spacer 130 in the vertical direction as in the device shown in FIG. Thus, the electrode 141 may be provided in the form of a comb-shaped electrode in which the + pole 141a and the −pole 141b are provided only on the lower surface of the light shielding film 120.

保持部170の大きさは、1個の目的細胞のみを保持可能な大きさとすると、検出工程にて標的細胞の検出が容易になる点で好ましい。なお細胞保持装置100へ展開させる試料中に含まれる細胞数(目的細胞と夾雑細胞との和)が、細胞保持装置100に設けた保持部170の数よりも多いことが予想される場合は、適切な細胞数が展開されるように希釈したり、展開に供する試料をあらかじめ計量するとよい。   It is preferable that the size of the holding unit 170 be a size that can hold only one target cell because the target cell can be easily detected in the detection process. When the number of cells contained in the sample to be developed on the cell holding device 100 (the sum of target cells and contaminating cells) is expected to be larger than the number of holding units 170 provided in the cell holding device 100, It is good to dilute so that an appropriate number of cells may be developed, or to weigh a sample to be developed.

目的細胞を含む試料(または当該試料をあらかじめ前述した目的細胞濃縮工程により濃縮した試料)の細胞保持装置100への展開は、細胞検出に適した間隔で基板上に分布させることができれば任意の手法を用いることができ、単に前記試料を細胞保持装置100へ展開させるのみでもよいが、その後、振動や誘電泳動力を与えるなどして細胞を細胞保持装置100に設けた保持部170へ積極的に保持させる操作を追加してもよい。特に、前記保持させる操作を誘電泳動力を与えることで行なうと、生きた細胞を数秒程度の極めて短い時間で保持部170に保持できる点で好ましい。誘電泳動力400を細胞300に作用させるには、保持部170を含めた細胞保持装置100内の空間を液体で満たした状態で、保持部170の部分に電気力線が集中するよう、交流電源160を用いて電極141・142へ所定の波形を有する交流電圧を印加すればよい(図3)。なお保持部170をアレイ状に均等に設けると、電極間に印加した電圧によって生じる電界が各保持部170にほぼ均等に生じ、各保持部170に対して同じように細胞300を誘導し捕捉できるため好ましい。   The development of the sample containing the target cell (or the sample obtained by concentrating the sample in advance by the target cell concentration step) onto the cell holding device 100 can be performed by any method as long as it can be distributed on the substrate at intervals suitable for cell detection. The sample may simply be developed on the cell holding device 100, but after that, the cells are positively applied to the holding unit 170 provided in the cell holding device 100 by applying vibration or dielectrophoretic force. An operation to be held may be added. In particular, it is preferable to perform the holding operation by applying a dielectrophoretic force in that a living cell can be held in the holding unit 170 in a very short time of about several seconds. In order to cause the dielectrophoretic force 400 to act on the cell 300, an AC power source is used so that the lines of electric force are concentrated on the portion of the holding unit 170 while the space in the cell holding device 100 including the holding unit 170 is filled with liquid. 160 may be used to apply an AC voltage having a predetermined waveform to the electrodes 141 and 142 (FIG. 3). If the holding portions 170 are evenly arranged in an array, an electric field generated by the voltage applied between the electrodes is generated almost evenly in each holding portion 170, and the cells 300 can be induced and captured in the same manner with respect to each holding portion 170. Therefore, it is preferable.

交流電源160を用いて電極141・142へ印加する交流電圧の大きさは、保持部170に細胞300を移動/保持可能な誘電泳動力400を発生させるのに十分な電圧であればよい。具体的には、ピーク電圧が1Vから20V程度で、周波数10kHzから10MHz程度の正弦波、矩形波、三角波、台形波等の波形の交流電圧が例示できる。特に1つの保持部に対し1個の細胞のみを保持させたい場合は、周波数100kHzから3MHzの矩形波を用いると好ましい。矩形波は、正弦波、三角波、台形波などの他の波形と比較し、瞬時に設定したピーク電圧に到達するため、細胞を保持部へ速やかに移動させることでき、2個以上の細胞が重なる態様で保持部に保持される確率を低くできる(1つの保持部に1個の細胞のみを保持する確率が高くなる)。細胞は電気的にコンデンサーと見なすことができるが、矩形波のピーク電圧が変化しない間は、保持部に保持された細胞には電流が流れ難くなって電気力線が生じ難くなり、この結果、細胞を保持した保持部には誘電泳動力が発生し難くなる。従って、一度保持部に細胞が保持されると、別の細胞が同一の保持部に保持される確率は低くなり、代わりに電気力線が生じ誘電泳動力が発生している他の保持部(細胞を保持していない、空の保持部)に、順次、細胞が保持される。   The magnitude of the AC voltage applied to the electrodes 141 and 142 using the AC power supply 160 may be a voltage sufficient to generate the dielectrophoretic force 400 that can move / hold the cell 300 in the holding unit 170. Specifically, an AC voltage having a peak voltage of about 1 V to 20 V and a frequency of about 10 kHz to 10 MHz such as a sine wave, a rectangular wave, a triangular wave, or a trapezoidal wave can be exemplified. In particular, when it is desired to hold only one cell in one holding part, it is preferable to use a rectangular wave having a frequency of 100 kHz to 3 MHz. Compared with other waveforms such as a sine wave, a triangular wave, and a trapezoidal wave, the rectangular wave reaches the peak voltage set instantaneously, so that the cells can be quickly moved to the holding unit, and two or more cells overlap. In this aspect, the probability of being held in the holding unit can be reduced (the probability of holding only one cell in one holding unit is increased). The cells can be regarded as electrical capacitors, but as long as the peak voltage of the rectangular wave does not change, it is difficult for current to flow to the cells held in the holding part and electric lines of force are less likely to occur. It is difficult for the dielectrophoretic force to be generated in the holding portion holding the cells. Therefore, once a cell is held in the holding unit, the probability that another cell is held in the same holding unit is reduced, and instead, another holding unit (where an electric field line is generated and a dielectrophoretic force is generated) The cells are sequentially held in an empty holding portion that does not hold cells.

なお図1から図3に示す細胞保持装置100に備える交流電源160は、直流成分を有しない交流電圧を発生する電源が好ましい。直流成分を有する交流電圧を電極へ印加すると、直流成分により発生した静電気力(電気泳動力)により細胞が特定の方向に偏った力を受けて移動し、誘電泳動力による細胞保持が困難になるからである。また直流成分を有する交流電圧を印加すると、細胞を含有する懸濁液に含まれるイオンが電極表面で電気反応を生じて発熱し、細胞が熱運動を起こすため誘電泳動力による動きを制御できなくなり、保持部への移動/保持が困難になる。本明細書において、直流成分を有する交流電圧とは、周波数デューティ比が50%でない電圧、オフセットを有する電圧、周期が極端に長い(例えば1秒以上)電圧などをいう。   The AC power supply 160 provided in the cell holding device 100 shown in FIGS. 1 to 3 is preferably a power supply that generates an AC voltage having no DC component. When an alternating voltage having a direct current component is applied to the electrode, the cells move by receiving a biased force in a specific direction due to the electrostatic force (electrophoretic force) generated by the direct current component, making it difficult to retain the cells by the dielectrophoretic force. Because. In addition, when an AC voltage having a DC component is applied, ions contained in the cell-containing suspension generate an electric reaction on the electrode surface, generating heat, and the cells cause thermal motion, making it impossible to control movement due to dielectrophoretic force. Therefore, it becomes difficult to move / hold the holding unit. In this specification, an AC voltage having a DC component refers to a voltage whose frequency duty ratio is not 50%, a voltage having an offset, a voltage having an extremely long period (for example, 1 second or more), and the like.

細胞保持装置100に備える保持部170に保持された目的細胞および夾雑細胞は、目的細胞および夾雑細胞にそれぞれ特異的に有するタンパク質を認識する物質を用いて、前記目的細胞および/または夾雑細胞を標識化した後、前記標識を別途設けた検出部200を用いて光学的に検出する。検出部200の一例としては蛍光顕微鏡が例示できる。細胞の固定・膜透過処理は、標識前に行なえばよいが、保持部に細胞を保持した後に行なう方が、前記細胞が保持部から剥離されるおそれが軽減される点で好ましい。   The target cells and the contaminated cells held in the holding unit 170 included in the cell holding device 100 are labeled with the target cells and / or the contaminated cells using substances that recognize the proteins specifically possessed by the target cells and the contaminated cells, respectively. Then, optical detection is performed using the detection unit 200 provided with the label separately. An example of the detection unit 200 is a fluorescence microscope. Cell fixation and membrane permeation treatment may be performed before labeling, but it is preferable to carry out the treatment after holding the cells in the holding portion because the possibility that the cells are detached from the holding portion is reduced.

蛍光顕微鏡を用いて目的細胞を検出する場合は、前記標識としてFITC(フルオレセインイソシアネート)、PE(フィコエリスリン)、APC(アロフィコシアニン)、ローダミンといった蛍光色素を用い、当該蛍光色素に対応した励起光を標識化した細胞に照射し、当該照射により得られる前記標識化した細胞由来の蛍光の強度に基づき検出すればよい。標識化した細胞への照射に用いる光源としては、ハロゲンランプ、水銀ランプ、メタルハライドランプ、レーザー、LED等を用いることができ、前記光源からの光は、必要に応じて光学フィルターやミラー、レンズ等によって構成される光学手段により観察領域(標識化された細胞が保持された保持部)に照射されればよい。前記照射により観察領域から得られる蛍光シグナル情報として、蛍光物質が発する蛍光から検出した蛍光強度、蛍光強度のピーク値、蛍光強度の最小値、蛍光強度の平均値、蛍光強度の積分値などの蛍光強度から算出された数値が例示できる。また前記照射により観察領域から得られるシグナル情報は、前記蛍光に関する情報の他に、広い波長域での透過光、反射光による光強度分布から構成される像(明視野)なども得られる。このうち明視野情報からは、細胞の直径、細胞の面積、細胞の体積、細胞の周囲長、真円度など細胞形態に関する情報が取得できる。そのため、前述した蛍光強度による検出の他に、明視野像に基づく目的細胞の大きさ/形状/模様などの外観の情報をあわせることで、より精度高く目的細胞の検出を行なうこともできる。   When a target cell is detected using a fluorescence microscope, a fluorescent dye such as FITC (fluorescein isocyanate), PE (phycoerythrin), APC (allophycocyanin) or rhodamine is used as the label, and excitation light corresponding to the fluorescent dye is used. May be detected based on the intensity of fluorescence derived from the labeled cells obtained by the irradiation. As a light source used for irradiation of labeled cells, a halogen lamp, a mercury lamp, a metal halide lamp, a laser, an LED, or the like can be used, and light from the light source can be an optical filter, a mirror, a lens, or the like as necessary. The observation area (the holding part holding the labeled cells) may be irradiated by the optical means constituted by As fluorescence signal information obtained from the observation region by the irradiation, fluorescence such as fluorescence intensity detected from fluorescence emitted by the fluorescent material, peak value of fluorescence intensity, minimum value of fluorescence intensity, average value of fluorescence intensity, integral value of fluorescence intensity, etc. A numerical value calculated from the intensity can be exemplified. Further, the signal information obtained from the observation region by the irradiation can be an image (bright field) composed of light intensity distribution by transmitted light and reflected light in a wide wavelength region, in addition to the information on the fluorescence. Among these, from the bright field information, information on the cell morphology such as the cell diameter, the cell area, the cell volume, the cell perimeter, and the roundness can be acquired. Therefore, in addition to the above-described detection based on the fluorescence intensity, the target cell can be detected with higher accuracy by combining the appearance information such as the size / shape / pattern of the target cell based on the bright field image.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は当該例に限定されるものではない。また本発明では目的細胞および夾雑細胞を両方標識するが、本実施例では輝度分布を確認するために目的細胞の標識と夾雑細胞の標識とを分けて行なっている。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to the said example. In the present invention, both target cells and contaminating cells are labeled. In this embodiment, in order to confirm the luminance distribution, the labeling of target cells and the labeling of contaminating cells are performed separately.

実施例1
(1)一方の末端がメトキシ基であり、もう一方の末端がN−ヒドロキシスクシンイミドエステル基である、分子量5000のポリエチレングリコール(mPEG−NHS)と、ウシ血清アルブミン(BSA)(300mg、0.3mmol)とを、炭酸水素ナトリウム緩衝液(0.1M、15mL)に溶解後、当該溶液を室温で3時間撹拌することでポリエチレングリコールを結合したBSA(PEG−BSA)を調製した。なお調製する際、mPEG−NHSとBSAとのモル比(mPEG−NHS/BSA)を2となるようにした。調製後、分画分子量10000の透析膜を用いて、純水への溶液置換を3日間行なった。
Example 1
(1) Polyethylene glycol (mPEG-NHS) having a molecular weight of 5000, one end of which is a methoxy group and the other end is an N-hydroxysuccinimide ester group, and bovine serum albumin (BSA) (300 mg, 0.3 mmol) ) Was dissolved in sodium bicarbonate buffer (0.1 M, 15 mL), and the solution was stirred at room temperature for 3 hours to prepare BSA to which polyethylene glycol was bound (PEG-BSA). In the preparation, the molar ratio of mPEG-NHS to BSA (mPEG-NHS / BSA) was set to 2. After the preparation, the solution was replaced with pure water for 3 days using a dialysis membrane having a molecular weight cut off of 10,000.

(2)イミダゾリジニル尿素2g、分子量6000のポリエチレングリコール(PEG)2g、エチレンジアミン四酢酸(EDTA)100mg、および塩化ナトリウム600mgを、超純水100mLに溶解し、得られた溶液を安定化剤として用いた。   (2) 2 g of imidazolidinyl urea, 2 g of polyethylene glycol (PEG) having a molecular weight of 6000, 100 mg of ethylenediaminetetraacetic acid (EDTA), and 600 mg of sodium chloride were dissolved in 100 mL of ultrapure water, and the resulting solution was used as a stabilizer. .

(3)目的細胞としてヒト前立腺がん細胞株(LNCaP)を、5%CO環境下、10%(v/v)FBS(Fetal bovine serum)、2mMグルタミン、1.0mMピルビン酸ナトリウムを含むRPMI−1640培地を用いて37℃で24から96時間培養後、0.25%トリプシン/1mM EDTAを用いて培地から剥離し、チューブに回収した。回収後、1000rpmで5分間遠心した。なお本実施例で目的細胞として用いた腫瘍細胞(LNCaP)はサイトケラチン(CK)を発現する細胞株である。 (3) RPMI containing human prostate cancer cell line (LNCaP) as a target cell in 5% CO 2 environment, 10% (v / v) FBS (Fetal bovine serum), 2 mM glutamine, 1.0 mM sodium pyruvate After culturing at 37 ° C. for 24 to 96 hours using -1640 medium, the medium was detached from the medium using 0.25% trypsin / 1 mM EDTA and collected in a tube. After collection, it was centrifuged at 1000 rpm for 5 minutes. The tumor cells (LNCaP) used as target cells in this example are cell lines that express cytokeratin (CK).

(4)(3)のLNCaP細胞の懸濁液に、(2)の安定化剤を等量添加し、得られた溶液を保存処理した目的細胞懸濁液とした。   (4) An equal amount of the stabilizer (2) was added to the suspension of LNCaP cells in (3), and the resulting solution was used as a preservation cell suspension.

(5)保存処理した目的細胞懸濁液を室温で10分放置し、1000rpmで5分間、室温で遠心分離後、上清を除去した細胞懸濁液に、0.9%(w/v)塩化アンモニウムと0.1%(w/v)炭酸水素カリウムとを含む溶血液を5倍量添加し、300×gで10分間、室温で遠心分離した。   (5) The preserved target cell suspension is allowed to stand at room temperature for 10 minutes, centrifuged at 1000 rpm for 5 minutes at room temperature, and then the supernatant is removed to 0.9% (w / v) Five times the amount of hemolyzed blood containing ammonium chloride and 0.1% (w / v) potassium bicarbonate was added, and centrifuged at 300 × g for 10 minutes at room temperature.

(6)遠心後の上清を除去した後、細胞ペレットを、(1)のPEG−BSA(BSAとして0.1%(w/v))および300mMマンニトールを含む溶液1mLで再懸濁した。   (6) After removing the supernatant after centrifugation, the cell pellet was resuspended in 1 mL of a solution containing (1) PEG-BSA (0.1% (w / v) as BSA) and 300 mM mannitol.

(7)再懸濁液を300×gで5分間、室温で遠心分離後、上清を除去し、再度、細胞ペレットを、PEG−BSA(BSAとして0.1%(w/v))および300mMマンニトールを含む溶液1mLで再懸濁した。   (7) After the resuspension was centrifuged at 300 × g for 5 minutes at room temperature, the supernatant was removed, and the cell pellet was again added to PEG-BSA (0.1% (w / v) as BSA) and Resuspended in 1 mL of a solution containing 300 mM mannitol.

(8)(7)で上清を除去した細胞懸濁液を、以下に示す方法で図1および図3に示す細胞保持装置100に保持した後、腫瘍細胞を検出した。なお細胞保持装置100には、直径φ30μm、深さ40μmの保持部170を設けている。
(8−1)導入部131から、(3)で回収した細胞の懸濁液を導入した後、交流電源260から各電極141・142に交流電圧(電圧20Vpp、周波数1MHz、矩形波)を印加し、誘電泳動力により前記細胞を保持部270に保持させた。
(8−2)導入部131から、0.01%(w/v)ポリ−L−リジンを含む300mMマンニトール水溶液を、前記交流電圧を印加しながら導入し、3分間静置後、前記交流電圧の印加を停止し、排出部132から前記水溶液を吸引除去した。
(8−3)導入部131から、1%HCHO溶液を導入し、10分間静置することで細胞を固定した後、排出部132から前記試薬を吸引除去した。その後、導入部131から、PBS(Phosphate Buffered Saline)を導入することで、残留した前記試薬を洗浄した。
(8−4)導入部131から、以下に示すいずれかの試薬を導入し、10分間静置することで細胞膜を透過した後、排出部132から前記試薬を吸引除去した。その後、導入部131から、PBS(Phosphate Buffered Saline)を導入することで、残留した前記試薬を洗浄した。
(導入した膜透過試薬)
0.025%(w/v)Triton X−100(商品名、以下略)溶液
0.05%(w/v)Triton X−100溶液
0.1%(w/v)Triton X−100溶液
0.2%(w/v)Triton X−100溶液
0.5%(w/v)Triton X−100溶液
(8−5)導入部131から、ブロッキング溶液を導入し、10分間静置することで細胞膜を透過した後、排出部132から前記試薬を吸引除去した。その後、導入部131から、PBS(Phosphate Buffered Saline)を導入することで、残留した前記試薬を洗浄した。
(8−6)導入部131から、目的細胞である腫瘍細胞を標識するためのFITC(フルオレセインイソチオシアネート)標識抗サイトケラチン抗体(Miltenyi Biotec製)(以下、CK−FITCと表記)および核染色試薬であるDAPI(4’,6−DiAmidino−2−PhenylIndole)(同仁化学研究所製)を混合した細胞染色液を導入し、細胞標識を行なった(25℃、30分)後、導入部131から、PBS(Phosphate Buffered Saline)を導入することで、残留した前記試薬を洗浄した。
(8−7)保持部170に保持された全ての細胞を観察するために、コンピューター制御式電動ステージおよびCMOSカメラ(浜松ホトニクス製ORCA−Flash4.0)を備えた蛍光顕微鏡(Olympus製IX71)を用いて全ての保持部の明視野像および蛍光画像を撮影した。
(8−8)(8−7)で撮影した画像を解析ソフトウェアLabVIEW(National Instruments製)を用いて解析を行ない、DAPIで染色されない(細胞核を有さない)細胞をLabVIEW上で排除し、CK−FITCで標識される細胞を目的細胞である腫瘍細胞(LNCaP)として検出した。
(8−9)(8−8)で検出した目的細胞におけるCKの輝度分布を0から255の256階調で解析し、検出した細胞に占める高輝度(200以上)の細胞の割合を算出した。
(8) After the cell suspension from which the supernatant was removed in (7) was held in the cell holding device 100 shown in FIGS. 1 and 3 by the method described below, tumor cells were detected. The cell holding device 100 is provided with a holding part 170 having a diameter of 30 μm and a depth of 40 μm.
(8-1) After introducing the cell suspension collected in (3) from the introduction unit 131, an AC voltage (voltage 20 Vpp, frequency 1 MHz, rectangular wave) is applied from the AC power supply 260 to each electrode 141 and 142. Then, the cells were held in the holding part 270 by the dielectrophoretic force.
(8-2) A 300 mM mannitol aqueous solution containing 0.01% (w / v) poly-L-lysine is introduced from the introduction unit 131 while applying the AC voltage, and after standing for 3 minutes, the AC voltage Application was stopped, and the aqueous solution was removed from the discharge part 132 by suction.
(8-3) A 1% HCHO solution was introduced from the introduction part 131 and the cells were fixed by allowing to stand for 10 minutes, and then the reagent was removed by suction from the discharge part 132. Thereafter, PBS (Phosphate Buffered Saline) was introduced from the introduction part 131 to wash the remaining reagent.
(8-4) One of the following reagents was introduced from the introduction part 131 and allowed to stand for 10 minutes to permeate the cell membrane, and then the reagent was removed by suction from the discharge part 132. Thereafter, PBS (Phosphate Buffered Saline) was introduced from the introduction part 131 to wash the remaining reagent.
(Introduced membrane permeation reagent)
0.025% (w / v) Triton X-100 (trade name, hereinafter omitted) solution 0.05% (w / v) Triton X-100 solution 0.1% (w / v) Triton X-100 solution 0 .2% (w / v) Triton X-100 solution 0.5% (w / v) Triton X-100 solution (8-5) From the introduction part 131, the blocking solution is introduced and left to stand for 10 minutes. After passing through the cell membrane, the reagent was removed from the discharge part 132 by suction. Thereafter, PBS (Phosphate Buffered Saline) was introduced from the introduction part 131 to wash the remaining reagent.
(8-6) FITC (fluorescein isothiocyanate) -labeled anti-cytokeratin antibody (manufactured by Miltenyi Biotec) (hereinafter referred to as CK-FITC) and a nuclear staining reagent for labeling the target tumor cell from the introduction part 131 A cell staining solution mixed with DAPI (4 ′, 6-DiAmidino-2-PhenylIndole) (produced by Dojindo Laboratories) was introduced and cell labeling was performed (25 ° C., 30 minutes), and then from the introduction part 131 The remaining reagent was washed by introducing PBS (Phosphate Buffered Saline).
(8-7) In order to observe all cells held in the holding unit 170, a fluorescence microscope (IX71 manufactured by Olympus) equipped with a computer-controlled electric stage and a CMOS camera (ORCA-Flash 4.0 manufactured by Hamamatsu Photonics) Using this, bright field images and fluorescent images of all the holding parts were taken.
(8-8) The image taken in (8-7) is analyzed using analysis software LabVIEW (manufactured by National Instruments), cells not stained with DAPI (having no cell nucleus) are eliminated on LabVIEW, and CK -Cells labeled with FITC were detected as tumor cells (LNCaP) as target cells.
(8-9) The luminance distribution of CK in the target cells detected in (8-8) was analyzed with 256 gradations from 0 to 255, and the proportion of cells with high luminance (200 or more) in the detected cells was calculated. .

比較例1
(1)実施例1(8−4)で導入する膜透過試薬を、それぞれ以下の試薬に変更した他は、実施例1と同様な方法でCK輝度分布を解析した。
(導入した膜透過試薬)
1%(w/v)CHAPS(3−[(3−Cholamidopropyl)dimethylammonio]propanesulfonate)溶液
0.05%(w/v)Nonidet P−40(商品名)溶液
0.1%(w/v)Tween 20(商品名)溶液
0.1%(w/v)Saponin溶液
実施例1および比較例1の結果をまとめて表1に示す。0.05%(w/v)および0.1%(w/v)のTriton X−100溶液で膜透過処理した場合、CK高輝度の目的細胞(腫瘍細胞)の割合が30%以上と比較的高かった。一方、0.025%(w/v)、0.2%(w/v)および0.5%(w/v)Triton X−100溶液、ならびにTriton X−100以外の界面活性剤を膜透過試薬として用いたときは、CK高輝度の目的細胞(腫瘍細胞)の割合が20%以下と低かった。以上の結果から、膜透過試薬として0.03%(w/v)から0.15%(w/v)のTriton X−100を用いて細胞を処理することで、目的細胞内タンパク質の損傷や溶出による輝度低下が防げることがわかる。
Comparative Example 1
(1) The CK luminance distribution was analyzed in the same manner as in Example 1 except that the membrane permeation reagents introduced in Example 1 (8-4) were changed to the following reagents, respectively.
(Introduced membrane permeation reagent)
1% (w / v) CHAPS (3-[(3-Cholamidopropylo) dimethylaminopropanosulfonate) solution 0.05% (w / v) Nonidet P-40 (trade name) solution 0.1% (w / v) Tween 20 (trade name) solution 0.1% (w / v) Saponin solution Table 1 summarizes the results of Example 1 and Comparative Example 1. When membrane permeabilization with 0.05% (w / v) and 0.1% (w / v) Triton X-100 solution, the ratio of target cells (tumor cells) with high CK brightness is 30% or more It was expensive. On the other hand, 0.025% (w / v), 0.2% (w / v) and 0.5% (w / v) Triton X-100 solution, and surfactants other than Triton X-100 are permeated through the membrane. When used as a reagent, the proportion of target cells (tumor cells) with high CK brightness was as low as 20% or less. From the above results, by treating cells using 0.03% (w / v) to 0.15% (w / v) Triton X-100 as a membrane permeation reagent, It turns out that the brightness | luminance fall by elution can be prevented.

Figure 2019056678
Figure 2019056678

実施例2
(1)インフォームドコンセントを得た健常人から血液をEDTA−2K採血管(VP−DK050K、テルモ社製)に3mL採血後、前記採血管に実施例1(2)で調製した安定化剤3mLを添加し、得られた溶液を保存処理した希釈血液試料とした。
Example 2
(1) After 3 mL of blood was collected from a healthy person who obtained informed consent into an EDTA-2K blood collection tube (VP-DK050K, Terumo), 3 mL of the stabilizer prepared in Example 1 (2) was collected in the blood collection tube. And the obtained solution was stored as a diluted blood sample.

(2)保存処理した希釈血液試料を室温で10分放置し、75μLの白血球・赤血球結合剤(RosetteSep、StemCell Technologies社製)を添加した後、チューブ内で密度1.086g/mLの密度勾配溶液上に重層し、室温で2000×gで10分間遠心した。   (2) The preserved diluted blood sample is allowed to stand at room temperature for 10 minutes, 75 μL of leukocyte / erythrocyte binding agent (Rosetep, manufactured by StemCell Technologies) is added, and then a density gradient solution having a density of 1.086 g / mL in the tube. Layered on top and centrifuged at 2000 × g for 10 minutes at room temperature.

(3)遠心後、上清を50mL容量の容器に回収した。   (3) After centrifugation, the supernatant was collected in a 50 mL container.

(4)回収後数分以内に0.9%(w/v)塩化アンモニウムと0.1%(w/v)炭酸水素カリウムとを含む溶血液で30mLまでメスアップ後、300×gで10分間、室温で遠心分離した。当該操作により上清に混入した赤血球が破壊される。   (4) Within a few minutes after recovery, after measuring up to 30 mL with hemolyzed blood containing 0.9% (w / v) ammonium chloride and 0.1% (w / v) potassium bicarbonate, 10 × 300 × g Centrifuged at room temperature for minutes. By this operation, red blood cells mixed in the supernatant are destroyed.

(5)遠心後の上清を除去した後、細胞ペレットを、実施例(1)に記載の方法で調製したPEG−BSA(BSAとして0.1%(w/v))および300mMマンニトールを含む溶液30mLで再懸濁した。   (5) After removing the supernatant after centrifugation, the cell pellet contains PEG-BSA (0.1% (w / v) as BSA) and 300 mM mannitol prepared by the method described in Example (1). Resuspended in 30 mL of solution.

(6)再懸濁液を300×gで5分間、室温で遠心分離後、上清を除去し、再度、細胞ペレットを、PEG−BSA(BSAとして0.1%(w/v))および300mMマンニトールを含む溶液30mLで再懸濁した。当該操作は、血液成分を除去するための操作である。   (6) After the resuspension was centrifuged at 300 × g for 5 minutes at room temperature, the supernatant was removed, and the cell pellet was again added to PEG-BSA (0.1% (w / v) as BSA) and Resuspended in 30 mL of a solution containing 300 mM mannitol. This operation is an operation for removing blood components.

(7)実施例1(8−6)で導入する染色試薬として、白血球を標識するためのPE(フィコエリスリン)標識抗CD45抗体(Beckman−Coulter製)(以下、CD45−PEと表記)および核染色試薬であるDAPI(4’,6−DiAmidino−2−PhenylIndole)(同仁化学研究所製)を混合した試薬を用いた他は、実施例1(8)と同様な方法で(6)で上清を除去した細胞懸濁液中に残存する白血球を検出し、検出した白血球におけるCD45の輝度分布を0から255の256階調で解析した後、検出した細胞に占める高輝度(200以上)の細胞の割合を算出した。   (7) As a staining reagent to be introduced in Example 1 (8-6), PE (phycoerythrin) -labeled anti-CD45 antibody (manufactured by Beckman-Coulter) for labeling leukocytes (hereinafter referred to as CD45-PE) and (6) In the same manner as in Example 1 (8) except that a reagent mixed with DAPI (4 ′, 6-DiAmidino-2-PhenylIndole) (made by Dojindo Laboratories), which is a nuclear staining reagent, was used. After detecting leukocytes remaining in the cell suspension from which the supernatant has been removed and analyzing the luminance distribution of CD45 in the detected leukocytes with 256 gradations from 0 to 255, high luminance (200 or more) in the detected cells The percentage of cells was calculated.

比較例2
(1)実施例1(8−4)で導入する膜透過試薬を、比較例1で導入した試薬に変更した他は、実施例2と同様な方法でCK輝度分布を解析した。
Comparative Example 2
(1) The CK luminance distribution was analyzed in the same manner as in Example 2 except that the membrane permeation reagent introduced in Example 1 (8-4) was changed to the reagent introduced in Comparative Example 1.

実施例2および比較例2の結果をまとめて表2に示す。0.025%(w/v)、0.05%(w/v)および0.1%(w/v)のTriton X−100溶液で膜透過処理した場合、CD45高輝度の白血球の割合が20%以上と比較的高かった。一方、0.2%(w/v)および0.5%(w/v)Triton X−100溶液、ならびにTriton X−100以外の界面活性剤を膜透過試薬として用いたときは、CD45高輝度の白血球の割合が約10%以下と低かった。以上の結果から、膜透過試薬として0.01%(w/v)から0.15%(w/v)のTriton X−100を用いて細胞を処理することで、白血球膜タンパク質の損傷や溶出による輝度低下が防げることがわかる。   Table 2 summarizes the results of Example 2 and Comparative Example 2. When membrane permeabilization was performed with 0.025% (w / v), 0.05% (w / v) and 0.1% (w / v) Triton X-100 solution, It was relatively high at over 20%. On the other hand, when a 0.2% (w / v) and 0.5% (w / v) Triton X-100 solution and a surfactant other than Triton X-100 were used as a membrane permeation reagent, CD45 high brightness The percentage of white blood cells was as low as about 10% or less. From the above results, leukocyte membrane protein damage and elution can be achieved by treating cells with 0.01% (w / v) to 0.15% (w / v) Triton X-100 as a membrane permeation reagent. It can be seen that a decrease in luminance due to can be prevented.

実施例1の結果と実施例2の結果とを組み合わせて検討したところ、0.05%(w/v)および0.1%(w/v)のTriton X−100で膜透過処理した場合、CK高輝度の目的細胞(腫瘍細胞)の割合およびCD45高輝度の白血球の割合がいずれも高かった。このことから膜透過試薬として0.03%(w/v)から0.15%(w/v)のTriton X−100を用いて細胞を処理することで、目的細胞内タンパク質および夾雑細胞膜タンパク質の損傷や溶出による輝度低下をともに防げることがわかる。   When the results of Example 1 and the results of Example 2 were examined in combination, the membrane permeation treatment was performed with 0.05% (w / v) and 0.1% (w / v) Triton X-100. The ratio of target cells (tumor cells) with high CK brightness and the percentage of leukocytes with high CD45 brightness were both high. Therefore, by treating cells with 0.03% (w / v) to 0.15% (w / v) Triton X-100 as a membrane permeation reagent, the target intracellular protein and contaminating cell membrane protein It can be seen that both brightness reduction due to damage and elution can be prevented.

特に0.05%(w/v)のTriton X−100溶液で膜透過処理した場合、CK高輝度の目的細胞(腫瘍細胞)の割合が35.5%(実施例1、表1)、CD45高輝度の白血球の割合が43.8%(実施例2、表2)と、いずれも特に高いことから、膜透過試薬として0.03%(w/v)から0.08%(w/v)のTriton X−100を用いて細胞を処理することで、目的細胞内タンパク質および夾雑細胞膜タンパク質の損傷や溶出による輝度低下をより防げることがわかる。   In particular, when the membrane permeabilization treatment was performed with a 0.05% (w / v) Triton X-100 solution, the ratio of target cells (tumor cells) with high CK brightness was 35.5% (Example 1, Table 1), CD45 The ratio of high-intensity white blood cells is 43.8% (Example 2, Table 2), both of which are particularly high, so that the membrane permeation reagent is 0.03% (w / v) to 0.08% (w / v). It can be seen that treatment of cells with Triton X-100 in (1) can further prevent a decrease in luminance due to damage and elution of target intracellular proteins and contaminating cell membrane proteins.

Figure 2019056678
Figure 2019056678

100:細胞保持装置
110:絶縁膜
120:遮光膜
121・122:貫通孔
130:スペーサ
131:導入口
132:排出口
141・142:電極
141a:+極
142b:−極
150:導線
160:交流電源
170:保持部
200:検出部
300:細胞
400:誘電泳動力
500:光
DESCRIPTION OF SYMBOLS 100: Cell holding | maintenance apparatus 110: Insulating film 120: Light shielding film 121 * 122: Through-hole 130: Spacer 131: Inlet 132: Outlet 141 * 142: Electrode 141a: + pole 142b:-pole 150: Conductor 160: AC power supply 170: Holding unit 200: Detection unit 300: Cell 400: Dielectrophoretic force 500: Light

Claims (3)

試料中に含まれる目的細胞および夾雑細胞を検出する方法であって、
1)試料中の目的細胞および夾雑細胞を膜透過する工程、
2)当該目的細胞および当該夾雑細胞にそれぞれ特異的に有するタンパク質を認識する物質で標識する工程、および
3)これら標識の有無に基づき前記目的細胞を検出する工程、
を含み、目的細胞および夾雑細胞の膜透過を0.03%(w/v)から0.15%(w/v)のTriton X−100(商品名)で処理することで行なう、検出方法。
A method for detecting target cells and contaminating cells contained in a sample, comprising:
1) a step of permeabilizing target cells and contaminating cells in a sample;
2) a step of labeling with a substance that recognizes the protein specifically possessed by the target cell and the contaminating cell, and 3) a step of detecting the target cell based on the presence or absence of these labels,
And a membrane permeation of target cells and contaminating cells is treated with 0.03% (w / v) to 0.15% (w / v) Triton X-100 (trade name).
目的細胞が腫瘍細胞であり、目的細胞に特異的に有するタンパク質が上皮系の細胞内タンパク質であり、夾雑細胞の標識を夾雑細胞膜に特異的に有するタンパク質を認識する物質で行なう、請求項1に記載の検出方法。   The target cell is a tumor cell, the protein specifically possessed by the target cell is an epithelial intracellular protein, and the labeling of the contaminated cell is performed with a substance that recognizes the protein specifically possessed by the contaminated cell membrane. The detection method described. 試料が血液試料であり、夾雑細胞が白血球であり、夾雑細胞に特異的に有するタンパク質が白血球の膜タンパク質であり、目的細胞の標識を目的細胞内に特異的に有するタンパク質を認識する物質で行なう、請求項1または2に記載の方法。   The sample is a blood sample, the contaminating cell is a leukocyte, the protein specifically possessed by the contaminated cell is a membrane protein of leukocyte, and the target cell is labeled with a substance that specifically recognizes the protein having the label in the target cell. The method according to claim 1 or 2.
JP2017182675A 2017-09-22 2017-09-22 How to detect target cells Active JP7062901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182675A JP7062901B2 (en) 2017-09-22 2017-09-22 How to detect target cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182675A JP7062901B2 (en) 2017-09-22 2017-09-22 How to detect target cells

Publications (2)

Publication Number Publication Date
JP2019056678A true JP2019056678A (en) 2019-04-11
JP7062901B2 JP7062901B2 (en) 2022-05-09

Family

ID=66107444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182675A Active JP7062901B2 (en) 2017-09-22 2017-09-22 How to detect target cells

Country Status (1)

Country Link
JP (1) JP7062901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070884A1 (en) * 2019-10-07 2021-04-15 ナノティス株式会社 Method for detecting substance to be detected within sample

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506629A (en) * 1998-03-18 2002-03-05 ノースウェスト バイオセラピューティクス,インコーポレーテッド Monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen
JP2008543277A (en) * 2005-05-11 2008-12-04 ジェネティック テクノロジーズ リミテッド Methods for enriching fetal cells
WO2013126774A2 (en) * 2012-02-24 2013-08-29 President And Fellows Of Harvard College Microfluidic devices for capture of target species
US20130337500A1 (en) * 2009-04-24 2013-12-19 National University Of Singapore System and method for isolation of cells
US20140272965A1 (en) * 2013-03-13 2014-09-18 Denovo Sciences, Inc. System and method for capturing and analyzing cells
WO2014185151A1 (en) * 2013-05-13 2014-11-20 コニカミノルタ株式会社 Cell-staining method and specimen collection tube for use in method
US20150314290A1 (en) * 2014-04-30 2015-11-05 Unist Academy-Industry Research Corporation Rare cell isolation device, rare cell isolation method, and rare cell detection method using the same
WO2016036579A1 (en) * 2014-09-04 2016-03-10 Syact Llp Photo-chemically activated micro-bubble based root canal disinfection
CN105807057A (en) * 2016-03-11 2016-07-27 武汉大学 Method for synchronously capturing and identifying circulating tumor cells
WO2017053630A1 (en) * 2015-09-22 2017-03-30 Purdue Research Foundation Centrifuge-free isolation and detection of rare cells
JP2017083247A (en) * 2015-10-27 2017-05-18 東ソー株式会社 Method for detecting target cell in blood sample
US20170232439A1 (en) * 2014-08-11 2017-08-17 Carnegie Mellon University Separation of low-abundance cells from fluid using surface acoustic waves

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506629A (en) * 1998-03-18 2002-03-05 ノースウェスト バイオセラピューティクス,インコーポレーテッド Monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen
JP2008543277A (en) * 2005-05-11 2008-12-04 ジェネティック テクノロジーズ リミテッド Methods for enriching fetal cells
US20130337500A1 (en) * 2009-04-24 2013-12-19 National University Of Singapore System and method for isolation of cells
WO2013126774A2 (en) * 2012-02-24 2013-08-29 President And Fellows Of Harvard College Microfluidic devices for capture of target species
US20140272965A1 (en) * 2013-03-13 2014-09-18 Denovo Sciences, Inc. System and method for capturing and analyzing cells
WO2014185151A1 (en) * 2013-05-13 2014-11-20 コニカミノルタ株式会社 Cell-staining method and specimen collection tube for use in method
US20150314290A1 (en) * 2014-04-30 2015-11-05 Unist Academy-Industry Research Corporation Rare cell isolation device, rare cell isolation method, and rare cell detection method using the same
US20170232439A1 (en) * 2014-08-11 2017-08-17 Carnegie Mellon University Separation of low-abundance cells from fluid using surface acoustic waves
WO2016036579A1 (en) * 2014-09-04 2016-03-10 Syact Llp Photo-chemically activated micro-bubble based root canal disinfection
WO2017053630A1 (en) * 2015-09-22 2017-03-30 Purdue Research Foundation Centrifuge-free isolation and detection of rare cells
JP2017083247A (en) * 2015-10-27 2017-05-18 東ソー株式会社 Method for detecting target cell in blood sample
CN105807057A (en) * 2016-03-11 2016-07-27 武汉大学 Method for synchronously capturing and identifying circulating tumor cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
森本篤史 ほか: "転移性乳がん患者からの血中循環がん細胞の検出と1細胞遺伝子解析", 東ソー研究・技術報告, vol. 第59巻, JPN6021030291, 2015, pages 3 - 9, ISSN: 0004570924 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070884A1 (en) * 2019-10-07 2021-04-15 ナノティス株式会社 Method for detecting substance to be detected within sample

Also Published As

Publication number Publication date
JP7062901B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP6453592B2 (en) Blood sample processing method
JP6639906B2 (en) Biological sample detection method
JP2014533509A (en) Method, apparatus and kit for obtaining and analyzing cells
JP6311707B2 (en) Cell staining method and sample collection tube used for the method
JP2005501236A (en) Stabilization of cells and biological specimens for analysis
CN104977284B (en) A kind of capture of fetal nucleated red blood and identification method
KR101279918B1 (en) Device for detection of tumor cells and detecting method tumor cells
US7074622B2 (en) Method and system for sorting and separating particles
JP6617516B2 (en) Method for detecting target cells contained in blood sample
JP6582486B2 (en) Method for detecting rare cells in blood
CA2999535A1 (en) Centrifuge-free isolation and detection of rare cells
CN104833805A (en) Circulating tumor cell detection and identification kit and application thereof
JP7143678B2 (en) Methods for detecting target cells
JP6617495B2 (en) Method for detecting tumor cells
CN111812071A (en) A novel technique for the identification of circulating tumor cells
JP7062901B2 (en) How to detect target cells
WO2016121574A1 (en) Method for simultaneous detection of blood cells having interacting molecules
JP7119771B2 (en) Target cell detection method
WO2018029858A1 (en) Detection method of circulating tumor cells and pretreatment method for detecting circulating tumor cells
JP6519482B2 (en) Method for fluorescent immunostaining of cells and system and kit therefor
WO2018030547A1 (en) Detection method of circulating tumor cells and pretreatment method for detecting circulating tumor cells
JP2018044950A (en) Method for detecting cell contained in sample
JP2018157812A (en) Method for detecting cells contained in a sample
JP7153365B2 (en) Isolated cell specimen, method for producing isolated cell specimen, and method for detecting target cells
JP7279542B2 (en) Method for quantifying target cells contained in a sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R151 Written notification of patent or utility model registration

Ref document number: 7062901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151