JP2018509709A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2018509709A5 JP2018509709A5 JP2017546680A JP2017546680A JP2018509709A5 JP 2018509709 A5 JP2018509709 A5 JP 2018509709A5 JP 2017546680 A JP2017546680 A JP 2017546680A JP 2017546680 A JP2017546680 A JP 2017546680A JP 2018509709 A5 JP2018509709 A5 JP 2018509709A5
- Authority
- JP
- Japan
- Prior art keywords
- query
- execution
- difference
- time
- time data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims 12
- 238000006243 chemical reaction Methods 0.000 claims 9
- 230000000875 corresponding Effects 0.000 claims 8
- 230000001131 transforming Effects 0.000 claims 5
- 230000001419 dependent Effects 0.000 claims 2
- 230000019771 cognition Effects 0.000 claims 1
- 238000003066 decision tree Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 claims 1
- 238000010801 machine learning Methods 0.000 claims 1
- 230000001537 neural Effects 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 230000000737 periodic Effects 0.000 claims 1
- 238000004393 prognosis Methods 0.000 claims 1
Claims (11)
受信された前記更新に基づいて、コンピュータシステム内の1つ以上の多時間データ項目を更新するステップと、
第1クエリが前記更新された多時間データ項目に依存するという判断に基づいて、前記コンピュータシステム内で前記第1クエリを特定するステップと、
現在の時間に対応する多時間データを用いて、前記第1クエリの第1実行を行うステップと、
前記第1クエリの過去実行に対応する過去時間に対応する多時間データを用いて、前記第1クエリの第2実行を行うステップと、
前記第1クエリの前記第1実行の結果と前記第1クエリの前記第2実行の結果との差を決定するステップと、
前記差を所定の閾値と比較するステップと、
前記差が前記所定の閾値よりも大きいと判定した場合に、前記第1クエリに関連する第1データオブジェクトに対して第1変換処理を呼び出すステップとを含む、方法。 Receiving at the computer system one or more updates of data stored in the computer system;
Updating one or more multi-time data items in the computer system based on the received update;
Identifying the first query in the computer system based on a determination that the first query is dependent on the updated multi-time data item;
Performing a first execution of the first query using multi-time data corresponding to a current time;
Performing second execution of the first query using multi-time data corresponding to past time corresponding to past execution of the first query;
Determining a difference between a result of the first execution of the first query and a result of the second execution of the first query;
Comparing the difference with a predetermined threshold;
Invoking a first transformation process on a first data object associated with the first query when it is determined that the difference is greater than the predetermined threshold.
前記第2データオブジェクトと、前記第1変換処理の過去の呼び出しによって生成され且つ前記第2データオブジェクトと同一タイプの異なるデータオブジェクトとの間の差を決定するステップと、
前記第2データオブジェクトと前記異なるデータオブジェクトとの間の前記差が第2所定の閾値よりも大きいという判定に基づいて、前記第2データオブジェクトに対して第2変換処理を呼び出すステップとを含む、請求項1に記載の方法。 Storing a second data object corresponding to a result of the first conversion process on the first data object;
Determining a difference between the second data object and a different data object of the same type as the second data object generated by a previous call of the first conversion process;
Calling a second transformation process on the second data object based on a determination that the difference between the second data object and the different data object is greater than a second predetermined threshold; The method of claim 1.
前記方法は、
前記コンピュータシステムに格納されている前記多時間データの1つ以上の追加更新を受信するステップと、
受信された前記追加更新に基づいて、一組の多時間データ項目を更新するステップと、
前記多時間データの前記追加更新を用いて、前記第1クエリの第3実行を行うステップと、
前記第1クエリの過去実行時間に対応する多時間データを用いて、前記第1クエリの第4実行を行うステップと、
前記第1クエリの前記第3実行の結果と前記第1クエリの前記第4実行の結果との間の差を決定するステップと、
前記差を前記所定の閾値と比較するステップと、
前記差が前記所定の閾値よりも大きいと判定した場合に、前記第1変換処理を再度呼び出すステップとをさらに含む、請求項4に記載の方法。 The first conversion process and the second conversion process are part of a continuous data conversion loop application;
The method
Receiving one or more additional updates of the multi-time data stored in the computer system;
Updating a set of multi-time data items based on the received additional updates;
Performing a third execution of the first query using the additional update of the multi-time data;
Performing a fourth execution of the first query using multi-time data corresponding to a past execution time of the first query;
Determining a difference between a result of the third execution of the first query and a result of the fourth execution of the first query;
Comparing the difference to the predetermined threshold;
The method according to claim 4, further comprising a step of re-invoking the first conversion process when it is determined that the difference is larger than the predetermined threshold value.
前記フィルタテーブルは、異なる変換処理にそれぞれ対応する複数のクエリを含む、請求項1〜6のいずれかに記載の方法。 Identifying the first query includes accessing a filter table in the computer system;
The filter table comprises a plurality of queries that correspond to the different conversion method according to any one of claims 1 to 6 in.
前記第1データオブジェクトに対する前記第1変換処理の前記呼び出しは、前記第1トランザクションの外部で前記第1トランザクションと非同期的に実行される、請求項1〜7のいずれかに記載の方法。 Identifying the first query, performing a first execution of the first query, performing a second execution of the first query, the first execution of the first query, and the first query. Comparing the difference between the second execution of the first and second executions with the predetermined threshold is performed asynchronously with the first transaction outside the first transaction as an update of the one or more multi-time data items. ,
Wherein for the first data object the call to the first conversion process, the first transaction is outside executed the first transaction and asynchronously of method according to any one of claims 1-7.
前記処理ユニットに連結され、前記処理ユニットによって読取可能であり、一連の命令セットを格納するメモリとを備え、前記命令は、前記処理ユニットによって実行される場合、前記処理ユニットに、以下のステップ、すなわち、
コンピュータシシステムに格納されているデータの1つ以上の更新を受信するステップと、
受信された前記更新に基づいて、コンピュータシステム内の1つ以上の多時間データ項目を更新するステップと、
第1クエリが前記更新された多時間データ項目に依存するという判断に基づいて、前記コンピュータシステム内で前記第1クエリを特定するステップと、
現在の時間に対応する多時間データを用いて、前記第1クエリの第1実行を行うステップと、
前記第1クエリの過去実行に対応する過去時間に対応する多時間データを用いて、前記第1クエリの第2実行を行うステップと、
前記第1クエリの前記第1実行の結果と前記第1クエリの前記第2実行の結果との差を決定するステップと、
前記差を所定の閾値と比較するステップと、
前記差が前記所定の閾値よりも大きいと判定した場合に、前記第1クエリに関連する第1データオブジェクトに対して第1変換処理を呼び出すステップとを実行させる、システム。 A processing unit including one or more processors;
A memory coupled to the processing unit, readable by the processing unit, and storing a series of instruction sets, wherein when the instructions are executed by the processing unit, the processing unit includes the following steps: That is,
Receiving one or more updates of data stored in the computer system;
Updating one or more multi-time data items in the computer system based on the received update;
Identifying the first query in the computer system based on a determination that the first query is dependent on the updated multi-time data item;
Performing a first execution of the first query using multi-time data corresponding to a current time;
Performing second execution of the first query using multi-time data corresponding to past time corresponding to past execution of the first query;
Determining a difference between a result of the first execution of the first query and a result of the second execution of the first query;
Comparing the difference with a predetermined threshold;
And a step of calling a first conversion process on a first data object related to the first query when it is determined that the difference is greater than the predetermined threshold.
前記プログラムを実行するためのプロセッサとを備える、システム。And a processor for executing the program.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021020802A JP7142116B2 (en) | 2015-03-23 | 2021-02-12 | Knowledge-intensive data processing system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/665,171 US10740358B2 (en) | 2013-04-11 | 2015-03-23 | Knowledge-intensive data processing system |
US14/665,171 | 2015-03-23 | ||
PCT/US2016/021642 WO2016153790A1 (en) | 2015-03-23 | 2016-03-10 | Knowledge-intensive data processing system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021020802A Division JP7142116B2 (en) | 2015-03-23 | 2021-02-12 | Knowledge-intensive data processing system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018509709A JP2018509709A (en) | 2018-04-05 |
JP2018509709A5 true JP2018509709A5 (en) | 2019-04-11 |
JP7064333B2 JP7064333B2 (en) | 2022-05-10 |
Family
ID=55590161
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017546680A Active JP7064333B2 (en) | 2015-03-23 | 2016-03-10 | Knowledge-intensive data processing system |
JP2021020802A Active JP7142116B2 (en) | 2015-03-23 | 2021-02-12 | Knowledge-intensive data processing system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021020802A Active JP7142116B2 (en) | 2015-03-23 | 2021-02-12 | Knowledge-intensive data processing system |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3274869A1 (en) |
JP (2) | JP7064333B2 (en) |
CN (1) | CN107430613B (en) |
WO (1) | WO2016153790A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9495395B2 (en) | 2013-04-11 | 2016-11-15 | Oracle International Corporation | Predictive diagnosis of SLA violations in cloud services by seasonal trending and forecasting with thread intensity analytics |
US10740358B2 (en) | 2013-04-11 | 2020-08-11 | Oracle International Corporation | Knowledge-intensive data processing system |
US11443206B2 (en) | 2015-03-23 | 2022-09-13 | Tibco Software Inc. | Adaptive filtering and modeling via adaptive experimental designs to identify emerging data patterns from large volume, high dimensional, high velocity streaming data |
US10417111B2 (en) | 2016-05-09 | 2019-09-17 | Oracle International Corporation | Correlation of stack segment intensity in emergent relationships |
CN108319437B (en) * | 2018-02-28 | 2019-01-11 | 上海熙香艺享电子商务有限公司 | Content big data concentration analysis platform |
CN108805818B (en) * | 2018-02-28 | 2020-07-10 | 上海兴容信息技术有限公司 | Content big data density degree analysis method |
TWI669668B (en) * | 2018-03-21 | 2019-08-21 | 兆豐國際商業銀行股份有限公司 | Data management device and data management method |
CN108595644A (en) * | 2018-04-26 | 2018-09-28 | 宁波银行股份有限公司 | A kind of big data platform operation management system |
CN108804556B (en) * | 2018-05-22 | 2020-10-20 | 上海交通大学 | Distributed processing framework system based on time travel and temporal aggregation query |
CN109104378B (en) * | 2018-08-17 | 2019-08-20 | 四川新网银行股份有限公司 | The pre- recovery method of intelligent token based on time series forecasting |
CN109242550B (en) * | 2018-08-21 | 2021-09-21 | 首钢京唐钢铁联合有限责任公司 | Steel process cost prediction system |
US11481379B2 (en) | 2018-11-01 | 2022-10-25 | Hewlett-Packard Development Company, L.P. | Metadata variance analytics |
WO2020117669A1 (en) * | 2018-12-03 | 2020-06-11 | DSi Digital, LLC | Data interaction platforms utilizing dynamic relational awareness |
US11182362B2 (en) | 2019-01-16 | 2021-11-23 | Kabushiki Kaisha Toshiba | Calculating device, data base system, calculation system, calculation method, and storage medium |
CN110008262B (en) * | 2019-02-02 | 2023-06-06 | 创新先进技术有限公司 | Data export method and device |
US20200310449A1 (en) * | 2019-03-26 | 2020-10-01 | GM Global Technology Operations LLC | Reasoning system for sensemaking in autonomous driving |
US11544566B2 (en) | 2019-06-03 | 2023-01-03 | International Business Machines Corporation | Deep learning model insights using provenance data |
EP3754445A1 (en) * | 2019-06-17 | 2020-12-23 | Siemens Aktiengesellschaft | Computer-assisted configuration of a technical system |
JP7372530B2 (en) * | 2019-10-07 | 2023-11-01 | 横浜ゴム株式会社 | Kneading abnormality degree learning device, learned model generation method and program |
CN110750384A (en) * | 2019-10-15 | 2020-02-04 | 浙江众鑫空间科技有限公司 | Big data management system |
US11237847B1 (en) | 2019-12-19 | 2022-02-01 | Wells Fargo Bank, N.A. | Automated standards-based computing system reconfiguration |
US11502905B1 (en) | 2019-12-19 | 2022-11-15 | Wells Fargo Bank, N.A. | Computing infrastructure standards assay |
CN111506349A (en) * | 2020-04-30 | 2020-08-07 | 中科院计算所西部高等技术研究院 | Calculation board card with OODA (on-off-the-digital-analog) multiprocessor |
US11513877B2 (en) * | 2020-09-22 | 2022-11-29 | Rockwell Automation Technologies, Inc. | Updating operational technology devices using container orchestration systems |
CN112422234B (en) * | 2020-11-06 | 2021-08-13 | 应急管理部通信信息中心 | Data management service method for self-adaptive deep learning based on time perception |
CN112990767B (en) * | 2021-04-20 | 2021-08-20 | 上海领健信息技术有限公司 | Vertical consumption medical SaaS production data calculation method, system, terminal and medium |
US12088463B1 (en) | 2023-01-27 | 2024-09-10 | Wells Fargo Bank, N.A. | Automated configuration of software applications |
CN116646061B (en) * | 2023-04-28 | 2024-01-26 | 西安交通大学 | Distributed CT imaging and intelligent diagnosis and treatment system and method |
CN117744795B (en) * | 2023-12-08 | 2024-08-16 | 拓元(广州)智慧科技有限公司 | Multi-agent collaborative knowledge reasoning framework and system based on large language model |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2828609B2 (en) * | 1994-09-22 | 1998-11-25 | 株式会社エイアンドティー | Clinical laboratory analyzer |
JP4405658B2 (en) * | 2000-11-01 | 2010-01-27 | 住友林業株式会社 | Housing management method |
CN101231642A (en) * | 2007-08-27 | 2008-07-30 | 中国测绘科学研究院 | Spatial-temporal database management method and system |
US8001115B2 (en) * | 2008-10-16 | 2011-08-16 | The Curators Of The University Of Missouri | Identifying geographic-areas based on change patterns detected from high-resolution, remotely sensed imagery |
JP2011055355A (en) | 2009-09-03 | 2011-03-17 | Oki Electric Industry Co Ltd | Wireless communication apparatus and program, and, wireless communication system |
CN102411599A (en) * | 2011-08-01 | 2012-04-11 | 中国民生银行股份有限公司 | Processing method of abnormal behaviors in data warehouse and monitoring server |
US8965889B2 (en) * | 2011-09-08 | 2015-02-24 | Oracle International Corporation | Bi-temporal user profiles for information brokering in collaboration systems |
CN102651020B (en) * | 2012-03-31 | 2014-01-15 | 中国科学院软件研究所 | A Massive Sensor Data Storage and Query Method |
CN102799621B (en) * | 2012-06-25 | 2015-03-25 | 国家测绘局卫星测绘应用中心 | Method for detecting change of vector time-space data and system of method |
JP2014021585A (en) * | 2012-07-13 | 2014-02-03 | Sharp Corp | Network system and information processing device |
US8812489B2 (en) * | 2012-10-08 | 2014-08-19 | International Business Machines Corporation | Swapping expected and candidate affinities in a query plan cache |
US9734161B2 (en) * | 2013-03-15 | 2017-08-15 | The Florida International University Board Of Trustees | Streaming representation of moving objects and shapes in a geographic information service |
US9495395B2 (en) * | 2013-04-11 | 2016-11-15 | Oracle International Corporation | Predictive diagnosis of SLA violations in cloud services by seasonal trending and forecasting with thread intensity analytics |
US9299113B2 (en) * | 2013-09-13 | 2016-03-29 | Microsoft Technology Licensing, Llc | Social media driven information interface |
CN103779808A (en) * | 2013-12-30 | 2014-05-07 | 国家电网公司 | Power transmission line intelligent inspection system based on LiDAR |
CN104408137B (en) * | 2014-11-28 | 2018-11-13 | 武汉大学 | A kind of network statistics map visualization data preparation method |
-
2016
- 2016-03-10 CN CN201680012718.XA patent/CN107430613B/en active Active
- 2016-03-10 WO PCT/US2016/021642 patent/WO2016153790A1/en active Application Filing
- 2016-03-10 EP EP16711749.8A patent/EP3274869A1/en not_active Ceased
- 2016-03-10 JP JP2017546680A patent/JP7064333B2/en active Active
-
2021
- 2021-02-12 JP JP2021020802A patent/JP7142116B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018509709A5 (en) | ||
US10885463B2 (en) | Metadata-driven machine learning for systems | |
US20230036702A1 (en) | Federated mixture models | |
Cheng et al. | A hybrid evolutionary algorithm to solve the job shop scheduling problem | |
US7707549B2 (en) | Synchronicity in software development | |
CN110263979B (en) | Method and device for predicting sample label based on reinforcement learning model | |
JP2019535065A5 (en) | ||
Chen et al. | Feature-based matrix factorization | |
US10572841B2 (en) | Actions for an information technology case | |
US11755951B2 (en) | Machine learning with an intelligent continuous learning service in a big data environment | |
US20150234936A1 (en) | Event propagation in graph data | |
CN108108233B (en) | Cluster job scheduling method and system for task multi-copy execution | |
Gosavi | Variance-penalized Markov decision processes: Dynamic programming and reinforcement learning techniques | |
CN104616173B (en) | Method and device for predicting user loss | |
Mzili et al. | A novel discrete rat swarm optimization algorithm for the quadratic assignment problem | |
Jeon et al. | Intelligent resource scaling for container-based digital twin simulation of consumer electronics | |
Khajenezhad et al. | Masked autoencoder for distribution estimation on small structured data sets | |
Liu et al. | Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition | |
US8214316B2 (en) | Notification-based forward chaining | |
Song et al. | Optimization analysis of the emergency logistics identification method based on the deep learning model under the background of big data | |
Asfoor et al. | Computing fuzzy rough approximations in large scale information systems | |
Fu et al. | STWM: a solution to self-adaptive task-worker matching in software crowdsourcing | |
WO2016012903A1 (en) | A system for querying heterogeneous data sources and a method thereof | |
Shang et al. | A parallel and efficient algorithm for learning to match | |
Wu et al. | Afer: Automated feature engineering for robotic prediction on intelligent automation |