JP2018203578A - Method for manufacturing antimony compound fine particles - Google Patents
Method for manufacturing antimony compound fine particles Download PDFInfo
- Publication number
- JP2018203578A JP2018203578A JP2017112142A JP2017112142A JP2018203578A JP 2018203578 A JP2018203578 A JP 2018203578A JP 2017112142 A JP2017112142 A JP 2017112142A JP 2017112142 A JP2017112142 A JP 2017112142A JP 2018203578 A JP2018203578 A JP 2018203578A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- compound fine
- particles
- antimony compound
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、平均粒子径が100nm以下のアンチモン化合物の微粒子を製造する方法に関する。 The present invention relates to a method for producing fine particles of an antimony compound having an average particle size of 100 nm or less.
三酸化二アンチモン等のアンチモン化合物は、各種プラスチック、ゴム、繊維などの耐防火安全性強化のための難燃助剤として、通常は、ハロゲン系化合物からなる難燃剤と共に使用される。難燃助剤であるアンチモン化合物は、難燃剤であるハロゲン系化合物の難燃効果を高めると共に、その使用量を最小限にとどめる必要がある。 Antimony compounds such as diantimony trioxide are usually used together with flame retardants composed of halogenated compounds as flame retardant aids for enhancing fire safety safety of various plastics, rubbers, fibers and the like. The antimony compound that is a flame retardant aid needs to increase the flame retardant effect of the halogen-based compound that is a flame retardant, and to minimize the amount used.
しかしながら、一般的に使用されているアンチモン化合物は、粒子径が数百nmレベルで比表面積が小さいため、こういったアンチモン化合物を難燃助材として使用すると、難燃性能を高めるために添加量を多くしなければならず、原料コストが高くなると共に、添加される樹脂自体の特性が変化してしまうといった問題がある。 However, antimony compounds that are generally used have a particle size of several hundreds of nanometers and a small specific surface area. Therefore, when these antimony compounds are used as flame retardant aids, they are added in order to increase the flame retardant performance. There is a problem that the raw material cost increases and the characteristics of the added resin itself change.
また、粒子径が数百nmのアンチモン化合物は白色の粒子であるため、これを樹脂に練り込んだり、樹脂成形品や合成繊維、布地等に塗布したりすると、樹脂自体の色彩が変化したり、樹脂成形品や合成繊維、布地等の色合いを損なうといった問題もある。 In addition, since antimony compounds with a particle size of several hundred nm are white particles, the color of the resin itself may change if it is kneaded into a resin, or applied to a resin molded product, synthetic fiber, or fabric. There is also a problem that the hue of resin molded products, synthetic fibers, fabrics, etc. is impaired.
従って、難燃助材としては、比表面積が大きく、透明性を有している粒子径が100nm以下のアンチモン化合物が求められている。 Therefore, an antimony compound having a large specific surface area and a transparent particle size of 100 nm or less is required as a flame retardant aid.
そこで、この発明の課題は、平均粒子径が100nm以下のアンチモン化合物微粒子を低コストで簡単に製造することができるアンチモン化合物微粒子の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing antimony compound fine particles, which can easily produce antimony compound fine particles having an average particle diameter of 100 nm or less at low cost.
上記の課題を解決するため、請求項1に係る発明は、平均粒子径が100nm以下のアンチモン化合物微粒子の製造方法であって、酸化アンチモン粒子に、1mol/L以上の濃度を有する、水酸化カリウム水溶液、水酸化セシウム水溶液または水酸化ルビジウム水溶液を加えて懸濁液を生成し、この懸濁液にオゾンガスを通気することによって酸化アンチモン粒子を溶解させた後、酸を加えてpHを低下させることで、平均粒子径が100nm以下のアンチモン化合物微粒子を析出させ、これを分離することを特徴とするアンチモン化合物微粒子の製造方法を提供するものである。 In order to solve the above problems, the invention according to claim 1 is a method for producing antimony compound fine particles having an average particle diameter of 100 nm or less, wherein the antimony oxide particles have a concentration of 1 mol / L or more. An aqueous solution, an aqueous cesium hydroxide solution or an aqueous rubidium hydroxide solution is added to form a suspension, and ozone gas is passed through the suspension to dissolve antimony oxide particles, and then an acid is added to lower the pH. Then, an antimony compound fine particle having an average particle diameter of 100 nm or less is deposited and separated, and a method for producing the antimony compound fine particle is provided.
また、請求項2に係る発明は、平均粒子径が100nm以下のアンチモン化合物微粒子の製造方法であって、酸化アンチモン粒子に、1mol/L以上の濃度を有する、水酸化カリウム、水酸化セシウムまたは水酸化ルビジウムのオゾン含有水を加えることによって酸化アンチモン粒子を溶解させた後、酸を加えてpHを低下させることで、平均粒子径が100nm以下のアンチモン化合物微粒子を析出させ、これを分離することを特徴としている。 The invention according to claim 2 is a method for producing antimony compound fine particles having an average particle diameter of 100 nm or less, wherein the antimony oxide particles have a concentration of 1 mol / L or more, potassium hydroxide, cesium hydroxide or water. After dissolving the antimony oxide particles by adding ozone-containing water of rubidium oxide, the acid is added to lower the pH to precipitate the antimony compound fine particles having an average particle size of 100 nm or less and to separate them. It is a feature.
また、請求項3に係る発明は、請求項1または2に係る発明のアンチモン化合物微粒子の製造方法において、オゾンによって酸化アンチモン粒子を溶解させた水溶液にアルコールを加えることで液滴として凝縮させ、この液滴を分離して水に再溶解させた後、水溶液全体のpHが略均一な状態を保つように、酸を加えてpHを4以下に低下させることを特徴としている。 Further, the invention according to claim 3 is the method for producing antimony compound fine particles according to claim 1 or 2, wherein alcohol is added to an aqueous solution in which antimony oxide particles are dissolved by ozone to condense as droplets. After the droplets are separated and redissolved in water, an acid is added to lower the pH to 4 or less so that the pH of the entire aqueous solution is kept substantially uniform.
また、請求項4に係る発明は、平均粒子径が100nm以下のアンチモン化合物微粒子の製造方法であって、ヘキサヒドロキソアンチモン酸カリウム水溶液、ヘキサヒドロキソアンチモン酸セシウム水溶液またはヘキサヒドロキソアンチモン酸ルビジウム水溶液に酸を加えてpHを低下させることで、平均粒子径が100nm以下のアンチモン化合物微粒子を析出させ、これを分離することを特徴としている。 The invention according to claim 4 is a method for producing antimony compound fine particles having an average particle diameter of 100 nm or less, wherein an acid is added to an aqueous solution of potassium hexahydroxoantimonate, an aqueous cesium hexahydroxoantimonate, or an aqueous rubidium hexahydroxoantimonate. In addition, by reducing the pH, antimony compound fine particles having an average particle size of 100 nm or less are precipitated and separated.
また、請求項5に係る発明は、請求項4に係る発明のアンチモン化合物微粒子の製造方法において、水溶液全体のpHが略均一な状態を保つように、酸を加えてpHを4以下に低下させることを特徴としている。 In addition, the invention according to claim 5 is the method for producing antimony compound fine particles according to claim 4, wherein the pH is lowered to 4 or less by adding an acid so that the pH of the entire aqueous solution is kept substantially uniform. It is characterized by that.
また、請求項6に係る発明は、請求項3または5に係る発明のアンチモン化合物微粒子の製造方法において、pHを1以下に低下させることを特徴としている。 The invention according to claim 6 is characterized in that, in the method for producing antimony compound fine particles according to claim 3 or 5, the pH is lowered to 1 or less.
なお、上記「酸化アンチモン粒子」は、三酸化二アンチモン粒子、五酸化二アンチモン粒子及び両者の混合物であると考えられる四酸化二アンチモン粒子を含む。また、上記「平均粒子径」とは、動的光散乱法(DLS)で測定した個数平均粒子径をいう。 The “antimony oxide particles” include diantimony trioxide, diantimony pentoxide particles, and diantimony tetroxide particles considered to be a mixture of both. The “average particle diameter” refers to the number average particle diameter measured by a dynamic light scattering method (DLS).
請求項1に係る発明のアンチモン化合物微粒子の製造方法では、任意の粒子径の酸化アンチモンを原料として用い、室温下で、水酸化カリウム水溶液、水酸化セシウム水溶液または水酸化ルビジウム水溶液の添加、オゾンガスの通気及び酸の添加という簡易な工程によって、平均粒子径が100nm以下のアンチモン化合物微粒子を製造することができる。 In the method for producing antimony compound fine particles of the invention according to claim 1, using an antimony oxide having an arbitrary particle size as a raw material, addition of an aqueous potassium hydroxide solution, an aqueous cesium hydroxide solution or an aqueous rubidium hydroxide solution at room temperature, an ozone gas Antimony compound fine particles having an average particle diameter of 100 nm or less can be produced by a simple process of aeration and acid addition.
請求項2に係る発明のアンチモン化合物微粒子の製造方法では、任意の粒子径の酸化アンチモンを原料として用い、室温下で、水酸化カリウム、水酸化セシウムまたは水酸化ルビジウムのオゾン含有水の添加及び酸の添加という簡易な工程によって、平均粒子径が100nm以下のアンチモン化合物微粒子を製造することができる。 In the method for producing the antimony compound fine particles of the invention according to claim 2, the addition of ozone-containing water of potassium hydroxide, cesium hydroxide or rubidium hydroxide and acid at room temperature using antimony oxide having an arbitrary particle size as a raw material The antimony compound fine particles having an average particle size of 100 nm or less can be produced by a simple process of addition of.
特に、請求項3に係る発明のアンチモン化合物微粒子の製造方法のように、請求項1または2に係る発明のアンチモン化合物微粒子の製造方法において、オゾンによって酸化アンチモン粒子を溶解させた水溶液にアルコールを加えることで液滴として凝縮させ、この液滴を分離して水に再溶解させることで脱塩した後、水溶液全体のpHが略均一な平衡状態を保つように、酸を加えてpHを4以下に低下させることで、生成されるアンチモン化合物微粒子をさらに微小化することができる。 In particular, in the method for producing antimony compound fine particles according to claim 1 or 2, as in the method for producing antimony compound fine particles according to claim 3, alcohol is added to the aqueous solution in which antimony oxide particles are dissolved by ozone. Then, the solution is condensed as droplets, desalted by separating the droplets and re-dissolving in water, and then adding an acid to keep the pH of the aqueous solution at a substantially uniform equilibrium to a pH of 4 or less. By reducing the content of the antimony compound, the produced antimony compound fine particles can be further miniaturized.
請求項4に係る発明のアンチモン化合物微粒子の製造方法では、ヘキサヒドロキソアンチモン酸カリウム水溶液、ヘキサヒドロキソアンチモン酸セシウム水溶液またはヘキサヒドロキソアンチモン酸ルビジウム水溶液を原料として用い、室温下で、酸の添加という簡易な工程によって、平均粒子径が100nm以下のアンチモン化合物微粒子を製造することができる。 In the method for producing antimony compound fine particles of the invention according to claim 4, a potassium hexahydroxoantimonate aqueous solution, a hexium hydroxoantimonate aqueous solution or a rubidium hexahydroxoantimonate aqueous solution is used as a raw material, and a simple addition of acid at room temperature. By the process, antimony compound fine particles having an average particle diameter of 100 nm or less can be produced.
特に、請求項5に係る発明のアンチモン化合物微粒子の製造方法のように、請求項4に係る発明のアンチモン化合物微粒子の製造方法において、水溶液全体のpHが略均一な平衡状態を保つように、酸を加えてpHを4以下に低下させることで、生成されるアンチモン化合物微粒子をさらに微小化することができる。 In particular, as in the method for producing antimony compound fine particles of the invention according to claim 5, in the method for producing antimony compound fine particles of the invention according to claim 4, the acid is adjusted so that the pH of the entire aqueous solution is maintained in a substantially uniform equilibrium state. Is added to lower the pH to 4 or less, so that the produced antimony compound fine particles can be further miniaturized.
また、請求項6に係る発明のアンチモン化合物微粒子の製造方法のように、請求項3または5に係る発明のアンチモン化合物微粒子の製造方法において、pHを1以下に低下させることで、アンチモン化合物微粒子の収量を大幅に増大させることができ、簡易なろ過操作によって容易に分離することができる。 Further, in the method for producing antimony compound fine particles of the invention according to claim 3 or 5 as in the method for producing antimony compound fine particles of the invention according to claim 6, the pH of the antimony compound fine particles is reduced to 1 or less. The yield can be greatly increased and can be easily separated by a simple filtration operation.
以下、本発明の実施例について図面を参照して説明するが、本発明のアンチモン化合物微粒子の製造方法はこれらの実施例に限定されるものではない。 Examples of the present invention will be described below with reference to the drawings. However, the method for producing antimony compound fine particles of the present invention is not limited to these examples.
(実施例1)
表1に示すように、分布測定装置(Leed & Northrup社製 Microtorac FRA)を用いてレーザー回折散乱法で測定した個数平均粒子径が341nmの三酸化二アンチモン[Sb2O3]0.5gに、濃度を1mol/Lに調整したpH14の水酸化カリウム[KOH]水溶液を50mL加えた懸濁液を300mLの三角フラスコに注ぎ、酸素を一部オゾンに変換することで発生させた含オゾンガスを2L/minの流量で通気しながら、マグネットスターラーを用いて60分間撹拌した。なお、含オゾンガス中のオゾン含有量は0.025g/Lであり、含オゾンガスを2L/minで通気した場合、0.05g/minでオゾンガスを通気したことになる。懸濁液は、初期時点で白く白濁していたが、含オゾンガスを約60分間通気させることにより透明となった。
Example 1
As shown in Table 1, 0.5 g of diantimony trioxide [Sb 2 O 3 ] having a number average particle diameter of 341 nm measured by a laser diffraction scattering method using a distribution measuring device (Microtorac FRA manufactured by Leed & Northrup) was used. Then, a suspension of 50 mL of pH 14 potassium hydroxide [KOH] aqueous solution whose concentration was adjusted to 1 mol / L was poured into a 300 mL Erlenmeyer flask, and 2 L of ozone-containing gas generated by partially converting oxygen into ozone was added. It stirred for 60 minutes using the magnetic stirrer, ventilating with the flow volume of / min. The ozone content in the ozone-containing gas is 0.025 g / L. When the ozone-containing gas is vented at 2 L / min, the ozone gas is vented at 0.05 g / min. The suspension was white and cloudy at the initial point, but became clear by aeration of ozone-containing gas for about 60 minutes.
このようにして得られたpH14の溶液に、その溶液と同体積の2−プロパノール[C3H8O]を加えると、凝縮した液滴が発生したので、この液滴を遠心分離して回収した後、回収した液滴をイオン交換水に再溶解させることにより脱塩した。このようにして得られたpH12の溶液に、溶液全体のpHが略均一な状態(平衡状態)を保つように、0.1mol/Lの塩酸[HCl]を滴下してpHを下げていくと、pH4付近で粒子が析出しはじめ、pH3まで下げると多量の粒子が析出したので、この状態で、回転数10000rpmで5分間遠心分離し、上澄みを除去して粒子を回収した。なお、脱塩処理を行わなければ、pH14の溶液に塩酸を滴下することになるので、滴下する塩酸の濃度が0.1mol/Lと低い場合であっても、溶液全体のpHが略均一な平衡状態とはならず、部分的にpHが低い非平衡状態で塩酸の添加処理が行われることになる。つまり、平衡状態で塩酸の添加処理を行うためには、予め脱塩処理を行っておく必要がある。 When 2-propanol [C 3 H 8 O] having the same volume as the solution was added to the pH 14 solution thus obtained, condensed droplets were generated. The droplets were collected by centrifugation. Thereafter, the recovered droplets were desalted by re-dissolving them in ion-exchanged water. When the pH of the resulting solution of pH 12 is lowered by dropping 0.1 mol / L hydrochloric acid [HCl] so that the pH of the whole solution is maintained in a substantially uniform state (equilibrium state). Then, particles started to precipitate near pH 4, and a large amount of particles precipitated when the pH was lowered to 3. Therefore, in this state, the mixture was centrifuged at 10000 rpm for 5 minutes, and the supernatant was removed to collect the particles. If desalting is not performed, hydrochloric acid is dropped into a solution having a pH of 14, so even if the concentration of the dropped hydrochloric acid is as low as 0.1 mol / L, the pH of the entire solution is substantially uniform. Hydrochloric acid addition treatment is performed in a non-equilibrium state where the pH is partially low, not the equilibrium state. That is, in order to perform the hydrochloric acid addition process in an equilibrium state, it is necessary to perform a desalting process in advance.
(実施例2)
表1に示すように、pHを1まで下げた点を除いて、実施例1と同様の方法で粒子を析出させた。なお、pHを1まで下げると、析出した粒子が凝集して沈降堆積したので、ろ過することによって粒子を回収した。
(Example 2)
As shown in Table 1, particles were precipitated in the same manner as in Example 1 except that the pH was lowered to 1. When the pH was lowered to 1, the precipitated particles aggregated and settled, and the particles were collected by filtration.
(実施例3)
表1に示すように、ナトリウム塩の検出試薬として市販されているヘキサヒドロキソアンチモン酸カリウム[KSb(OH)6](キシダ化学社製 1級)を1.0重量%水溶液(pH9.6)とし、この水溶液50mlに、溶液全体のpHが略均一な状態(平衡状態)を保つように、0.1mol/Lの塩酸[HCl]を滴下してpHを下げていくと、pH4付近で粒子が析出しはじめ、pH3まで下げると多量の粒子が析出したので、この状態で、回転数10000rpmで5分間遠心分離し、上澄みを除去して粒子を回収した。
Example 3
As shown in Table 1, potassium hexahydroxoantimonate [KSb (OH) 6 ] (first grade manufactured by Kishida Chemical Co., Ltd.), which is commercially available as a sodium salt detection reagent, was used as a 1.0 wt% aqueous solution (pH 9.6). When the pH is lowered by dropping 0.1 mol / L hydrochloric acid [HCl] into 50 ml of this aqueous solution so that the pH of the whole solution is kept substantially uniform (equilibrium state), particles are observed at pH around 4. Since it started to precipitate and a large amount of particles were precipitated when the pH was lowered to 3, in this state, the mixture was centrifuged at 10,000 rpm for 5 minutes, and the supernatant was removed to collect the particles.
(実施例4)
表1に示すように、pHを1まで下げた点を除いて、実施例3と同様の方法で粒子を析出させた。なお、pHを1まで下げると、析出した粒子が凝集して沈降堆積したので、ろ過することによって粒子を回収した。
(Example 4)
As shown in Table 1, particles were precipitated in the same manner as in Example 3 except that the pH was lowered to 1. When the pH was lowered to 1, the precipitated particles aggregated and settled, and the particles were collected by filtration.
(実施例5)
表1に示すように、個数平均粒子径が341nmの三酸化二アンチモンを、含オゾンガスを通気することによって、水酸化カリウム水溶液に溶解させた実施例1と同様のpH14の溶液に、1mol/Lの塩酸[HCl]を滴下すると、pH7付近で粒子が析出しはじめ、pH5で多量の粒子が析出し、同時に凝集して沈降堆積したので、ろ過することによって粒子を回収した。なお、滴下する塩酸の濃度が1mol/Lと高い場合は、脱塩処理の有無に拘わらず、溶液全体のpHが略均一な平衡状態とはならず、部分的にpHが低い非平衡状態で塩酸の添加処理が行われることになる。
(Example 5)
As shown in Table 1, in a solution having a pH of 14 similar to that of Example 1 in which antimony trioxide having a number average particle diameter of 341 nm was dissolved in an aqueous potassium hydroxide solution by bubbling ozone-containing gas, 1 mol / L When hydrochloric acid [HCl] was added dropwise, particles started to precipitate around pH 7, and a large amount of particles precipitated at pH 5, and simultaneously aggregated and settled. Therefore, the particles were collected by filtration. In addition, when the concentration of hydrochloric acid to be dropped is as high as 1 mol / L, the pH of the entire solution does not become a substantially uniform equilibrium state regardless of the presence or absence of the desalting treatment, and in a non-equilibrium state where the pH is partially low Hydrochloric acid is added.
(実施例6)
表1に示すように、pHを3まで下げた点を除いて、実施例5と同様の方法で粒子を析出させ、これを回収した。
(Example 6)
As shown in Table 1, particles were precipitated and recovered in the same manner as in Example 5 except that the pH was lowered to 3.
(実施例7)
表1に示すように、pHを1まで下げた点を除いて、実施例5と同様の方法で粒子を析出させ、これを回収した。
(Example 7)
As shown in Table 1, particles were precipitated by the same method as in Example 5 except that the pH was lowered to 1, and this was recovered.
(実施例8)
表1に示すように、pH9.6の1重量%ヘキサヒドロキソアンチモン酸カリウム水溶液50mlに、1mol/Lの塩酸[HCl]を滴下してpHを下げていくと、pH5付近で粒子が析出しはじめ、pH4まで下げると多量の粒子が析出したので、この状態で、回転数10000rpmで5分間遠心分離し、上澄みを除去して粒子を回収した。
(Example 8)
As shown in Table 1, when 1 mol / L hydrochloric acid [HCl] was dropped into 50 ml of 1 wt% potassium hexahydroxoantimonate aqueous solution at pH 9.6 to lower the pH, particles started to precipitate around pH 5. When the pH was lowered to 4, a large amount of particles were precipitated. In this state, the mixture was centrifuged at 10,000 rpm for 5 minutes, and the supernatant was removed to collect the particles.
(実施例9)
表1に示すように、pHを3まで下げた点を除いて、実施例8と同様の方法で粒子を析出させ、これを回収した。
Example 9
As shown in Table 1, particles were precipitated by the same method as in Example 8 except that the pH was lowered to 3 and recovered.
(実施例10)
表1に示すように、pHを1まで下げた点を除いて、実施例8と同様の方法で粒子を析出させた。なお、pHを1まで下げると、析出した粒子が凝集して沈降堆積したので、ろ過することによって粒子を回収した。
(Example 10)
As shown in Table 1, particles were precipitated in the same manner as in Example 8 except that the pH was lowered to 1. When the pH was lowered to 1, the precipitated particles aggregated and settled, and the particles were collected by filtration.
実施例1〜10について、得られた粒子をそのままX線回折装置(MiniFlexII型 Rigaku社製)を用いてX線結晶構造解析を行ったところ、図1に示すX線回折チャートが得られた。このX線回折チャートは、いずれもシャープなピークを持たず、幅の広いハローパターンを有しており、得られた粒子はいずれも結晶性の低いアモルファス粒子であることが分かる。 For Examples 1 to 10, the obtained particles were subjected to X-ray crystal structure analysis as they were using an X-ray diffractometer (MiniFlex II type, manufactured by Rigaku), and the X-ray diffraction chart shown in FIG. 1 was obtained. None of the X-ray diffraction charts have a sharp peak and a wide halo pattern, and it can be seen that the obtained particles are amorphous particles having low crystallinity.
また、実施例1〜10について、得られた粒子の化学組成を走査型電子顕微鏡/エネルギー分散型X線分光装置(SEM−EDX)(日本電子社製JSM−70001FA)を用いて分析すると共に、得られた粒子の個数平均粒子径を粒子径分析装置(Malvem社製 ゼータサイザーナノZS)を用いて動的光散乱法(DLS)で測定した。分析結果及び測定結果を表2に示す。 For Examples 1 to 10, the chemical composition of the obtained particles was analyzed using a scanning electron microscope / energy dispersive X-ray spectrometer (SEM-EDX) (JSM-70001FA manufactured by JEOL Ltd.), The number average particle size of the obtained particles was measured by a dynamic light scattering method (DLS) using a particle size analyzer (Zetasizer Nano ZS manufactured by Malvem). The analysis results and measurement results are shown in Table 2.
表2から、実施例1〜10により得られた粒子は、いずれも酸素及びカリウムを含むアンチモン化合物であることが確認された。 From Table 2, it was confirmed that the particles obtained in Examples 1 to 10 are all antimony compounds containing oxygen and potassium.
また、表2から分かるように、三酸化二アンチモンを出発原料とし、脱塩処理を行うことでpHを下げた後、低濃度の塩酸を平衡状態で添加した実施例1、2及びヘキサヒドロキソアンチモン酸カリウム水溶液を出発原料とし、低濃度の塩酸を平衡状態で添加した実施例3、4では、粒子径が10nm前後の超微粒子のアンチモン化合物を生成することができた。 Further, as can be seen from Table 2, Examples 1 and 2 and hexahydroxoantimony in which diantimony trioxide was used as a starting material, pH was lowered by desalting, and then low concentration hydrochloric acid was added in an equilibrium state. In Examples 3 and 4 in which a potassium acid aqueous solution was used as a starting material and low concentration hydrochloric acid was added in an equilibrium state, ultrafine antimony compounds having a particle diameter of about 10 nm could be produced.
また、表2から分かるように、三酸化二アンチモンを出発原料とし、脱塩処理を行わない高pHの溶液に高濃度の塩酸を非平衡状態で添加した実施例5〜7及びヘキサヒドロキソアンチモン酸カリウム水溶液を出発原料とし、高濃度の塩酸を非平衡状態で添加した実施例8〜10では、粒子径が数十nm程度の微粒子のアンチモン化合物を生成することができた。 Further, as can be seen from Table 2, Examples 5 to 7 and hexahydroxoantimonic acid in which diantimony trioxide was used as a starting material and high concentration hydrochloric acid was added in a non-equilibrium state to a high pH solution without desalting treatment In Examples 8 to 10 in which a potassium aqueous solution was used as a starting material and high concentration hydrochloric acid was added in a non-equilibrium state, fine antimony compounds having a particle diameter of about several tens of nanometers could be produced.
以上のように、実施例1、2、5〜7では、任意の粒子径の三酸化二アンチモンを原料として用い、室温下で、水酸化カリウム水溶液の添加、含オゾンガスの通気及び酸の添加という簡易な工程によって、平均粒子径が数十nm(45nm)以下のアンチモン化合物微粒子を製造することができる。特に、実施例1、2のように、含オゾンガスを通気することによって三酸化二アンチモンを溶解させた水溶液に対して、2−プロパノールを用いて脱塩処理した後、水溶液全体のpHが略均一な平衡状態を保つように、塩酸を加えてpHを4以下に低下させることで、生成されるアンチモン化合物微粒子を10nm前後に微小化することができる。 As described above, in Examples 1, 2, and 5-7, diantimony trioxide having an arbitrary particle size is used as a raw material, and at room temperature, addition of an aqueous potassium hydroxide solution, ventilation of ozone-containing gas, and addition of an acid. By a simple process, antimony compound fine particles having an average particle diameter of several tens nm (45 nm) or less can be produced. In particular, as in Examples 1 and 2, an aqueous solution in which diantimony trioxide was dissolved by aeration with ozone-containing gas was desalted using 2-propanol, and then the pH of the entire aqueous solution was substantially uniform. By adding hydrochloric acid and lowering the pH to 4 or less so as to maintain a stable equilibrium state, the produced antimony compound fine particles can be reduced to around 10 nm.
また、実施例3、4、8〜10では、ヘキサヒドロキソアンチモン酸カリウム水溶液を原料として用い、室温下で、酸の添加という簡易な工程によって、平均粒子径が数十nm(30nm)以下のアンチモン化合物微粒子を製造することができ、特に、実施例3、4のように、水溶液全体のpHが略均一な平衡状態を保つように、塩酸を加えてpHを4以下に低下させることで、生成されるアンチモン化合物微粒子を10nm以下に微小化することができる。 In Examples 3, 4, and 8 to 10, antimony having an average particle diameter of several tens of nanometers (30 nm) or less is obtained by a simple process of adding an acid at room temperature using a potassium hexahydroxoantimonate aqueous solution as a raw material. Compound fine particles can be produced. In particular, as in Examples 3 and 4, the pH is lowered to 4 or less by adding hydrochloric acid so that the pH of the entire aqueous solution is maintained in a substantially uniform equilibrium state. The antimony compound fine particles to be produced can be miniaturized to 10 nm or less.
さらに、実施例2、4、7、10のように、pHを1以下に低下させることで、アンチモン化合物微粒子の収量を大幅に増大させることができ、簡易なろ過操作によって容易に分離することができる。 Furthermore, as in Examples 2, 4, 7, and 10, the yield of antimony compound fine particles can be greatly increased by lowering the pH to 1 or less, and can be easily separated by a simple filtration operation. it can.
なお、上述した実施例1,2、5〜7では、pH14(1mol/L)に調整した水酸化カリウム水溶液を使用しているが、これに限定されるものではなく、水酸化カリウム水溶液のpHは14以上であればよい。 In Examples 1, 2, and 5 to 7 described above, an aqueous potassium hydroxide solution adjusted to pH 14 (1 mol / L) is used, but is not limited to this, and the pH of the aqueous potassium hydroxide solution is not limited thereto. May be 14 or more.
また、上述した実施例1〜10では、アンチモン化合物微粒子を析出させるために塩酸を添加しているが、これに限定されるものではなく、硫酸、酢酸等の種々の酸を使用することも可能である。 In Examples 1 to 10 described above, hydrochloric acid is added to precipitate the antimony compound fine particles. However, the present invention is not limited to this, and various acids such as sulfuric acid and acetic acid can also be used. It is.
また、上述した実施例1、2では、含オゾンガスを通気することによって三酸化二アンチモンを溶解させた水溶液に対して、2−プロパノールを用いて脱塩処理を行っているが、これに限定されるものではなく、エタノール等、種々のアルコールを用いて脱塩処理を行うことも可能である。 In Examples 1 and 2 described above, desalting treatment is performed using 2-propanol on an aqueous solution in which diantimony trioxide is dissolved by aeration with ozone-containing gas. However, the present invention is not limited to this. However, desalting may be performed using various alcohols such as ethanol.
また、上述した実施例1、2、5〜7では、三酸化二アンチモンにpH14に調整した水酸化カリウム水溶液を加えているが、これに限定されるものではなく、水酸化カリウム水溶液に代えて、pH14以上に調整した、水酸化セシウム水溶液または水酸化ルビジウム水溶液を加えることによっても、同様のアンチモン化合物微粒子を生成することができる。 Moreover, in Example 1, 2, 5-7 mentioned above, although potassium hydroxide aqueous solution adjusted to pH14 is added to diantimony trioxide, it is not limited to this, It replaces with potassium hydroxide aqueous solution. The same antimony compound fine particles can also be produced by adding a cesium hydroxide aqueous solution or a rubidium hydroxide aqueous solution adjusted to pH 14 or higher.
また、上述した実施例1、2、5〜7では、三酸化二アンチモンにpH14に調整した水酸化カリウム水溶液を加えた後、含オゾンガスを通気しているが、これに限定されるものではなく、オゾンガスを通気するのではなく、pH14以上に調整した、オゾン含有水酸化カリウム水溶液、オゾン含有水酸化セシウム水溶液またはオゾン含有水酸化ルビジウム水溶液を加えることによっても、同様のアンチモン化合物微粒子を生成することができる。このときに使用するオゾン含有水酸化カリウム水溶液、オゾン含有水酸化セシウム水溶液またはオゾン含有水酸化ルビジウム水溶液は、出発物質である三酸化二アンチモンの濃度が1Mol/Lに対してオゾン濃度が1ppm以上であることが好ましく、出発物質である三酸化二アンチモンの濃度が1Mol/Lに対してオゾン濃度が5ppm以上であることがより好ましい。 Moreover, in Examples 1, 2, and 5-7 mentioned above, after adding the potassium hydroxide aqueous solution adjusted to pH14 to diantimony trioxide, the ozone-containing gas is ventilated, but it is not limited to this. The same antimony compound fine particles can also be produced by adding ozone-containing potassium hydroxide aqueous solution, ozone-containing cesium hydroxide aqueous solution or ozone-containing rubidium hydroxide aqueous solution adjusted to pH 14 or higher, instead of ventilating ozone gas. Can do. The ozone-containing potassium hydroxide aqueous solution, the ozone-containing cesium hydroxide aqueous solution or the ozone-containing rubidium hydroxide aqueous solution used at this time has an ozone concentration of 1 ppm or more with respect to 1 mol / L of the concentration of diantimony trioxide as a starting material. It is preferable that the concentration of diantimony trioxide, which is a starting material, is more preferably 5 ppm or more with respect to 1 mol / L.
また、上述した実施例1,2、5〜7では、三酸化二アンチモンを出発原料としているが、これに限定されるものではなく、出発原料は、五酸化二アンチモン、四酸化二アンチモン等の酸化アンチモンを使用しても、同様のアンチモン化合物微粒子を生成することができる。 Further, in Examples 1, 2, and 5 to 7 described above, diantimony trioxide is used as a starting material. However, the present invention is not limited to this, and the starting materials include diantimony pentoxide, diantimony tetroxide, and the like. Even when antimony oxide is used, similar antimony compound fine particles can be produced.
また、上述した実施例3、4、8〜10では、ヘキサヒドロキソアンチモン酸カリウム水溶液を出発原料としているが、これに限定されるものではなく、ヘキサヒドロキソアンチモン酸セシウム水溶液またはヘキサヒドロキソアンチモン酸ルビジウム水溶液を出発原料としても、同様のアンチモン化合物微粒子を生成することができる。 In Examples 3, 4, and 8 to 10 described above, a potassium hexahydroxoantimonate aqueous solution is used as a starting material. However, the present invention is not limited to this, and an aqueous cesium hexahydroxoantimonate solution or an aqueous rubidium hexahydroxoantimonate solution. The same antimony compound fine particles can be produced using as a starting material.
また、上述した各実施例では、非晶質のアンチモン化合物微粒子が生成されたが、本発明のアンチモン化合物微粒子の製造方法により得られるアンチモン化合物微粒子は非晶質粒子に限定されるものではなく、例えば、実施例5〜10のように、含オゾンガスを通気することによって、三酸化二アンチモンを水酸化カリウム水溶液に溶解させた溶液に、部分的にpHが低い非平衡状態で高濃度の塩酸を添加することにより析出させた粒子を回収し、この粒子に2−プロパノール、エタノール等のアルコールを加えることで、粒子の結晶性を高めることができる。 Further, in each of the above-described examples, amorphous antimony compound fine particles were generated, but the antimony compound fine particles obtained by the method for producing antimony compound fine particles of the present invention are not limited to amorphous particles. For example, as in Examples 5 to 10, by adding ozone-containing gas, high concentration hydrochloric acid in a non-equilibrium state where the pH is partially low is added to a solution in which diantimony trioxide is dissolved in an aqueous potassium hydroxide solution. By collecting particles precipitated by addition and adding alcohol such as 2-propanol or ethanol to the particles, the crystallinity of the particles can be enhanced.
本発明は、アンチモン化合物の微粒子を製造する際に利用することができる。 The present invention can be used when producing fine particles of an antimony compound.
Claims (6)
酸化アンチモン粒子に、1mol/L以上の濃度を有する、水酸化カリウム水溶液、水酸化セシウム水溶液または水酸化ルビジウム水溶液を加えて懸濁液を生成し、この懸濁液にオゾンガスを通気することによって酸化アンチモン粒子を溶解させた後、酸を加えてpHを低下させることで、平均粒子径が100nm以下のアンチモン化合物微粒子を析出させ、これを分離することを特徴とするアンチモン化合物微粒子の製造方法。 A method for producing antimony compound fine particles having an average particle size of 100 nm or less,
A suspension is formed by adding a potassium hydroxide aqueous solution, a cesium hydroxide aqueous solution or a rubidium hydroxide aqueous solution having a concentration of 1 mol / L or more to the antimony oxide particles, and ozone gas is passed through the suspension to oxidize. A method for producing antimony compound fine particles, comprising dissolving antimony particles, and then adding acid to lower the pH to precipitate antimony compound fine particles having an average particle size of 100 nm or less and separating them.
酸化アンチモン粒子に、1mol/L以上の濃度を有する、水酸化カリウム、水酸化セシウムまたは水酸化ルビジウムのオゾン含有水を加えることによって酸化アンチモン粒子を溶解させた後、酸を加えてpHを低下させることで、平均粒子径が100nm以下のアンチモン化合物微粒子を析出させ、これを分離することを特徴とするアンチモン化合物微粒子の製造方法。 A method for producing antimony compound fine particles having an average particle size of 100 nm or less,
Antimony oxide particles are dissolved by adding ozone-containing water of potassium hydroxide, cesium hydroxide or rubidium hydroxide having a concentration of 1 mol / L or more to antimony oxide particles, and then acid is added to lower the pH. Thus, the antimony compound fine particles having an average particle diameter of 100 nm or less are precipitated and separated.
ヘキサヒドロキソアンチモン酸カリウム水溶液、ヘキサヒドロキソアンチモン酸セシウム水溶液またはヘキサヒドロキソアンチモン酸ルビジウム水溶液に酸を加えてpHを低下させることで、平均粒子径が100nm以下のアンチモン化合物微粒子を析出させ、これを分離することを特徴とするアンチモン化合物微粒子の製造方法。 A method for producing antimony compound fine particles having an average particle size of 100 nm or less,
By adding an acid to potassium hexahydroxoantimonate aqueous solution, cesium hexahydroxoantimonate aqueous solution or rubidium hexahydroxoantimonate aqueous solution to lower the pH, antimony compound fine particles having an average particle size of 100 nm or less are precipitated and separated. A method for producing antimony compound fine particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017112142A JP2018203578A (en) | 2017-06-07 | 2017-06-07 | Method for manufacturing antimony compound fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017112142A JP2018203578A (en) | 2017-06-07 | 2017-06-07 | Method for manufacturing antimony compound fine particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018203578A true JP2018203578A (en) | 2018-12-27 |
Family
ID=64955106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017112142A Pending JP2018203578A (en) | 2017-06-07 | 2017-06-07 | Method for manufacturing antimony compound fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018203578A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD975252S1 (en) | 2019-10-25 | 2023-01-10 | Caterpillar Inc. | Heating channel |
-
2017
- 2017-06-07 JP JP2017112142A patent/JP2018203578A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD975252S1 (en) | 2019-10-25 | 2023-01-10 | Caterpillar Inc. | Heating channel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8557217B2 (en) | Low temperature process for producing nano-sized titanium dioxide particles | |
KR101197386B1 (en) | Process for manufacture of nanometric, monodisperse, and stable metallic silver and product obtained therefrom | |
JP5770675B2 (en) | Method for producing lithium sulfide | |
JP5107637B2 (en) | Iron arsenate powder | |
WO2012043564A1 (en) | Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each | |
WO2010131686A1 (en) | Scorodite-type iron-arsenic compound particles, production method, and arsenic-containing solid | |
US10364157B2 (en) | Process for producing high grade hydromagnesite and magnesium oxide | |
JP5179095B2 (en) | Method for producing high-purity aluminum hydroxide and high-purity aluminum hydroxide obtained by the method | |
JPWO2008056744A1 (en) | Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained thereby | |
CN103588246A (en) | Preparation process for nano zirconia powder | |
JP2018203578A (en) | Method for manufacturing antimony compound fine particles | |
JP2008230915A (en) | Electrically conductive zinc oxide particle and method for manufacturing the same | |
JP5510521B2 (en) | Photocatalyst particle dispersion and process for producing the same | |
JPH0729773B2 (en) | Method for producing organoantimony pentaoxide sol | |
CN112408362B (en) | Carbon quantum dot and preparation method and application thereof | |
JP2019001685A (en) | Method for producing sodium hexahydroxoantimonate fine particles | |
JP5291980B2 (en) | Core-shell mesoporous silica particles | |
JP5081438B2 (en) | Method for producing magnesium oxide | |
JP5274892B2 (en) | Method for producing fibrous basic magnesium sulfate particles | |
JP2011063494A (en) | Cylindrical indium tin oxide powder and method for producing the same | |
JP2009184839A (en) | Silica nanosheet, method for producing the same and dispersion of silica nanosheet in organic solvent | |
DE69703925T2 (en) | Process for producing spherical yttrium oxide particles | |
WO2021210212A1 (en) | Tubular iron oxide particles, method for producing same, and antibacterial red pigment | |
JP6774014B2 (en) | Method for producing metal oxide nanoparticles | |
US20120199788A1 (en) | Crosslinking Initiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170822 |