Nothing Special   »   [go: up one dir, main page]

JP2018525376A - Novel process for producing chromanol derivatives - Google Patents

Novel process for producing chromanol derivatives Download PDF

Info

Publication number
JP2018525376A
JP2018525376A JP2018505683A JP2018505683A JP2018525376A JP 2018525376 A JP2018525376 A JP 2018525376A JP 2018505683 A JP2018505683 A JP 2018505683A JP 2018505683 A JP2018505683 A JP 2018505683A JP 2018525376 A JP2018525376 A JP 2018525376A
Authority
JP
Japan
Prior art keywords
chemical formula
compound represented
represented
producing
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018505683A
Other languages
Japanese (ja)
Other versions
JP6676146B2 (en
Inventor
キム,ウンソン
コ,ドンヒョン
クォン,ジェホン
キム,ヨンジュ
イ,ソナ
チェ,グァンド
ホ,スンピョン
イ,ジユン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HK Inno N Corp
Original Assignee
CJ Healthcare Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CJ Healthcare Corp filed Critical CJ Healthcare Corp
Publication of JP2018525376A publication Critical patent/JP2018525376A/en
Application granted granted Critical
Publication of JP6676146B2 publication Critical patent/JP6676146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Pyrane Compounds (AREA)

Abstract

本発明は、クロマノール誘導体の新規な製造方法に関する。本発明に係る光学活性を有するクロマノール誘導体の製造方法は、従来知られている光学活性還元反応技術とは異なり、製造されるクロマノールが高い光学純度を示し、別途の精製工程を必要とせず、過酷な反応条件を含まず、危険な試薬を用いないため、大量生産に有利であり、製造収率にも優れている。The present invention relates to a novel method for producing a chromanol derivative. Unlike the conventionally known optically active reduction reaction technique, the method for producing an optically active chromanol derivative according to the present invention exhibits high optical purity, requires no separate purification step, and is harsh. The reaction conditions are not included and no dangerous reagents are used, which is advantageous for mass production and excellent production yield.

Description

本明細書は、2015年8月4日に韓国特許庁に提出された韓国特許出願第10−2015−0110248号の出願日の利益を主張し、その内容のすべては本明細書に含まれる。   This specification claims the benefit of the filing date of Korean Patent Application No. 10-2015-0110248 filed with the Korean Patent Office on August 4, 2015, the entire contents of which are included in this specification.

本発明は、光学活性を有するクロマノール誘導体の新規な製造方法に関する。   The present invention relates to a novel method for producing a chromanol derivative having optical activity.

キラルクロマノール(chromanol)誘導体化合物は、医薬及び化学分野で様々な活性を有する物質であって、現在開発中の医薬品などにおいてもキラルクロマノール構造の化合物は数多く存在する。ところで、同じ分子式を有するクロマノール誘導体化合物であっても、いかなる3次元立体構造を有するかによって、その薬効には非常にばらつきがある。したがって、キラルクロマノール誘導体化合物を立体選択的に合成することは、医薬合成及び有機合成において非常に重要である。しかし、キラルクロマノール誘導体化合物の重要性にもかかわらず、キラルクロマノール誘導体化合物を容易に合成する方法はあまり報告されていない。   A chiral chromanol derivative compound is a substance having various activities in the pharmaceutical and chemical fields, and there are many compounds having a chiral chromanol structure in pharmaceuticals currently under development. By the way, even if a chromanol derivative compound having the same molecular formula is used, its medicinal effect varies greatly depending on what three-dimensional structure it has. Therefore, the stereoselective synthesis of chiral chromanol derivative compounds is very important in pharmaceutical synthesis and organic synthesis. However, despite the importance of chiral chromanol derivative compounds, few methods for easily synthesizing chiral chromanol derivative compounds have been reported.

国際公報WO2007/072146には、5,7−ジフルオロクロマン−4−オンを出発物質として用いて5,7−ジフルオロクロマン−4−オールを製造する方法が記載されている。しかし、前記特許に記載の製造方法は、1次結晶化工程で86%ee値の低い光学立体選択性を有し、光学立体選択性を増加させるために精製工程が必ず必要であると明記されている。このような理由から、前記特許に記載の方法は、製造コストが高く、さらなる精製工程を必要とするにもかかわらず、58%という非常に低い収率を有する。また、1次固体化分離のためにシリカゲル相のカラムクロマトグラフィーを行うため、大量生産工程には適していないといった問題がある。   International Publication WO2007 / 072146 describes a process for producing 5,7-difluorochroman-4-ol using 5,7-difluorochroman-4-one as a starting material. However, the manufacturing method described in the above patent has a low optical stereoselectivity of 86% ee in the primary crystallization process, and it is clearly stated that a purification process is absolutely necessary to increase the optical stereoselectivity. ing. For this reason, the process described in said patent has a very low yield of 58% despite the high production costs and the need for further purification steps. In addition, since silica gel column chromatography is performed for primary solid separation, there is a problem that it is not suitable for mass production processes.

よって、医薬及び化学分野において非常に重要なファーマコフォアとして知られている、光学活性を有するクロマノール誘導体を、高純度の光学品質かつ高収率で、産業的に大量生産することができる、新規な製造方法が求められている。   Therefore, a novel optically active chromanol derivative known as a very important pharmacophore in the pharmaceutical and chemical fields can be industrially mass-produced with high optical quality and high yield. New manufacturing methods are required.

国際公開特許第2007/072146号 International Patent Publication No. 2007/072146

本発明は、高い光学純度を示し、別途の精製工程を必要とせず、生産工程において危険な試薬を用いず、生産収率に優れた、クロマノール誘導体の製造方法を提供する。   The present invention provides a method for producing a chromanol derivative that exhibits high optical purity, does not require a separate purification step, does not use a dangerous reagent in the production step, and has an excellent production yield.

本発明は、
下記化学式IIで表される化合物を、下記化学式III又は化学式IVで表される触媒下においてキラル還元反応させ、下記化学式Iで表される化合物を製造するステップを含む、化学式Iで表される化合物の製造方法を提供する。
[化学式I]

Figure 2018525376
[化学式II]
Figure 2018525376
[化学式III]
Figure 2018525376
[化学式IV]
Figure 2018525376
前記化学式I中、*は、Chiral centerを示す。 The present invention
A compound represented by Formula I, comprising a step of producing a compound represented by Formula I below by subjecting a compound represented by Formula II below to a chiral reduction reaction in the presence of a catalyst represented by Formula III or Formula IV below. A manufacturing method is provided.
[Chemical Formula I]
Figure 2018525376
[Chemical Formula II]
Figure 2018525376
[Chemical Formula III]
Figure 2018525376
[Formula IV]
Figure 2018525376
In the chemical formula I, * indicates a chiral center.

本発明の前記製造方法は、従来知られている光学活性還元反応技術とは異なり、製造されるクロマノールが高い光学純度を示し、別途の精製工程を必要とせず、過酷な反応条件を含まず、危険な試薬を用いないため、大量生産に有利であり、製造収率にも優れている。   In the production method of the present invention, unlike the conventionally known optically active reduction reaction technique, the produced chromanol exhibits high optical purity, does not require a separate purification step, does not include severe reaction conditions, Since no dangerous reagent is used, it is advantageous for mass production and excellent in production yield.

前記化学式Iで表される化合物を製造するステップは、前記化学式III又はIVの触媒を用いたキラル還元反応(Chiral reduction)として、前記化学式IIで表される化合物と水素供与体とを前記化学式III又は化学式IVで表される触媒下において反応させ、選択的に光学活性を有する前記化学式Iで表される化合物を製造する。   The step of preparing the compound represented by the chemical formula I includes, as a chiral reduction reaction using the catalyst of the chemical formula III or IV, the compound represented by the chemical formula II and a hydrogen donor as the chemical formula III. Alternatively, the reaction is carried out in the presence of a catalyst represented by the chemical formula IV to produce a compound represented by the chemical formula I having selective optical activity.

ここで、前記化学式IIで表される化合物と化学式III又は化学式IVで表される触媒との反応モル比は、1:0.0001〜1:0.1であってもよく、好ましくは、0.005〜0.001である。   Here, the reaction molar ratio of the compound represented by Formula II and the catalyst represented by Formula III or Formula IV may be 1: 0.0001 to 1: 0.1, preferably 0. 0.005 to 0.001.

本発明において、前記化学式Iで表される化合物を製造するステップにおける反応溶媒は、業界で広く用いられる有機溶媒を用いてもよい。例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタンのようなハロゲン化された炭化水素;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、及びジオキサンのようなエーテル;ベンゼン、トルエン、及びニトロベンゼンのような芳香族炭化水素;ジメチルスルホキシドのようなスルホキシド;ジメチルホルムアミドのようなギ酸アミド;メタノール、エタノール、2−プロパノール、及びブタノールのようなアルコール;又はこれらの混合溶媒であってもよいが、必ずしもこれに限定されるものではない。本発明において、前記化学式Iで表される化合物を製造するステップの反応溶媒は、業界で広く用いられる無極性有機溶媒が好ましく、より好ましくは、テトラヒドロフランである。   In the present invention, an organic solvent widely used in the industry may be used as the reaction solvent in the step of producing the compound represented by Formula I. For example, halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, and dioxane; aromatic hydrocarbons such as benzene, toluene, and nitrobenzene; It may be a sulfoxide such as dimethyl sulfoxide; a formic acid amide such as dimethylformamide; an alcohol such as methanol, ethanol, 2-propanol, and butanol; or a mixed solvent thereof, but is not necessarily limited thereto. Absent. In the present invention, the reaction solvent in the step of producing the compound represented by Formula I is preferably a nonpolar organic solvent widely used in the industry, more preferably tetrahydrofuran.

本発明の水素供与体は、ギ酸、ギ酸の金属塩、ギ酸のアンモニウム塩、及びギ酸とアミンとの混合物の中から選択してもよい。好ましくは、前記水素供与体は、ギ酸とアミンとの混合物であり、より好ましくは、トリエチルアミン(TEA)及びギ酸、又はジイソプロピルエチルアミン(DIPEA)及びギ酸である。   The hydrogen donor of the present invention may be selected from formic acid, metal salts of formic acid, ammonium salts of formic acid, and mixtures of formic acid and amines. Preferably, the hydrogen donor is a mixture of formic acid and amine, more preferably triethylamine (TEA) and formic acid, or diisopropylethylamine (DIPEA) and formic acid.

前記化学式Iで表される化合物を製造するステップにおいて、化学式IIで表される化合物の化学式III又は化学式IVで表される触媒下におけるキラル還元反応は、25℃〜80℃で行ってもよく、好ましくは、30℃〜50℃で行われる。これより低い温度だと反応時間が長くなり過ぎるし、これより高い温度だと光学純度(chiral purity)が低くなり過ぎるため、商業的生産には適さない。   In the step of producing the compound represented by the chemical formula I, the chiral reduction reaction of the compound represented by the chemical formula II under the catalyst represented by the chemical formula III or the chemical formula IV may be performed at 25 ° C. to 80 ° C., Preferably, it is performed at 30 ° C to 50 ° C. If the temperature is lower than this, the reaction time becomes too long, and if it is higher than this, the optical purity becomes too low, which is not suitable for commercial production.

前記化学式Iで表される化合物を製造するステップは、結晶化溶媒を用いて結晶化するステップをさらに含んでもよい。前記結晶化溶媒は、化合物を結晶化するためのものであって、ヘキサン、ヘプタンのようなC6〜7の脂肪族炭化水素;ジエチルエーテル、ジイソプロピルエーテルのようなエーテル;又はこれらの混合溶媒などが用いられてもよい。好ましくは、ヘキサン、ヘプタンのようなC6〜7の脂肪族炭化水素が用いられる。 The step of producing the compound represented by Formula I may further include a step of crystallization using a crystallization solvent. The crystallization solvent is for crystallization of a compound, and is a C 6-7 aliphatic hydrocarbon such as hexane or heptane; an ether such as diethyl ether or diisopropyl ether; or a mixed solvent thereof. May be used. Preferably, C 6-7 aliphatic hydrocarbons such as hexane and heptane are used.

本発明は、
下記化学式IIで表される化合物と水素供与体とを下記化学式III又は化学式IVで表される触媒下において反応させ、下記化学式Iで表される化合物を製造するステップを含む、化学式Iで表される化合物の製造方法を提供する。
[化学式I]

Figure 2018525376
[化学式II]
Figure 2018525376
[化学式III]
Figure 2018525376
[化学式IV]
Figure 2018525376
前記化学式I中、*は、Chiral centerを示す。 The present invention
A compound represented by the following chemical formula II and a hydrogen donor are reacted under a catalyst represented by the following chemical formula III or chemical formula IV to produce a compound represented by the following chemical formula I. A method for producing the compound is provided.
[Chemical Formula I]
Figure 2018525376
[Chemical Formula II]
Figure 2018525376
[Chemical Formula III]
Figure 2018525376
[Formula IV]
Figure 2018525376
In the chemical formula I, * indicates a chiral center.

本発明の一実施態様によると、本発明は、化学式IIで表される化合物を化学式IIIで表される触媒下においてキラル還元反応させ、下記化学式I−1で表される化合物を製造するステップを含む、化学式I−1で表される化合物の製造方法を提供する。
[化学式I−1](R)−5,7−ジフルオロクロマン−4−オール

Figure 2018525376
According to one embodiment of the present invention, the present invention includes a step of producing a compound represented by the following Formula I-1 by subjecting a compound represented by the Formula II to a chiral reduction reaction in the presence of a catalyst represented by the Formula III. And a process for producing the compound represented by Formula I-1.
[Chemical Formula I-1] (R) -5,7-difluorochroman-4-ol
Figure 2018525376

本発明の別の実施態様によると、本発明は、化学式IIで表される化合物を化学式IVで表される触媒下においてキラル還元反応させ、下記化学式I−2で表される化合物を製造するステップを含む、化学式I−2で表される化合物の製造方法を提供する。
[化学式I−2](S)−5,7−ジフルオロクロマン−4−オール

Figure 2018525376
According to another embodiment of the present invention, the present invention provides a step of producing a compound represented by the following chemical formula I-2 by subjecting a compound represented by the chemical formula II to a chiral reduction reaction in the presence of a catalyst represented by the chemical formula IV: And a process for producing a compound represented by Formula I-2.
[Chemical formula I-2] (S) -5,7-difluorochroman-4-ol
Figure 2018525376

前記のように、本発明に係る製造方法によって、化学式IIの化合物を化学式III又は化学式IVの触媒の存在下において水素供与体とキラル還元反応させると、化学式I−1又は化学式I−2の高い光学活性を有するクロマノール化合物を製造することができる。   As described above, when the compound of formula II is subjected to a chiral reduction reaction with a hydrogen donor in the presence of a catalyst of formula III or IV by the production method according to the present invention, a high formula I-1 or formula I-2 is obtained. A chromanol compound having optical activity can be produced.

例えば、本発明に係る化学式Iで表される化合物の製造方法は、下記反応式Iで表すことができる。
[反応式I]

Figure 2018525376
For example, the method for producing the compound represented by the chemical formula I according to the present invention can be represented by the following reaction formula I.
[Reaction Formula I]
Figure 2018525376

前記反応式Iのように、化学式III又は化学式IVで表されるルテニウム触媒下において、有機溶媒下の化学式IIの化合物を水素供与体と反応させ、化学式Iの化合物を製造することができる。   Like the above reaction formula I, the compound of the chemical formula II can be produced by reacting the compound of the chemical formula II in an organic solvent with a hydrogen donor under a ruthenium catalyst represented by the chemical formula III or the chemical formula IV.

本発明の一実施態様によると、下記反応式I−1のように、化学式IIIで表されるルテニウム触媒下において、化学式IIの化合物を水素供与体と反応させ、化学式I−1の化合物を製造することができる。
[反応式I−1]

Figure 2018525376
According to one embodiment of the present invention, a compound of Formula II is produced by reacting a compound of Formula II with a hydrogen donor under a ruthenium catalyst represented by Formula III as shown in the following Reaction Formula I-1. can do.
[Reaction Formula I-1]
Figure 2018525376

本発明の別の実施態様によると、下記反応式I−2のように、化学式IVで表される触媒下において、化学式IIの化合物を水素供与体と反応させ、化学式I−2の化合物を製造することができる。
[反応式I−2]

Figure 2018525376
According to another embodiment of the present invention, a compound of formula I-2 is produced by reacting a compound of formula II with a hydrogen donor under a catalyst represented by formula IV as shown in the following reaction formula I-2. can do.
[Reaction Formula I-2]
Figure 2018525376

本発明に係る光学活性を有するクロマノール誘導体の製造方法は、従来知られている光学活性還元反応技術とは異なり、製造されるクロマノールが高い光学純度を示し、別途の精製工程を必要とせず、過酷な反応条件を含まず、危険な試薬を用いないため、大量生産に有利であり、製造収率にも優れているという長所も有する。   Unlike the conventionally known optically active reduction reaction technique, the method for producing an optically active chromanol derivative according to the present invention exhibits high optical purity, requires no separate purification step, and is harsh. This method is advantageous in mass production because it does not include any unfavorable reaction conditions and does not use dangerous reagents, and also has an advantage of excellent production yield.

また、前記製造方法によって製造される最終生成物は、光学活性を有するクロマノール構造を有する他の化合物を製造するのに用いることができ、特に、抗菌剤、抗潰瘍剤、抗炎症薬として使用可能な化合物の製造における中間体として用いることができる。   In addition, the final product produced by the production method can be used to produce other compounds having an optically active chromanol structure, and can be used particularly as an antibacterial agent, antiulcer agent, or anti-inflammatory agent. It can be used as an intermediate in the production of such compounds.

以下、下記実施例及び実験例により、本発明をより詳細に説明する。しかし、下記実施例及び実験例は、本発明を例示するためのものであって、これら実施例及び実験例により本発明の範囲が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the following examples and experimental examples. However, the following examples and experimental examples are for illustrating the present invention, and the scope of the present invention is not limited by these examples and experimental examples.

以下に記載の試薬及び溶媒は、特別な言及がない限り、Sigma Aldrichから購入したものであり、H−NMRは、Bruker NMR 270MHzで測定し、光学活性は、Rudolph research analytical autoVで測定した。 Reagents and solvents described below were purchased from Sigma Aldrich unless otherwise noted, 1 H-NMR was measured with Bruker NMR 270 MHz, and optical activity was measured with Rudolph research analytical autoV.

実施例1:(R)−5,7−ジフルオロクロマン−4−オールの製造
反応器にトリエチルアミン30gを投入し、−10℃に冷却した。ここにギ酸27gを10℃以下でゆっくりと投入した。ルテニウム触媒RuCl(p−cymene)[(R,R)−Ts−DPEN]56mgを投入した。5,7−ジフルオロクロマン−4−オン33gをテトラヒドロフラン87gに溶解し、反応器に10℃以下で投入した。40℃に昇温して反応させた。反応が終わった後、室温に冷却し、酢酸エチル293gと精製水163gを投入して攪拌した後、有機層を分離した。40℃以下で減圧濃縮し、ヘプタン222gを投入して25℃で攪拌した後、生成された固体をろ過した。40℃で真空乾燥し、(R)−5,7−ジフルオロクロマン−4−オール(30g、91%、100%ee)を得た。
H−NMR(270MHz,CDCl):δ:6.47−6.36(m,2H),5.05−4.97(m,1H),4.36−4.20(m,2H),2.16−1.92(m,3H)ppm
光学回転:[α] 24=+143.6°(c=1.00,メタノール)
Example 1: Production of (R) -5,7-difluorochroman-4-ol 30 g of triethylamine was charged into a reactor and cooled to -10 ° C. 27 g of formic acid was slowly added thereto at 10 ° C. or lower. Ruthenium catalyst RuCl (p-cymene) [(R, R) -Ts-DPEN] 56 mg was added. 33 g of 5,7-difluorochroman-4-one was dissolved in 87 g of tetrahydrofuran and charged into the reactor at 10 ° C. or lower. The temperature was raised to 40 ° C. to react. After completion of the reaction, the reaction mixture was cooled to room temperature, 293 g of ethyl acetate and 163 g of purified water were added and stirred, and then the organic layer was separated. After concentration under reduced pressure at 40 ° C. or lower, 222 g of heptane was added and stirred at 25 ° C., and then the produced solid was filtered. Vacuum drying at 40 ° C. gave (R) -5,7-difluorochroman-4-ol (30 g, 91%, 100% ee).
1 H-NMR (270 MHz, CDCl 3 ): δ: 6.47-6.36 (m, 2H), 5.05-4.97 (m, 1H), 4.36-4.20 (m, 2H) ), 2.16-1.92 (m, 3H) ppm
Optical rotation: [α] D 24 = + 143.6 ° (c = 1.00, methanol)

実施例2:(S)−5,7−ジフルオロクロマン−4−オールの製造
反応器にトリエチルアミン30gを投入し、−10℃に冷却した。ここにギ酸27gを10℃以下でゆっくりと投入した。ルテニウム触媒RuCl(p−cymene)[(S,S)−Ts−DPEN]56mgを投入した。5,7−ジフルオロクロマン−4−オン33gをテトラヒドロフラン87gに溶解し、反応器に10℃以下で投入した。40℃に昇温して反応させた。反応が終わった後、25℃に冷却し、酢酸エチル293gと精製水163gを投入して攪拌した後、有機層を分離した。40℃以下で減圧濃縮し、ヘプタン222gを投入して25℃で攪拌した後、生成された固体をろ過した。40℃で真空乾燥し、(S)−5,7−ジフルオロクロマン−4−オール(28g、85%、100%ee)を得た。
H−NMR:スペクトルデータは、(R)−クロマノール(実施例1)のデータと同じであった。
光学回転:[α] 24=−143.6°(c=1.00,メタノール)
Example 2: Production of (S) -5,7-difluorochroman-4-ol 30 g of triethylamine was charged into a reactor and cooled to -10 ° C. 27 g of formic acid was slowly added thereto at 10 ° C. or lower. Ruthenium catalyst RuCl (p-cymene) [(S, S) -Ts-DPEN] 56 mg was added. 33 g of 5,7-difluorochroman-4-one was dissolved in 87 g of tetrahydrofuran and charged into the reactor at 10 ° C. or lower. The temperature was raised to 40 ° C. to react. After the reaction was completed, the mixture was cooled to 25 ° C., 293 g of ethyl acetate and 163 g of purified water were added and stirred, and then the organic layer was separated. After concentration under reduced pressure at 40 ° C. or lower, 222 g of heptane was added and stirred at 25 ° C., and then the produced solid was filtered. Vacuum drying at 40 ° C. gave (S) -5,7-difluorochroman-4-ol (28 g, 85%, 100% ee).
1 H-NMR: The spectral data were the same as those for (R) -chromanol (Example 1).
Optical rotation: [α] D 24 = −143.6 ° (c = 1.00, methanol)

Claims (9)

下記化学式IIで表される化合物を下記化学式III又は化学式IVで表される触媒下においてキラル還元反応させ、下記化学式Iで表される化合物を製造するステップを含む、化学式Iで表される化合物の製造方法。
[化学式I]
Figure 2018525376
[化学式II]
Figure 2018525376
[化学式III]
Figure 2018525376
[化学式IV]
Figure 2018525376
前記式中、*は、キラル中心である。
A compound represented by the following chemical formula I, comprising a step of producing a compound represented by the following chemical formula I by subjecting the compound represented by the following chemical formula II to a chiral reduction reaction in the presence of a catalyst represented by the following chemical formula III or chemical formula IV: Production method.
[Chemical Formula I]
Figure 2018525376
[Chemical Formula II]
Figure 2018525376
[Chemical Formula III]
Figure 2018525376
[Formula IV]
Figure 2018525376
In the above formula, * is a chiral center.
前記化学式IIで表される化合物を化学式IIIで表される触媒下においてキラル還元反応させ、下記化学式I−1で表される化合物を製造するステップを含む、請求項1に記載の化学式Iで表される化合物の製造方法。
[化学式I−1]
Figure 2018525376
The compound represented by the chemical formula II according to claim 1, comprising a step of producing a compound represented by the following chemical formula I-1 by subjecting the compound represented by the chemical formula II to a chiral reduction reaction under a catalyst represented by the chemical formula III. The manufacturing method of the compound made.
[Chemical Formula I-1]
Figure 2018525376
化学式IIで表される化合物を化学式IVで表される触媒下においてキラル還元反応させ、下記化学式I−2で表される化合物を製造するステップを含む、請求項1に記載の化学式Iで表される化合物の製造方法。
[化学式I−2]
Figure 2018525376
The compound represented by the chemical formula I represented by the chemical formula I according to claim 1, comprising a step of producing a compound represented by the following chemical formula I-2 by subjecting the compound represented by the chemical formula II to a chiral reduction reaction in the catalyst represented by the chemical formula IV. A method for producing a compound.
[Chemical formula I-2]
Figure 2018525376
前記化学式IIで表される化合物と触媒との反応モル比は、1:0.0001〜1:0.1である、請求項1〜3のいずれか一項に記載の化学式Iで表される化合物の製造方法。   The reaction molar ratio of the compound represented by the chemical formula II to the catalyst is 1: 0.0001 to 1: 0.1, represented by the chemical formula I according to any one of claims 1 to 3. Compound production method. 6〜7の脂肪族炭化水素、エーテル、又はこれらの混合溶媒で結晶化させるステップをさらに含む、請求項1〜3のいずれか一項に記載の化学式Iで表される化合物の製造方法。 The manufacturing method of the compound represented by Chemical formula I as described in any one of Claims 1-3 further including the step of crystallizing with C6-7 aliphatic hydrocarbon, ether, or these mixed solvents. 前記キラル還元反応は、水素供与体を用いて行われ、前記水素供与体は、ギ酸、ギ酸の金属塩、ギ酸のアンモニウム塩、及びギ酸とアミンとの混合物の中から選択されるいずれか一つである、請求項1〜3のいずれか一項に記載の化学式Iで表される化合物の製造方法。   The chiral reduction reaction is performed using a hydrogen donor, and the hydrogen donor is any one selected from formic acid, a metal salt of formic acid, an ammonium salt of formic acid, and a mixture of formic acid and an amine. The manufacturing method of the compound represented by Chemical formula I as described in any one of Claims 1-3 which is these. 前記水素供与体は、ギ酸及びトリエチルアミンである、請求項6に記載の化学式Iで表される化合物の製造方法。   The method for producing a compound represented by Formula I according to claim 6, wherein the hydrogen donor is formic acid and triethylamine. 化学式IIで表される化合物の化学式III又は化学式IVで表される触媒下におけるキラル還元反応は、25〜80℃で行われる、請求項1〜3のいずれか一項に記載の化学式Iで表される化合物の製造方法。   The chiral reduction reaction of the compound represented by the chemical formula II under the catalyst represented by the chemical formula III or the chemical formula IV is performed at 25 to 80 ° C, represented by the chemical formula I according to any one of claims 1 to 3. The manufacturing method of the compound made. 化学式IIで表される化合物の化学式III又は化学式IVで表される触媒下におけるキラル還元反応は、有機溶媒下において行われる、請求項1〜3のいずれか一項に記載の化学式Iで表される化合物の製造方法。   The chiral reduction reaction of the compound represented by the chemical formula II under the catalyst represented by the chemical formula III or the chemical formula IV is performed in an organic solvent, and is represented by the chemical formula I according to any one of claims 1 to 3. A method for producing a compound.
JP2018505683A 2015-08-04 2016-08-03 Novel production method of chromanol derivative Active JP6676146B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0110248 2015-08-04
KR1020150110248A KR101769204B1 (en) 2015-08-04 2015-08-04 New method for preparation of chiral chromanol derivatives
PCT/KR2016/008580 WO2017023124A1 (en) 2015-08-04 2016-08-03 Novel method for preparing chromanol derivative

Publications (2)

Publication Number Publication Date
JP2018525376A true JP2018525376A (en) 2018-09-06
JP6676146B2 JP6676146B2 (en) 2020-04-08

Family

ID=57943342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018505683A Active JP6676146B2 (en) 2015-08-04 2016-08-03 Novel production method of chromanol derivative

Country Status (4)

Country Link
JP (1) JP6676146B2 (en)
KR (1) KR101769204B1 (en)
CN (1) CN107849003A (en)
WO (1) WO2017023124A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230037668A (en) * 2020-07-20 2023-03-16 항저우 두이 테크놀로지 컴퍼니 리미티드 Methods for preparing substituted chromanone derivatives
CN113237970A (en) * 2021-04-23 2021-08-10 上海应用技术大学 High performance liquid chromatography separation method of R, S isomer of 5,7-difluorochroman-4-ol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503526A (en) * 2004-06-22 2008-02-07 ノバルティス アクチエンゲゼルシャフト Enantioselective preparation of quinoline derivatives
JP2009520017A (en) * 2005-12-19 2009-05-21 ラクオリア創薬株式会社 Chroman-substituted benzimidazole derivatives and their use as acid pump inhibitors
JP2009530262A (en) * 2006-03-17 2009-08-27 ラクオリア創薬株式会社 Chroman derivatives
JP2013532714A (en) * 2010-08-04 2013-08-19 エランコ・アニマル・ヘルス・アイルランド・リミテッド Compounds having antibacterial activity against the genus CLOSTRIDIUM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092825A1 (en) * 2004-03-29 2005-10-06 Nagoya Industrial Science Research Institute Process for production of optically active alcohols
KR101130465B1 (en) 2005-12-30 2012-03-27 엘지전자 주식회사 Overheating prevention apparatus for scroll compressor
WO2008059373A1 (en) * 2006-11-17 2008-05-22 Raqualia Pharma Inc. Imidazo [1, 2-a] pyrazine derivatives and their use as acid pump antagonists
WO2008151927A2 (en) * 2007-06-15 2008-12-18 Nycomed Gmbh 6-n-substituted benz imidazole derivatives as acid pump antagonists

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503526A (en) * 2004-06-22 2008-02-07 ノバルティス アクチエンゲゼルシャフト Enantioselective preparation of quinoline derivatives
JP2009520017A (en) * 2005-12-19 2009-05-21 ラクオリア創薬株式会社 Chroman-substituted benzimidazole derivatives and their use as acid pump inhibitors
JP2009530262A (en) * 2006-03-17 2009-08-27 ラクオリア創薬株式会社 Chroman derivatives
JP2013532714A (en) * 2010-08-04 2013-08-19 エランコ・アニマル・ヘルス・アイルランド・リミテッド Compounds having antibacterial activity against the genus CLOSTRIDIUM

Also Published As

Publication number Publication date
KR20170016756A (en) 2017-02-14
CN107849003A (en) 2018-03-27
JP6676146B2 (en) 2020-04-08
KR101769204B1 (en) 2017-08-17
WO2017023124A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6554180B6 (en) Solid phase synthesis method of DNA-encoded compound library
JP6676146B2 (en) Novel production method of chromanol derivative
CN113214180B (en) Method for synthesizing optically active benzocarboxylate compounds by two steps in one pot
WO2003064420A1 (en) Novel optically active compounds, method for kinetic optical resolution of carboxylic acid derivatives and catalysts therefor
JP4649645B2 (en) Process for producing optically active alcohol compounds
JP6027910B2 (en) Method for producing catalyst and method for producing optically active anti-1,2-nitroalkanol compound
CN110511193A (en) A kind of α -one thioamide analog compound and its synthetic method
CN111233750B (en) 3, 3-difluoro-1, 2,3, 6-tetrahydropiperidine derivative and preparation method thereof
KR101525493B1 (en) Process for preparation of high purity tamsulosin or salt thereof
JP3547590B2 (en) Asymmetric zirconium catalyst
JP5158926B2 (en) Method for producing chiral zirconium catalyst for asymmetric Mannich type reaction
CN112625015B (en) Preparation method of 2- (1, 3-dihydro-2-isobenzofuran) -1-acetophenone compound
CN108558974A (en) A kind of preparation and application of the derivative pyridine triazole Raney nickel of sugar
JP5279449B2 (en) Process for producing 5- {4- [2- (5-ethyl-2-pyridyl) ethoxy] benzyl} -2,4-thiazolidinedione hydrochloride
KR101446017B1 (en) Method for the stereoselective preparation of 4-alkyl-5-aryl 5-membered ring sulfamidates
JP6906227B2 (en) Halogen bond donor / organic base complex compound and acid base complex catalyst
CN104030997B (en) A kind of catalyst for esomeprazole asymmetric synthesis
JP2021172609A (en) Optically active azide ester and method for producing the same
CN118221492A (en) Method for preparing (E) -N N-disubstituted-N' -sulfonyl amidine
EP3339300A1 (en) Method for preparing thienyl alanine having optical activity
KR100566896B1 (en) Processes for the preparation of an optically active 5,6-dioxopiperazine-2-carboxylic acid derivative
JP2022029075A (en) Method for producing thioester derivative
JP2020138947A (en) Optically active benzazaborole derivative and method for producing the same
WO2010079605A1 (en) Process for producing high-purity 1-benzyl-3-aminopyrrolidine
CN107216259A (en) A kind of synthetic method of ticagrelor intermediate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6676146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250