JP2018122293A - Method for manufacturing carbon film for gas separation and infusible fiber - Google Patents
Method for manufacturing carbon film for gas separation and infusible fiber Download PDFInfo
- Publication number
- JP2018122293A JP2018122293A JP2018013229A JP2018013229A JP2018122293A JP 2018122293 A JP2018122293 A JP 2018122293A JP 2018013229 A JP2018013229 A JP 2018013229A JP 2018013229 A JP2018013229 A JP 2018013229A JP 2018122293 A JP2018122293 A JP 2018122293A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- infusibilization
- gas separation
- infusible
- carbon membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 90
- 238000000926 separation method Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 52
- 239000002243 precursor Substances 0.000 claims abstract description 34
- 150000002825 nitriles Chemical class 0.000 claims abstract description 24
- 230000008569 process Effects 0.000 claims abstract description 22
- 238000002835 absorbance Methods 0.000 claims abstract description 18
- 238000003763 carbonization Methods 0.000 claims abstract description 17
- 125000002560 nitrile group Chemical group 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 65
- 229920005989 resin Polymers 0.000 claims description 64
- 239000011347 resin Substances 0.000 claims description 64
- 239000012528 membrane Substances 0.000 claims description 62
- 238000010438 heat treatment Methods 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 230000008034 disappearance Effects 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000010000 carbonizing Methods 0.000 claims description 3
- 229920006350 polyacrylonitrile resin Polymers 0.000 claims 1
- 239000002904 solvent Substances 0.000 description 19
- 238000005191 phase separation Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 238000009987 spinning Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- -1 alkali metal salts Chemical class 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000005979 thermal decomposition reaction Methods 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 125000003262 carboxylic acid ester group Chemical group [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000001891 gel spinning Methods 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- 238000002145 thermally induced phase separation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- SXZSFWHOSHAKMN-UHFFFAOYSA-N 2,3,4,4',5-Pentachlorobiphenyl Chemical compound C1=CC(Cl)=CC=C1C1=CC(Cl)=C(Cl)C(Cl)=C1Cl SXZSFWHOSHAKMN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- BMINOSJSODYULL-UHFFFAOYSA-N 4-(2-methylprop-2-enoxy)benzenesulfonic acid Chemical compound CC(=C)COC1=CC=C(S(O)(=O)=O)C=C1 BMINOSJSODYULL-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
本発明は、ガス分離用炭素膜の製造方法の製造方法に関する。 The present invention relates to a method for producing a carbon membrane for gas separation.
ガス分離膜によるガス分離は、圧力差、濃度差、質量差を駆動力とするため、ランニングコストや設備費が安く、所要体積も小さいことから、他の分離法と比較して省エネルギーな手法として注目されている。その中でも、炭素膜は有機膜に比べ高い耐熱性と耐薬品性をもつことから分離環境の適応範囲が広いという特徴を有する。例えば、天然ガスの精製プラントでは、主成分であるメタンガスと二酸化炭素の分離とともに、不純物として含まれる硫化水素による膜の劣化という懸念があった。また、ウランの濃縮では、古くからクヌーセン拡散を利用した膜分離法が行われているが、分離中に発生するフッ化水素による膜の劣化が課題であった。このような分離環境下において、耐薬品性をもつ炭素膜の実用化が期待されている。 Gas separation by gas separation membranes uses pressure difference, concentration difference, and mass difference as driving force, so running costs and equipment costs are low, and the required volume is small, so it is an energy-saving method compared to other separation methods Attention has been paid. Among them, the carbon membrane has a feature that the applicable range of the separation environment is wide because it has higher heat resistance and chemical resistance than the organic membrane. For example, in a natural gas refining plant, there is a concern that the membrane may be deteriorated by hydrogen sulfide contained as impurities as well as separation of methane gas and carbon dioxide as main components. In addition, for the enrichment of uranium, a membrane separation method using Knudsen diffusion has been performed for a long time, but the deterioration of the membrane due to hydrogen fluoride generated during the separation has been a problem. In such a separation environment, the practical application of a chemical resistant carbon membrane is expected.
ガス分離用炭素膜の原料として用いられる樹脂は、ポリフェニレンオキシド(PPO)、ポリイミド(PI)、ポリアクリロニトリル(PAN)等が代表として挙げられるが、その中でもPAN系炭素膜は成形が容易であり、かつ安価であることから経済的な観点で好ましく注目されている。例えば、特許文献1には、共連続多孔構造を有するコア層と、実質的に共連続多孔構造を有しないスキン層とを有するPAN系炭素膜が報告されている。 Resin used as a raw material for the carbon membrane for gas separation is exemplified by polyphenylene oxide (PPO), polyimide (PI), polyacrylonitrile (PAN), etc. Among them, the PAN-based carbon membrane is easy to mold, It is also attracting attention from an economical viewpoint because it is inexpensive. For example, Patent Document 1 reports a PAN-based carbon film having a core layer having a co-continuous porous structure and a skin layer having substantially no co-continuous porous structure.
特許文献1に記載のガス分離用炭素膜は、良好なガス透過速度を有することが報告されている。しかしながら、ガス分離用炭素膜にはさらなるガス透過速度の向上が求められていた。本発明の課題は、さらにガス透過速度を向上させたガス分離用PAN系炭素膜を提供することである。 It has been reported that the carbon membrane for gas separation described in Patent Document 1 has a good gas permeation rate. However, further improvement in gas permeation rate has been required for the carbon membrane for gas separation. An object of the present invention is to provide a PAN-based carbon membrane for gas separation that further improves the gas permeation rate.
上記課題を解決するための本発明は、ポリアクリロニトリルを含む前駆体繊維を不融化処理する不融化工程と、不融化工程を経た不融化繊維を炭化処理する炭化工程とを有するガス分離用炭素膜の製造方法であって、不融化工程において、不融化繊維表面のニトリル消費量指標K1が0.5以上、かつ不融化繊維表面から深さ10μmの位置のニトリル消費量指標K2が0.5以上となるよう不融化処理を行うガス分離用炭素膜の製造方法である。 In order to solve the above problems, the present invention provides a carbon membrane for gas separation having an infusibilization step for infusible precursor fibers containing polyacrylonitrile and a carbonization step for carbonizing the infusible fibers that have undergone the infusibilization step. In the infusibilization step, the nitrile consumption index K1 on the surface of the infusible fiber is 0.5 or more, and the nitrile consumption index K2 at a depth of 10 μm from the surface of the infusible fiber is 0.5 or more. It is the manufacturing method of the carbon membrane for gas separation which performs an infusible process so that it may become.
本発明の製造方法により、ガス分離用のPAN系炭素膜において、ガス透過速度をさらに高めることができる。 With the production method of the present invention, the gas permeation rate can be further increased in the PAN-based carbon membrane for gas separation.
〔不融化工程〕
本発明は、PANを含む前駆体繊維を不融化処理する不融化工程において、不融化繊維表面のニトリル消費量指標K1が0.5以上、かつ前記不融化繊維表面から深さ10μmの位置のニトリル消費量指標K2が0.5以上となるよう不融化処理を行うことを特徴とする。
[Infusibilization process]
The present invention relates to a nitrile at a position where the nitrile consumption index K1 on the surface of the infusible fiber is 0.5 or more and a depth of 10 μm from the surface of the infusible fiber in the infusibilization step of infusibilizing the precursor fiber containing PAN. The infusibilization process is performed so that the consumption index K2 is 0.5 or more.
PANを含む分離膜の前駆体繊維(以下、「PAN系前駆体繊維」と称する場合がある)とは、ポリアクリロニトリル(PAN)またはその共重合体(PANおよびその共重合体を以下、「PAN系樹脂」と称する場合がある)を含む樹脂を紡糸することにより作製した繊維である。 The precursor fiber of the separation membrane containing PAN (hereinafter sometimes referred to as “PAN-based precursor fiber”) is polyacrylonitrile (PAN) or a copolymer thereof (hereinafter, PAN and its copolymer are referred to as “PAN”). Fiber which may be referred to as a “system resin”).
PAN系樹脂としては、アクリロニトリルモノマーと、カルボン酸基を有するモノマー、カルボン酸エステル基を有するモノマーまたはアクリルアミド系モノマー等の共重合成分を共重合させたポリマーが挙げられる。このような共重合ポリマーは不融化工程での環化が進行しやすくなる点で好ましい。 Examples of the PAN resin include a polymer obtained by copolymerizing an acrylonitrile monomer and a copolymer component such as a monomer having a carboxylic acid group, a monomer having a carboxylic acid ester group, or an acrylamide monomer. Such a copolymer is preferable in that the cyclization in the infusibilization process easily proceeds.
カルボン酸基を有するモノマーとしては、例えばアクリル酸、メタクリル酸、マレイン酸、イタコン酸などが上げられる。 Examples of the monomer having a carboxylic acid group include acrylic acid, methacrylic acid, maleic acid, itaconic acid and the like.
カルボン酸エステル基を有するモノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどの代表されるメタクリル酸エステル類などが上げられる。 Examples of the monomer having a carboxylic acid ester group include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate. Acrylic esters, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, Examples include methacrylic acid esters such as diethylaminoethyl methacrylate.
アクリルアミド系モノマーとしては、例えばアクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミドが上げられる。 Examples of acrylamide monomers include acrylamide, N-methylol acrylamide, and diacetone acrylamide.
PAN系樹脂としては、カルボン酸基を有するモノマー、カルボン酸エステル基を有するモノマー、およびアクリルアミド系モノマーから選ばれる複数種のモノマーをアクリロニトリルモノマーと共重合した樹脂を用いてもよい。 As the PAN-based resin, a resin obtained by copolymerizing a plurality of monomers selected from a monomer having a carboxylic acid group, a monomer having a carboxylic acid ester group, and an acrylamide-based monomer with an acrylonitrile monomer may be used.
また、共重合体のPAN系樹脂には、これら以外にもスチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどの不飽和モノマー類、さらにp−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸及びこれらのアルカリ金属塩などが含まれていても構わない。 In addition to these, PAN resin of the copolymer includes unsaturated monomers such as styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, and vinylidene fluoride. Further, p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid and alkali metal salts thereof may be contained.
これら共重合成分の共重合比は0.1〜10mol%が好ましい。0.1mol%以上とすることにより環化促進が可能となり、10mol%以下とすることにより不融化に際しての繊維シートの収縮を抑えることができる。これらの目的のために当該共重合成分は0.2〜5mol%とすることがより好ましい。 The copolymerization ratio of these copolymer components is preferably 0.1 to 10 mol%. By making it 0.1 mol% or more, cyclization can be promoted, and by making it 10 mol% or less, shrinkage of the fiber sheet during infusibilization can be suppressed. For these purposes, the copolymerization component is more preferably 0.2 to 5 mol%.
PAN系樹脂の重量平均分子量は1〜200万であることが、繊維の配向制御および、別工程での不融化の観点から好ましく、10万〜50万であることが可紡性の観点からより好ましい。 The weight average molecular weight of the PAN-based resin is preferably 1 to 2 million from the viewpoint of fiber orientation control and infusibilization in a separate process, and is preferably 100,000 to 500,000 from the viewpoint of spinnability. preferable.
PAN系前駆体繊維は、PAN系樹脂に消失樹脂を混合させた樹脂混合物からなるものであることが好ましい。消失樹脂とは、後の不融化処理または炭化処理による加熱か、あるいはそれらの前後のいずれかの段階における付加的な処理によって選択的に除去し得る樹脂である。消失樹脂が消失し、炭化可能であるPANが炭化することで、消失樹脂部分が空隙部として残り、多孔質の炭素材料が得られる。多孔質構造を有することにより、ガスの流路を空隙部が確保することができる。さらに炭化したPAN由来の枝部がそれぞれお互いに構造体を支えあう効果により、引張、圧縮などの変形に対しても、ある程度耐性を有する材料となる。このような樹脂混合物の場合、PAN系樹脂10〜90重量%に対し消失樹脂90〜10重量%を混合することが好ましい。 The PAN-based precursor fiber is preferably made of a resin mixture in which a disappearance resin is mixed with a PAN-based resin. The disappearing resin is a resin that can be selectively removed by heating by subsequent infusibilization treatment or carbonization treatment, or by additional treatment at any stage before or after them. When the lost resin disappears and the carbonized PAN is carbonized, the lost resin portion remains as a void portion, and a porous carbon material is obtained. By having the porous structure, the gap portion can secure the gas flow path. Further, the carbonized PAN-derived branch portions support each other's structures, so that the material has a certain degree of resistance against deformation such as tension and compression. In the case of such a resin mixture, it is preferable to mix 90 to 10% by weight of the disappearing resin with respect to 10 to 90% by weight of the PAN-based resin.
樹脂混合物を用いてPAN系前駆体繊維を作製する場合、さらに、樹脂混合物を相分離させて固定化し、多孔質前駆体構造を形成させる工程を行うことが好ましい。混合された炭化可能樹脂と消失樹脂を相分離させる方法は特に限定されず、例えば温度変化によって相分離を誘発する熱誘起相分離法、非溶媒を添加することによって相分離を誘発する非溶媒誘起相分離法が挙げられる。 When producing a PAN-based precursor fiber using a resin mixture, it is preferable to further perform a step of forming a porous precursor structure by phase-separating and immobilizing the resin mixture. The method of phase separation of the mixed carbonizable resin and the disappearing resin is not particularly limited. For example, a thermally induced phase separation method in which phase separation is induced by a temperature change, non-solvent induction in which phase separation is induced by adding a non-solvent. Examples include a phase separation method.
これら相分離法は、単独で、もしくは組み合わせて使用することができる。組み合わせて使用する場合の具体的な方法は、例えば凝固浴を通して非溶媒誘起相分離を起こした後、加熱して熱誘起相分離を起こす方法や、凝固浴の温度を制御して非溶媒誘起相分離と熱誘起相分離を同時に起こす方法、口金から吐出された材料を冷却して熱誘起相分離を起こした後に非溶媒と接触させる方法などが挙げられる。
特に、非溶媒誘起相分離法を用いると、表層の相分離サイズの制御が可能となり、分離対象に適した孔径を有するガス分離炭素膜を形成させやすいことから、好ましい。
These phase separation methods can be used alone or in combination. Specific methods for use in combination include, for example, a method in which non-solvent induced phase separation is caused through a coagulation bath and then heated to cause heat-induced phase separation, or a temperature in the coagulation bath is controlled to control a non-solvent induced phase. Examples thereof include a method of causing separation and thermally induced phase separation at the same time, a method of bringing the material discharged from the die into cooling and causing thermally induced phase separation, and then contacting with a non-solvent.
In particular, it is preferable to use a non-solvent induced phase separation method because the phase separation size of the surface layer can be controlled and a gas separation carbon membrane having a pore size suitable for the separation target can be easily formed.
消失樹脂を除去する方法は、不融化処理または炭化処理時の加熱により熱分解によって低分子量化して除去する方法が好適である。なお、熱分解による消失樹脂の除去は、不融化処理または炭化処理とは別に繊維を加熱する工程によって行ってもよい。 As a method for removing the lost resin, a method of removing the resin by reducing the molecular weight by thermal decomposition by heating during infusibilization treatment or carbonization treatment is preferable. In addition, you may perform the removal of the loss | disappearance resin by thermal decomposition by the process of heating a fiber separately from an infusibilization process or a carbonization process.
炭化時の熱分解により消失樹脂を除去する場合、消失樹脂としては、不融化処理では大きな化学変化を起さず、最も高温となる炭化処理と同時に除去する樹脂を用いることが好ましい。このような樹脂としては、炭化収率が10%未満の樹脂が好ましく、具体的にはポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリアセタール、ポリビニルピロリドン、脂肪族ポリエステル、芳香族ポリエステル、脂肪族ポリアミド、ポリカーボネートなどを挙げることができる。なお、これらの樹脂は単独で用いることも、混合樹脂として用いることもできる。 When the disappearing resin is removed by thermal decomposition during carbonization, it is preferable to use a resin that is removed at the same time as the carbonization treatment at the highest temperature without causing a large chemical change in the infusible treatment. As such a resin, a resin having a carbonization yield of less than 10% is preferable. Specifically, polyolefins such as polyethylene, polypropylene, and polystyrene, acrylic resins, methacrylic resins, polyacetals, polyvinylpyrrolidones, aliphatic polyesters, aromatic polyesters. , Aliphatic polyamide, polycarbonate and the like. These resins can be used alone or as a mixed resin.
また、不融化処理または炭化処理の前後のいずれかの段階で、薬品を用いて消失樹脂を解重合するなどして化学的に除去したり、消失樹脂を溶解する溶媒を添加して溶解除去したりすることにより消失樹脂を除去してもよい。化学的に除去する方法としては、酸またはアルカリを用いて加水分解する方法が経済性や取り扱い性の観点から好ましい。酸またはアルカリによる加水分解を受けやすい樹脂としては、ポリエステル、ポリカーボネート、ポリアミドなどが挙げられる。消失樹脂を溶解する溶媒を添加して除去する方法としては、混合されたPAN系樹脂と消失樹脂に対して、連続して溶媒を供給して消失樹脂を溶解、除去する方法や、バッチ式で混合して消失樹脂を溶解、除去する方法などが挙げられる。溶媒を添加して除去する方法に適した消失樹脂の具体的な例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリビニルピロリドン、脂肪族ポリエステル、ポリカーボネートなどが挙げられる。中でも溶媒への溶解性から非晶性の樹脂であることがより好ましく、その例としてはポリスチレン、メタクリル樹脂、ポリカーボネートが挙げられる。 Also, at any stage before or after the infusibilization treatment or carbonization treatment, the disappearing resin is chemically removed by using chemicals, or the solvent is dissolved and removed by adding a solvent that dissolves the disappearing resin. The disappearing resin may be removed. As a method of chemically removing, a method of hydrolyzing with an acid or an alkali is preferable from the viewpoints of economy and handleability. Examples of the resin that is susceptible to hydrolysis by acid or alkali include polyester, polycarbonate, and polyamide. As a method of adding and removing the solvent that dissolves the disappearing resin, the solvent is continuously supplied to the mixed PAN-based resin and the disappearing resin to dissolve and remove the disappearing resin, or by a batch method. Examples thereof include a method of mixing and dissolving and removing the disappearing resin. Specific examples of the disappearing resin suitable for the method of adding and removing the solvent include polyolefins such as polyethylene, polypropylene, and polystyrene, acrylic resins, methacrylic resins, polyvinyl pyrrolidone, aliphatic polyesters, and polycarbonates. Among them, an amorphous resin is more preferable because of its solubility in a solvent, and examples thereof include polystyrene, methacrylic resin, and polycarbonate.
なお、これらの方法は単独で用いてもよく、また複数の方法を組み合わせて使用してしてもよく、組み合わせて使用する場合にはそれぞれを同時に実施しても別々に実施しても良い。 In addition, these methods may be used independently and may be used combining several methods, and when using combining, each may be implemented simultaneously or separately.
PAN系前駆体繊維は、PAN系樹脂または前述の樹脂混合物を繊維状に紡糸することで得られる。なお、繊維状とは、平均直径に対して平均長さが100倍以上の形態を指すものとする。 The PAN-based precursor fiber can be obtained by spinning a PAN-based resin or the aforementioned resin mixture into a fiber shape. In addition, fibrous form shall mean the form whose average length is 100 times or more with respect to an average diameter.
紡糸方法は特に限定されず、溶融紡糸、乾式紡糸、乾湿式紡糸、湿式紡糸、エレクトロスピニング等が適用できるが、PAN系樹脂の紡糸性や生産性が優れるという点から、湿式紡糸や乾湿式紡糸が好ましい。湿式紡糸や乾湿式紡糸での溶媒はPAN系樹脂と消失樹脂を溶解する溶媒が好ましく、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドが挙げられる。 The spinning method is not particularly limited, and melt spinning, dry spinning, dry-wet spinning, wet spinning, electrospinning, etc. can be applied, but wet spinning and dry-wet spinning from the viewpoint of excellent spinnability and productivity of PAN-based resins. Is preferred. The solvent in wet spinning or dry wet spinning is preferably a solvent that dissolves the PAN-based resin and the disappearing resin, and examples thereof include dimethylformamide, dimethylacetamide, and dimethylsulfoxide.
PAN系前駆体繊維は、その断面の形状は何ら制限されず、丸断面でも、三角断面などの多葉断面でも、扁平断面や中空断面でも良く、任意の形状とすることが可能である。 The cross-sectional shape of the PAN-based precursor fiber is not limited at all, and may be a round cross-section, a multi-leaf cross-section such as a triangular cross-section, a flat cross-section, or a hollow cross-section, and can have any shape.
中空断面とする場合には、中空部がガス流路として機能するため、PAN系前駆体繊維は前述のような多孔質前駆体構造を有する必要はなく、PAN系樹脂のみからなるものを用いることができる。中空部の形状は特に限定されるものではなく、丸断面、三角断面等の多葉断面、扁平断面や、複数の中空部を有する形状など、任意の形状とすることができる。 In the case of a hollow cross section, since the hollow portion functions as a gas flow path, it is not necessary for the PAN-based precursor fiber to have a porous precursor structure as described above, and use only a PAN-based resin. Can do. The shape of the hollow portion is not particularly limited, and may be any shape such as a multi-leaf cross-section such as a round cross-section or a triangular cross-section, a flat cross-section, or a shape having a plurality of hollow portions.
PAN系前駆体繊維は、平均繊維径を20〜5000μmとすることが好ましい。平均繊維径とは、PAN系前駆体繊維の断面積を同面積の円に換算した場合の直径である。繊維径が大きいほど炭化時に繊維内部で多量の熱分解ガスが生じるため、ガス分離用炭素膜の孔を繊維内部から外部に熱分解ガスが拡散、透過する際に孔が拡大して、結果として孔径が拡大するため炭素膜のガス透過速度を向上できる。一方、繊維径が小さいほど曲げ剛性が低下するため、屈曲により折損や破断が生じることを防止することができるため工程通過性に優れる。これらのバランスを考慮して、平均繊維径は40〜3000μmの範囲であることが好ましく、50〜2000μmの範囲であるとより好ましい。 The PAN-based precursor fiber preferably has an average fiber diameter of 20 to 5000 μm. The average fiber diameter is a diameter when the cross-sectional area of the PAN-based precursor fiber is converted into a circle having the same area. The larger the fiber diameter, the more pyrolysis gas is generated inside the fiber during carbonization, so the pores of the gas separation carbon membrane expand when the pyrolysis gas diffuses and permeates from the inside of the fiber to the outside. Since the pore diameter is enlarged, the gas permeation rate of the carbon membrane can be improved. On the other hand, as the fiber diameter is smaller, the bending rigidity is lowered. Therefore, it is possible to prevent breakage or breakage due to bending, and thus excellent process passability is achieved. Considering these balances, the average fiber diameter is preferably in the range of 40 to 3000 μm, more preferably in the range of 50 to 2000 μm.
また、中空断面繊維とする場合は、膜厚を10〜500μmとすることが好ましい。中空糸の膜厚は、大きいほど耐圧性に優れた分離膜を形成できる点で好ましく、低いほどガス透過速度を向上でき、また欠陥の少ない分離膜を形成できる点で好ましい。これらのバランスを考慮して、特に中空糸の膜厚は20〜200μmとすることが好ましい。中空断面繊維の作成方法としては、例えば相溶樹脂混合物または溶媒を加えた相溶樹脂溶液を二重管構造の中空糸紡糸ノズルの外管から押し出し、紡糸ノズルの内管から、空気や窒素などのガス、紡糸原液と同一の溶媒、非溶媒、あるいはそれらの混合物などを押し出す方法が挙げられる。 Moreover, when setting it as a hollow cross-section fiber, it is preferable that a film thickness shall be 10-500 micrometers. The film thickness of the hollow fiber is preferably as large as possible to form a separation membrane with excellent pressure resistance, and as the thickness is low, it is preferable in terms of improving the gas permeation rate and forming a separation membrane with few defects. Considering these balances, it is particularly preferable that the hollow fiber has a thickness of 20 to 200 μm. As a method for producing a hollow cross-section fiber, for example, a compatible resin mixture or a compatible resin solution added with a solvent is extruded from the outer tube of a hollow tube spinning nozzle having a double tube structure, and air, nitrogen, etc. are extracted from the inner tube of the spinning nozzle. And a method of extruding the same gas, the same solvent as the spinning dope, a non-solvent, or a mixture thereof.
また、前駆体繊維として芯部に消失により中空部を形成する消失樹脂を含む芯鞘構造繊維を用いて中空断面繊維を作製することもできる。この場合、相溶樹脂混合物または溶媒を加えた相溶樹脂溶液を二重管構造の中空糸紡糸ノズルの外管から押し出し、紡糸ノズルの内管から消失樹脂溶液を押し出すことにより、前駆体繊維を作製することが好ましい。この態様においては、紡糸後に凝固した当該消失樹脂を除去することで、中空断面のPAN系前駆体繊維を作製することができる。なお、消失樹脂の種類およびその除去方法は、PAN系樹脂に消失樹脂を相溶させた樹脂混合物について前記した態様に準ずる。 Moreover, a hollow cross-section fiber can also be produced using a core-sheath structure fiber containing a disappearing resin that forms a hollow part by disappearance in the core part as a precursor fiber. In this case, the precursor fiber is extruded by extruding a compatible resin mixture or a compatible resin solution to which a solvent is added from the outer tube of a hollow fiber spinning nozzle having a double tube structure, and extruding the lost resin solution from the inner tube of the spinning nozzle. It is preferable to produce it. In this embodiment, the PAN-based precursor fiber having a hollow cross section can be produced by removing the disappearing resin solidified after spinning. In addition, the kind of elimination | eradication resin and its removal method apply to the aspect mentioned above about the resin mixture which made the elimination resin compatible with PAN-type resin.
不融化処理とは、PAN系前駆体繊維の架橋構造が進行する処理であり、その方法として、PAN系前駆体繊維を酸素雰囲気下(酸素を1%以上含むガス環境下)で熱処理により酸化架橋する方法、電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法、反応性基を持つ物質を含浸、混合して架橋構造を形成する方法などが挙げられ、中でも酸素雰囲気下で加熱することで酸化架橋を起こす方法が、プロセスが簡便であり製造コストを低く抑えることが可能である点から好ましい。これらの手法は単独もしくは組み合わせて使用しても、それぞれを同時に使用しても別々に使用してもよい。 Infusibilization is a process in which the crosslinked structure of PAN-based precursor fibers progresses. As a method for this, PAN-based precursor fibers are oxidized and crosslinked by heat treatment in an oxygen atmosphere (in a gas environment containing 1% or more of oxygen). A method of forming a crosslinked structure by irradiating high energy rays such as an electron beam and a gamma ray, a method of impregnating and mixing a substance having a reactive group to form a crosslinked structure, etc. The method of causing oxidative crosslinking by heating at a temperature is preferable because the process is simple and the production cost can be kept low. These techniques may be used singly or in combination, and each may be used simultaneously or separately.
不融化工程においては、PAN系前駆体繊維を、表面のニトリル消費量指標K1が0.5以上であり、かつ表面から深さ10μmでのニトリル消費量指標K2が0.5以上になるよう不融化処理を行う。なお、本明細書においては、PAN系前駆体繊維を不融化して得られる繊維を「不融化繊維」と呼ぶ。 In the infusibilization step, the PAN-based precursor fiber is not adjusted so that the nitrile consumption index K1 on the surface is 0.5 or more and the nitrile consumption index K2 at a depth of 10 μm from the surface is 0.5 or more. Perform fusing treatment. In the present specification, fibers obtained by infusibilizing PAN-based precursor fibers are referred to as “infusible fibers”.
ニトリル消費量指標とは、赤外分光装置を用いた顕微ATR法によって不融化反応の進行度を確認する指標である。具体的には、C−H振動の吸光度(2940cm−1)およびニトリル基の吸光度(2240cm−1)を測定し、これらの吸光度から算出される「2240cm−1の吸光度/2940cm−1の吸光度」の値をニトリル消費量指標とする。ニトリル消費量指標は、後述する実施例に記載の方法により測定する。不融化繊維におけるK1の値は小さいほど、分離膜表面の環化反応が進行するため、耐薬品性が向上する。一方、K1の値が大きいほど粗大な孔径が形成され、ガス透過速度が向上する。耐薬品性を保ちつつ、優れたガス透過速度を有する分離膜作製の観点から、不融化工程における不融化処理は、不融化繊維のK1が0.6以上0.9以下となるよう行うことが好ましく、0.65以上0.85以下となるよう行うことがより好ましい。 The nitrile consumption index is an index for confirming the degree of progress of the infusible reaction by the microscopic ATR method using an infrared spectroscopic device. Specifically, the absorbance of C-H vibration (2940 cm -1) and measured the absorbance of the nitrile group of (2240 cm -1), is calculated from these absorbance "Absorbance / 2940 cm absorbance -1 2240 cm -1" Is the nitrile consumption index. The nitrile consumption index is measured by the method described in Examples described later. The smaller the value of K1 in the infusible fiber, the more the chemical resistance is improved because the cyclization reaction on the surface of the separation membrane proceeds. On the other hand, as the value of K1 is larger, a coarse pore diameter is formed and the gas permeation rate is improved. From the viewpoint of producing a separation membrane having an excellent gas permeation rate while maintaining chemical resistance, the infusibilization treatment in the infusibilization step may be performed such that K1 of the infusible fiber is 0.6 or more and 0.9 or less. Preferably, it is more preferably performed so as to be 0.65 or more and 0.85 or less.
また、不融化工程においては、表面から深さ10μmでのニトリル消費量指標K2もまた0.5以上となるよう不融化処理を行う。 In the infusibilization step, the infusibilization treatment is performed so that the nitrile consumption index K2 at a depth of 10 μm from the surface also becomes 0.5 or more.
不融化繊維のK2の値は、大きいほど炭化工程おいて多量の熱分解ガスが生じ、結果として孔径が拡大、または孔数が増加するため炭素膜のガス透過速度が向上する。一方、K2が小さいほど炭化工程において樹脂の急激な熱分解が抑制されるため糸切れのリスクが低減できる。分離膜の連続生産性の観点から、不融化工程における不融化処理は、不融化繊維のK2が0.55以上0.9以下となるよう行うことが好ましく、0.6以上0.85以下となるよう行うことがより好ましい。 The larger the value of K2 of the infusible fiber, the more pyrolytic gas is generated in the carbonization process. As a result, the pore diameter is enlarged or the number of pores is increased, so that the gas permeation rate of the carbon membrane is improved. On the other hand, as K2 is smaller, the risk of thread breakage can be reduced because rapid thermal decomposition of the resin is suppressed in the carbonization step. From the viewpoint of continuous productivity of the separation membrane, the infusibilization treatment in the infusibilization step is preferably performed such that K2 of the infusible fiber is 0.55 or more and 0.9 or less, and is 0.6 or more and 0.85 or less. It is more preferable to carry out.
本発明においては、K1およびK2の値をこのような範囲とすることで、後の炭化工程において従来のPAN系の不融化繊維と比較して多量の熱分解ガスが生じ、繊維内部で発生した熱分解ガスが外部に拡散する際に孔径を拡大、または孔数が増加して、ガス透過速度に優れた分離膜を得ることができると考えられる。 In the present invention, by setting the values of K1 and K2 in such a range, a large amount of pyrolysis gas is generated in the subsequent carbonization process as compared with the conventional PAN-based infusible fiber, and is generated inside the fiber. It is considered that when the pyrolysis gas diffuses to the outside, the pore diameter is enlarged or the number of pores is increased, so that a separation membrane having an excellent gas permeation rate can be obtained.
熱処理により不融化処理を行う場合、酸素濃度については特に限定されないが、1%以上の酸素濃度を持つガス、特に空気をそのまま供給することが製造コストを低く抑えることが可能となる。この場合、不融化処理温度は、架橋反応を効率よく進める観点から150℃以上が好ましく、樹脂の熱分解、燃焼などによる重量ロスなく、収率よく繊維を得ることができる観点から、350℃以下が好ましい。 When the infusibilization treatment is performed by heat treatment, the oxygen concentration is not particularly limited. However, supplying a gas having an oxygen concentration of 1% or more, particularly air, as it is can reduce the manufacturing cost. In this case, the infusibilization temperature is preferably 150 ° C. or higher from the viewpoint of efficiently proceeding with the cross-linking reaction, and 350 ° C. or lower from the viewpoint of obtaining fibers in good yield without weight loss due to thermal decomposition or combustion of the resin. Is preferred.
また、不融化時間は、1分以上50分未満とすることが好ましい。不融化時間を1分以上とすることにより、架橋が進行しており高温時の変形が抑制されることから断面形状の保持や糸切れ防止の点から好ましい。また不融化時間を50分未満とすることにより、PAN系前駆体繊維の曲げ剛性を低く保てることで工程通過性に優れる点や分離膜のガス透過速度が向上する点で好ましい。この観点から不融化時間は5〜45分であることがより好ましい。なお、本明細書において、不融化時間とは、昇温時間および降温時間を除いた加熱時間を指す。また前記の不融化工程は、前述の温度、不融化時間範囲内であれば、例えば、1回目の不融化処理温度をT1、不融化時間をS1、2回目の不融化処理温度をT2、不融化時間をS2とした時、150℃≦T1<T2≦350℃かつ、1分≦S1+S2<50分となるように複数回不融化工程を行ってもよい。昇温速度、降温速度の下限は特に限定されないが、昇温、降温にかかる時間を短縮することで生産性を高めることができるため、1℃/分以上の速度であると好ましい。 The infusibilization time is preferably 1 minute or more and less than 50 minutes. By setting the infusibilization time to 1 minute or longer, crosslinking is progressing and deformation at high temperatures is suppressed, which is preferable from the viewpoint of maintaining the cross-sectional shape and preventing yarn breakage. Further, by setting the infusibilization time to less than 50 minutes, it is preferable in that the bending rigidity of the PAN-based precursor fiber can be kept low, and the process permeability is excellent and the gas permeation rate of the separation membrane is improved. From this viewpoint, the infusibilization time is more preferably 5 to 45 minutes. In the present specification, the infusibilization time refers to the heating time excluding the temperature rise time and the temperature fall time. If the infusibilization step is within the above-mentioned temperature and infusibilization time range, for example, the first infusibilization treatment temperature is T1, the infusibilization time is S1, the second infusibilization treatment temperature is T2, When the melting time is S2, the infusibilization step may be performed a plurality of times so that 150 ° C. ≦ T1 <T2 ≦ 350 ° C. and 1 minute ≦ S1 + S2 <50 minutes. The lower limit of the rate of temperature increase and the rate of temperature decrease is not particularly limited, but it is preferable that the rate is 1 ° C./min or higher because productivity can be improved by shortening the time required for temperature increase and decrease.
〔炭化工程〕
上記のような不融化工程を経た不融化繊維を炭化処理することで、ガス分離用炭素膜とすることができる。不融化繊維を充分に炭化させるために、炭化工程における熱処理は、不活性ガス雰囲気で不融化繊維を400℃以上に加熱することにより行うことが好ましい。不活性ガスとは、加熱時に化学的に不活性であるものを言い、具体的には、ヘリウム、ネオン、窒素、アルゴン、クリプトン、キセノン、二酸化炭素などが挙げられる。中でも窒素またはアルゴンを用いることが経済的な観点から好ましい。熱処理時の加熱温度の上限は特に限定されないが、低いほど経済的であるため、1500℃以下が好ましい。
[Carbonization process]
A carbon membrane for gas separation can be obtained by carbonizing the infusible fiber that has undergone the infusibilization process as described above. In order to sufficiently carbonize the infusible fiber, the heat treatment in the carbonization step is preferably performed by heating the infusible fiber to 400 ° C. or higher in an inert gas atmosphere. The inert gas refers to a substance that is chemically inert when heated, and specifically includes helium, neon, nitrogen, argon, krypton, xenon, carbon dioxide, and the like. Of these, nitrogen or argon is preferred from an economical viewpoint. The upper limit of the heating temperature during the heat treatment is not particularly limited, but it is more economical as it is lower, so 1500 ° C. or less is preferable.
炭化工程で得られたガス分離用炭素膜は、膜に開いた孔を利用して物質の透過性の差により分離を可能とする。分離機構としては、分子ふるい、クヌーセン拡散等が知られているが、本発明のガス分離用炭素膜では、特に限定されない。 The carbon membrane for gas separation obtained in the carbonization process can be separated by the difference in the permeability of substances using the holes opened in the membrane. As the separation mechanism, molecular sieving, Knudsen diffusion, and the like are known, but the gas separation carbon membrane of the present invention is not particularly limited.
本発明のガス分離用炭素膜は、二酸化炭素の分離用として用いることが特に好ましい。 The carbon membrane for gas separation of the present invention is particularly preferably used for carbon dioxide separation.
(ニトリル消費量指標)
不融化繊維を繊維軸と平行にスライスし、スライスした断面の繊維軸と垂直方向の幅の長さを求め、不融化繊維表面から深さ10μmの位置で繊維軸と平行にスライスし、断面の長手方向の中心線位置が表面から深さ10μmの部分のサンプルを得た。IR測定には、FT−IR装置(日本分光社製、製品名IRT−3000)を用い、積算回数32回の条件にて、以下のように測定を行った。まず測定雰囲気のバックグラウンドスペクトルを測定した。ついで、ATRプリズム面にスライスを行っていない不融化繊維および、上記のように作製した表面から深さ10μmの部分のサンプルを密着させスペクトル測定を5回行った。それぞれの測定結果から2500cm−1の吸収スペクトルを0とした時の各吸収スペクトル(2240,2940cm−1)の吸光度(ピーク強度)を読み取り、2940cm−1の吸光度に対する2240cm−1の吸光度の比率を求めて、「ニトリル消費量指標(K)=2240cm−1の吸光度/2940cm−1の吸光度」を算出し、5回の平均をそれぞれK1、K2とした。
(Nitrile consumption index)
The infusible fiber is sliced parallel to the fiber axis, the length of the width in the direction perpendicular to the fiber axis of the sliced cross section is obtained, sliced parallel to the fiber axis at a depth of 10 μm from the surface of the infusible fiber, A sample was obtained in which the center line position in the longitudinal direction was 10 μm deep from the surface. For the IR measurement, an FT-IR apparatus (manufactured by JASCO Corporation, product name IRT-3000) was used, and measurement was performed as follows under the condition of 32 integrations. First, the background spectrum of the measurement atmosphere was measured. Subsequently, the infusible fiber that was not sliced on the ATR prism surface and the sample at a depth of 10 μm from the surface prepared as described above were brought into close contact with each other, and the spectrum measurement was performed five times. Reads each absorption spectrum when the respective measurement results and zero absorption spectrum of 2500 cm -1 absorbance (peak intensity) of (2240,2940cm -1), the ratio of the absorbance at 2240 cm -1 to the absorbance of 2940 cm -1 determined to calculate the "nitrile consumption indicator (K) = 2240 cm absorbance / 2940 cm absorbance -1 -1", and five average respectively K1, K2.
(ガス透過速度)
ガス分離用炭素膜を長さ10cmに切断し、これを20本束ねて外径φ6mm、肉厚1mmのステンレス製のケーシング内に収容し、束ねたガス分離膜の端をエポキシ樹脂系接着剤でケーシング内面に固定するとともにケーシングの両端を封止して、ガス分離膜モジュールを作製した。測定ガスは窒素、二酸化炭素およびメタンを用い、JIS K7126−1(2006)の圧力センサ法に準拠して測定温度25℃で外圧式にて窒素、二酸化炭素およびメタンの単位時間当たりの透過側の圧力変化を測定した。ここで、供給側と透過側の圧力差を0.11MPa(82.5cmHg)に設定した。続いて、透過したガスの透過速度Qを下記式により算出し、各成分のガスの透過速度の比として分離係数αを算出した。なお、STPは標準条件を意味する。また、膜面積はガスの透過に寄与する領域においてガス分離膜の外径および長さから算出した。
Q = [ガス透過流量(×10−6 cm3・STP)]/[膜面積(cm2)×時間(s)×圧力差(cmHg)
[実施例1]
70gのポリサイエンス社製ポリアクリロニトリル(MW15万)と70gのシグマ・アルドリッチ社製ポリビニルピロリドン(MW4万)、及び、溶媒として400gの和研薬製ジメチルスルホキシド(DMSO)をセパラブルフラスコに投入し、3時間攪拌および還流を行いながら均一かつ透明な溶液を調製した。このときポリアクリロニトリルの濃度、ポリビニルピロリドンの濃度はそれぞれ15重量%であった。
(Gas transmission rate)
The carbon membrane for gas separation is cut into a length of 10 cm, and 20 of these are bundled and accommodated in a stainless steel casing having an outer diameter of 6 mm and a wall thickness of 1 mm, and the ends of the bundled gas separation membrane are bonded with an epoxy resin adhesive. The gas separation membrane module was produced by fixing to the inner surface of the casing and sealing both ends of the casing. Nitrogen, carbon dioxide and methane are used as measurement gases, and the permeation side per unit time of nitrogen, carbon dioxide and methane is measured at an external pressure type at a measurement temperature of 25 ° C. according to the pressure sensor method of JIS K7126-1 (2006). The pressure change was measured. Here, the pressure difference between the supply side and the transmission side was set to 0.11 MPa (82.5 cmHg). Subsequently, the permeation rate Q of the permeated gas was calculated by the following formula, and the separation coefficient α was calculated as the ratio of the permeation rate of the gas of each component. STP means standard conditions. The membrane area was calculated from the outer diameter and length of the gas separation membrane in a region contributing to gas permeation.
Q = [gas permeation flow rate (× 10 −6 cm 3 · STP)] / [membrane area (cm 2 ) × time (s) × pressure difference (cmHg)
[Example 1]
70 g of polyacrylonitrile (MW 150,000) manufactured by Polyscience, 70 g of polyvinyl pyrrolidone (MW 40,000) manufactured by Sigma-Aldrich, and 400 g of dimethyl sulfoxide (DMSO) manufactured by Wakken as a solvent were placed in a separable flask. A uniform and clear solution was prepared while stirring and refluxing for 3 hours. At this time, the concentration of polyacrylonitrile and the concentration of polyvinylpyrrolidone were 15% by weight, respectively.
得られたポリマー溶液を、芯鞘型の二重口金の外管から前記ポリマー溶液を吐出し、内管からはDMSO90重量%水溶液を同時に吐出した後、水100%からなる凝固浴へ導き、ローラーに巻き取り、中空糸状のPAN系前駆体繊維を得た。得られたPAN系前駆体繊維は半透明であり、相分離を起こしていた。得られたPAN系前駆体繊維は水洗した後、乾燥した。 The obtained polymer solution is discharged from the outer tube of the core-sheath type double cap, the polymer solution is discharged from the inner tube at the same time as a 90% by weight aqueous solution of DMSO, and then guided to a coagulation bath composed of 100% water. To obtain a hollow fiber-like PAN-based precursor fiber. The obtained PAN-based precursor fiber was translucent and caused phase separation. The obtained PAN-based precursor fiber was washed with water and then dried.
その後、空気雰囲気下で、昇温速度10℃/分、240℃、不融化時間30分の不融化処理を行い、不融化繊維を作製した。 Thereafter, infusibilization treatment was performed in an air atmosphere at a heating rate of 10 ° C./min, 240 ° C., and an infusibilization time of 30 minutes, to produce an infusible fiber.
続いてPAN系前駆体繊維を到達温度600℃、処理時間5分で炭化処理を行うことで分離膜を作製した。作製したガス分離炭素膜は内層に共連続多孔構造、表層に実質的に共連続多孔構造を有しない緻密層とを有するガス分離用炭素膜であった。
[実施例2]
不融化時間を5分とした以外は実施例1と同様の手法で分離膜を作製した。
[実施例3]
不融化時間を45分とした以外は実施例1と同様の手法で分離膜を作製した。
[実施例4]
不融化処理温度240℃、不融化時間20分で熱処理を行った後、次いで不融化処理温度320℃、不融化時間1分間の条件で2回目の熱処理を行った以外は実施例1と同様の手法で分離膜を作製した。
Subsequently, the PAN-based precursor fiber was carbonized at an ultimate temperature of 600 ° C. for a treatment time of 5 minutes to produce a separation membrane. The produced gas separation carbon membrane was a carbon membrane for gas separation having a co-continuous porous structure in the inner layer and a dense layer having substantially no co-continuous porous structure in the surface layer.
[Example 2]
A separation membrane was prepared in the same manner as in Example 1 except that the infusibilization time was 5 minutes.
[Example 3]
A separation membrane was prepared in the same manner as in Example 1 except that the infusibilization time was 45 minutes.
[Example 4]
Example 1 after performing heat treatment at an infusibilization temperature of 240 ° C. and an infusibilization time of 20 minutes, and then performing a second heat treatment at an infusibilization temperature of 320 ° C. and an infusibilization time of 1 minute. A separation membrane was prepared by this method.
[実施例5]
凝固浴を水とDMSOの混合浴に変更し、相分離サイズを拡大した以外は実施例1と同様の手法で分離膜を作製した。作製したガス分離炭素膜は全体に共連続多孔構造を有するガス分離用炭素膜であった。
[比較例1]
不融化時間を60分とした以外は実施例1と同様の手法で分離膜を作製した。
[比較例2]
不融化時間を120分とした以外は実施例5と同様の手法で分離膜を作製した。
[Example 5]
A separation membrane was prepared in the same manner as in Example 1 except that the coagulation bath was changed to a mixed bath of water and DMSO and the phase separation size was expanded. The produced gas separation carbon membrane was a carbon membrane for gas separation having a bicontinuous porous structure as a whole.
[Comparative Example 1]
A separation membrane was prepared in the same manner as in Example 1 except that the infusibilization time was 60 minutes.
[Comparative Example 2]
A separation membrane was prepared in the same manner as in Example 5 except that the infusibilization time was 120 minutes.
各実施例、比較例における不融化処理の条件と、不融化繊維の物性、および最終的に得られたガス分離用炭素膜のガス分離性能を表1に示す。 Table 1 shows the conditions of the infusible treatment, the physical properties of the infusible fibers, and the gas separation performance of the finally obtained carbon membrane for gas separation in each example and comparative example.
Claims (10)
ニトリル消費量指標:赤外分光装置を用いた顕微ATR法によって測定されるC−H振動の吸光度(2940cm−1)およびニトリル基の吸光度(2240cm−1)から算出される「2240cm−1の吸光度/2940cm−1の吸光度」 A method for producing a carbon membrane for gas separation, comprising: an infusibilization step for infusifying a precursor fiber containing polyacrylonitrile; and a carbonization step for carbonizing the infusible fiber that has undergone the infusibilization step. The nitrile consumption index K1 measured by the following on the surface of the infusible fiber is 0.5 or more and the nitrile consumption index K2 at a depth of 10 μm from the surface of the infusible fiber is 0.5 or more. A method for producing a carbon membrane for gas separation that performs infusibilization.
Nitrile consumption index: infrared spectrometer the absorbance of C-H vibrations measured by microscopic ATR method using (2940 cm -1) and the absorbance of the nitrile group absorbance "2240 cm -1 calculated from (2240 cm -1) / 2940cm −1 absorbance ”
It is an infusible fiber obtained by infusibilizing a precursor fiber made of polyacrylonitrile, and the nitrile consumption index K1 on the surface is 0.5 or more and the nitrile consumption index K2 at a depth of 10 μm from the surface is 0. An infusible fiber of 5 or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017013901 | 2017-01-30 | ||
JP2017013901 | 2017-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018122293A true JP2018122293A (en) | 2018-08-09 |
JP7159563B2 JP7159563B2 (en) | 2022-10-25 |
Family
ID=63110727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018013229A Active JP7159563B2 (en) | 2017-01-30 | 2018-01-30 | METHOD FOR MANUFACTURING CARBON MEMBRANE FOR GAS SEPARATION |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7159563B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117916414A (en) * | 2021-09-29 | 2024-04-19 | 东洋纺Mc株式会社 | Fire-resistant polyphenylene ether molded body, fire-resistant polyphenylene ether fiber molded body, carbon molded body, activated carbon molded body and methods for producing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01221518A (en) * | 1988-02-29 | 1989-09-05 | Mitsubishi Rayon Co Ltd | Production of hollow carbon membrane fiber and production thereof |
CN1404907A (en) * | 2002-03-18 | 2003-03-26 | 天津膜天膜工程技术有限公司 | Polyacrylonitrile-radical hollow carbon-fiber film and preparing method thereof |
WO2016013676A1 (en) * | 2014-07-24 | 2016-01-28 | 東レ株式会社 | Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation |
WO2016068034A1 (en) * | 2014-10-29 | 2016-05-06 | 東レ株式会社 | Carbon fiber bundle and method for manufacturing same |
-
2018
- 2018-01-30 JP JP2018013229A patent/JP7159563B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01221518A (en) * | 1988-02-29 | 1989-09-05 | Mitsubishi Rayon Co Ltd | Production of hollow carbon membrane fiber and production thereof |
CN1404907A (en) * | 2002-03-18 | 2003-03-26 | 天津膜天膜工程技术有限公司 | Polyacrylonitrile-radical hollow carbon-fiber film and preparing method thereof |
WO2016013676A1 (en) * | 2014-07-24 | 2016-01-28 | 東レ株式会社 | Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation |
WO2016068034A1 (en) * | 2014-10-29 | 2016-05-06 | 東レ株式会社 | Carbon fiber bundle and method for manufacturing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117916414A (en) * | 2021-09-29 | 2024-04-19 | 东洋纺Mc株式会社 | Fire-resistant polyphenylene ether molded body, fire-resistant polyphenylene ether fiber molded body, carbon molded body, activated carbon molded body and methods for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP7159563B2 (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10835874B2 (en) | Fluid separation membrane, fluid separation membrane module, and porous carbon fiber | |
JP6495326B2 (en) | Low polydispersity index (PDI) polyacrylonitrile (PAN) polymers and carbon fibers made therefrom | |
JP6733177B2 (en) | Fluid separation carbon membrane, fluid separation membrane module, and method for producing carbon membrane for fluid separation | |
JP6664401B2 (en) | Densification of polyacrylonitrile fiber | |
KR102528151B1 (en) | Preparation of medium modulus carbon fibers | |
Morris et al. | Solution spinning of PAN-based polymers for carbon fiber precursors | |
KR101272525B1 (en) | Preparation Method for Hollow Carbon Fiber | |
JP2018508667A5 (en) | ||
JP7159563B2 (en) | METHOD FOR MANUFACTURING CARBON MEMBRANE FOR GAS SEPARATION | |
JP2021175843A (en) | Method for producing carbon material | |
JPH02160924A (en) | Porous carbon fiber and production thereof | |
KR102102984B1 (en) | Method for preparing carbon fiber | |
JP2867043B2 (en) | Carbon fiber-based porous hollow fiber membrane and method for producing the same | |
JP4138361B2 (en) | Carbon fiber strand and method for producing the same | |
WO1989008488A1 (en) | Porous hollow carbon fiber film and method of manufacturing the same | |
JP6232814B2 (en) | Acrylic fiber manufacturing method | |
JP2010174422A (en) | Precursor for producing carbon fiber and method for producing the same | |
JP2011231412A (en) | Polyacrylonitrile-based fiber and carbon fiber made from the same | |
JP2007284807A (en) | Fiber bundle of acrylonitrile-based carbon fiber precursor, method for producing the same and carbon fiber bundle | |
JP2005248358A (en) | Precursor fiber for carbon fiber | |
JP2010137196A (en) | Method for manufacturing porous hollow-fiber membrane | |
JP2023163084A (en) | Manufacturing method of polyacrylonitrile fiber and carbon fiber | |
JP2002220779A (en) | Method for treating carbon fiber bundle and carbon fiber bundle | |
JP2006233360A (en) | Carbon fiber and method for producing the carbon fiber | |
KR20200089529A (en) | Method for preparing acrylonitrile based fiber for carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220926 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7159563 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |