Nothing Special   »   [go: up one dir, main page]

JP2018514371A - Anion exchange membrane and method for producing the same - Google Patents

Anion exchange membrane and method for producing the same Download PDF

Info

Publication number
JP2018514371A
JP2018514371A JP2017549096A JP2017549096A JP2018514371A JP 2018514371 A JP2018514371 A JP 2018514371A JP 2017549096 A JP2017549096 A JP 2017549096A JP 2017549096 A JP2017549096 A JP 2017549096A JP 2018514371 A JP2018514371 A JP 2018514371A
Authority
JP
Japan
Prior art keywords
anion exchange
exchange membrane
graphene oxide
membrane according
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017549096A
Other languages
Japanese (ja)
Other versions
JP6475862B2 (en
Inventor
スティーブン、エム・ライス
トーマス、バイヤー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Publication of JP2018514371A publication Critical patent/JP2018514371A/en
Application granted granted Critical
Publication of JP6475862B2 publication Critical patent/JP6475862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/18Carbon, coal or tar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

アニオン交換膜は、酸素含有官能基を有する酸化カーボンを含む。酸素含有官能基の少なくとも一部の水素カチオンはアルカリまたはアルカリ土類金属カチオンにより置換されており、それにより膜はアニオン伝導性を有する。アルカリまたはアルカリ土類金属カチオンは好ましくはLi+及び/またはK+を含み、酸化カーボンは好適には単層または複数層の酸化グラフェンを含む。【選択図】図2The anion exchange membrane includes oxidized carbon having an oxygen-containing functional group. At least some of the hydrogen cations of the oxygen-containing functional group are replaced with alkali or alkaline earth metal cations so that the membrane has anion conductivity. The alkali or alkaline earth metal cation preferably comprises Li + and / or K +, and the oxidized carbon suitably comprises single or multiple layers of graphene oxide. [Selection] Figure 2

Description

本発明は、アニオン交換膜及びその製造方法に関する。特に、本発明は、高いイオン伝導度、高い機械的強度及び高いガスバリア特性を有し、固体高分子電解質膜形燃料電池(Polymer Electrolyte Membrane Fuel Cell:PEMFC)(固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:PEFC)とも呼ばれる)、電解セル(または電解槽)、バッテリ、加湿装置等に用いることのできる酸化カーボンベースのアニオン交換膜及びその製造方法に関する。   The present invention relates to an anion exchange membrane and a method for producing the same. In particular, the present invention has high ionic conductivity, high mechanical strength, and high gas barrier properties, and is a polymer electrolyte membrane fuel cell (PEMFC) (Polymer Electrolyte Fuel Cell). The present invention also relates to an oxidized carbon-based anion exchange membrane that can be used in an electrolytic cell (or electrolytic cell), a battery, a humidifier, and the like, and a method for producing the same.

燃料電池は効率及び電力密度が高く、また、水素を燃料として用いた場合には排ガスは水だけであるため、将来の有望なエネルギー供給技術である。アルカリ燃料電池(AFC)にはプロトン伝導性の酸ベースの燃料電池(例えば、ナフィオンベースの燃料電池(ナフィオンはE.I. du Pont de Nemours & Co., Inc.の登録商標))と比べていくつか有利な点がある。カソードでの反応速度がはるかに速く、そのため安価な非貴金属の触媒の使用が可能である(例えば、アノードにニッケル、カソードに銀)。また、アルカリ性の環境は触媒を腐食しにくく、メタノールの酸化を促進する。AFCはナフィオンベースの固体高分子電解質膜形燃料電池(PEMFC)と比べて燃料のクロスオーバが少ない。更に、エタノールやプロパノールといった高級アルコールを燃料として用いることが可能であり、それによりシステムのエネルギー密度が向上する。   Fuel cells have high efficiency and power density, and when hydrogen is used as fuel, the only exhaust gas is water, which is a promising energy supply technology in the future. Alkaline fuel cells (AFC) have several advantages over proton-conducting acid-based fuel cells (eg, Nafion-based fuel cells (Nafion is a registered trademark of EI du Pont de Nemours & Co., Inc.)) There is a point. The reaction rate at the cathode is much faster, thus allowing the use of inexpensive non-noble metal catalysts (eg, nickel for the anode and silver for the cathode). In addition, the alkaline environment hardly corrodes the catalyst and promotes oxidation of methanol. AFC has less fuel crossover than Nafion-based solid polymer electrolyte membrane fuel cells (PEMFC). Furthermore, higher alcohols such as ethanol and propanol can be used as fuel, thereby improving the energy density of the system.

しかしながら、AFCは主として液体電解質を用いていることから問題が生じ得る。水性電解質はCOにより被毒され易く、そのため、AFCは通常、純粋なOで駆動されるが、それによりコストが高くなる。別の問題はガス電極のフラッディングである。従って、液体電解質を良好な機械的及び化学的安定性と良好なイオン伝導度を備えたアニオン交換膜(またはアニオン伝導性電解質膜)で置き換えることに大きな関心が寄せられている。いくつかのアニオン交換膜が入手可能であるが、それらの主たる問題は、プロトン伝導性膜であるナフィオンまたは他のプロトン伝導性電解質膜と比べて伝導度及び機械的強度がやや低いことである。 However, AFC can be problematic because it mainly uses a liquid electrolyte. Aqueous electrolyte liable to be poisoned by CO 2, therefore, AFC is usually driven by pure O 2, the cost is increased thereby. Another problem is gas electrode flooding. Accordingly, there is great interest in replacing liquid electrolytes with anion exchange membranes (or anion conducting electrolyte membranes) with good mechanical and chemical stability and good ionic conductivity. Although several anion exchange membranes are available, their main problem is somewhat lower conductivity and mechanical strength compared to the proton conducting membranes Nafion or other proton conducting electrolyte membranes.

一方、特開2014−216059号公報(特許文献1)には、酸化グラフェンを二次電池の固体電解質として用いることが提案されている。図1Aに模式的に示すように、酸化グラフェンは、カルボン酸基、ヒドロキシル基、エポキシ基等を含む酸素含有官能基(酸素官能基または酸素基ということもある)で覆われた単層のグラファイト状カーボンからなる。酸化グラフェンは大量に製造することができ、水に分散することができ、水以外のものに対し高い不透過性を示す機械的強度の高い膜(図1Bに示した走査型電子顕微鏡像を参照)を形成することができる。表面の酸素官能基は、表面を更に化学的に機能化して新たな化合物を形成するのに用いることができる。これらの特性により、酸化グラフェンは膜技術において用いる理想的な膜となっている。   On the other hand, JP-A-2014-216059 (Patent Document 1) proposes to use graphene oxide as a solid electrolyte of a secondary battery. As schematically shown in FIG. 1A, graphene oxide is a single layer of graphite covered with oxygen-containing functional groups (sometimes referred to as oxygen functional groups or oxygen groups) containing carboxylic acid groups, hydroxyl groups, epoxy groups, and the like. Made of carbon. Graphene oxide can be produced in large quantities, can be dispersed in water, and has a high mechanical strength film that exhibits high impermeability to anything other than water (see scanning electron microscope image shown in FIG. 1B) ) Can be formed. Surface oxygen functional groups can be used to further chemically functionalize the surface to form new compounds. These characteristics make graphene oxide an ideal film for use in film technology.

しかしながら、特許文献1はプロトン伝導性を有する酸化グラフェンを開示するのみで、特許文献1にはアニオン伝導性を有するように酸化グラフェンを改質することについては何も記載がない。   However, Patent Document 1 only discloses graphene oxide having proton conductivity, and Patent Document 1 has no description about modifying graphene oxide so as to have anion conductivity.

米国特許第8,715,610号明細書(特許文献2)には、塩基の存在下で還元剤を付加することで酸化グラフェン分散液を還元することを含む安定なグラフェン分散液の製造方法が開示されている。しかしながら、特許文献2には、アニオン伝導性を有するように酸化グラフェンを改質するプロセスについては何も開示がない。   U.S. Pat. No. 8,715,610 (Patent Document 2) discloses a method for producing a stable graphene dispersion, which includes reducing a graphene oxide dispersion by adding a reducing agent in the presence of a base. It is disclosed. However, Patent Document 2 does not disclose anything about the process of modifying graphene oxide so as to have anion conductivity.

特開2014−216059号公報JP 2014-216059 A 米国特許第8,715,610号明細書US Pat. No. 8,715,610

このような従来技術の問題に照らし、本発明の主たる目的は、酸化カーボンベースのアニオン交換膜及びそのようなアニオン交換膜を簡単に形成するための方法を提供することである。   In light of these prior art problems, the main object of the present invention is to provide a carbon oxide based anion exchange membrane and a method for easily forming such an anion exchange membrane.

また本発明の第2の目的は、高いイオン伝導度、高い機械的強度及び/または高いガスバリア特性を有するアニオン交換膜及びそのようなアニオン交換膜を簡単に形成するための方法を提供することである。   The second object of the present invention is to provide an anion exchange membrane having high ion conductivity, high mechanical strength and / or high gas barrier properties, and a method for easily forming such an anion exchange membrane. is there.

上記課題を達成するため、本発明の一側面によると、酸素含有官能基を有する酸化カーボンを含み、前記酸素含有官能基の少なくとも一部の水素カチオンがアルカリまたはアルカリ土類金属カチオンにより置換されているアニオン交換膜が提供される。これにより、酸化カーボンベースのアニオン交換膜が提供される。   In order to achieve the above object, according to one aspect of the present invention, an oxygenated carbon having an oxygen-containing functional group is included, and at least a part of the hydrogen cation of the oxygen-containing functional group is substituted with an alkali or alkaline earth metal cation. An anion exchange membrane is provided. This provides an oxidized carbon-based anion exchange membrane.

好ましくは、前記酸素含有官能基の少なくとも一部の前記水素カチオンがアルカリ金属カチオンにより置換されており、アルカリ金属カチオンは好適にはLi及びKの少なくとも一つを含む。これらのカチオンは、酸化カーボンの酸素含有官能基の水素カチオンを置換し易く、高いイオン伝導度を有する酸化カーボンベースのアニオン交換膜の実現に貢献する。 Preferably, at least a part of the hydrogen cation of the oxygen-containing functional group is substituted with an alkali metal cation, and the alkali metal cation preferably contains at least one of Li + and K + . These cations are easy to replace the hydrogen cation of the oxygen-containing functional group of oxidized carbon, and contribute to the realization of an oxidized carbon-based anion exchange membrane having high ionic conductivity.

本発明の別の側面によると、酸素含有官能基を有する酸化カーボンを塩基性溶液で処理することを含む、アニオン交換膜の製造方法が提供される。この方法によれば、酸化カーボンベースのアニオン交換膜を簡単に形成することができる。   According to another aspect of the present invention, there is provided a method for producing an anion exchange membrane comprising treating an oxidized carbon having an oxygen-containing functional group with a basic solution. According to this method, an oxidized carbon-based anion exchange membrane can be easily formed.

好ましくは、前記塩基性溶液の塩基はアルカリ及びアルカリ土類金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つであり、より好ましくは、アルカリ金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つである。アルカリ金属は好適にはLiとKの少なくとも一つを含む。このような塩基性溶液に含まれるカチオンは、酸化カーボンの酸素含有官能基の水素カチオンを置換し易く、高いイオン伝導度を有する酸化カーボンベースのアニオン交換膜の実現に貢献する。   Preferably, the base of the basic solution is at least one selected from the group consisting of alkali and alkaline earth metal hydroxides, oxides, hydrides, and carbonates, and more preferably alkali metal water. It is at least one selected from the group consisting of oxides, oxides, hydrides and carbonates. The alkali metal preferably contains at least one of Li and K. The cation contained in such a basic solution easily replaces the hydrogen cation of the oxygen-containing functional group of the oxidized carbon, and contributes to the realization of an oxidized carbon-based anion exchange membrane having high ionic conductivity.

本発明の更に別の側面によると、酸素含有官能基を有する酸化カーボンを含み、前記酸化カーボンが塩基性溶液で処理されたものであるアニオン交換膜が提供される。塩基性溶液で処理された酸化カーボンはアニオン伝導性を有し、従って、酸化カーボンベースのアニオン交換膜を提供する。   According to still another aspect of the present invention, there is provided an anion exchange membrane comprising oxidized carbon having an oxygen-containing functional group, wherein the oxidized carbon is treated with a basic solution. Oxidized carbon treated with a basic solution has anion conductivity and thus provides an oxidized carbon-based anion exchange membrane.

好ましくは、前記塩基性溶液の塩基はアルカリ及びアルカリ土類金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つであり、より好ましくは、アルカリ金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つである。アルカリ金属は好適にはLiとKの少なくとも一つを含む。このような塩基性溶液に含まれるカチオンは、酸化カーボンの酸素含有官能基の水素カチオンを置換し易く、高いイオン伝導度を有する酸化カーボンベースのアニオン交換膜の実現に貢献する。   Preferably, the base of the basic solution is at least one selected from the group consisting of alkali and alkaline earth metal hydroxides, oxides, hydrides, and carbonates, and more preferably alkali metal water. It is at least one selected from the group consisting of oxides, oxides, hydrides and carbonates. The alkali metal preferably contains at least one of Li and K. The cation contained in such a basic solution easily replaces the hydrogen cation of the oxygen-containing functional group of the oxidized carbon, and contributes to the realization of an oxidized carbon-based anion exchange membrane having high ionic conductivity.

本発明の好適実施形態では、上記したアニオン交換膜またはその製造方法における酸化カーボンは、酸化グラフェン、酸化グラファイト、酸化カーボンナノチューブ及び酸化フラーレンの少なくとも一つを含み、特に好適には、単層または複数層の酸化グラフェンを含む。このような酸化カーボンは高い機械的強度及び高いガスバリア特性を有するので、それらから形成されたアニオン交換膜も高い機械的強度及び高いガスバリア特性を有するものとなる。更に、アルカリ金属またはアルカリ土類金属により水素カチオンを置換することで、酸化カーボンのガスバリア特性が向上する。   In a preferred embodiment of the present invention, the oxidized carbon in the anion exchange membrane or the manufacturing method thereof includes at least one of graphene oxide, graphite oxide, oxidized carbon nanotube, and oxidized fullerene, and particularly preferably a single layer or a plurality of layers. The layer contains graphene oxide. Since such oxidized carbon has high mechanical strength and high gas barrier properties, the anion exchange membrane formed from them also has high mechanical strength and high gas barrier properties. Furthermore, by replacing the hydrogen cation with an alkali metal or alkaline earth metal, the gas barrier properties of oxidized carbon are improved.

前記酸素含有官能基は、通常、カルボン酸基、ヒドロキシル基及びエポキシ基の少なくとも一つを含む。   The oxygen-containing functional group usually includes at least one of a carboxylic acid group, a hydroxyl group, and an epoxy group.

図1Aは、カルボン酸官能基を含む様々な官能基を有する酸化グラフェンの化学的構造を模式的に示す図である。FIG. 1A is a diagram schematically illustrating a chemical structure of graphene oxide having various functional groups including a carboxylic acid functional group. 図1Bは、酸化グラフェン膜の断面の走査型電子顕微鏡像である。FIG. 1B is a scanning electron microscope image of a cross section of the graphene oxide film. 図2は、本発明の実施形態に基づく酸化グラフェンの改質プロセスにおいて生じるカチオン交換を模式的に示す図である。FIG. 2 is a diagram schematically illustrating cation exchange that occurs in the graphene oxide reforming process according to an embodiment of the present invention. 図3Aは、例1におけるカリウムカチオン交換後の酸化グラフェンの広スパンX線光電子スペクトルを示すグラフである。3A is a graph showing a wide span X-ray photoelectron spectrum of graphene oxide after potassium cation exchange in Example 1. FIG. 図3Bは、電子結合エネルギーが280から292eVの範囲のX線光電子スペクトルを示すグラフであり、C1s 信号を示している。FIG. 3B is a graph showing an X-ray photoelectron spectrum with an electronic binding energy in the range of 280 to 292 eV, showing the C1s signal. 図3Cは、電子結合エネルギーが526から538eVの範囲のX線光電子スペクトルを示すグラフであり、O1s信号を示している。FIG. 3C is a graph showing an X-ray photoelectron spectrum with an electronic binding energy in the range of 526 to 538 eV, and shows an O1s signal. 図3Dは、電子結合エネルギーが290から298eVの範囲のX線光電子スペクトルを示すグラフであり、K2p信号を示している。FIG. 3D is a graph showing an X-ray photoelectron spectrum with an electronic binding energy in the range of 290 to 298 eV, and shows a K2p signal. 図4Aは、例1で得られた酸化グラフェン膜のアニオン伝導度の湿度に対する依存性を様々な温度に対し示すグラフである。FIG. 4A is a graph showing the dependence of the anion conductivity of the graphene oxide film obtained in Example 1 on humidity with respect to various temperatures. 図4Bは、例1で得られた酸化グラフェン膜の活性化エネルギーを様々な相対湿度に対し示すアレニウスプロットである。FIG. 4B is an Arrhenius plot showing the activation energy of the graphene oxide film obtained in Example 1 with respect to various relative humidity. 図4Cは、例1で得られた酸化グラフェン膜の活性化エネルギーの湿度に対する依存性を示すグラフである。FIG. 4C is a graph showing the dependency of the activation energy of the graphene oxide film obtained in Example 1 on humidity. 図5Aは、4つの異なるタイプの膜(15及び40μm厚の従来の酸化グラフェン、及び、カチオン交換により改質された15及び40μm厚の酸化グラフェン)を透過した水素のガスクロマトグラフィ−熱伝導度検出器(GC−TCD)信号を示すグラフである。FIG. 5A shows gas chromatography-thermal conductivity detection of hydrogen permeated through four different types of membranes (15 and 40 μm thick conventional graphene oxide and 15 and 40 μm thick graphene oxide modified by cation exchange). It is a graph which shows a device (GC-TCD) signal. 図5Bは、4つの異なるタイプの膜を通過する水素の透過率(permeability)及び透過度(permeance)を示すバーチャートである。FIG. 5B is a bar chart showing the permeability and permeance of hydrogen through four different types of membranes. 図6は、例1で得られた酸化グラフェン膜のカリウム含有量と攪拌時間との間の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the potassium content of the graphene oxide film obtained in Example 1 and the stirring time. 図7Aは、例2で得られた酸化グラフェン膜のアニオン伝導度の湿度に対する依存性を様々な温度に対して示すグラフである。FIG. 7A is a graph showing the dependence of the anion conductivity of the graphene oxide film obtained in Example 2 on humidity with respect to various temperatures. 図7Bは、例2で得られた酸化グラフェン膜の活性化エネルギーを様々な相対湿度に対し示すアレニウスプロットである。FIG. 7B is an Arrhenius plot showing the activation energy of the graphene oxide film obtained in Example 2 with respect to various relative humidity. 図7Cは、例2で得られた酸化グラフェン膜の活性化エネルギーの湿度に対する依存性を示すグラフである。FIG. 7C is a graph showing the dependency of the activation energy of the graphene oxide film obtained in Example 2 on humidity. 図8は、例3で得られたLiOHにより改質された酸化グラフェン膜のイオン伝導度を様々な温度及び湿度に対し示すグラフである。FIG. 8 is a graph showing the ionic conductivity of the graphene oxide film modified with LiOH obtained in Example 3 with respect to various temperatures and humidity. 図9Aは、処理された酸化グラフェンベースの膜を電解質として用いたアニオン伝導性膜装置(アルカリ燃料電池)を示す模式図である。FIG. 9A is a schematic diagram showing an anion conductive membrane device (alkaline fuel cell) using a treated graphene oxide-based membrane as an electrolyte. 図9Bは、酸化グラフェンアニオン交換膜を用いて形成されたアルカリ燃料電池の分極曲線及び電力密度データを示すグラフである。FIG. 9B is a graph showing polarization curves and power density data of an alkaline fuel cell formed using a graphene oxide anion exchange membrane. 図10Aは、本発明のアニオン交換膜を適用可能なアルカリ膜電解槽を示す模式図である。FIG. 10A is a schematic diagram showing an alkaline membrane electrolytic cell to which the anion exchange membrane of the present invention can be applied. 図10Bは、本発明のアニオン交換膜を適用可能なアルカリ膜レドックスフロー電池を示す模式図である。FIG. 10B is a schematic diagram showing an alkaline membrane redox flow battery to which the anion exchange membrane of the present invention can be applied. 図10Cは、本発明のアニオン交換膜を適用可能なアルカリ膜排水処理装置を示す模式図である。FIG. 10C is a schematic diagram showing an alkaline membrane wastewater treatment apparatus to which the anion exchange membrane of the present invention can be applied. 図10Dは、本発明のアニオン交換膜を適用可能なアルカリ膜海水淡水化装置を示す模式図である。FIG. 10D is a schematic diagram showing an alkaline membrane seawater desalination apparatus to which the anion exchange membrane of the present invention can be applied.

以下、本発明の実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の好適実施形態では、アルカリ及び/またはアルカリ土類カチオン(例えば、限定するものではないが、Li、K、Na、Ca2+)を含む塩基性溶液中で酸化グラフェンを処理することにより、アニオン交換膜を合成する。図1Aを参照して上記したように、酸化グラフェンは、カルボン酸官能基あるいはヒドロキシル官能基といった酸素含有官能基が表面に結合している。酸化グラフェンを塩基性溶液で処理すると、酸化グラフェンの酸素含有官能基の一部において塩基性溶液中でカチオン交換が生じる。即ち、酸化グラフェンの酸素含有官能基に含まれる水素カチオンが、塩基性溶液中のアルカリまたはアルカリ土類金属カチオンによって置換され、酸素−アルカリ金属(またはアルカリ土類金属)結合が形成される。 In a preferred embodiment of the present invention, graphene oxide is treated in a basic solution containing alkali and / or alkaline earth cations (eg, but not limited to Li + , K + , Na + , Ca 2+ ). Thus, an anion exchange membrane is synthesized. As described above with reference to FIG. 1A, graphene oxide has oxygen-containing functional groups such as carboxylic acid functional groups or hydroxyl functional groups bonded to the surface. When graphene oxide is treated with a basic solution, cation exchange occurs in the basic solution in some of the oxygen-containing functional groups of graphene oxide. That is, the hydrogen cation contained in the oxygen-containing functional group of graphene oxide is replaced by an alkali or alkaline earth metal cation in the basic solution, and an oxygen-alkali metal (or alkaline earth metal) bond is formed.

よく知られているように、例えば、カルボン酸を水溶液中のアルカリと反応させると、例えば以下のような自発的な中和反応が起きる:
HCO2H(aq) + NaOH(aq)−> HCO2Na(aq) + H2O(l)
CH3CO2H(aq) + KOH(aq)−> CH3CO2K(aq) + H2O(l)
As is well known, for example, when a carboxylic acid is reacted with an alkali in an aqueous solution, for example, the following spontaneous neutralization reaction occurs:
HCO 2 H (aq) + NaOH (aq)-> HCO 2 Na (aq) + H 2 O (l)
CH 3 CO 2 H (aq) + KOH (aq)-> CH 3 CO 2 K (aq) + H 2 O (l)

即ち、カチオン交換反応が起き、カルボン酸官能基中の水素カチオンがアルカリカチオン(例えば、Li、K、Na)に置換され、カルボン酸塩を形成する。同じまたは類似のカチオン交換反応が、強塩基の存在下で酸化グラフェンの酸素含有官能基に対して生じる。 That is, a cation exchange reaction occurs, and a hydrogen cation in the carboxylic acid functional group is replaced with an alkali cation (for example, Li + , K + , Na + ) to form a carboxylate. The same or similar cation exchange reaction occurs for the oxygen-containing functional groups of graphene oxide in the presence of a strong base.

カルボン酸基(及びヒドロキシル官能基)が表面に固定された酸化グラフェンを、例えばpH=12のアルカリカチオンを含む塩基性溶液で処理する例では、同様の中和反応が生じる。即ち、塩基性溶液中のアルカリカチオンがカルボン酸基と反応し、それにより、カルボン酸基内の水素カチオンがアルカリカチオンに置き換えられ、新たな化合物を形成する。図2は、酸化グラフェン(酸化カーボン)のカルボン酸基におけるカチオン交換を例示的に示す模式図であり、ここでは、塩基はLiOHであり、アルカリカチオンはLiである。 In an example in which graphene oxide having carboxylic acid groups (and hydroxyl functional groups) immobilized on the surface thereof is treated with a basic solution containing an alkali cation having a pH of 12, for example, a similar neutralization reaction occurs. That is, the alkali cation in the basic solution reacts with the carboxylic acid group, whereby the hydrogen cation in the carboxylic acid group is replaced with the alkali cation to form a new compound. FIG. 2 is a schematic diagram exemplarily showing cation exchange in a carboxylic acid group of graphene oxide (carbon oxide), in which the base is LiOH and the alkali cation is Li + .

塩基性溶液で処理された酸化グラフェンから膜が形成され乾燥されると、アルカリカチオン(またはアルカリ土類カチオン)は比較的動かなくなり、塩基性になった環境においてOHイオンの移動度が向上する。このように、酸化グラフェンを塩基性溶液中で処理して酸化グラフェンにおいてカチオン交換を生じさせることにより、酸化グラフェンがアニオン伝導性を有するようになり、また、それから形成された膜はアニオン交換膜となる。 When a film is formed from graphene oxide treated with a basic solution and dried, alkali cations (or alkaline earth cations) become relatively immobile and improve the mobility of OH ions in a basic environment. . In this way, by treating the graphene oxide in a basic solution to cause cation exchange in the graphene oxide, the graphene oxide has anion conductivity, and the membrane formed therefrom is an anion exchange membrane. Become.

このようにして形成された酸化グラフェンベースのアニオン交換膜は、現在商業的に入手可能なアニオン交換膜に比べて、より高い機械的強度及びより高いガスバリア特性を呈し、また、匹敵する(潜在的にはより高い)伝導性を有し、更にコストが安く、高い加工性を有する。   The graphene oxide-based anion exchange membranes formed in this way exhibit higher mechanical strength and higher gas barrier properties and are comparable (potentially) compared to currently commercially available anion exchange membranes. Higher conductivity), lower cost and higher workability.

上記したプロセスでは、様々な酸素濃度の酸化グラフェンを用いることができる(例えば、限定するものではないが、1乃至50原子百分率(at%))。また、酸化グラフェンは溶剤(例えば、限定するものではないが、水、エタノールなど)に分散可能であり、様々な酸化グラフェン濃度の酸化グラフェン分散液を用いることができる。酸化グラフェン濃度は好適には約0.1mg/mlより大きく、より好適には、約1乃至約10mg/mlである。尚、酸化グラフェン濃度が低すぎると、酸化グラフェンベースのアニオン交換膜を得るべく大量の溶剤を蒸発またはろ過するのに、工業処理として時間がかかり過ぎたり過大なエネルギー消費を必要としたりすることとなり、一方、濃度が高すぎると、酸化グラフェン分散液の粘度が高くなり過ぎ、酸化グラフェン分散液の攪拌、スプレー、印刷、塗布、ろ過等が困難となったり、酸化グラフェン分散液から得られるアニオン交換膜の膜圧が不均一になり易くなる。   In the above-described process, graphene oxide having various oxygen concentrations can be used (for example, but not limited to, 1 to 50 atomic percent (at%)). In addition, graphene oxide can be dispersed in a solvent (for example, but not limited to, water, ethanol, and the like), and graphene oxide dispersions with various graphene oxide concentrations can be used. The graphene oxide concentration is preferably greater than about 0.1 mg / ml, more preferably from about 1 to about 10 mg / ml. If the graphene oxide concentration is too low, it will take too much time for industrial processing to evaporate or filter a large amount of solvent to obtain a graphene oxide-based anion exchange membrane, or excessive energy consumption will be required. On the other hand, if the concentration is too high, the viscosity of the graphene oxide dispersion becomes too high, and it becomes difficult to stir, spray, print, apply, and filter the graphene oxide dispersion, or anion exchange obtained from the graphene oxide dispersion The film pressure of the film tends to be non-uniform.

本発明の実施形態において、カチオン交換のための塩基性溶液中に用いることができるアルカリ及びアルカリ土類金属塩(または塩基)は、例えば、限定するものではないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムのようなアルカリまたはアルカリ土類金属の水酸化物、酸化物、水素化物または炭酸塩である。これらの混合を用いてもよい。   In embodiments of the present invention, alkali and alkaline earth metal salts (or bases) that can be used in a basic solution for cation exchange are, for example, without limitation, lithium, sodium, potassium, rubidium. , Hydroxides, oxides, hydrides or carbonates of alkali or alkaline earth metals such as cesium, beryllium, magnesium, calcium, strontium, barium and radium. A mixture of these may be used.

本発明の実施形態では、酸化グラフェン分散液(例えば、酸化グラフェン濃度5mg/ml、酸素含有量20at%)が用いられる。アニオン交換膜は、水分散液中の酸化グラフェンと水酸化カリウム水溶液のような塩基性溶液との間の化学反応により形成される。   In the embodiment of the present invention, a graphene oxide dispersion (for example, a graphene oxide concentration of 5 mg / ml and an oxygen content of 20 at%) is used. The anion exchange membrane is formed by a chemical reaction between graphene oxide in an aqueous dispersion and a basic solution such as an aqueous potassium hydroxide solution.

アルカリまたはアルカリ土類金属塩(例えば水酸化物)を様々な濃度で含む塩基性溶液を、様々な時間に渡って、様々な温度で酸化グラフェン分散液と混合してよい。混合プロセスの間、アルカリ(またはアルカリ土類)カチオン交換が生じ、酸化グラフェンの表面の官能基がアルカリまたはアルカリ土類カチオンを含むように改質する。尚、このときヒドラジンなどの還元剤を用いると、酸化グラフェンに含まれる酸素含有官能基の大部分が除去されてしまうため(特許文献2参照)、還元剤は使用しないことが望ましい。   Basic solutions containing various concentrations of alkali or alkaline earth metal salts (eg, hydroxide) may be mixed with the graphene oxide dispersion at various temperatures for various times. During the mixing process, alkali (or alkaline earth) cation exchange occurs and the surface functional groups of graphene oxide are modified to include alkali or alkaline earth cations. At this time, if a reducing agent such as hydrazine is used, most of the oxygen-containing functional group contained in graphene oxide is removed (see Patent Document 2), so it is desirable not to use a reducing agent.

酸化グラフェンアニオン交換膜は、アルカリ処理された酸化グラフェン分散液を例えばポリカーボネートフィルタでろ過することにより生成することができる。分散液を様々な基板(例えば、限定するものではないが、カーボン紙、シリコンウェハ、ガラス、またはプラスチック)にスプレーする、印刷する、或いは塗ることにより、様々な厚さの電解質層(またはアニオン交換膜)を形成することも可能である。本発明の好適実施形態では、ポリカーボネートフィルタ上で真空ろ過することにより膜が形成される。ろ過の後、膜は例えば室温で、例えば48時間乾燥され、フィルタから剥がされる。   The graphene oxide anion exchange membrane can be produced by filtering the alkali-treated graphene oxide dispersion with, for example, a polycarbonate filter. Various thicknesses of electrolyte layers (or anion exchanges) can be sprayed, printed, or applied to various substrates (for example, but not limited to, carbon paper, silicon wafers, glass, or plastics). It is also possible to form a film. In a preferred embodiment of the present invention, the membrane is formed by vacuum filtration over a polycarbonate filter. After filtration, the membrane is dried, for example for 48 hours at room temperature, and peeled off the filter.

改質された酸化グラフェンから形成されるアニオン交換(または電解質)膜の厚さは、分散液の濃度及び体積に基づき容易に変更可能である。例えば、限定するものではないが、5μm乃至80μmの厚さの範囲の電解質膜が通常使用される。本発明の一実施形態において燃料電池に用いられる電解質膜の厚さは、例えば、15μmである。   The thickness of the anion exchange (or electrolyte) membrane formed from the modified graphene oxide can be easily changed based on the concentration and volume of the dispersion. For example, although not limited, an electrolyte membrane having a thickness in the range of 5 μm to 80 μm is usually used. In one embodiment of the present invention, the thickness of the electrolyte membrane used for the fuel cell is, for example, 15 μm.

<例>
以下の例は本発明の例示を意図としたもので、限定的に解釈されるべきではない。
<Example>
The following examples are intended to illustrate the present invention and should not be construed as limiting.

各例で得られたサンプル膜のイオン伝導度(mS/cm)を、以下のようにして得た。   The ionic conductivity (mS / cm) of the sample membrane obtained in each example was obtained as follows.

厚み方向(through-plane)イオン伝導度を、インピーダンスアナライザ(Solatron SI1260)と共に膜試験装置(Scribner Associates Inc. MTS 740)を用いて特定した。10×30mmの大きさの厚さ約40μmの膜について、2電極/4端子(後者はリード線抵抗を低減するため)の設定で、100mVのAC振幅とし、30MHz乃至10Hzの周波数範囲で測定を行った。ガス拡散電極(E-TEK、高温用ELAT、140E-W、18×5mm)を導電性カーボン塗料(SPI Supplies、コロイド状グラファイト、Part #05006-AB)を用いて白金電極に取着し、電極間に酸化グラフェンベース膜のサンプルを配置した。良好な電極の接触を得るため1.074MPaの圧力でセルの圧縮を行った。そして、100から0%の相対湿度(RH)で等温変化させつつ、30°Cから80°Cの温度でインピーダンスを測定した。インピーダンス測定の前にサンプルを100%のRHで4時間前処理し、また、異なるRHに対する測定間でも前処理を1時間行った。得られた膜抵抗R(Ω)、厚さL(cm)及び重なり合う電極間の有効測定面積A(0.55cm)から、伝導度(通常ギリシャ文字σで表す)を以下の式を用いて算出した。
σ=L/(R・A)
Through-plane ionic conductivity was determined using a membrane test apparatus (Scribner Associates Inc. MTS 740) with an impedance analyzer (Solatron SI1260). Measured in a frequency range of 30 MHz to 10 Hz with an AC amplitude of 100 mV with a setting of 2 electrodes / 4 terminals (the latter is for reducing lead wire resistance) for a 10 × 30 mm 2 thick film of about 40 μm thickness Went. Gas diffusion electrode (E-TEK, ELAT for high temperature, 140E-W, 18 × 5mm 2 ) was attached to platinum electrode using conductive carbon paint (SPI Supplies, colloidal graphite, Part # 05006-AB), A graphene oxide-based film sample was placed between the electrodes. The cell was compressed at a pressure of 1.074 MPa in order to obtain good electrode contact. The impedance was measured at a temperature of 30 ° C. to 80 ° C. while isothermally changing at a relative humidity (RH) of 100 to 0%. Prior to impedance measurements, the samples were pretreated with 100% RH for 4 hours, and also pretreated for 1 hour between measurements for different RH. From the obtained film resistance R (Ω), thickness L (cm), and effective measurement area A (0.55 cm 2 ) between overlapping electrodes, the conductivity (usually represented by the Greek letter σ) is expressed using the following equation: Calculated.
σ = L / (R · A)

<例1:KOHで改質した酸化グラフェン膜>
210.8mgの水酸化カリウム(KOH)を43.01mlの酸化グラフェン水分散液(酸化グラフェン濃度5mg/ml、酸素含有量20at%)に溶解し、磁気攪拌機を用いて室温で24時間500rpmの条件で攪拌した。その結果得られた分散液(即ち、塩基性溶液)のpHは12.5であった。これをポリカーボネートフィルタ上に真空ろ過し、乾燥させ、剥がすことで膜を得た。伝導度測定に用いた膜は厚さ約40μmであった。水素透過性テスト用の膜はそれぞれ約15及び40μmの厚さであり、それぞれ約15及び40μmの厚さの2つの改質されていない酸化グラフェン膜と対比して測定を行った。
<Example 1: Graphene oxide film modified with KOH>
210.8 mg of potassium hydroxide (KOH) was dissolved in 43.01 ml of a graphene oxide aqueous dispersion (graphene oxide concentration 5 mg / ml, oxygen content 20 at%), and conditions were set at 500 rpm for 24 hours at room temperature using a magnetic stirrer. And stirred. The resulting dispersion (ie basic solution) had a pH of 12.5. This was vacuum filtered on a polycarbonate filter, dried, and peeled to obtain a membrane. The film used for the conductivity measurement had a thickness of about 40 μm. The membranes for the hydrogen permeability test were about 15 and 40 μm thick, respectively, and were measured against two unmodified graphene oxide membranes of about 15 and 40 μm thick, respectively.

X線光電子分光(XPS)(図3A−3D)によると、カーボン含有量81.6at%、酸素含有量16.5at%、及びカリウム含有量5.7at%であり、イオン伝導度(アニオン伝導度)は湿度及び温度の増加に対し強い増加傾向を示した(図4A)。最も高い伝導度は70°Cにおける6.1mS/cmであった。活性化エネルギーは湿度の低下と共に低下し、100%のRHにおける0.44eVから0%のRHにおける0.01eVの範囲にあった(図4B及び4C)。100%のRHにおける活性化エネルギーは商業的に入手可能なトクヤマA201アニオン交換膜(株式会社トクヤマ、日本)の活性化エネルギーに近い値であった。   According to X-ray photoelectron spectroscopy (XPS) (FIGS. 3A-3D), the carbon content is 81.6 at%, the oxygen content is 16.5 at%, and the potassium content is 5.7 at%, and the ionic conductivity (anion conductivity) ) Showed a strong increasing tendency with increasing humidity and temperature (FIG. 4A). The highest conductivity was 6.1 mS / cm at 70 ° C. The activation energy decreased with decreasing humidity, ranging from 0.44 eV at 100% RH to 0.01 eV at 0% RH (FIGS. 4B and 4C). The activation energy at 100% RH was close to the activation energy of the commercially available Tokuyama A201 anion exchange membrane (Tokuyama Corporation, Japan).

上記のようにして得られた改質された酸化グラフェン膜のガスバリア特性を確認するため、水素透過性テストを行った。水素透過性テスト用に準備した2枚の改質された酸化グラフェン膜はそれぞれ15及び40μmの厚さであった。比較のため、それらをそれぞれ15及び40μmの厚さを有する2枚の改質されていない酸化グラフェン膜と比較した。   In order to confirm the gas barrier characteristics of the modified graphene oxide film obtained as described above, a hydrogen permeability test was performed. The two modified graphene oxide films prepared for the hydrogen permeability test were 15 and 40 μm thick, respectively. For comparison, they were compared with two unmodified graphene oxide films having thicknesses of 15 and 40 μm, respectively.

これらの膜(直径1cm、面積0.785cm)を通過する乾燥水素透過速度(ガス透過単位(GPU))を、乾燥ガスバリア分析装置(GTR-11A/31A、GTRテック株式会社、日本)を用いて30°Cの一定温度で測定した。この装置は、熱伝導度検出器を備えたガスクロマトグラフに接続された自動ガスサンプリングユニットを有する。膜のフィード側とスイープ側の間の総圧力差は200kPaであった。膜のスイープ側を真空に引いた後のサンプル収集時間は30分であった。KOH処理により機能化された酸化グラフェン膜の水素透過率(または透過速度)は、純粋な(即ち、改質されていない)酸化グラフェン膜に比べて約5分の1であり、このことはKOH処理によりガスバリア特性が向上したことを示している(図5A及び5B)。尚、図5Bにおいて、透過度(permeance)は圧力に依存せず厚さに依存し、透過率(permeability)は理想的には厚さに依存しない。 Using a dry gas barrier analyzer (GTR-11A / 31A, GTR Tech, Japan), dry hydrogen permeation rate (gas permeation unit (GPU)) passing through these membranes (diameter 1 cm, area 0.785 cm 2 ). And measured at a constant temperature of 30 ° C. This device has an automatic gas sampling unit connected to a gas chromatograph equipped with a thermal conductivity detector. The total pressure difference between the feed side and the sweep side of the membrane was 200 kPa. The sample collection time after evacuating the sweep side of the membrane was 30 minutes. The hydrogen permeability (or permeation rate) of a graphene oxide film functionalized by KOH treatment is about one-fifth that of a pure (ie, unmodified) graphene oxide film. It shows that the gas barrier properties were improved by the treatment (FIGS. 5A and 5B). In FIG. 5B, the permeability does not depend on the pressure but depends on the thickness, and the transmittance does not ideally depend on the thickness.

更に、10分、30分及び24時間のアルカリカチオン交換反応時間後における、改質された酸化グラフェンから形成された膜のカリウム含有量をXPSを用いて測定した(図6)。反応時間の増加に対するカリウム含有量の傾向は見られず、このことは、文献で報告されているように、カチオン交換反応は室温において自発的に非常に速く起きることを示している。従って、酸化グラフェン分散液の量、それに溶解するアルカリまたはアルカリ土類金属塩の量(または塩基性溶液のpH)、攪拌速度等の様々な条件にもよるが、酸化グラフェンの塩基性溶液による処理を量産スケールで行う場合においてもカチオン交換反応の工程は数秒で完了し得ると考えてよい。尚、ここで測定されたカリウム含有量の値(約5.0乃至7.5at%、図6)は先の膜で観察されたカリウム含有量(5.7at%)に近い値であった。   Further, the potassium content of the film formed from the modified graphene oxide after 10 minutes, 30 minutes and 24 hours of alkaline cation exchange reaction time was measured using XPS (FIG. 6). There is no trend of potassium content with increasing reaction time, indicating that the cation exchange reaction occurs spontaneously very rapidly at room temperature, as reported in the literature. Therefore, depending on various conditions such as the amount of graphene oxide dispersion, the amount of alkali or alkaline earth metal salt dissolved in it (or the pH of the basic solution), the stirring speed, etc., the treatment with the basic solution of graphene oxide It can be considered that the cation exchange reaction process can be completed in a few seconds even when the process is carried out on a mass production scale. In addition, the value (about 5.0 thru | or 7.5 at%, FIG. 6) of the potassium content measured here was a value close | similar to the potassium content (5.7 at%) observed by the previous film | membrane.

<例2:KOH−改質された酸化グラフェン膜>
98.6mgの水酸化カリウム(KOH)を40.24mlの酸化グラフェン分散液(酸化グラフェン濃度5mg/ml、酸素含有量20at%)に溶解した。これは、例1に比べて約半分のKOH濃度に対応する。これを室温で24時間500rpmで攪拌した。その結果得られた分散液のpHは11.3であった。この改質された酸化グラフェン分散液から、6枚の膜を真空ろ過により形成した(5mlの分散液4つと10mlの分散液2つ)。イオン伝導度測定に用いた膜の厚さは40μmであった。XPSによって測定されたカリウム含有量は1.9at%であった。
Example 2: KOH-modified graphene oxide film
98.6 mg of potassium hydroxide (KOH) was dissolved in 40.24 ml of graphene oxide dispersion (graphene oxide concentration 5 mg / ml, oxygen content 20 at%). This corresponds to about half the KOH concentration compared to Example 1. This was stirred at 500 rpm for 24 hours at room temperature. The resulting dispersion had a pH of 11.3. Six membranes were formed from this modified graphene oxide dispersion by vacuum filtration (four 5 ml dispersions and two 10 ml dispersions). The thickness of the film used for ion conductivity measurement was 40 μm. The potassium content measured by XPS was 1.9 at%.

イオン伝導度は湿度及び温度と共に増加した(図7A)。最も高い伝導度は70°Cにおける5.3mS/cmであった。この値は、現在市場に出ている商業的に入手可能なアニオン交換膜(例えば、トクヤマA201膜の厚み方向伝導度8〜12mS/cm)に匹敵する値である。活性化エネルギーは湿度の低下と共に低下し、100%のRHにおける0.38eVから0%のRHにおける0.04eVの範囲にあった(図7B及び7C)。   Ionic conductivity increased with humidity and temperature (FIG. 7A). The highest conductivity was 5.3 mS / cm at 70 ° C. This value is comparable to a commercially available anion exchange membrane currently on the market (for example, a thickness direction conductivity of 8-12 mS / cm for Tokuyama A201 membrane). The activation energy decreased with decreasing humidity, ranging from 0.38 eV at 100% RH to 0.04 eV at 0% RH (FIGS. 7B and 7C).

例1のイオン伝導度は例2に比べてより高く、このことはイオン伝導度はカチオン交換反応に用いられるKOHの濃度に依存することを示している。改質された酸化グラフェン膜において十分なイオン(アニオン)伝導性を達成するには、KOHが溶かされた酸化グラフェン分散液におけるKOHの濃度は約1mMより大きいことが好ましく、より好ましくは約10mM〜約1Mである。別の言い方をすると、KOHが溶かされた酸化グラフェン分散液のpHは約11であることが好ましく、約12〜約14が一層好ましい。尚、酸化グラフェンとKOHの反応は、酸化グラフェン上の酸素含有官能基が全て反応しそれ以上反応が起こらなくなるようなKOH濃度において飽和する。従って、KOHの濃度がそのような濃度を大幅に越えないことが好ましいと考えられる。   The ionic conductivity of Example 1 is higher than that of Example 2, indicating that the ionic conductivity depends on the concentration of KOH used in the cation exchange reaction. In order to achieve sufficient ion (anion) conductivity in the modified graphene oxide film, the concentration of KOH in the graphene oxide dispersion in which KOH is dissolved is preferably greater than about 1 mM, more preferably from about 10 mM to About 1M. In other words, the pH of the graphene oxide dispersion in which KOH is dissolved is preferably about 11, more preferably about 12 to about 14. The reaction between graphene oxide and KOH is saturated at a KOH concentration at which all oxygen-containing functional groups on the graphene oxide react and no further reaction occurs. Therefore, it is considered preferable that the concentration of KOH does not greatly exceed such a concentration.

<例3:LiOH−改質された酸化グラフェン膜>
例3では、反応にあずかる特定のカチオンによらず、アルカリカチオン交換法を広く適用できることを示すため、水酸化カリウム(KOH)を水酸化リチウム(LiOH)に置き換えた。LiOHを24時間、分散液中の酸化グラフェンと反応させた。改質された酸化グラフェンのサンプルには、XPSで測定したところによると、0.55at%のLiが存在した。この値はKOHの場合と比べて若干低いが、LiOHはKOHよりも弱い塩基であることにより説明され得る。Liで改質された酸化グラフェンのイオン伝導度は、全ての温度でKOHで処理した酸化グラフェンで観測された伝導度より小さかった(30°Cでは約3分の1)(図8)。このことは、2つの異なるアルカリ塩の間のアルカリ度の違い、または、アルカリカチオンの電気陰性度の違いにより、OHイオンの活性化エネルギーが変ることに起因し得る。このように、本発明の実施形態に基づくアニオン交換膜は、KOHに限らず様々なアルカリ金属(またはアルカリ土類金属)塩を用いて形成することができる。
<Example 3: LiOH-modified graphene oxide film>
In Example 3, potassium hydroxide (KOH) was replaced with lithium hydroxide (LiOH) to show that the alkali cation exchange method can be widely applied regardless of the specific cation involved in the reaction. LiOH was reacted with graphene oxide in the dispersion for 24 hours. In the modified graphene oxide sample, 0.55 at% Li was present as measured by XPS. This value is slightly lower than that of KOH, but can be explained by the fact that LiOH is a weaker base than KOH. The ionic conductivity of graphene oxide modified with Li was lower than that observed with graphene oxide treated with KOH at all temperatures (about one third at 30 ° C.) (FIG. 8). This can be attributed to a change in activation energy of OH ions due to differences in alkalinity between two different alkali salts, or differences in electronegativity of alkali cations. Thus, the anion exchange membrane based on embodiment of this invention can be formed using not only KOH but various alkali metal (or alkaline-earth metal) salts.

<例4:燃料電池>
例1で説明したプロセスで得られた15μmの厚さを有する塩基処理した酸化グラフェンベースのアニオン交換膜を用いて、膜電極アセンブリ(MEA)を形成した。また、Pt/C電気触媒(田中貴金属工業株式会社、46.2wt%Pt)を5wt%のアニオン伝導性高分子電解質溶液(株式会社トクヤマ)、エタノール(Chameleon)、及び脱イオン水と混合することで触媒インクを調製した。また、触媒インクを10時間攪拌した後、使用前に30分超音波処理した(SMT社製超音波分散機UH-600)。この触媒インクをアニオン伝導性を有する改質された酸化グラフェン膜に、マスクを用いてスプレー装置(ノードソン株式会社製スプレー装置C-3J)でスプレーし、酸化グラフェン膜の両面に0.5cmの大きさの電極を形成した。各電極の触媒充填量は0.3mgPt/cmであった。撥水性カーボンペーパ(EC-TP1-060T)ガス拡散層(GDL)を、電気触媒層上に精密に配置した。これにより、図9Aに示すような酸化グラフェン−膜電極アセンブリ(GO−MEA)が形成される。形成されたGO−MEAを単一セル試験ホルダ(1cm)内に配置し、自家製の燃料電池試験装置に設置した。こうして得られたアルカリ燃料電池をオーブン内に入れ、30°Cに加熱した。そして、水素と空気を100ml/分及び100%のRHで流し、セルの性能をポテンショスタット(Solartron SI 1287)を用いて調べた。その結果、開放電圧は0.88Vであり、最大電力密度は2.6mA/cmの電流密度において1.13mW/cmであった(図9B)。このように、本発明の実施形態に係る酸化グラフェンベースのアニオン交換膜は、アルカリ燃料電池の電解質として好適に用いることができる。
<Example 4: Fuel cell>
A membrane treated electrode assembly (MEA) was formed using a base-treated graphene oxide based anion exchange membrane having a thickness of 15 μm obtained by the process described in Example 1. Also, Pt / C electrocatalyst (Tanaka Kikinzoku Kogyo Co., Ltd., 46.2 wt% Pt) is mixed with 5 wt% anion conductive polymer electrolyte solution (Tokuyama Co., Ltd.), ethanol (Chameleon), and deionized water. A catalyst ink was prepared. The catalyst ink was stirred for 10 hours and then subjected to ultrasonic treatment for 30 minutes before use (Ultrasonic Disperser UH-600 manufactured by SMT). This catalyst ink is sprayed onto a modified graphene oxide film having anion conductivity with a spray device (spray apparatus C-3J manufactured by Nordson Co., Ltd.) using a mask, and 0.5 cm 2 on both sides of the graphene oxide film. A size electrode was formed. The catalyst filling amount of each electrode was 0.3 mg Pt / cm 2 . A water repellent carbon paper (EC-TP1-060T) gas diffusion layer (GDL) was precisely placed on the electrocatalyst layer. As a result, a graphene oxide-membrane electrode assembly (GO-MEA) as shown in FIG. 9A is formed. The formed GO-MEA was placed in a single cell test holder (1 cm 2 ) and placed in a homemade fuel cell test device. The alkaline fuel cell thus obtained was placed in an oven and heated to 30 ° C. Hydrogen and air were allowed to flow at 100 ml / min and 100% RH, and the performance of the cell was examined using a potentiostat (Solartron SI 1287). As a result, the open circuit voltage was 0.88 V, and the maximum power density was 1.13 mW / cm 2 at a current density of 2.6 mA / cm 2 (FIG. 9B). As described above, the graphene oxide-based anion exchange membrane according to the embodiment of the present invention can be suitably used as an electrolyte of an alkaline fuel cell.

<例5:他の用途>
アルカリ燃料電池の電解質としての用途の他に、本発明に基づく酸化グラフェンベースのアニオン交換膜は他の膜利用技術に用いることができる。例えば、酸化グラフェンベースのアニオン交換膜は、微生物燃料電池または酵素燃料電池におけるアニオン伝導性電解質、アルカリ高分子電解質電解槽のアニオン交換膜(AEM)(図10A)、レドックスフロー電池のイオン交換膜(IEM)(図10B)、アルカリ膜排水処理装置のイオン交換膜(図10C)、及びアルカリ膜海水淡水化装置のAEM(図10D)として用いることができる。更に、本発明に基づく酸化グラフェンベースのアニオン交換膜は逆電気透析電池、アルカリ電池、金属空気電池、ガスバリア用途、加湿用途等に用いることができる。
<Example 5: Other uses>
In addition to its use as an electrolyte in alkaline fuel cells, the graphene oxide based anion exchange membrane according to the present invention can be used in other membrane utilization technologies. For example, graphene oxide-based anion exchange membranes include anion conducting electrolytes in microbial fuel cells or enzyme fuel cells, anion exchange membranes (AEM) in alkaline polymer electrolyte electrolytic cells (FIG. 10A), ion exchange membranes in redox flow batteries ( IEM) (FIG. 10B), an ion exchange membrane (FIG. 10C) of an alkaline membrane wastewater treatment apparatus, and an AEM (FIG. 10D) of an alkaline membrane seawater desalination apparatus. Furthermore, the graphene oxide-based anion exchange membrane according to the present invention can be used for reverse electrodialysis batteries, alkaline batteries, metal-air batteries, gas barrier applications, humidification applications, and the like.

本発明をその好適な実施形態について説明してきたが、本発明はこれら実施形態に限定されるものではなく、本発明の範囲から逸脱することなく様々な変形変更が可能であることは当業者にとって自明である。   Although the present invention has been described with reference to preferred embodiments thereof, it is to be understood by those skilled in the art that the present invention is not limited to these embodiments and that various modifications can be made without departing from the scope of the present invention. It is self-explanatory.

例えば、上記実施形態では酸化グラフェンを用いたが、好適には高い機械的強度及び/または高いガスバリア特性を有する、酸化グラファイト、酸化カーボンナノチューブまたは酸化フラーレンなどの他の酸化カーボンを酸化グラフェンの代わりに用いることもできる。   For example, although graphene oxide is used in the above embodiment, other oxidized carbon such as graphite oxide, oxidized carbon nanotube, or oxidized fullerene, preferably having high mechanical strength and / or high gas barrier properties, is used instead of graphene oxide. It can also be used.

また、上記実施形態では、塩基処理した酸化グラフェン分散液をポリカーボネートフィルタ上でろ過することによりアニオン交換膜を作製した。しかしながら、塩基処理した酸化グラフェンを含む分散液、インクまたは塗料を印刷、流し込み、圧縮またはスプレーすることによりアニオン交換膜を形成することもできる。更に、アニオン交換膜は、高分子、フラーレン、ナノチューブ等との複合体であってよい。このような複合体は、アルカリ改質された酸化グラフェンの分散液を、膜形成前にこれらの材料と混合することにより得ることができる。更に、塩基処理した酸化グラフェンに対し、所望に応じて適宜、更なる化学的表面機能化処理を行ってもよい。   Moreover, in the said embodiment, the anion exchange membrane was produced by filtering the base-processed graphene oxide dispersion liquid on a polycarbonate filter. However, an anion exchange membrane can also be formed by printing, pouring, compressing or spraying a dispersion, ink or paint containing base-treated graphene oxide. Furthermore, the anion exchange membrane may be a complex with a polymer, fullerene, nanotube, or the like. Such a composite can be obtained by mixing an alkali-modified graphene oxide dispersion with these materials before film formation. Furthermore, you may perform the further chemical surface functionalization process suitably with respect to the base-treated graphene oxide as needed.

Claims (20)

酸素含有官能基を有する酸化カーボンを含み、前記酸素含有官能基の少なくとも一部の水素カチオンがアルカリまたはアルカリ土類金属カチオンにより置換されているアニオン交換膜。   An anion exchange membrane comprising an oxidized carbon having an oxygen-containing functional group, wherein at least a part of hydrogen cations of the oxygen-containing functional group are substituted with an alkali or alkaline earth metal cation. 前記酸素含有官能基の少なくとも一部の前記水素カチオンがアルカリ金属カチオンにより置換されている、請求項1に記載のアニオン交換膜。   The anion exchange membrane according to claim 1, wherein at least a part of the hydrogen cations of the oxygen-containing functional group is substituted with an alkali metal cation. 前記アルカリ金属カチオンはLi及びKの少なくとも一つを含む、請求項2に記載のアニオン交換膜。 The anion exchange membrane according to claim 2, wherein the alkali metal cation includes at least one of Li + and K + . 前記酸化カーボンは、酸化グラフェン、酸化グラファイト、酸化カーボンナノチューブ及び酸化フラーレンの少なくとも一つを含む、請求項1に記載のアニオン交換膜。   The anion exchange membrane according to claim 1, wherein the oxidized carbon includes at least one of graphene oxide, graphite oxide, oxidized carbon nanotube, and oxidized fullerene. 前記酸化カーボンは単層または複数層の酸化グラフェンを含む、請求項1に記載のアニオン交換膜。   The anion exchange membrane according to claim 1, wherein the carbon oxide includes a single layer or a plurality of layers of graphene oxide. 前記酸素含有官能基はカルボン酸基、ヒドロキシル基及びエポキシ基の少なくとも一つを含む、請求項1に記載のアニオン交換膜。   The anion exchange membrane according to claim 1, wherein the oxygen-containing functional group includes at least one of a carboxylic acid group, a hydroxyl group, and an epoxy group. 酸素含有官能基を有する酸化カーボンを塩基性溶液で処理することを含む、アニオン交換膜の製造方法。   A method for producing an anion exchange membrane, comprising treating oxidized carbon having an oxygen-containing functional group with a basic solution. 前記塩基性溶液の塩基はアルカリ及びアルカリ土類金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つである、請求項7に記載のアニオン交換膜の製造方法。   The anion exchange membrane according to claim 7, wherein the base of the basic solution is at least one selected from the group consisting of hydroxides, oxides, hydrides and carbonates of alkali and alkaline earth metals. Method. 前記塩基性溶液の塩基はアルカリ金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つである、請求項7に記載のアニオン交換膜の製造方法。   The method for producing an anion exchange membrane according to claim 7, wherein the base of the basic solution is at least one selected from the group consisting of alkali metal hydroxides, oxides, hydrides, and carbonates. 前記アルカリ金属はLiとKの少なくとも一つを含む、請求項9に記載のアニオン交換膜の製造方法。   The method for producing an anion exchange membrane according to claim 9, wherein the alkali metal contains at least one of Li and K. 前記酸化カーボンは、酸化グラフェン、酸化グラファイト、酸化カーボンナノチューブ及び酸化フラーレンの少なくとも一つを含む、請求項7に記載のアニオン交換膜の製造方法。   The method for producing an anion exchange membrane according to claim 7, wherein the oxidized carbon includes at least one of graphene oxide, graphite oxide, oxidized carbon nanotube, and oxidized fullerene. 前記酸化カーボンは単層または複数層の酸化グラフェンを含む、請求項7に記載のアニオン交換膜の製造方法。   The method for producing an anion exchange membrane according to claim 7, wherein the oxidized carbon includes a single layer or a plurality of layers of graphene oxide. 前記酸素含有官能基はカルボン酸基、ヒドロキシル基及びエポキシ基の少なくとも一つを含む、請求項7に記載のアニオン交換膜の製造方法。   The method for producing an anion exchange membrane according to claim 7, wherein the oxygen-containing functional group includes at least one of a carboxylic acid group, a hydroxyl group, and an epoxy group. 酸素含有官能基を有する酸化カーボンを含み、前記酸化カーボンが塩基性溶液で処理されたものであるアニオン交換膜。   An anion exchange membrane comprising oxidized carbon having an oxygen-containing functional group, wherein the oxidized carbon is treated with a basic solution. 前記塩基性溶液の塩基はアルカリ及びアルカリ土類金属の水酸化物、水素化物、酸化物及び炭酸塩からなる群から選択された少なくとも一つである、請求項14に記載のアニオン交換膜。   The anion exchange membrane according to claim 14, wherein the base of the basic solution is at least one selected from the group consisting of hydroxides, hydrides, oxides and carbonates of alkali and alkaline earth metals. 前記塩基性溶液の塩基はアルカリ金属の水酸化物、酸化物、水素化物及び炭酸塩からなる群から選択された少なくとも一つである、請求項14に記載のアニオン交換膜。   The anion exchange membrane according to claim 14, wherein the base of the basic solution is at least one selected from the group consisting of alkali metal hydroxides, oxides, hydrides, and carbonates. 前記アルカリ金属はLiとKの少なくとも一つを含む、請求項16に記載のアニオン交換膜。   The anion exchange membrane according to claim 16, wherein the alkali metal contains at least one of Li and K. 前記酸化カーボンは、酸化グラフェン、酸化グラファイト、酸化カーボンナノチューブ及び酸化フラーレンの少なくとも一つを含む、請求項14に記載のアニオン交換膜。   The anion exchange membrane according to claim 14, wherein the oxidized carbon includes at least one of graphene oxide, graphite oxide, oxidized carbon nanotube, and oxidized fullerene. 前記酸化カーボンは単層または複数層の酸化グラフェンを含む、請求項14に記載のアニオン交換膜。   The anion exchange membrane according to claim 14, wherein the carbon oxide includes a single layer or a plurality of layers of graphene oxide. 前記酸素含有官能基はカルボン酸基、ヒドロキシル基及びエポキシ基の少なくとも一つを含む、請求項14に記載のアニオン交換膜。   The anion exchange membrane according to claim 14, wherein the oxygen-containing functional group includes at least one of a carboxylic acid group, a hydroxyl group, and an epoxy group.
JP2017549096A 2015-03-24 2015-03-24 Anion exchange membrane and method for producing the same Active JP6475862B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001683 WO2016151628A1 (en) 2015-03-24 2015-03-24 Anion exchange membrane and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2018514371A true JP2018514371A (en) 2018-06-07
JP6475862B2 JP6475862B2 (en) 2019-02-27

Family

ID=56977951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017549096A Active JP6475862B2 (en) 2015-03-24 2015-03-24 Anion exchange membrane and method for producing the same

Country Status (2)

Country Link
JP (1) JP6475862B2 (en)
WO (1) WO2016151628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136169A (en) * 2019-02-22 2020-08-31 国立大学法人 熊本大学 Electrochemical element component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968468B1 (en) * 2019-02-15 2019-04-11 울산과학기술원 Fuel cell membrane electrode assembly comprising graphene proton exchange membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
JP2007529404A (en) * 2004-03-15 2007-10-25 キャボット コーポレイション Modified carbon products and uses thereof
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2012500179A (en) * 2008-08-19 2012-01-05 ウィリアム・マーシュ・ライス・ユニバーシティ Production of graphene nanoribbons from carbon nanotubes
JP2012166989A (en) * 2011-02-15 2012-09-06 Vision Development Co Ltd Graphene laminated nanocarbon, method for producing the same, and catalyst for production of graphene laminated nanocarbon
JP2013079176A (en) * 2011-10-05 2013-05-02 Dic Corp Modified graphene, film and molding
US20130180912A1 (en) * 2010-07-14 2013-07-18 Monash University Material and applications therefor
JP2014216059A (en) * 2013-04-22 2014-11-17 国立大学法人熊本大学 Secondary battery having graphene oxide as solid electrolyte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529404A (en) * 2004-03-15 2007-10-25 キャボット コーポレイション Modified carbon products and uses thereof
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2012500179A (en) * 2008-08-19 2012-01-05 ウィリアム・マーシュ・ライス・ユニバーシティ Production of graphene nanoribbons from carbon nanotubes
US20130180912A1 (en) * 2010-07-14 2013-07-18 Monash University Material and applications therefor
JP2012166989A (en) * 2011-02-15 2012-09-06 Vision Development Co Ltd Graphene laminated nanocarbon, method for producing the same, and catalyst for production of graphene laminated nanocarbon
JP2013079176A (en) * 2011-10-05 2013-05-02 Dic Corp Modified graphene, film and molding
JP2014216059A (en) * 2013-04-22 2014-11-17 国立大学法人熊本大学 Secondary battery having graphene oxide as solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136169A (en) * 2019-02-22 2020-08-31 国立大学法人 熊本大学 Electrochemical element component
JP7246043B2 (en) 2019-02-22 2023-03-27 国立大学法人 熊本大学 Electrochemical device component

Also Published As

Publication number Publication date
JP6475862B2 (en) 2019-02-27
WO2016151628A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP4871225B2 (en) High ion conductive solid electrolyte, method for producing the same, and electrochemical system using the solid electrolyte
JP4918046B2 (en) Membrane / electrode assembly for fuel cell, production method thereof and fuel cell including the same
JP4041422B2 (en) Solid electrolyte and electrochemical system using the solid electrolyte
JP4326271B2 (en) Solid polymer electrolytes containing transition metal oxides
JP5384335B2 (en) Ion conductive membrane
KR101223559B1 (en) Method of preparing polymer membrane for fuel cell
JP2007126660A (en) Sulfonated perfluorocyclobutane polyvalent electrolyte film for fuel cell
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
WO2003023883A1 (en) Electrode catalyst layer for fuel cell
KR20060049500A (en) Solid electrolyte and electrochemical system using the solid electrolyte
KR20020080449A (en) Gas diffusive electrode, electroconductive ion conductor, their manufacturing method, and electrochemical device
JP2019519668A (en) Ion conductive membrane
JP4594284B2 (en) POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND FUEL CELL
JP2017022044A (en) Nano cellulose film used as fuel cell and electrolyte film
JP6475862B2 (en) Anion exchange membrane and method for producing the same
CN111342095B (en) High-temperature fuel cell proton exchange membrane and preparation method thereof
JP2007224300A (en) Polymer membrane, method of manufacturing the same and fuel cell
JP6160591B2 (en) Catalyst electrode layer, membrane electrode assembly, and fuel cell
JP2008198447A (en) Solid polymer fuel cell
JP6941202B1 (en) Membrane electrode assembly and electrochemical cell
JP2008098179A (en) Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell
EP3125346A1 (en) Anion conductor and layered metal hydroxide
JP5308894B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE
JP7089611B1 (en) Method for manufacturing an electrolyte membrane for a direct methanol fuel cell and a direct methanol fuel cell
JP5568111B2 (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250