JP2018126721A - filter - Google Patents
filter Download PDFInfo
- Publication number
- JP2018126721A JP2018126721A JP2017023436A JP2017023436A JP2018126721A JP 2018126721 A JP2018126721 A JP 2018126721A JP 2017023436 A JP2017023436 A JP 2017023436A JP 2017023436 A JP2017023436 A JP 2017023436A JP 2018126721 A JP2018126721 A JP 2018126721A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- nonwoven fabric
- filtration
- filter
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 claims abstract description 153
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 119
- 238000001914 filtration Methods 0.000 claims abstract description 109
- 238000002844 melting Methods 0.000 claims abstract description 26
- 230000008018 melting Effects 0.000 claims abstract description 20
- 230000006835 compression Effects 0.000 claims abstract description 18
- 238000007906 compression Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 61
- 239000000843 powder Substances 0.000 abstract description 20
- 238000004804 winding Methods 0.000 abstract description 9
- 239000000758 substrate Substances 0.000 abstract description 6
- 230000002776 aggregation Effects 0.000 abstract description 3
- 238000004220 aggregation Methods 0.000 abstract description 2
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract 13
- 239000011229 interlayer Substances 0.000 abstract 1
- 239000011800 void material Substances 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 27
- 239000002131 composite material Substances 0.000 description 22
- 239000000306 component Substances 0.000 description 20
- -1 polypropylene Polymers 0.000 description 20
- 239000004744 fabric Substances 0.000 description 19
- 239000002245 particle Substances 0.000 description 17
- 239000004743 Polypropylene Substances 0.000 description 16
- 239000004750 melt-blown nonwoven Substances 0.000 description 16
- 229920001155 polypropylene Polymers 0.000 description 16
- 229920005992 thermoplastic resin Polymers 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 229920004889 linear high-density polyethylene Polymers 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は、スラリーや、固形分を含むゲル状流体を濾過するためのフィルターに関する。 The present invention relates to a filter for filtering a slurry or a gel fluid containing a solid content.
スラリーや、固形分を含むゲル状流体を濾過するためのフィルターでは、必要な濾過精度を確保し、フィルターの使用可能時間や累積流量(濾過ライフ)を長くするために、多層構造を採用することが知られている。 For filters for filtering slurries and gel-like fluids containing solids, use a multilayer structure to ensure the required filtration accuracy and to increase the usable time and cumulative flow rate (filter life) of the filter. It has been known.
特許文献1は、粘性流体の濾過において、濾過精度が差圧により変化したり、フィルター寿命が短くなる問題を解消したりするとともに、脈圧や高差圧が生じても柔らかいゲル状固形物を捕捉しうるフィルターを提案している。特許文献1の発明は、フィルターの主濾過層において、圧着処理して空隙率50〜80%とした第一の主濾過層と、圧着処理していない空隙率80%以上の第二の主濾過層とを有し、第二の主濾過不織布は、空隙率が第一の主濾過不織布の1.2倍以上となるように構成するものである。 Patent Document 1 discloses that, in the filtration of viscous fluid, the filtration accuracy changes due to the differential pressure or the problem that the filter life is shortened is solved, and a soft gel-like solid is removed even if a pulse pressure or a high differential pressure occurs. A filter that can be captured is proposed. The invention of Patent Document 1 includes a first main filtration layer having a porosity of 50 to 80% by pressure bonding in the main filtration layer of the filter, and a second main filtration having a porosity of 80% or more that has not been pressure-bonded. The second main filtration nonwoven fabric is configured such that the porosity is 1.2 times or more that of the first main filtration nonwoven fabric.
また、濾過後の乾燥時間の短縮や揮発した液体の凝縮量の減容化を図るために、フィルターに通される流体の固形分濃度は、高いことが好ましい。しかしながら、固形分濃度が高くなると、固形分である粉体粒子同士の相互作用が強まり、粘度が増加するなどして、流体の流動性が低下する傾向がある。このような流体では、粉体の粒子がフィルターを通過するときに、粉体の凝集(ブリッジ)が生じてみかけ粒径が増大することによって、フィルターの目詰まりが生じる問題が知られている。ブリッジの発生はフィルターの濾過ライフを縮めるだけでなく、濾過後の製品の歩留まり低下にも繋がるため、ブリッジの発生を抑止できるフィルターが検討されている。 Moreover, in order to shorten the drying time after filtration and to reduce the volume of condensed volatilized liquid, it is preferable that the solid content concentration of the fluid passed through the filter is high. However, when the solid content concentration is increased, the interaction between the powder particles that are the solid content is increased and the viscosity is increased, and thus the fluidity of the fluid tends to decrease. In such a fluid, there is a known problem that when the particles of the powder pass through the filter, the powder is agglomerated (bridged) and the apparent particle size increases, thereby clogging the filter. The occurrence of bridging not only shortens the filtration life of the filter but also leads to a decrease in the yield of the product after filtration. Therefore, a filter that can suppress the occurrence of bridging has been studied.
特許文献2は、多層構造のフィルター中の濾過層に着目し、濾過層を構成する不織布の厚み方向の繊維密度を疎密化すること、すなわち、濾過層において積層された不織布の層間に適度な間隙を付与することで、流体に含まれる粉体の分散を図り、ブリッジの形成を抑制することを提案している。特許文献2の発明は、さらに特定の構成によって他の層の細孔径も制御することで、ブリッジの発生を抑え、濾過精度にも優れたフィルターを提供しようとするものである。 Patent document 2 pays attention to the filtration layer in the multilayer filter, and densifies the fiber density in the thickness direction of the nonwoven fabric constituting the filtration layer, that is, an appropriate gap between the nonwoven fabric layers laminated in the filtration layer. Has been proposed to disperse the powder contained in the fluid and suppress the formation of bridges. The invention of Patent Document 2 intends to provide a filter that suppresses the occurrence of bridges and is excellent in filtration accuracy by also controlling the pore diameter of other layers by a specific configuration.
しかしながら、より高濃度あるいは高粘度の流体を濾過することが可能で、かつ濾過ライフの長いフィルターが求められている。すなわち本発明は、固形分を含む流体の濾過用フィルターであって、高濃度あるいは高粘度の流体に対しても濾過精度が高く、濾過ライフの長いフィルターを提供することを課題とする。 However, there is a need for a filter that can filter a fluid having a higher concentration or viscosity and that has a longer filtration life. That is, an object of the present invention is to provide a filter for filtering a fluid containing a solid content, which has a high filtration accuracy even for a fluid having a high concentration or high viscosity and has a long filtration life.
発明者は前記課題を解決するために検討を進め、基材層、濾過層及び表皮層の3層を有するフィルターにおいて、ブリッジの発生を抑止するためには、濾過層の構成に加えて、濾過層の下流側の層である基材層の構成が大きく影響することを見出した。そして、基材層の空隙率及び圧縮比を特定の範囲内にすることによって、高濃度あるいは高粘度の流体を濾過する場合にも濾過ライフが長く、濾過精度にも優れたフィルターが得られることを見出し、本発明に至った。 In order to suppress the occurrence of bridging in a filter having three layers of a base material layer, a filtration layer, and a skin layer, the inventor has proceeded with studies to solve the above-described problems. It has been found that the configuration of the base material layer, which is a layer on the downstream side of the layer, greatly affects. And, by setting the porosity and compression ratio of the base material layer within a specific range, a filter having a long filtration life and excellent filtration accuracy can be obtained even when filtering a high-concentration or high-viscosity fluid. And found the present invention.
すなわち本発明は以下の構成を有する。
[1]基材層と、濾過層と、表皮層と、を有するフィルターであって、
前記基材層は、不織布が多重に巻回され、熱圧着されてなる層であって、空隙率が0.61〜0.84、かつ、0.5MPaの荷重を掛けたときの圧縮比が0.18以下であり、
前記濾過層は、厚み方向にも繊維が配向している不織布とネットとを積層した積層体が多重に巻回されてなる層であって、濾過層中の層間は接着されておらず、
前記表皮層は、不織布を含む層であって、表皮層を構成する不織布の平均繊維径は、前記濾過層を構成する不織布の平均繊維径の2倍以上である、フィルター。
[2]前記基材層の不織布を構成する繊維が、高融点成分と低融点成分との融点差が10℃以上である熱融着性複合繊維を含む、[1]に記載のフィルター。
[3]前記表皮層の不織布を構成する繊維の平均繊維径が、前記濾過層を構成する繊維の平均繊維径の2〜20倍である、[1]又は[2]に記載のフィルター。
[4]前記基材層の不織布と前記表皮層の不織布とが、同一の不織布である、[1]〜[3]のいずれか1項に記載のフィルター。
[5][1]〜[4]のいずれか1項に記載のフィルターを有する、円筒型フィルター。
That is, the present invention has the following configuration.
[1] A filter having a base material layer, a filtration layer, and a skin layer,
The base material layer is a layer in which a nonwoven fabric is wound in multiple layers and thermocompression bonded, and the compression ratio when the porosity is 0.61 to 0.84 and a load of 0.5 MPa is applied. 0.18 or less,
The filtration layer is a layer in which a laminate in which fibers are oriented in the thickness direction and a laminate of laminated nets is wound in multiple layers, and the layers in the filtration layer are not bonded,
The said skin layer is a layer containing a nonwoven fabric, Comprising: The average fiber diameter of the nonwoven fabric which comprises a skin layer is a filter which is 2 times or more of the average fiber diameter of the nonwoven fabric which comprises the said filtration layer.
[2] The filter according to [1], wherein the fibers constituting the nonwoven fabric of the base material layer include a heat-fusible conjugate fiber having a melting point difference of 10 ° C. or higher between the high melting point component and the low melting point component.
[3] The filter according to [1] or [2], wherein an average fiber diameter of fibers constituting the nonwoven fabric of the skin layer is 2 to 20 times an average fiber diameter of fibers constituting the filtration layer.
[4] The filter according to any one of [1] to [3], wherein the nonwoven fabric of the base material layer and the nonwoven fabric of the skin layer are the same nonwoven fabric.
[5] A cylindrical filter having the filter according to any one of [1] to [4].
本発明によれば、高濃度で粘性を有するスラリーや固形分を含む流体に対しても、濾過精度に優れるとともに、粉体の凝集(ブリッジ)が発生しにくく、濾過ライフの長いフィルターを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the filtration precision also with respect to the fluid which contains a slurry and solid content which are highly concentrated, and it is hard to generate | occur | produce agglomeration (bridge) of powder, and provides a filter with a long filtration life. be able to.
本発明のフィルターは、基材層と、濾過層と、表皮層と、を有するフィルターであって、基材層は不織布が多重に巻回され、熱圧着されてなる層であって、空隙率が0.61〜0.84、かつ、0.5MPaの荷重を掛けたときの圧縮比が0.18以下であり、濾過層は、厚み方向にも繊維が配向している不織布とネットとを積層した積層体が多重に巻回されてなる層であって、濾過層中で不織布の層がネットによって数層に分割されており、また、表皮層は、不織布を含む層であって、表皮層を構成する不織布の平均繊維径は、前記濾過層を構成する不織布の平均繊維径の2倍以上であるという構成を有する。 The filter of the present invention is a filter having a base material layer, a filtration layer, and a skin layer, and the base material layer is a layer in which a nonwoven fabric is wound in multiple layers and thermocompression-bonded, and the porosity is Is 0.61 to 0.84, and the compression ratio when a load of 0.5 MPa is applied is 0.18 or less, and the filtration layer includes a nonwoven fabric and a net in which fibers are also oriented in the thickness direction. The laminated body is a layer in which multiple layers are wound, and the nonwoven fabric layer is divided into several layers by the net in the filtration layer, and the skin layer is a layer containing the nonwoven fabric, The average fiber diameter of the nonwoven fabric which comprises a layer has the structure that it is 2 times or more of the average fiber diameter of the nonwoven fabric which comprises the said filtration layer.
本発明のフィルターは、平型、円筒型などさまざまな形とすることができる。特に、円筒型にすると、耐圧強度が高くなり、また、濾材部分のみ交換するいわゆるカートリッジフィルターとして使う場合には、フィルター容器の設計がしやすくなるため好ましい。 The filter of the present invention can have various shapes such as a flat shape and a cylindrical shape. In particular, the cylindrical type is preferable because the pressure resistance is high and the filter container can be easily designed when used as a so-called cartridge filter in which only the filter medium portion is replaced.
<濾過層>
本発明のフィルターの濾過層は、基材層と表皮層の間に存在し、厚み方向にも繊維が配向している不織布とネットとを積層した積層体が多重に巻回されている。ここで、「厚み方向にも繊維が配向している不織布」とは、不織布の厚み方向(濾過する流体の流れ方向)と面方向(濾過する流体の垂直方向)との両方に繊維配向が分布している不織布を意味し、典型的には、構成繊維が曲率を持っている不織布を意味する。厚み方向にも繊維が配向している不織布は、空隙率が高く、弾性を有し、嵩高いという特徴を有する。このため、流体の圧力損失が低減され、高濃度で粘性を有する流体であっても滞留することなく濾過を行える。また、このような不織布とネットとを積層することで、実質的な濾過機能を担う濾過層不織布の間に適度な間隙が形成される。そのため濾過層内での流体ないし流体内の固形分の流動性が向上して、ブリッジの形成が抑制される。また、濾過層中の不織布の間に間隙を有することで、不織布の重層による細孔の狭小化や閉塞が回避されるため、濾過精度に優れる。さらに、濾過層中を構成する不織布の層がネットによって数層に分割されていることによって、濾過層内で不織布中の繊維がわずかに動くことができ、流体や流体中の固形分の流動性がさらに向上するとともに、ネットによって濾過層の形状が保持されるため、濾過性能が安定的に発揮される。
<Filtration layer>
The filter layer of the filter of the present invention is present between the base material layer and the skin layer, and a laminated body in which a nonwoven fabric in which fibers are oriented in the thickness direction and a net are laminated is wound in multiple layers. Here, “nonwoven fabric in which fibers are also oriented in the thickness direction” means that the fiber orientation is distributed in both the thickness direction of the nonwoven fabric (flow direction of the fluid to be filtered) and the surface direction (vertical direction of the fluid to be filtered). It typically means a nonwoven fabric in which the constituent fibers have a curvature. A nonwoven fabric in which fibers are also oriented in the thickness direction has characteristics of high porosity, elasticity, and bulkiness. For this reason, the pressure loss of the fluid is reduced, and even a fluid having a high concentration and viscosity can be filtered without staying. In addition, by laminating such a nonwoven fabric and a net, an appropriate gap is formed between the filtration layer nonwoven fabrics having a substantial filtration function. Therefore, the fluidity of the fluid in the filtration layer or the solid content in the fluid is improved, and the formation of the bridge is suppressed. In addition, by providing a gap between the nonwoven fabrics in the filtration layer, narrowing and clogging of pores due to the multilayered nonwoven fabric can be avoided, so that the filtration accuracy is excellent. Furthermore, since the nonwoven fabric layer constituting the filtration layer is divided into several layers by the net, the fibers in the nonwoven fabric can move slightly within the filtration layer, and the fluidity of the fluid and solids in the fluid Is further improved, and the shape of the filtration layer is retained by the net, so that the filtration performance is stably exhibited.
構成繊維の曲率は、構成繊維の直径に対し、50〜500倍の範囲であることが好ましい。この値が500倍以下であることで、厚み方向の繊維の配向が十分なものとなり、前記の効果を得やすくなる。この値が50倍以上であることで、フィルターの円周方向の繊維の配向が十分なものとなる。 The curvature of the constituent fiber is preferably in the range of 50 to 500 times the diameter of the constituent fiber. When this value is 500 times or less, the orientation of the fibers in the thickness direction becomes sufficient, and the above-mentioned effect is easily obtained. When this value is 50 times or more, the fiber orientation in the circumferential direction of the filter becomes sufficient.
一般的には、高空隙で嵩高な不織布は厚み方向の圧縮で容易に潰れる場合が多いが、本発明の濾過層に用いる不織布は、繊維を厚み方向にも配向させることで、厚み方向に対する強度を得ることができる。 In general, a high-gap and bulky nonwoven fabric is often easily crushed by compression in the thickness direction, but the nonwoven fabric used in the filtration layer of the present invention has strength in the thickness direction by orienting the fibers also in the thickness direction. Can be obtained.
このような不織布は、安定した性能を維持するために、不織布中の繊維の交点で、繊維同士が融着及び/又は接着していることが好ましい。このことから、不織布を構成する繊維として熱融着性複合繊維が好ましく利用できる。熱融着性複合繊維の種類は、特に限定されず、公知の複合繊維を使用することができる。熱融着性複合繊維としては、融点差を有する2種類以上の成分からなる複合繊維が使用でき、具体的には、高融点成分と低融点成分とからなる複合繊維が例示できる。複合繊維の高融点成分としては、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ナイロン6、ナイロン6,6、ポリ-L-乳酸などの熱可塑性樹脂が例示でき、複合繊維の低融点成分としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレンなどのポリエチレン(PE)、ポリエチレンテレフタレート共重合体、ポリ-DL-乳酸、プロピレン共重合体、ポリプロピレンなどの熱可塑性樹脂が例示できる。熱融着性複合繊維の高融点成分と低融点成分の融点差は、特に限定されないが、熱融着の加工温度幅を広くするためには、10℃以上であることが好ましく、30℃以上であることがより好ましい。また、複合の形態は特に限定されないが、同心鞘芯型、偏心鞘芯型、並列型、海島型、放射状型などの複合形態を採用することができる。また、熱融着性複合繊維の断面形状も特に限定されないが、例えば、円、楕円、三角、四角、U型、ブーメラン型、八葉型などの異型、中空など、いずれの断面形状であってもよい。複合繊維として、例えば、PE/PP複合繊維、PE/PET複合繊維などが挙げられる。また、濾過物の特性や目的によって、フッ素系繊維やガラス繊維などの特殊繊維が混紡されていてもよい。 In order to maintain stable performance, such a nonwoven fabric preferably has fibers fused and / or bonded at the intersection of the fibers in the nonwoven fabric. From this, a heat-fusible conjugate fiber can be preferably used as the fiber constituting the nonwoven fabric. The kind of heat-fusible conjugate fiber is not particularly limited, and a known conjugate fiber can be used. As the heat-fusible conjugate fiber, a conjugate fiber composed of two or more components having a difference in melting point can be used, and specifically, a conjugate fiber composed of a high melting point component and a low melting point component can be exemplified. Examples of the high melting point component of the composite fiber include thermoplastic resins such as polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate, polytrimethylene terephthalate, nylon 6, nylon 6,6, and poly-L-lactic acid. The low melting point component of the composite fiber includes polyethylene (PE) such as low density polyethylene, linear low density polyethylene, and high density polyethylene, polyethylene terephthalate copolymer, poly-DL-lactic acid, propylene copolymer, polypropylene, etc. These thermoplastic resins can be exemplified. The difference in melting point between the high-melting component and the low-melting component of the heat-fusible composite fiber is not particularly limited, but is preferably 10 ° C. or more, and 30 ° C. or more in order to widen the processing temperature range of heat-sealing. It is more preferable that The composite form is not particularly limited, and composite forms such as a concentric sheath core type, an eccentric sheath core type, a parallel type, a sea island type, and a radial type can be employed. Also, the cross-sectional shape of the heat-fusible conjugate fiber is not particularly limited. For example, the cross-sectional shape may be any shape such as a circle, an ellipse, a triangle, a square, a U-shape, a boomerang type, an eight-leaf shape, a hollow shape, Also good. Examples of the composite fiber include PE / PP composite fiber and PE / PET composite fiber. Further, special fibers such as fluorine fibers and glass fibers may be blended depending on the characteristics and purpose of the filtrate.
本発明のフィルターの濾過層に用いる、厚み方向にも繊維が配向している不織布を構成する繊維の繊維径は、0.1〜200μmの範囲であることが好ましく、1〜100μmの範囲の繊維径であることがより好ましく、15〜60μmの範囲の繊維径であることが最も好ましい。0.1〜200μmの範囲の繊維径とすることで、得られる不織布は、嵩高性と弾性に優れる。細い繊維径の繊維を使用すれば、捕集効率は向上するが濾過ライフ(寿命)が短くなる傾向がある。そのため、15〜60μmの範囲の繊維径とすることで、濾過ライフと濾過精度のバランスが特に良好となる。 The fiber diameter of the fiber constituting the nonwoven fabric in which the fibers are also oriented in the thickness direction used for the filtration layer of the filter of the present invention is preferably in the range of 0.1 to 200 μm, and the fiber in the range of 1 to 100 μm. The diameter is more preferable, and the fiber diameter is most preferably in the range of 15 to 60 μm. By setting the fiber diameter in the range of 0.1 to 200 μm, the obtained nonwoven fabric is excellent in bulkiness and elasticity. If fibers having a small fiber diameter are used, the collection efficiency is improved, but the filtration life (life) tends to be shortened. Therefore, the balance between the filtration life and the filtration accuracy is particularly good by setting the fiber diameter in the range of 15 to 60 μm.
厚み方向にも繊維が配向している不織布を構成する繊維の繊維径の分布は、狭いほど好ましい。具体的には、「繊維径の標準偏差÷平均値」の値が、0.3以下であることが好ましく、0.1以下であることが好ましく、0.08以下であることがさらに好ましい。繊維径分布を狭くするほど、濾過精度に優れたフィルターとなる。 The narrower the fiber diameter distribution of the fibers constituting the nonwoven fabric in which the fibers are oriented in the thickness direction, the better. Specifically, the value of “standard deviation of fiber diameter ÷ average value” is preferably 0.3 or less, preferably 0.1 or less, and more preferably 0.08 or less. The narrower the fiber diameter distribution, the better the filter.
厚み方向にも繊維が配向している不織布の目付は、繊維の材質、繊維径や粒子捕集効率との関係で、ある程度規定されるが、例えば、5〜40g/m2のものを用いることができ、より好ましくは、10〜30g/m2のものである。目付が5〜40g/m2であれば、濾過層の厚みと平均細孔径を調整するための選択範囲が広がるので、好ましい。 The basis weight of the nonwoven fabric in which the fibers are also oriented in the thickness direction is defined to some extent in relation to the fiber material, fiber diameter, and particle collection efficiency. For example, a fabric having a weight of 5 to 40 g / m 2 should be used. More preferably, it is a thing of 10-30 g / m < 2 >. A basis weight of 5 to 40 g / m 2 is preferable because the selection range for adjusting the thickness and average pore diameter of the filtration layer is widened.
不織布の繊維を厚み方向にも配向させる方法としては、例えば、不織布を構成する繊維として複合繊維を用いること、特に、繊維断面が非対称形である繊維、具体的には偏心鞘芯型複合繊維や並列型複合繊維を用いることができる。複合繊維の2つの成分として、熱収縮率が大きく異なるものを用いることで、いわゆるバイメタル効果により加熱工程で繊維に捲縮がかかるので、繊維の一部が厚み方向にも配向するようになる。 As a method of orienting the fibers of the nonwoven fabric also in the thickness direction, for example, using a composite fiber as a fiber constituting the nonwoven fabric, in particular, a fiber having a fiber cross-section that is asymmetrical, specifically, an eccentric sheath-core composite fiber, Side-by-side conjugate fibers can be used. As the two components of the composite fiber, those having greatly different heat shrinkage rates are used, so that the fiber is crimped in the heating process due to the so-called bimetallic effect, so that part of the fiber is also oriented in the thickness direction.
不織布の繊維を厚み方向にも配向させる別の方法としては、不織布を構成する繊維として機械捲縮を有する短繊維を用い、その繊維同士をカード機で交絡させてウェブとし、得られたウェブを加熱処理して不織布とする方法がある。繊維の持つ機械捲縮と、カード機による交絡により、繊維の一部が厚み方向にも配向するようになる。 As another method of orienting the fibers of the nonwoven fabric also in the thickness direction, short fibers having mechanical crimps are used as the fibers constituting the nonwoven fabric, and the fibers are entangled with a card machine to form a web. There is a method in which a non-woven fabric is obtained by heat treatment. Due to mechanical crimping of the fiber and entanglement by the card machine, a part of the fiber comes to be oriented in the thickness direction.
厚み方向にも繊維が配向している不織布を構成する繊維は、長繊維、短繊維のいずれも用いることができるが、前記の効果を発揮するためには短繊維が望ましい。 Both the long fibers and the short fibers can be used as the fibers constituting the nonwoven fabric in which the fibers are also oriented in the thickness direction, but short fibers are desirable in order to exhibit the above-described effects.
不織布中の繊維同士の交点を融着させる方法としては、繊維を熱風で加熱する方法、繊維を遠赤外線ヒーターで加熱する方法などが挙げられる。不織布の中で熱融着の程度を均質にするためには、繊維を熱風で加熱する方法が望ましい。 Examples of the method for fusing the intersections of the fibers in the nonwoven fabric include a method of heating the fibers with hot air and a method of heating the fibers with a far infrared heater. In order to make the degree of thermal fusion uniform in the nonwoven fabric, a method of heating the fiber with hot air is desirable.
また、濾過層に用いられるネットは、厚み方向にも繊維が配向している不織布間に挿入されて間隙を作り出すとともに、濾過層の形態を保持し、耐圧を維持・向上させるために用いられる。そのため、ネットは、50〜300μmの範囲の繊維径のモノフィラメントを用いることが好ましく、60〜280μmの範囲の繊維径のモノフィラメントを用いることがより好ましい。さらに、ネットの目合いは1〜5mmの範囲とすることが好ましく、1〜4mmの範囲とすることがより好ましい。この範囲のネットを用いることで、捕集効率に影響を与えず、かつフィルターの強度が確保されるため、より濾過ライフの長いフィルターを得ることができる。 Further, the net used for the filtration layer is inserted between the nonwoven fabrics in which the fibers are also oriented in the thickness direction to create a gap, and the shape of the filtration layer is maintained, and the pressure resistance is maintained and improved. Therefore, the net is preferably a monofilament having a fiber diameter in the range of 50 to 300 μm, and more preferably a monofilament having a fiber diameter in the range of 60 to 280 μm. Furthermore, the mesh of the net is preferably in the range of 1 to 5 mm, and more preferably in the range of 1 to 4 mm. By using a net in this range, the filter efficiency is not affected, and the strength of the filter is ensured, so that a filter with a longer filtration life can be obtained.
ネットを構成するモノフィラメントは、熱可塑性樹脂からなることが好ましく、単一構成繊維、複合繊維、混繊繊維が利用できる。モノフィラメントに使用できる熱可塑性樹脂は、溶融紡糸可能な熱可塑性樹脂であれば特に限定されず、単一の熱可塑性樹脂を用いても、2種類以上の熱可塑性樹脂の混合物を用いてもよい。モノフィラメントが複合繊維の場合、例えば、熱融着性複合繊維で例示したような熱可塑性樹脂の組み合わせが使用できる。モノフィラメントが熱融着性複合繊維の場合、複合繊維を構成する樹脂のうち低融点の熱可塑性樹脂が繊維表面の少なくとも一部を覆っており、この低融点の熱可塑性樹脂により、熱融着性複合繊維同士が熱融着してなるネットを用いることもできる。モノフィラメントに熱融着性複合繊維を用いると、ネットの交点が接着し、ネットの強度が上がるため、成形されたフィルターの強度もさらに高くなり、ネットを用いた効果を得やすくなる。熱可塑性樹脂としては、例えば、PE、PP、PET、ナイロン6、ナイロン6,6、ナイロン6,12等が挙げられ、PP又はナイロンが特に好ましい。 The monofilament constituting the net is preferably made of a thermoplastic resin, and single component fibers, composite fibers, and mixed fibers can be used. The thermoplastic resin that can be used for the monofilament is not particularly limited as long as it is a melt-spinnable thermoplastic resin, and a single thermoplastic resin or a mixture of two or more kinds of thermoplastic resins may be used. When the monofilament is a composite fiber, for example, a combination of thermoplastic resins as exemplified in the heat-fusible composite fiber can be used. When the monofilament is a heat-fusible conjugate fiber, a low-melting point thermoplastic resin covers at least a part of the fiber surface out of the resin constituting the conjugate fiber, and this low-melting point thermoplastic resin makes the heat-fusible property A net formed by heat-sealing composite fibers can also be used. When a heat-fusible conjugate fiber is used for the monofilament, the intersection of the nets adheres and the strength of the net is increased, so that the strength of the formed filter is further increased and the effect of using the net is easily obtained. Examples of the thermoplastic resin include PE, PP, PET, nylon 6, nylon 6,6, nylon 6,12, and the like, and PP or nylon is particularly preferable.
本発明のフィルターの濾過層は、少なくとも、上記の厚み方向にも繊維が配向している不織布と上記のネットとを積層した積層体を、多重に巻回して形成される。不織布とネットとの積層順は特に制限されないが、不織布とネットとを各1枚ずつ、すなわち、不織布とネットとが1層ずつ交互になるように巻くことが好ましい。このように形成された濾過層は、不織布の間に目の粗いネットが挟み込まれた構造になる。巻回の回数は目的とするフィルターのサイズや濾過性能に応じて適宜設定でき、特に制限されないが、例えば濾過層の厚みが5〜30mm程度になるように巻回することができる。 The filtration layer of the filter of the present invention is formed by multiplely winding a laminate in which a nonwoven fabric in which fibers are oriented in the thickness direction and the net are laminated. The stacking order of the nonwoven fabric and the net is not particularly limited, but it is preferable to wind the nonwoven fabric and the net one by one, that is, the nonwoven fabric and the net alternately. The filtration layer formed in this way has a structure in which a coarse net is sandwiched between nonwoven fabrics. The number of windings can be appropriately set according to the target filter size and filtration performance, and is not particularly limited. For example, the filtration layer can be wound to have a thickness of about 5 to 30 mm.
また、必要に応じて、濾過層中に、厚み方向にも繊維が配向している不織布とネット以外に、さらなる不織布やネット等が積層されていてもよい。例えば、上記の不織布とネットに加えて、基材層と同じ不織布や、上記の不織布よりも目の粗いメルトブロー不織布を挿入して3層構造の積層体を巻回し、濾過層の保形性や捕集効率を向上させることができる。メルトブロー不織布を用いる場合、基材層や表皮層に用いるのと同じメルトブロー不織布を好ましく用いることができる。 Further, if necessary, in addition to the nonwoven fabric and the net in which the fibers are oriented in the thickness direction, a further nonwoven fabric and a net may be laminated in the filtration layer. For example, in addition to the above nonwoven fabric and net, the same nonwoven fabric as the base material layer or a melt blown nonwoven fabric having a coarser mesh than the above nonwoven fabric is inserted to wind a three-layered laminate, The collection efficiency can be improved. When using a melt blown nonwoven fabric, the same melt blown nonwoven fabric as used for the base material layer and the skin layer can be preferably used.
<基材層>
基材層は、円筒形フィルターにおける円筒の内側、濾過される流体の下流側にあたる層であって、フィルターの強度を確保する機能を有する。本発明のフィルターの基材層は、不織布が多重に巻回され、熱圧着されてなる層であり、0.5MPaの荷重を掛けた場合の圧縮比が0.18以下であるという特徴を有する。圧縮比は、継続的な外からの荷重に対する変形しやすさを表す指標であり、0.5MPaの荷重を掛けた場合の圧縮比が0.18以下であれば、フィルター使用時の変形がほとんどないため好ましい。圧縮比の具体的な測定及び算出方法は、実施例において詳述される。
<Base material layer>
The base material layer is a layer corresponding to the inner side of the cylinder of the cylindrical filter and the downstream side of the fluid to be filtered, and has a function of ensuring the strength of the filter. The base material layer of the filter of the present invention is a layer in which a nonwoven fabric is wound in multiple layers and thermocompression bonded, and has a feature that the compression ratio when a load of 0.5 MPa is applied is 0.18 or less. . The compression ratio is an index indicating the ease of deformation with respect to a continuous external load. If the compression ratio is 0.18 or less when a load of 0.5 MPa is applied, the deformation at the time of using the filter is scarce. It is preferable because it is not. The specific measurement and calculation method of the compression ratio will be described in detail in Examples.
また、本発明のフィルターの基材層は、空隙率が0.61〜0.84の範囲であるという特徴を有する。従来、濾過層の下流側に位置する基材層は、濾過層を補強するものと考えられており、濾過層よりも孔径の大きな層とすれば、濾過ライフには影響しないものと考えられていた。しかしながら本発明では、基材層が濾過ライフに大きく影響を与えることを見出し、基材層の圧縮比を0.18以下として強度を確保し、かつ、空隙率を0.61〜0.84の範囲とすれば、濾過ライフの長いフィルターが得られることが確認された。特定の理論に拘束されるものではないが、圧縮比と空隙率とを前記の範囲とすることによって、濾過層を通過した流体が基材層で滞留することがなく、基材層内でのブリッジ発生が抑制されるものと考えられている。空隙率が0.61以上であれば、通液性が十分となり、空隙率が0.84以下であれば、高温や薬液使用時に基材層が変形する恐れがない。 Moreover, the base material layer of the filter of this invention has the characteristics that the porosity is the range of 0.61-0.84. Conventionally, the base material layer located on the downstream side of the filtration layer is considered to reinforce the filtration layer, and if the layer has a larger pore diameter than the filtration layer, it is considered that the filtration life is not affected. It was. However, in the present invention, it is found that the base material layer has a great influence on the filtration life, the strength is ensured by setting the compression ratio of the base material layer to 0.18 or less, and the porosity is 0.61 to 0.84. It was confirmed that a filter having a long filtration life could be obtained if the range was satisfied. Although not being bound by a specific theory, by setting the compression ratio and the porosity to the above ranges, the fluid that has passed through the filtration layer does not stay in the base material layer, and in the base material layer. It is thought that the occurrence of bridging is suppressed. If the porosity is 0.61 or more, the liquid permeability is sufficient, and if the porosity is 0.84 or less, there is no possibility that the base material layer is deformed when using a high temperature or a chemical solution.
基材層は、安定した性能を維持するために、繊維の交点で繊維同士が融着及び/又は接着した不織布を用いることが好ましい。このことから、基材層の不織布を構成する繊維として、熱融着性繊維が好ましく利用できる。熱融着性繊維の種類は、特に限定されず、公知の繊維を使用することができる。具体的な熱融着性繊維としては、濾過層に用いる熱融着性繊維の説明で例示したものと同様のものを用いることができ、高融点成分と低融点成分とを含む熱融着性複合繊維、高融点成分繊維と低融点成分繊維との混繊であることが好ましい。この場合、高融点成分と低融点成分の融点差は、特に限定されないが、熱融着の加工温度幅を広くするためには、10℃以上であることが好ましく、30℃以上であることがより好ましい。例えば、ポリプロピレンを芯成分、ポリエチレンを鞘成分とする鞘芯型複合繊維、ポリプロピレン繊維とプロピレン共重合体繊維との混繊を好ましく用いることができる。 In order to maintain stable performance, the base material layer preferably uses a nonwoven fabric in which fibers are fused and / or bonded at the intersection of the fibers. From this, a heat-fusible fiber can be preferably used as the fiber constituting the nonwoven fabric of the base material layer. The kind of heat-fusible fiber is not specifically limited, A well-known fiber can be used. As specific heat-fusible fibers, the same materials as those exemplified in the description of the heat-fusible fibers used for the filtration layer can be used, and heat-fusible properties including a high melting point component and a low melting point component. A composite fiber, a mixed fiber of a high-melting component fiber and a low-melting component fiber is preferable. In this case, the difference in melting point between the high melting point component and the low melting point component is not particularly limited, but is preferably 10 ° C. or more, and preferably 30 ° C. or more in order to widen the processing temperature range of heat fusion. More preferred. For example, a sheath-core type composite fiber having polypropylene as a core component and polyethylene as a sheath component, or a mixed fiber of polypropylene fiber and propylene copolymer fiber can be preferably used.
本発明の基材層に用いられる不織布としては、メルトブロー不織布、スルーエア不織布などを用いることができ、特に制限されない。メルトブロー不織布を用いる場合、メルトブロー不織布を構成する繊維の種類やその製造方法は特に限定されず、公知の繊維や製造方法を使用することができる。例えば、メルトブロー不織布は、熱可塑性樹脂を溶融押出し、メルトブロー紡糸口金から紡出し、さらに高温高速の気体によって繊維流としてブロー紡糸し、捕集装置で繊維をウェブとして捕集し、得られたウェブを熱処理し、繊維同士を熱融着させることで製造できる。メルトブロー紡糸で用いる高温高速の気体は、通常、空気、窒素ガス等の不活性気体が使用される。気体の温度は200〜500℃、圧力は0.1〜6.5kgf/cm2の範囲が一般に用いられる。 As a nonwoven fabric used for the base material layer of this invention, a melt blown nonwoven fabric, a through air nonwoven fabric, etc. can be used, and it does not restrict | limit in particular. When using a meltblown nonwoven fabric, the kind of fiber which comprises a meltblown nonwoven fabric, and its manufacturing method are not specifically limited, A well-known fiber and manufacturing method can be used. For example, a melt blown nonwoven fabric is obtained by melt-extruding a thermoplastic resin, spinning from a melt blown spinneret, blow spinning as a fiber stream with a high-temperature and high-speed gas, and collecting the fibers as a web with a collection device. It can be manufactured by heat-treating and fusing the fibers together. As the high-temperature and high-speed gas used in melt blow spinning, an inert gas such as air or nitrogen gas is usually used. The temperature of the gas is generally 200 to 500 ° C., and the pressure is generally in the range of 0.1 to 6.5 kgf / cm 2 .
基材層を構成する不織布の平均繊維径は、濾過層を構成する不織布の平均繊維径の2倍以上、さらに好ましくは3倍以上であることが好ましい。この値が2倍以上であることで、濾過層を通過して流れ出てくる粒子が、基材層で捕集されるのを防ぐことができる。 The average fiber diameter of the nonwoven fabric constituting the base material layer is preferably 2 times or more, more preferably 3 times or more the average fiber diameter of the nonwoven fabric constituting the filtration layer. When this value is twice or more, the particles flowing out through the filtration layer can be prevented from being collected by the base material layer.
基材層を構成する不織布の材質は、特に制限されるものではないが、濾過層を構成する不織布に含まれる材質を使うことで、耐薬品性が濾過層と同程度になるため好ましい。 Although the material of the nonwoven fabric which comprises a base material layer is not restrict | limited in particular, Since chemical resistance becomes comparable as a filtration layer by using the material contained in the nonwoven fabric which comprises a filtration layer, it is preferable.
基材層を構成する不織布の目付は、繊維の材質、繊維径との関係で、ある程度規定されるが、例えば、5〜50g/m2の目付を用いることができ、30〜45g/m2の目付を用いることがより好ましい。この範囲の目付であれば、基材層の外径調整及び基材層の強度設計の調節の観点から好適である。 Basis weight of the nonwoven fabric constituting the substrate layer is made of fibers, in relation to the fiber diameter, although to some extent defined, for example, can be used a basis weight of 5~50g / m 2, 30~45g / m 2 It is more preferable to use the basis weight. A basis weight in this range is preferable from the viewpoint of adjusting the outer diameter of the base material layer and adjusting the strength design of the base material layer.
基材層の巻き数や厚みは、目的とするフィルターの大きさや所望の強度に応じて設定され、特に制限されないが、例えば基材層の厚みを5〜50mm程度とすることができる。基材層の不織布は巻回と同時に、或いは、巻回された後に熱圧着によって層間が接着される。 The number of turns and the thickness of the base material layer are set according to the size of the target filter and the desired strength, and are not particularly limited. For example, the thickness of the base material layer can be about 5 to 50 mm. The nonwoven fabric of the base material layer is bonded between the layers simultaneously by winding or after being wound by thermocompression bonding.
<表皮層>
表皮層はフィルターの最も外側(濾過液の上流側)に位置する層であり、特に大粒径の凝集物や夾雑物が濾過層内に侵入しないようにブロックするほか、濾過層を保護し、フィルター形態を保持することを主な目的とする層である。表皮層は不織布を含む層であり、不織布からなる層であることが好ましい。
<Skin layer>
The skin layer is the layer located on the outermost side of the filter (upstream side of the filtrate), and in particular blocks and prevents large particle aggregates and contaminants from entering the filtration layer, protecting the filtration layer, This layer is mainly intended to maintain the filter form. The skin layer is a layer containing a nonwoven fabric, and is preferably a layer made of a nonwoven fabric.
表皮層に用いる不織布は特に制限されないが、その平均繊維径が、濾過層を構成する不織布の平均繊維径の2倍以上であることが好ましく、2倍から20倍であることがより好ましく、さらに好ましくは3倍から10倍である。この値が2倍以上であることで、表皮層の過度の目詰まりを防ぐことができる。また、この値が20倍以下であることで、表皮層に濾過層の前濾過の効果を持たせることができる。また、表皮層に用いる不織布として、基材層に用いる不織布と同一の不織布であることも好ましい。なお、同一の不織布であるとは、繊維の材質(組成)、繊維径、不織布の構成、目付等が共通する、実質的に同一の不織布と考えられる不織布を意味している。基材層と表皮層とで同一の不織布を用いることで、製品品質がより安定なフィルターを得ることができ、製造工程のコストにおいても有利である。 The nonwoven fabric used for the skin layer is not particularly limited, but the average fiber diameter is preferably at least twice the average fiber diameter of the nonwoven fabric constituting the filtration layer, more preferably 2 to 20 times, Preferably it is 3 to 10 times. When this value is twice or more, excessive clogging of the skin layer can be prevented. Moreover, when this value is 20 times or less, the skin layer can have the effect of prefiltration of the filtration layer. Moreover, it is also preferable that it is the same nonwoven fabric as the nonwoven fabric used for a base material layer as a nonwoven fabric used for a skin layer. Note that the same non-woven fabric means non-woven fabrics that are considered to be substantially the same non-woven fabric having the same fiber material (composition), fiber diameter, non-woven fabric configuration, basis weight, and the like. By using the same non-woven fabric for the base material layer and the skin layer, a filter with more stable product quality can be obtained, which is advantageous in the cost of the manufacturing process.
表皮層の巻き数や厚みは特に制限されないが、巻き数や厚みが大きくなると、濾過液が濾過層に達する以前に表皮層内でブリッジを形成するという不具合が生じることがあるので、なるべく薄い表皮層とすることが好ましい。例えば、メルトブロー不織布を1〜5回、好ましくは1〜2回巻回して、熱圧着して形成することが好ましい。 The number of turns and thickness of the skin layer are not particularly limited, but if the number of turns or thickness increases, there may be a problem that a bridge forms in the skin layer before the filtrate reaches the filtration layer. A layer is preferred. For example, the melt blown nonwoven fabric is preferably wound 1 to 5 times, preferably 1 to 2 times, and thermocompression-bonded.
本発明のフィルターの基材層、濾過層、表皮層の不織布を構成する繊維はいずれも、本発明の効果を妨げない範囲で機能剤を含んでいてもよく、機能剤としては、抗菌剤、消臭剤、帯電防止剤、平滑剤、親水剤、撥水剤、酸化防止剤、耐候剤などを例示できる。また、繊維は、その表面を繊維仕上げ剤で処理されていてもよく、これによって親水性や撥水性、制電制、表面平滑性、耐摩耗性などの機能を付与することができる。 Any of the fibers constituting the substrate layer, the filtration layer, and the skin layer nonwoven fabric of the filter of the present invention may contain a functional agent as long as the effects of the present invention are not hindered. Deodorants, antistatic agents, smoothing agents, hydrophilic agents, water repellents, antioxidants, weathering agents and the like can be exemplified. Further, the surface of the fiber may be treated with a fiber finishing agent, whereby functions such as hydrophilicity, water repellency, antistatic, surface smoothness, and abrasion resistance can be imparted.
<フィルターの製造方法>
本発明のフィルターは、基材層用の不織布を巻回し、その上に濾過層用の不織布及びネットを巻回し、さらにその上に表皮層用の不織布を巻回することで製造できる。具体的には、例えば、基材層用の不織布であるメルトブロー不織布をまず熱圧着させながら円柱状の鉄棒に巻き取って、コアとなる基材層を形成する。続いて、濾過層用の不織布であるスルーエア不織布及びネットを順に挿入し、加熱することなく巻き上げて濾過層を形成する。最後に、メルトブロー不織布を1〜2回巻回して、熱圧着させて表皮層を形成することができる。
<Filter manufacturing method>
The filter of this invention can be manufactured by winding the nonwoven fabric for base materials layers, winding the nonwoven fabric for filtration layers, and a net | network on it, and also winding the nonwoven fabric for skin layers on it. Specifically, for example, a melt blown nonwoven fabric, which is a nonwoven fabric for a base material layer, is first wound around a cylindrical iron rod while being thermocompression bonded to form a base material layer that becomes a core. Subsequently, a through-air non-woven fabric and a net, which are non-woven fabrics for the filtration layer, are sequentially inserted and rolled up without heating to form a filtration layer. Finally, the melt blown nonwoven fabric can be wound 1-2 times and thermocompression bonded to form a skin layer.
上記製造方法において基材層を形成する温度は、巻き取り部分(円柱状の鉄棒)において基材層用の不織布が溶融し、圧着される温度であればよい。また製造ラインの速度は特に制限されないが、濾過層の形成時は、不織布にかかるテンションは10N以下であることが好ましく、テンションを掛けずに巻き上げることが好ましい。 The temperature for forming the base material layer in the above production method may be any temperature at which the non-woven fabric for the base material layer is melted and pressure-bonded at the winding portion (cylindrical iron bar). The speed of the production line is not particularly limited, but when forming the filtration layer, the tension applied to the nonwoven fabric is preferably 10 N or less, and it is preferable to wind up without applying tension.
上記のように製造されるフィルターは、適切な大きさに切断し、両端にエンドキャップを貼付して円筒型フィルターとして好適に用いられる。また、上記の製造方法は概要のみであり、上記の工程以外に必要に応じて、熱処理、冷却、薬剤処理、成型、洗浄等の公知の工程を実施することができる。使用においては、スラリーや固形分を含むゲル状流体が、円筒型フィルターの外側(表皮層側)から濾過槽を経て内側(基材層側)に通過するようセットされる。 The filter manufactured as described above is suitably used as a cylindrical filter by cutting into an appropriate size and attaching end caps to both ends. Moreover, said manufacturing method is only an outline | summary and well-known processes, such as heat processing, cooling, chemical | medical agent processing, a shaping | molding, and washing | cleaning, can be implemented as needed other than said process. In use, the gel-like fluid containing slurry and solid content is set so as to pass from the outside (skin layer side) of the cylindrical filter to the inside (base material layer side) through the filtration tank.
以下の実施例は、例示を目的としたものに過ぎない。本発明の範囲は、本実施例に限定されない。
実施例中に示した物性値の測定方法や定義は次のとおりである。
The following examples are for illustrative purposes only. The scope of the present invention is not limited to this example.
The measurement methods and definitions of the physical property values shown in the examples are as follows.
1)不織布の目付
250mm×250mmに切断した不織布の重量を測定し、単位面積当たりの重量(g/m2)を求め、これを目付とした。
2)層の空隙率
層の外径、内径、長さ、重量を測定し、次式を使って空隙率を求めた。
(層の見かけ体積)=π{(層の外径)2-(層の内径)2}×(層の長さ)/4
(層の真体積)=(層の重量)/(層の原料の比重)
(層の空隙率(%))={1-(層の真体積/層の見かけ体積)}×100
3)圧縮比
基材層を20mm×20mmに切断し、元の厚さを測定し、続いて、この小片に0.5MPaの荷重を掛けたときの、小片の厚さを測定した。測定した厚さと下記式を用いて、圧縮比を算出した。
圧縮比=(初期厚さ−荷重を掛けた時の厚さ)÷(初期厚さ)
4)捕集効率(濾過精度)
次の試験粉体及び方法に従って初期捕集性能として捕集効率を測定した。試験粉体はJIS Z 8901 試験用粉体に記載の7種を使用した。JIS7種粉体を速度0.2g/minで水中に添加した試験流体を30L/minの流量でフィルターに通し、フィルター前後の粒子数を測定した。粒子数はパーティクルセンサー(KS-63 リオン製)を用い、パーティクルカウンター(KL-11 リオン製)を使用して測定した。捕集効率は以下の定義式によって求めた。
捕集効率(%)=(1-フィルター通過後の粒子径30μmの粒子数/フィルター通過前の粒子径30μmの粒子数)×100
5)濾過ライフ
次の粉体及び方法に従って、累積粉体添加量に対するフィルター前後の差圧変化を測定した。試験粉体はJIS Z 8901 試験用粉体に記載の7種を使用した。循環水量30L/minの水中に速度0.2g/minで前記試験粉体を添加した試験流体をフィルターに通液し、累積粉体添加量に対するフィルター前後の圧力差変化を追跡した。そして、圧力差が初期圧力差の2倍になった時点を濾過ライフとして、その時点の粉体添加量を記録した。また、圧力差が初期圧力差の2倍になった時点のフィルター外観を目視で観察した。
1) Fabric weight of nonwoven fabric The weight of a nonwoven fabric cut to 250 mm x 250 mm was measured to determine the weight per unit area (g / m 2 ), which was used as the fabric weight.
2) Layer porosity The outer diameter, inner diameter, length, and weight of the layer were measured, and the porosity was determined using the following equation.
(Apparent volume of layer) = π {(Outer diameter of layer) 2 − (Inner diameter of layer) 2 } × (Layer length) / 4
(True volume of layer) = (weight of layer) / (specific gravity of raw material of layer)
(Layer porosity (%)) = {1− (true volume of layer / apparent volume of layer)} × 100
3) Compression ratio The base material layer was cut into 20 mm x 20 mm, the original thickness was measured, and then the thickness of the small piece when a 0.5 MPa load was applied to the small piece was measured. The compression ratio was calculated using the measured thickness and the following formula.
Compression ratio = (initial thickness-thickness when a load is applied) ÷ (initial thickness)
4) Collection efficiency (filtration accuracy)
The collection efficiency was measured as the initial collection performance according to the following test powder and method. Seven kinds of test powders described in JIS Z 8901 test powder were used. A test fluid obtained by adding JIS 7 seed powder into water at a rate of 0.2 g / min was passed through the filter at a flow rate of 30 L / min, and the number of particles before and after the filter was measured. The number of particles was measured using a particle sensor (manufactured by KS-63 Lion) and a particle counter (manufactured by KL-11 Lion). The collection efficiency was determined by the following definition formula.
Collection efficiency (%) = (1−number of particles having a particle diameter of 30 μm after passing through the filter / number of particles having a diameter of 30 μm before passing through the filter) × 100
5) Filtration life According to the following powder and method, the change in differential pressure before and after the filter with respect to the cumulative amount of powder added was measured. Seven kinds of test powders described in JIS Z 8901 test powder were used. A test fluid to which the test powder was added at a rate of 0.2 g / min in water with a circulating water amount of 30 L / min was passed through the filter, and the change in pressure difference before and after the filter with respect to the cumulative powder addition amount was followed. The time when the pressure difference became twice the initial pressure difference was defined as the filtration life, and the amount of powder added at that time was recorded. Further, the filter appearance at the time when the pressure difference became twice the initial pressure difference was visually observed.
[実施例1]
基材層用の不織布として、目付が50g/m2であり、平均繊維径190μmのプロピレン共重合体/ポリプロピレンの同心鞘芯型複合メルトブロー不織布を用いた。濾過層用の不織布として、ポリプロピレン/ポリエチレンの偏心鞘芯型複合繊維(平均繊維径30μm)からなる、目付が30g/m2のスルーエア不織布を用いた。ネットとして、ポリプロピレンモノフィラメント(平均繊維径250μm)からなる、目合いが2.0mmであるネットを用いた。中芯(鉄棒)を予め150℃に加熱し、この中芯に基材層に用いるメルトブロー不織布を接着させ、巻き取った。さらに150℃で加熱を続けながら6mを巻き取り、基材層を形成した。続いて、基材層用の不織布と同じ不織布、濾過層用の不織布、ネットを3層重ねた状態で2m巻き取り、濾過層を形成した。続いて、基材層用の不織布と同じ不織布を1m巻き取り、表皮層を形成し、円筒型フィルターを製造した。
[Example 1]
As the nonwoven fabric for the base material layer, a propylene copolymer / polypropylene concentric sheath / core composite meltblown nonwoven fabric having a basis weight of 50 g / m 2 and an average fiber diameter of 190 μm was used. As the nonwoven fabric for the filtration layer, a through-air nonwoven fabric made of an eccentric sheath / core composite fiber (average fiber diameter 30 μm) of polypropylene / polyethylene with a basis weight of 30 g / m 2 was used. As the net, a net made of polypropylene monofilament (average fiber diameter 250 μm) and having a mesh of 2.0 mm was used. The core (iron bar) was heated to 150 ° C. in advance, and the melt blown nonwoven fabric used for the base material layer was adhered to the core and wound. Furthermore, while continuing heating at 150 ° C., 6 m was wound up to form a base material layer. Subsequently, the same nonwoven fabric as that for the base material layer, the nonwoven fabric for the filtration layer, and the net were wound up 2 m to form a filtration layer. Subsequently, 1 m of the same non-woven fabric as the base material layer was wound up to form a skin layer, and a cylindrical filter was manufactured.
[実施例2]
濾過層用の不織布として、ポリプロピレン/ポリエチレンの偏心鞘芯型複合繊維(平均繊維径22μm)からなる、目付が30g/m2のスルーエア不織布を用いた。それ以外は、実施例1と同じ方法で、円筒型フィルターを製造した。
[Example 2]
As the nonwoven fabric for the filtration layer, a through-air nonwoven fabric made of an eccentric sheath / core composite fiber (average fiber diameter 22 μm) of polypropylene / polyethylene with a basis weight of 30 g / m 2 was used. Otherwise, a cylindrical filter was produced in the same manner as in Example 1.
[実施例3]
基材層用の不織布として、目付が50g/m2であり、平均繊維径150μmのプロピレン共重合体/ポリプロピレンの同心鞘芯型複合メルトブロー不織布を用いた。それ以外は、実施例1と同じ方法で、円筒型フィルターを製造した。
[Example 3]
As the nonwoven fabric for the base material layer, a propylene copolymer / polypropylene concentric sheath / core composite meltblown nonwoven fabric having a basis weight of 50 g / m 2 and an average fiber diameter of 150 μm was used. Otherwise, a cylindrical filter was produced in the same manner as in Example 1.
[実施例4]
基材層用不織布として、目付が50g/m2であり、平均繊維径120μmのプロピレン共重合体・ポリプロピレン同心鞘芯型複合メルトブロー不織布を用いた。それ以外は、実施例1と同じ方法で、円筒型フィルターを製造した。
[Example 4]
As the nonwoven fabric for the substrate layer, a propylene copolymer / polypropylene concentric sheath / core composite meltblown nonwoven fabric having a basis weight of 50 g / m 2 and an average fiber diameter of 120 μm was used. Otherwise, a cylindrical filter was produced in the same manner as in Example 1.
[比較例1]
基材層用不織布として、目付が50g/m2であり、平均繊維径190μmのポリプロピレン単一成分のメルトブロー不織布を用いた。それ以外は、実施例1と同じ方法で、円筒型フィルターを製造した。
[Comparative Example 1]
As the nonwoven fabric for the base material layer, a polypropylene single component melt blown nonwoven fabric having a basis weight of 50 g / m 2 and an average fiber diameter of 190 μm was used. Otherwise, a cylindrical filter was produced in the same manner as in Example 1.
[比較例2]
基材層用不織布として、目付が50g/m2であり、平均繊維径190μmのポリプロピレン単一成分のメルトブロー不織布を用いた。そして、基材層を形成する際の巻き取り温度を150℃から165℃に変えた。それ以外は、実施例1と同じ方法で、円筒型フィルターを製造した。
[Comparative Example 2]
As the nonwoven fabric for the base material layer, a polypropylene single component melt blown nonwoven fabric having a basis weight of 50 g / m 2 and an average fiber diameter of 190 μm was used. And the winding temperature at the time of forming a base material layer was changed from 150 degreeC to 165 degreeC. Otherwise, a cylindrical filter was produced in the same manner as in Example 1.
実施例1〜4及び比較例1,2について、円筒型フィルターの材料、物性値及び性能について表1にまとめを示す。
表1に示されるとおり、実施例1〜4の円筒型フィルターはいずれもフィルター差圧が初期の2倍に達するまでの累積粉体添加量が多い、すなわち濾過ライフが長かった。また、実施例1〜4の円筒型フィルターはいずれも、粒径30μmの粒子を60%以上捕集でき、必要な濾過精度を有していた。実施例の円筒型フィルターは基材層の空隙率が高くかつ圧縮比が低いため、濾過時に基材層の圧縮が起こらず、比較例の円筒型フィルターよりも長い濾過ライフが得られ、また、粒径30μmの捕集効率も比較例1と比較して高かった。一方、圧縮比は低いが空隙率の低い比較例2は、実施例と比較して濾過ライフが短かった。また、圧力差が初期圧力差の2倍になった時点での比較例2の円筒型フィルターの外観に、明らかな収縮が認められ、このフィルターが高濃度、あるいは高粘度の流体の濾過に適さないことが示された。実施例1〜4のフィルターの外観にはこのような収縮が認められなかった。 As shown in Table 1, all of the cylindrical filters of Examples 1 to 4 had a large cumulative powder addition amount until the filter differential pressure reached twice the initial value, that is, the filtration life was long. Moreover, all the cylindrical filters of Examples 1 to 4 were able to collect 60% or more of particles having a particle diameter of 30 μm, and had necessary filtration accuracy. Since the cylindrical filter of the example has a high porosity of the base material layer and the compression ratio is low, compression of the base material layer does not occur during filtration, and a longer filtration life is obtained than the cylindrical filter of the comparative example. The collection efficiency with a particle size of 30 μm was also higher than that of Comparative Example 1. On the other hand, Comparative Example 2 with a low compression ratio but a low porosity had a shorter filtration life than the Examples. In addition, apparent shrinkage was observed in the appearance of the cylindrical filter of Comparative Example 2 when the pressure difference was twice the initial pressure difference, and this filter was suitable for filtration of high-concentration or high-viscosity fluid. Not shown. Such shrinkage was not observed in the appearance of the filters of Examples 1 to 4.
本発明のフィルターは、粉体の凝集(ブリッジ)の発生が抑制されるため濾過ライフが長く、濾過精度にも優れる。本発明のフィルターは、低濃度〜高濃度(10ppm〜70%)の微粒子(粉体)を含む懸濁液、スラリー、ゲル状流体から凝集物や夾雑物を除去し、粒径が一定以下の微粒子を得るために用いる濾過フィルターとして好適に用いられる。 Since the filter of the present invention suppresses the occurrence of powder aggregation (bridge), the filtration life is long and the filtration accuracy is excellent. The filter of the present invention removes aggregates and contaminants from suspensions, slurries, and gel fluids containing fine particles (powder) having a low concentration to a high concentration (10 ppm to 70%), and has a particle size of a certain value or less. It is suitably used as a filtration filter used for obtaining fine particles.
Claims (5)
前記基材層は、不織布が多重に巻回され、熱圧着されてなる層であって、空隙率が0.61〜0.84、かつ、0.5MPaの荷重を掛けたときの圧縮比が0.18以下であり、
前記濾過層は、厚み方向にも繊維が配向している不織布と、ネットとを積層した積層体が多重に巻回されてなる層であって、濾過層中の層間は接着されておらず、
前記表皮層は、不織布を含む層であって、表皮層を構成する不織布の平均繊維径は、前記濾過層を構成する不織布の平均繊維径の2倍以上である、フィルター。 A filter having a base material layer, a filtration layer, and a skin layer,
The base material layer is a layer in which a nonwoven fabric is wound in multiple layers and thermocompression bonded, and the compression ratio when the porosity is 0.61 to 0.84 and a load of 0.5 MPa is applied. 0.18 or less,
The filtration layer is a layer in which a laminate in which fibers are oriented in the thickness direction and a laminate of a net is laminated, and the layers in the filtration layer are not bonded,
The said skin layer is a layer containing a nonwoven fabric, Comprising: The average fiber diameter of the nonwoven fabric which comprises a skin layer is a filter which is 2 times or more of the average fiber diameter of the nonwoven fabric which comprises the said filtration layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017023436A JP6927710B2 (en) | 2017-02-10 | 2017-02-10 | filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017023436A JP6927710B2 (en) | 2017-02-10 | 2017-02-10 | filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018126721A true JP2018126721A (en) | 2018-08-16 |
JP6927710B2 JP6927710B2 (en) | 2021-09-01 |
Family
ID=63172644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017023436A Active JP6927710B2 (en) | 2017-02-10 | 2017-02-10 | filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6927710B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020066767A1 (en) * | 2018-09-26 | 2020-04-02 | Jnc株式会社 | Depth filter |
JPWO2020196515A1 (en) * | 2019-03-28 | 2020-10-01 | ||
JP2021171743A (en) * | 2020-04-30 | 2021-11-01 | 株式会社ロキテクノ | Filter member for slurry, filter cartridge and filter container |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04215812A (en) * | 1990-11-19 | 1992-08-06 | Chisso Corp | Cylindrical filter for precise filtration |
JPH11279922A (en) * | 1998-02-02 | 1999-10-12 | Chisso Corp | Fiber formed product and its production |
JP2000024427A (en) * | 1998-07-14 | 2000-01-25 | Chisso Corp | Filter |
JP2001149720A (en) * | 1999-11-29 | 2001-06-05 | Chisso Corp | Filter |
JP2004218595A (en) * | 2003-01-17 | 2004-08-05 | Kureha Ltd | In-tank filter material and its manufacturing method |
JP2015097979A (en) * | 2013-11-18 | 2015-05-28 | Jnc株式会社 | Filter |
-
2017
- 2017-02-10 JP JP2017023436A patent/JP6927710B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04215812A (en) * | 1990-11-19 | 1992-08-06 | Chisso Corp | Cylindrical filter for precise filtration |
JPH11279922A (en) * | 1998-02-02 | 1999-10-12 | Chisso Corp | Fiber formed product and its production |
JP2000024427A (en) * | 1998-07-14 | 2000-01-25 | Chisso Corp | Filter |
JP2001149720A (en) * | 1999-11-29 | 2001-06-05 | Chisso Corp | Filter |
JP2004218595A (en) * | 2003-01-17 | 2004-08-05 | Kureha Ltd | In-tank filter material and its manufacturing method |
JP2015097979A (en) * | 2013-11-18 | 2015-05-28 | Jnc株式会社 | Filter |
Non-Patent Citations (1)
Title |
---|
不織布の製造と応用, JPN6021015528, 30 April 2000 (2000-04-30), pages 34頁, ISSN: 0004495459 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020066767A1 (en) * | 2018-09-26 | 2020-04-02 | Jnc株式会社 | Depth filter |
JP2020049413A (en) * | 2018-09-26 | 2020-04-02 | Jnc株式会社 | Depth filter |
JP7248401B2 (en) | 2018-09-26 | 2023-03-29 | Jnc株式会社 | depth filter |
JPWO2020196515A1 (en) * | 2019-03-28 | 2020-10-01 | ||
WO2020196515A1 (en) * | 2019-03-28 | 2020-10-01 | Jnc株式会社 | Depth filter |
CN113646061A (en) * | 2019-03-28 | 2021-11-12 | 捷恩智株式会社 | Depth filter |
EP3950088A4 (en) * | 2019-03-28 | 2022-12-07 | JNC Corporation | Depth filter |
JP7368452B2 (en) | 2019-03-28 | 2023-10-24 | Jnc株式会社 | depth filter |
JP2021171743A (en) * | 2020-04-30 | 2021-11-01 | 株式会社ロキテクノ | Filter member for slurry, filter cartridge and filter container |
WO2021221027A1 (en) * | 2020-04-30 | 2021-11-04 | 株式会社ロキテクノ | Filter member for slurry, filter cartridge, and filter container |
Also Published As
Publication number | Publication date |
---|---|
JP6927710B2 (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220242B2 (en) | filter | |
KR100452179B1 (en) | High precision cylinder filter | |
JP7368452B2 (en) | depth filter | |
WO2020066767A1 (en) | Depth filter | |
JP5823205B2 (en) | Cartridge filter | |
JP2018126721A (en) | filter | |
WO2016185517A1 (en) | Filter | |
JP2009112887A (en) | Filter medium, its manufacturing method, and cartridge filter | |
JP5836191B2 (en) | Cylindrical filter | |
JP5836190B2 (en) | Cylindrical filter | |
JP6340186B2 (en) | Cylindrical filter | |
JPH11293555A (en) | Highly air-permeable nonwoven fabric and its production, and filter material made thereof | |
JP2019000793A (en) | Filter medium for dust collector filter | |
JP3717566B2 (en) | Cartridge filter and manufacturing method thereof | |
JP6560101B2 (en) | Pleated filter | |
JP2020157297A (en) | Cartridge filter | |
JP2021004431A (en) | Sea-island fiber | |
JP3972419B2 (en) | Nonwoven fabric and filter using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210506 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6927710 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |