JP2018119190A - Plated steel wire, steel cord and rubber-steel cord complex - Google Patents
Plated steel wire, steel cord and rubber-steel cord complex Download PDFInfo
- Publication number
- JP2018119190A JP2018119190A JP2017012442A JP2017012442A JP2018119190A JP 2018119190 A JP2018119190 A JP 2018119190A JP 2017012442 A JP2017012442 A JP 2017012442A JP 2017012442 A JP2017012442 A JP 2017012442A JP 2018119190 A JP2018119190 A JP 2018119190A
- Authority
- JP
- Japan
- Prior art keywords
- steel wire
- plating
- plating layer
- rubber
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0666—Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
Landscapes
- Electroplating Methods And Accessories (AREA)
- Ropes Or Cables (AREA)
- Tires In General (AREA)
- Wire Processing (AREA)
Abstract
Description
本発明は、めっき鋼線、スチールコード及びゴム−スチールコード複合体に関する。 The present invention relates to a plated steel wire, a steel cord, and a rubber-steel cord composite.
ゴム補強材(例えば、タイヤの補強材として使用されているスチールコードなど)の表面には、ブラスめっきが形成されていることが多い。かかるスチールコードを、未硫化ゴムに埋め込んだ後、加硫することによって、スチールコードとゴムとを接着させる。なお、加硫は、ゴム製品を製造する際の最終工程であり、150℃〜200℃の温度で20分〜40分間、加圧及び加熱を行う工程である。かかる加硫によって、ゴムが架橋されるとともに、スチールコードのブラスめっきとゴムとの界面に接着層が生成される。かかる接着層は、主に、ブラスめっきのCu及びZnと、ゴムに含まれるS(硫黄)と、の反応によって形成された硫化物を含む。 Brass plating is often formed on the surface of a rubber reinforcing material (for example, a steel cord used as a reinforcing material for a tire). Such a steel cord is embedded in unsulfurized rubber and then vulcanized to bond the steel cord and rubber. Vulcanization is a final step in producing a rubber product, and is a step of applying pressure and heating at a temperature of 150 ° C. to 200 ° C. for 20 minutes to 40 minutes. By such vulcanization, the rubber is crosslinked and an adhesive layer is formed at the interface between the steel cord brass plating and the rubber. Such an adhesive layer mainly includes a sulfide formed by a reaction between Cu and Zn of brass plating and S (sulfur) contained in rubber.
このように、スチールコードとゴムとは、加硫時に生成する硫化物によって接着される。そのため、ゴム中には、硫化物の生成を促進する触媒として、Coを含む有機コバルト塩が配合されることがある。Coは、スチールコードとゴムとの初期の接着強度を確保するためには有用である。しかしながら、タイヤなどを高温・高湿環境で使用すると、ブラスめっきのCu及びZnとゴムに含まれるSとの反応が進行する。その結果、接着層が厚くなるとともに硫化物の組成が変化し、スチールコードとゴムとの接着強度が低下する。 As described above, the steel cord and the rubber are bonded together by the sulfide generated during vulcanization. Therefore, an organic cobalt salt containing Co may be blended in the rubber as a catalyst for promoting the formation of sulfide. Co is useful for ensuring the initial bond strength between the steel cord and rubber. However, when a tire or the like is used in a high-temperature and high-humidity environment, the reaction between brass and Cu and Zn and S contained in the rubber proceeds. As a result, as the adhesive layer becomes thicker, the sulfide composition changes, and the adhesive strength between the steel cord and rubber decreases.
更に、有機コバルト塩は、ゴム分子の二重結合を切断し、ゴムを劣化させるという問題がある。加えて、CuとSとの加硫反応の触媒として作用するCoは希少金属であり、ゴムにCoを含有させると、コストが非常に高くなる。そのため、タイヤなどのゴムから有機コバルト塩を削減することが望まれている。 Furthermore, the organic cobalt salt has a problem that the double bond of the rubber molecule is cut and the rubber is deteriorated. In addition, Co acting as a catalyst for the vulcanization reaction between Cu and S is a rare metal, and if Co is contained in the rubber, the cost becomes very high. Therefore, it is desired to reduce organic cobalt salts from rubber such as tires.
このような問題に対して、CoやNiを含むブラスめっきを設けたスチールコードが提案されている(例えば、以下の特許文献1〜特許文献3を参照。)。
In order to solve such a problem, a steel cord provided with brass plating containing Co or Ni has been proposed (for example, see
また、ブラスめっきにCoやNiを含有させることなく、接着性及び伸線加工性を両立させる方法として、めっきの組成やめっき厚を最適化する技術が提案されている(例えば、以下の特許文献4及び特許文献5を参照。)。 Further, as a method for achieving both adhesion and wire drawing workability without incorporating Co or Ni into brass plating, a technique for optimizing the plating composition and plating thickness has been proposed (for example, the following patent documents) 4 and Patent Document 5).
更には、鋼線とゴムとを密着させつつ、Cu層がゴム中の硫黄と反応することによる粒子の粗大化を抑制する方法として、極細鋼線の表面から順に、極細鋼線の凹凸を被覆して表面を平滑にする被覆Cuめっき(第1層)、伸線加工性を確保しつつ、第1層からのCuの拡散を防止する拡散防止層(第2層)、接着強度の経年劣化を抑制する、平均厚みが10〜50nmの接着Cuめっき(第3層)を有するといっためっき鋼線が提案されている(例えば、以下の特許文献6を参照。)。 Furthermore, as a method of suppressing the coarsening of particles due to the reaction of the Cu layer with sulfur in the rubber while bringing the steel wire and rubber into close contact, the unevenness of the ultrafine steel wire is covered in order from the surface of the ultrafine steel wire. Coating Cu plating (first layer) to smooth the surface, diffusion preventing layer (second layer) to prevent the diffusion of Cu from the first layer while ensuring wire drawing workability, aging degradation of adhesive strength A plated steel wire that has an adhesive Cu plating (third layer) with an average thickness of 10 to 50 nm is proposed (see, for example, Patent Document 6 below).
しかしながら、上記特許文献1〜特許文献3に開示されている技術のように、ブラスめっき中にNiやCoを含む場合、めっき層が硬くなり伸線加工性が悪化するという問題が生じる。また、ブラスめっきの表層のみにCoやNiを含有させる方法は、製造工程が複雑であり、コストの上昇が懸念される。
However, when Ni or Co is contained in the brass plating as in the techniques disclosed in
また、上記特許文献4に開示されている技術のように、厚みを調整したCuとZnの多層めっきを行った後で拡散熱処理を施す方法では、ブラスめっきの組成の制御が難しい。また、かかる技術では、めっきの工程が増えるために、コストも高くなる。一方、上記特許文献5に開示されている技術のように、ブラスめっき線を伸線加工後にショトブラストを行い、めっき厚を薄くする方法では、めっき厚の均一性を確保することが難しくなる。 In addition, as in the technique disclosed in Patent Document 4, it is difficult to control the composition of the brass plating by the method of performing diffusion heat treatment after performing multilayer plating of Cu and Zn with adjusted thickness. In addition, this technique increases the cost because the number of plating steps increases. On the other hand, as in the technique disclosed in the above-mentioned Patent Document 5, it is difficult to ensure the uniformity of the plating thickness by the method of performing the shot blasting after drawing the brass plating wire and reducing the plating thickness.
また、上記特許文献6における拡散防止層は、クラックなどの欠陥が存在しない。このような構成では、第1層がゴムと反応してしまうとCuが枯渇し、拡散防止層からのCuの供給は、拡散防止元素にもよるものの、高温環境で使用しない限りほぼ起こり得ない。従って、第1層のCuが枯渇してしまうと、その後ゴムとの密着性が低下してしまう。 Further, the diffusion preventing layer in Patent Document 6 has no defects such as cracks. In such a configuration, if the first layer reacts with the rubber, Cu is depleted, and the supply of Cu from the diffusion prevention layer is almost impossible unless it is used in a high temperature environment, although it depends on the diffusion prevention element. . Therefore, when Cu in the first layer is depleted, the adhesion with the rubber is subsequently lowered.
一方、鋼線の表面のめっきを薄くした場合には、めっきを施す前の鋼線の表面は凹凸を有しているために、めっき後の鋼線の表面には、局所的に鉄が露出した部分(Fe露出部)が存在する。かかるFe露出部が大きくなると、ゴムとの接着が不十分になり、時間の経過により酸素と水分が浸透して、鉄錆が発生する。鉄錆が生じると、体積膨張に起因して、接着強度が著しく低下する。 On the other hand, when the surface of the steel wire is thinned, the surface of the steel wire before plating has irregularities, so iron is locally exposed on the surface of the steel wire after plating. The part (Fe exposed part) which existed exists. When such an exposed Fe portion becomes large, adhesion to the rubber becomes insufficient, and oxygen and moisture permeate over time, resulting in iron rust. When iron rust occurs, the adhesive strength is significantly reduced due to volume expansion.
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、生産性及び伸線加工性を低下させることなく、Co塩を配合しないゴムとの接着性に優れ、かつ、時間経過に伴う接着強度の劣化を抑制可能なめっき鋼線、スチールコード及びゴム−スチールコード複合体を提供することにある。 Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to reduce the productivity and wire drawing workability, and to adhere to rubber not containing Co salt. An object of the present invention is to provide a plated steel wire, a steel cord, and a rubber-steel cord composite that are excellent and that can suppress deterioration of adhesive strength with time.
本願発明者らは、上記課題を解決するために鋭意検討を行った結果、加硫のためのCuを供給する供給源であるCuめっき層の上層に、Cuの拡散を抑制可能な第2のめっき層を設け、かつ、第2のめっき層によるCuめっき層の被覆率を所定の範囲内に制御することで、上記の課題を解決可能であるとの知見を得ることができた。
かかる知見に基づき完成された本発明の要旨は、以下の通りである。
As a result of intensive studies to solve the above problems, the inventors of the present application have found that the second layer capable of suppressing the diffusion of Cu in the upper layer of the Cu plating layer that is a supply source for supplying Cu for vulcanization. By providing a plating layer and controlling the coverage of the Cu plating layer by the second plating layer within a predetermined range, it was possible to obtain knowledge that the above-described problems could be solved.
The gist of the present invention completed based on such findings is as follows.
[1]鋼線の表面に位置し、当該鋼線を被覆する被覆Cuめっき層と、前記被覆Cuめっき層上に位置し、Fe、Co、Cr、Nb、V又はMoの少なくとも何れかの元素を含む第2めっき層と、を備え、前記第2めっき層による前記被覆Cuめっき層の被覆率は、5%以上70%以下である、めっき鋼線。
[2]前記第2めっき層は、Fe、Co、Cr、Nb、VもしくはMoの何れかの金属、Fe、Co、Cr、Nb、VもしくはMoの二種以上の元素を含有する合金、Fe、Co、Cr、Nb、VもしくはMoの少なくとも何れかの酸化物、又は、Fe、Co、Cr、Nb、VもしくはMoの少なくとも何れかの水酸化物を含むめっき層である、[1]に記載のめっき鋼線。
[3]前記第2めっき層は、前記被覆Cuめっき層上に位置し、前記被覆Cuめっき層まで達するクラックもしくはピンホールを有する層状のめっき層、又は、前記被覆Cuめっき層上に位置する島状のめっき層である、[1]又は[2]に記載のめっき鋼線。
[4]前記被覆Cuめっき層の厚みは、20nm〜500nmであり、前記第2めっき層の厚みは、3nm〜300nmである、[1]〜[3]の何れか1つに記載のめっき鋼線。
[5]前記鋼線は、引張強度が3200MPa以上の鋼線である、[1]〜[4]の何れか1つに記載のめっき鋼線。
[6]
[1]〜[5]の何れか1つに記載のめっき鋼線からなるスチールコード。
[7]
[1]〜[5]の何れか1つに記載のめっき鋼線が複数束ねられた撚り線からなる、スチールコード。
[8]
ゴム中に、[6]又は[7]に記載のスチールコードが埋設された、ゴム−スチールコード複合体。
[1] A coated Cu plating layer that is located on the surface of the steel wire and covers the steel wire, and an element that is located on the coated Cu plating layer and is at least one of Fe, Co, Cr, Nb, V, or Mo A plated steel wire, wherein the covering ratio of the coated Cu plating layer by the second plating layer is 5% or more and 70% or less.
[2] The second plating layer is made of an alloy containing Fe, Co, Cr, Nb, V, or Mo, an alloy containing two or more elements of Fe, Co, Cr, Nb, V, or Mo, Fe [1], which is a plating layer containing an oxide of at least one of Co, Cr, Nb, V, or Mo, or a hydroxide of at least any of Fe, Co, Cr, Nb, V, or Mo. The plated steel wire described.
[3] The second plating layer is located on the coated Cu plated layer and has a layered plated layer having cracks or pinholes reaching the coated Cu plated layer, or an island located on the coated Cu plated layer The plated steel wire according to [1] or [2], which is a plate-like plating layer.
[4] The plated steel according to any one of [1] to [3], wherein the thickness of the coated Cu plating layer is 20 nm to 500 nm, and the thickness of the second plating layer is 3 nm to 300 nm. line.
[5] The plated steel wire according to any one of [1] to [4], wherein the steel wire is a steel wire having a tensile strength of 3200 MPa or more.
[6]
The steel cord which consists of a plated steel wire as described in any one of [1]-[5].
[7]
A steel cord comprising a stranded wire in which a plurality of the plated steel wires according to any one of [1] to [5] are bundled.
[8]
A rubber-steel cord composite in which the steel cord according to [6] or [7] is embedded in rubber.
以上説明したように本発明によれば、生産性及び伸線加工性を低下させず、Co塩を配合しないゴムとの接着性に優れ、かつ、時間経過に伴う接着強度の劣化が抑制されためっき鋼線、スチールコード及びゴム−スチールコード複合体を実現することができる。 As described above, according to the present invention, productivity and wire drawing workability are not reduced, adhesiveness with a rubber not containing Co salt is excellent, and deterioration of adhesive strength with time is suppressed. Plated steel wires, steel cords and rubber-steel cord composites can be realized.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
以下で詳述する本発明の実施形態は、スチールコードなど、タイヤを始めとする各種ゴム製品の補強材に使用される、表面にめっき処理が施された鋼線に関し、ゴムとの接着性に優れためっき鋼線に関するものである。 The embodiment of the present invention described in detail below relates to a steel wire whose surface is plated for use as a reinforcing material for various rubber products such as tires such as steel cords. It relates to an excellent plated steel wire.
(本発明者らによる検討内容について)
本発明の実施形態に係るめっき鋼線及びゴム−スチールコード複合体について詳細に説明するに先立ち、本発明者らが実施した検討の内容について、まず説明する。
(About the contents examined by the present inventors)
Prior to detailed description of the plated steel wire and rubber-steel cord composite according to the embodiment of the present invention, the contents of the study conducted by the present inventors will be described first.
タイヤ中には、表面にブラスめっきが施されためっき鋼線からなるスチールコードが埋設されている。タイヤが使用されると、タイヤの発熱による温度の影響で、時間の経過とともに、ブラスめっきに含まれるCuがゴム側へ拡散して、接着層が厚くなる。また、接着層中のCuがゴム側へと拡散し、Cu硫化物のCu硫化物の組成がCuSに近づくために、接着強度が低下する。接着強度は、Cu硫化物の組成に依存し、Cu2Sに近いほど接着強度が高く、CuSに近い組成では、接着強度は低下すると考えられている。 A steel cord made of a plated steel wire having a surface plated with brass is embedded in the tire. When a tire is used, Cu contained in the brass plating diffuses to the rubber side with the passage of time due to the temperature caused by the heat generated by the tire, and the adhesive layer becomes thick. In addition, since Cu in the adhesive layer diffuses toward the rubber side and the composition of Cu sulfide of Cu sulfide approaches CuS, the adhesive strength decreases. The bond strength depends on the composition of Cu sulfide, and the closer to Cu 2 S, the higher the bond strength, and the composition close to CuS is considered to decrease the bond strength.
本発明者らは、スチールコードのブラスめっきの厚みが、ゴムとの接着強度の経年劣化に及ぼす影響について検討を行った。まず、ブラスめっきが薄い場合は、スチールコードとゴムとの接着強度が高く、ゴムとの界面に生成する接着層は、厚みが薄く、また、組成がCu2Sに近いCu硫化物であることがわかった。一方、ブラスめっきが厚い場合は、接着強度が低く、接着層は厚く、組成はCuSに近いことがわかった。 The present inventors examined the influence of the thickness of the steel cord brass plating on the deterioration over time of the adhesive strength with rubber. First, when the brass plating is thin, the adhesive strength between the steel cord and the rubber is high, and the adhesive layer formed at the interface with the rubber is thin and the composition is Cu sulfide close to Cu 2 S. I understood. On the other hand, when the brass plating was thick, the adhesive strength was low, the adhesive layer was thick, and the composition was close to CuS.
ブラスめっきの厚みによって、スチールコードとゴムとの界面に生成する接着層の厚み及び組成が変化するメカニズムについては、必ずしも明確ではないが、以下のように考えられる。加硫時には、ブラスめっきとゴムとの界面で、ブラスめっき中のCuとゴム中のSが反応し、Cu2Sが形成される。ブラスめっきが薄い場合は、めっきからのCuの供給が少ないためCuの拡散が抑制され、接着層が成長せず、組成も変化し難い。一方、ブラスめっきが厚い場合は、めっきからのCuの供給が多いためCuの拡散が促進され、接着層が成長し、また、接着層からゴムへのCuの拡散によって、組成がCuSに近くなる。 The mechanism by which the thickness and composition of the adhesive layer formed at the interface between the steel cord and rubber changes depending on the thickness of the brass plating is not necessarily clear, but is considered as follows. During vulcanization, Cu in the brass plating reacts with S in the rubber at the interface between the brass plating and the rubber to form Cu 2 S. When the brass plating is thin, since the supply of Cu from the plating is small, the diffusion of Cu is suppressed, the adhesive layer does not grow, and the composition hardly changes. On the other hand, when the brass plating is thick, the Cu supply from the plating is large, so that the diffusion of Cu is promoted and the adhesive layer grows, and the composition becomes close to CuS due to the diffusion of Cu from the adhesive layer to the rubber. .
ブラスめっきとゴムとの界面の接着層の厚みについては、ある一定の厚み以上になると接着強度が飽和すると考えられる。従って、ブラスめっきを薄くすることで接着強度の経年劣化が抑制される理由は、接着層の組成がCu2Sに近い状態で維持されるためであると考えられる。なお、Zn硫化物も接着強度を発現するものの、その接着強度はCu硫化物の50〜70%程度である。更に、ブラスめっきでは、Cu濃度が低下してZn濃度が高くなるため、耐食性が低下し、酸化膨張によってめっきと接着層との接着強度も低下する。 Regarding the thickness of the adhesive layer at the interface between the brass plating and the rubber, it is considered that the adhesive strength is saturated when the thickness exceeds a certain value. Therefore, it is considered that the reason why the adhesive strength is prevented from aging by making the brass plating thin is that the composition of the adhesive layer is maintained in a state close to Cu 2 S. In addition, although Zn sulfide also exhibits adhesive strength, the adhesive strength is about 50 to 70% of Cu sulfide. Furthermore, in brass plating, the Cu concentration decreases and the Zn concentration increases, so that the corrosion resistance decreases, and the adhesive strength between the plating and the adhesive layer also decreases due to oxidative expansion.
これらの結果に基づいて、本発明者らは、スチールコードなどの極細めっき鋼線とゴムとの接着強度の経年劣化を抑制する方法を検討した。まず、極細めっき鋼線とゴムとの接着強度を高めるためには、接着層の組成をCu2Sにすることが重要である。そのため、ゴムと接触するめっきの組成は、Cu濃度が高いほど好ましい。また、通常、ブラスめっきは、Cuめっき及びZnめっきを行った後、拡散熱処理を施して形成される。しかしながら、Znは、接着強度の向上には寄与しないため、Znを含有する必要はなく、Cuめっきを行った後、そのまま、伸線加工を施すことが好ましい。 Based on these results, the present inventors examined a method for suppressing the aging deterioration of the adhesive strength between an ultrafine plated steel wire such as a steel cord and rubber. First, in order to increase the adhesive strength between the ultrafine plated steel wire and the rubber, it is important that the composition of the adhesive layer is Cu 2 S. Therefore, the higher the Cu concentration, the better the composition of the plating that comes into contact with the rubber. Also, brass plating is usually formed by performing diffusion heat treatment after performing Cu plating and Zn plating. However, since Zn does not contribute to the improvement of adhesive strength, it is not necessary to contain Zn, and it is preferable to perform wire drawing as it is after performing Cu plating.
次に、ゴムと接触するCuめっきは薄いほど好ましいが、単にめっきを薄くすると、極細鋼線の表面の凹凸に起因して生じる、局所的に鉄が露出した部分(Fe露出部)が大きくなり、接着強度が低下する。そのため、極細鋼線の表面には、凹凸を被覆できる程度の厚みを有し、表面が平滑な層を設けることが重要である。また、めっきが厚い場合は、めっきにも伸線加工性が要求されるため、接着層を形成するためのCuは、伸線加工への追従という観点からは、軟質であることが好ましい。 Next, the thinner the Cu plating that comes into contact with the rubber, the better. However, if the plating is simply made thinner, the portion where the iron is locally exposed (Fe exposed portion) caused by irregularities on the surface of the ultrafine steel wire becomes larger. , The adhesive strength decreases. Therefore, it is important to provide a layer having a thickness that can cover the irregularities and a smooth surface on the surface of the ultra fine steel wire. Further, when the plating is thick, the wire drawing workability is also required for the plating. Therefore, Cu for forming the adhesive layer is preferably soft from the viewpoint of following the wire drawing.
従って、鋼線の表面には、Cuめっきを設けることが好ましい。しかしながら、Cuめっきの厚みが薄いとFe露出部が大きくなって接着強度が低下し、厚いと接着層が成長して組成がCuSに近くなり、接着強度の経年劣化を防止することができない。そこで、本発明者らは、表面に複層めっきを設けた極細めっき鋼線について検討を行い、以下で詳述する本発明を完成させた。 Therefore, it is preferable to provide Cu plating on the surface of the steel wire. However, if the thickness of the Cu plating is thin, the exposed Fe portion becomes large and the adhesive strength is lowered. Therefore, the present inventors have studied an ultra-fine plated steel wire having a multilayer plating on the surface, and have completed the present invention described in detail below.
(めっき鋼線について)
上記検討結果に基づき完成された、本発明の実施形態に係るめっき鋼線について、以下で、図1A及び図1Bを参照しながら詳細に説明する。
図1Aは、本実施形態に係るめっき鋼線を鋼線の径方向に切断した場合の断面構造を模式的に示した説明図であり、図1Bは、本実施形態に係るめっき鋼線を鋼線の長軸方向に切断した場合の部分断面構造を模式的に示した説明図である。
(About plated steel wire)
The plated steel wire according to the embodiment of the present invention completed based on the above examination results will be described in detail below with reference to FIGS. 1A and 1B.
FIG. 1A is an explanatory view schematically showing a cross-sectional structure when the plated steel wire according to the present embodiment is cut in the radial direction of the steel wire, and FIG. 1B shows the plated steel wire according to the present embodiment as a steel. It is explanatory drawing which showed typically the partial cross section structure at the time of cut | disconnecting in the major axis direction of a line.
<めっき鋼線の概略>
本発明の実施形態に係るめっき鋼線1は、図1A及び図1Bに模式的に示したように、鋼線(例えば、極細鋼線など)11の表面に、少なくとも2層の複層めっきを設けためっき鋼線(例えば、極細めっき鋼線)である。本実施形態に係るめっき鋼線1のうち、鋼線11と接触する第1層は、鋼線11の凹凸を被覆するために必要な厚みを有する、平均厚みが20〜500nmの被覆Cuめっきである。なお、図1A及び図1Bでは、図面作成の便宜上、鋼線11の表面に存在しうる凹凸を図示していない。以下では、この被覆Cuめっきによる第1層を、被覆Cuめっき層13と称することとする。
<Outline of plated steel wire>
As schematically shown in FIGS. 1A and 1B, the plated
被覆Cuめっき層13の上層は、加硫時及び使用時に、Cuの拡散を防止する拡散防止層として機能する層である。かかる層は、被覆Cuめっき層13の上層に位置し、Fe、Co、Cr、Nb、V及びMoからなる群(以下、この群を構成する元素をまとめて、「X」と表記することもある。)より選択される少なくとも何れかの元素を含有している。以下では、拡散防止層として機能するこのめっき層を、第2めっき層15と称することとする。第2めっき層15に含有される元素群Xは、Cuと金属間化合物を生成しにくい元素で構成されている。また、第2めっき層15中には、上記のような元素群Xより選択される少なくとも何れかの元素以外に、各種の不純物が含有されている場合がある。
The upper layer of the coated
ここで、第2めっき層15中に含まれうる不純物としては、例えば、B、C、O、F、Al、Si、P、S、Cl、Ti、Co、Ni、Zr、Sn、Ag、W、Pb等を挙げることができる。第2めっき層15中に存在する上記元素の含有量が、全めっき質量に対して0.1質量%以下である場合、又は、第2めっき層15中に存在する上記元素の合計含有量が1.0質量%以下である場合であれば、性能に影響を及ぼさない。
Here, examples of impurities that can be contained in the
かかる第2めっき層15における、元素群Xの状態については、特に限定されるものではない。かかる第2めっき層15は、元素群Xの何れかの金属、元素群Xの二種以上の元素を含有する合金、元素群Xの少なくとも何れかの酸化物、又は、元素群Xの少なくとも何れかの水酸化物を含有してもよい。すなわち、本実施形態に係るめっき鋼線1の最表層に位置する第2めっき層15は、単金属層、合金層、酸化物層、水酸化物層、これらによる多層、の何れであってもよい。かかる第2めっき層15の平均厚みは、例えば、3nm〜300nm程度である。
The state of the element group X in the
かかる第2めっき層15の積層方法は、特に限定されるものではなく、電気めっき、溶融めっき、蒸着めっきなど、公知のめっき方法を利用することが可能である。また、本実施形態に係るめっき鋼線1では、かかる第2めっき層15に、ピンホールやクラックなどの欠陥が存在していてもよい。すなわち、かかる第2めっき層15は、被覆Cuめっき層13まで達するクラックもしくはピンホールを有する層状のめっき層、又は、被覆Cuめっき層13上に位置する島状のめっき層であることが好ましい。伸線加工後の本実施形態に係るめっき鋼線1は、第2めっき層15による被覆Cuめっき層13の被覆率が5%以上70%以下(換言すれば、被覆Cuめっき層13の露出率が30%以上95%以下)であることを特徴とする。
The method for laminating the
本実施形態に係るめっき鋼線1を利用してスチールコードを製造し、かかるスチールコードを利用してゴム−スチールコード複合体を製造する際に、第2めっき層15で被覆されておらずに被覆Cuめっき層13が露出している箇所が、ゴムとの接着点となる。かかる第2めっき層15の表面に、欠陥がほぼ均一に存在していることで、被覆Cuめっき層13からゴムへのCuの拡散を抑制し、CuSの粗大化抑制に効果がある。また、かかるめっき鋼線1を用いたゴム−スチールコード複合体では、ピンホールやクラックなどの欠陥部からゴムが流れ込み、アンカー効果により、めっき鋼線1(スチールコード)とゴムとの密着性が向上する。
When the steel cord is manufactured using the plated
なお、先ほど言及したように、本実施形態に係る第2めっき層15に含有される元素群Xの金属は、Cuとの金属間化合物をつくりにくい。そのため、伸線によって熱が生じたときにCuとの金属間化合物が形成されることによる剥離が、発生しにくくなる。Cuを含む金属間化合物の生成に起因するめっき剥離により、地鉄の露出やCu量の低減が起き、密着性が低下する。従って、本実施形態に係るめっき鋼線1では、かかるめっき剥離の発生が抑制されているために、めっき層の密着性が向上する。また、元素群Xの金属のうち、Feよりも卑な金属を用いることで、上記の効果に加えて、更に犠牲防食能を実現することが可能となる。
In addition, as mentioned above, the metal of the element group X contained in the
また、一般的なめっき鋼線の製造プロセスでは、母材となる鋼線を焼鈍後にめっきし、更に伸線していく。しかしながら、本実施形態に係るめっき鋼線1では、鋼線11と被覆Cuめっき層13との間、及び、被覆Cuめっき層13と第2めっき層15との間のいずれにおいても、それぞれ熱拡散が生じないため、鋼線の焼鈍前にめっきを施してもよい。
Moreover, in the general manufacturing process of a plated steel wire, the steel wire used as a base material is plated after annealing and further drawn. However, in the plated
なお、元素群Xの酸化物、又は、水酸化物については、本実施形態に係るめっき鋼線1の表面に存在していても良いが、元素群Xの酸化物又は水酸化物を含むめっきを行った後に伸線処理を施すと、めっきが剥離しやすい。また、酸化物や水酸化物が伸線装置に残留することで、めっき鋼線の地鉄が露出する原因となる。そのため、酸化物又は水酸化物の少なくとも何れかを多く含むめっきをする場合は、めっき処理を伸線後か撚線の後に行うことが望ましい。
Note that the oxide or hydroxide of the element group X may be present on the surface of the plated
<めっき鋼線の詳細>
以下、本実施形態に係るめっき鋼線1について、更に詳細に説明する。
<Details of plated steel wire>
Hereinafter, the plated
本実施形態に係るめっき鋼線1の線径は、しなやかさを得るために、0.4mm以下とすることが好ましい。これは、線径が0.4mmより太くなり、しなやかさが低下すると、タイヤのゴム補強材に使用した場合に、自動車の乗り心地が低下するためである。従って、めっき鋼線1の線径は、0.4mmを上限とする。一方、線径を細くしすぎると、製造工程が長くなり、また、最終製品の生産性も低下するために、製造に時間とコストがかかる。このため、めっき鋼線1の線径の下限を、0.1mm以上とすることが好ましい。めっき鋼線1の線径は、より好ましくは、0.17mm〜0.34mmである。
The diameter of the plated
また、本実施形態に係るめっき鋼線1の強度(換言すれば、素材となる鋼線11の強度)は、補強効果を得るために、3200MPa以上の引張強度を有すること好ましい。鋼線の成分は、特に限定されるものでないが、強度を確保するため、C含有量が0.7質量%〜1.1質量%であることが好ましい。また、鋼線11の金属組織は、強度を確保するため、伸線加工されたパーライトであることが好ましい。なお、鋼線の引張強度は、フィラメントの場合はJIS Z2241(1998年)に準拠した引張試験によって、測定することができる。
In addition, the strength of the plated
鋼線11(例えば、極細鋼線)の表面には、図1A及び図1Bに模式的に示したように、2層以上からなる複層めっき層を設ける。鋼線11の表面上に位置する第1層の被覆Cuめっき層13は、鋼線11の地鉄とめっきとの密着性を高め、鋼線11の表面の凹凸を平滑化し、特に、凸部での局部的な鉄の露出を抑制し、粗大なFe露出部の生成を防止するものである。更に、第2層に該当する第2めっき層15に被覆されていない被覆Cuめっき層13の箇所(すなわち、第2めっき層15に存在するピンホールやクラックなどの欠陥部)がゴムと接触し、加硫によってCu硫化物を形成する。
As schematically shown in FIGS. 1A and 1B, a multilayer plating layer composed of two or more layers is provided on the surface of the steel wire 11 (for example, an ultrafine steel wire). The coating
被覆Cuめっき層13上に存在する第2層であり、拡散防止層として機能する第2めっき層15は、第1層である被覆Cuめっき層13中に存在するCuの拡散を抑制するものである。第2めっき層15は、その表面全体に均一に欠陥をもつことで、かかる欠陥からCuが緩やかに拡散し、CuSの粗大粒生成を抑制する。また、ピンホールやクラックなどに起因する凹凸を有することで、ゴムとの複合体を製造した際に、ゴムが欠陥部に流れ込み、硬化後にアンカー効果が得られ、物理的な密着性に寄与する。なお、欠陥部が生じるのは、下地(すなわち、鋼線11や、比較的やわらかな被覆Cuめっき層13)の伸線に硬い第2めっき層15が追従できずに、第2めっき層15にクラックが発生したり、第2めっき層15の一部が下地から脱離したりすることによる。しかしながら、クラックが発生する際にCuと第2めっき層15とが合金化してしまっていると、地鉄の露出やCu量の低減が起き、密着性に悪影響を及ぼす。そのために、本実施形態に係るめっき鋼線1では、第2めっき層15に含有される元素群Xは、Cuと金属間化合物を生成しにくい元素から構成されている。
The
第1層の被覆Cuめっき層13は、Fe露出部の生成を防止し、粗大なFe露出部の生成を抑制するため、平均厚みを20nm以上とすることが好ましい。一方、被覆Cuめっき層13は、厚くなりすぎるとめっき密着性が低下することから、平均厚みの上限を500nm以下とすることが好ましい。被覆Cuめっき層13の厚み(平均厚み)は、より好ましくは、50nm〜300nmである。
The coated
本実施形態に係るめっき鋼線1は、第1層の被覆Cuめっき層13の外側に、拡散防止層として機能する第2層である第2めっき層15を有する。第2めっき層15は、Cuの拡散を抑制するめっき層である。特に、接着強度の経年劣化を抑制するためには、Cuの拡散を防止することが重要である。そのため、拡散防止層である第2めっき層15は、伸線加工による発熱やその後製品として使用する環境において、Cuと反応し難く、合金層の形成が抑制されるものであることが重要である。なお、鋼線を焼鈍する前にめっき工程を設ける場合、第2めっき層15は、Cuと金属間化合物を形成しないような元素群X(Fe,Co,Cr,Nb,V,Mo)の金属単体、又は、元素群Xの少なくとも二種以上の元素を主体とする合金で構成されることが好ましい。
The plated
伸線加工前に各めっきを実施する場合、Cuとの合金化を抑制するためには、拡散防止層である第2めっき層15が、伸線加工時の発熱によって溶融しないことが好ましい。伸線時の加工発熱は、伸線速度、ダイス形状、潤滑性能などにより大きく異なるものの、500℃程度にまで達する可能性がある。そのため、拡散防止層である第2めっき層15は、融点が600℃以上の金属めっきであることが好ましい。
When each plating is performed before the wire drawing process, in order to suppress alloying with Cu, it is preferable that the
拡散防止層である第2めっき層15を形成するための方法は、特に限定されるものではなく、溶融めっき、電気めっき、蒸着めっきなど、公知のめっき方法を利用することが可能である。鋼線へのCuめっきは、一般的に電気めっきで行うことが多いため、第2めっき層15の形成も、電気めっきで行うことが好ましい。
The method for forming the
第2めっき層15を構成する元素群Xは、融点以下の固相でのCuとの合金化がほとんど生じずに、Cuの拡散が生じづらい。そのため、第1層である被覆Cuめっき層13から第2めっき層15を経由してのCuのゴムへの供給が防止され、Cuのゴムへの供給(拡散)は、第2めっき層15において被覆Cuめっき層13が露出した部分(すなわち、欠陥部)からのみとなる。そのため、本実施形態に係るめっき鋼線1では、Cuの拡散反応が抑制される。
The element group X constituting the
第2めっき層15においては、伸線加工によりクラックなどが発生した後に露出したCuと、その後流し込まれるゴムと、が接触しなければならない。そのため、第2めっき層15の平均厚みは、300nm以下にすることが好ましい。また、必要以上のCuの拡散を防止するために、第2めっき層15の平均厚みは、3nm以上とすることが好ましい。第2めっき層15の平均厚みは、更に好ましくは、10nm〜100nmである。
In the
拡散防止層である第2めっき層15は、伸線に起因するクラックや、意図的にまだらに第2めっき層15を形成することなどにより、下層に位置する被覆Cuめっき層13のCuを露出していなければならない。被覆Cuめっき層13の露出率は、高すぎるとCuの拡散抑制効果がほとんど得られないため、95%以下とすることが必要である。換言すれば、第2めっき層15による被覆Cuめっき層13の被覆率は、5%以上とすることが必要である。一方、被覆Cuめっき層13の露出率が高すぎた場合、ゴムとの接着点が少なくなるために、ゴム硬化後の初期段階で十分な密着性が得られない。そのため、被覆Cuめっき層13の露出率は、30%以上である必要がある。換言すれば、第2めっき層15による被覆Cuめっき層13の被覆率は、70%以下とすることが必要である。被覆Cuめっき層13の露出率は、好ましくは、50%以上70%以下である。換言すれば、第2めっき層15による被覆Cuめっき層13の被覆率は、好ましくは、30%以上50%以下である。
The
本実施形態に係るめっき鋼線1を製造する際に、伸線加工前にめっきを実施する場合、伸線後の第2めっき層15には、伸線方向に対して垂直方向に、細かいクラックが全体に均一に発生することが好ましい。伸線によりめっきが鋼線から離脱しても問題ないが、先だって言及したように、最終伸線後にCu露出率が95%超過となってはならない。また、第2めっき層15が伸線加工に追従しすぎてしまい、最終伸線後にCu露出率が30%以下となってはならない。第2めっき層15の金属が硬質である場合、又は、第2めっき層15が合金を主体とする層である場合は、クラックが発生しやすい。このような条件を満たすように、伸線前の第2めっき層15の組成及び厚み、並びに、伸線条件を決定することが重要である。また、拡散防止層である第2めっき層15にクラックなどの欠陥部が生じていることで、欠陥部にゴムが流れ込み、アンカー効果によってゴムと鋼線との間の密着性が向上する効果も得られる。
When the plated
なお、本実施形態に係るめっき鋼線1では、伸線処理により、第2めっき層15のみならず、被覆Cuめっき層13にまでクラックなどが達してしまったり、被覆Cuめっき層13の一部までもが剥離してしまったりするなどして、鋼線11のFeが露出してしまっている部分が存在しうる。
In addition, in the plated
ここで、本実施形態に係るめっき鋼線1における被覆Cuめっき層13の平均厚み、及び、第2めっき層15の平均厚みは、めっき鋼線1の断面SEM像又はTEM像から測定することが可能である。より詳細には、めっき鋼線1を埋め込み研磨し、得られる断面を3万〜10万倍程度の倍率で測定する。断面像からクラック状態の観察を行い、コントラストからCu、Xが見分けられれば、あわせて各層の厚みを判断する。なお、コントラストでは各層がわからない場合、又は、めっき種が不明な場合には、点分析又はマッピング分析を行う。このとき、スポット径は2nm〜10nmとすることが好ましい。なお、各層の厚みは、三か所以上測定した値の平均値とする。
Here, the average thickness of the coating
更に、鋼線表面のSEM像又はTEM像におけるEDSのマッピングデータから元素群Xの被覆率を決定し、元素群Xの残留量、金属種における密度及び被覆率から、元素群Xの厚みを求めることが可能である。この際、スポット径は、1.5μm〜0.5μmとすることが好ましい。また、EDSのマッピング測定面積の合計は、10000μm2以上とし、かかる範囲における平均値を、Xの被覆率として決定する。 Furthermore, the coverage of the element group X is determined from the EDS mapping data in the SEM image or TEM image of the steel wire surface, and the thickness of the element group X is obtained from the residual amount of the element group X, the density and the coverage in the metal species. It is possible. At this time, the spot diameter is preferably 1.5 μm to 0.5 μm. Moreover, the total of the mapping measurement area of EDS shall be 10000 micrometers 2 or more, and the average value in this range is determined as the coverage of X.
なお、ゴムに埋設された後の各めっき層の厚み及び組成は、クライオCP(Cross−section Polishing)などといった各めっき層を損傷しにくい手段を用いてC断面(伸線方向に対して垂直な方向での断面)を作製し、FE−SEM−EDX(エネルギー分散型X線分析装置付き電界放出型走査電子顕微鏡)やFE−EPMA(電界放出型電子線マイクロアナライザ)により元素分析することで、測定することが可能である。 Note that the thickness and composition of each plating layer after being embedded in the rubber is determined by using a means such as Cryo-CP (Cross-section Polishing) that does not easily damage each plating layer (perpendicular to the drawing direction). Cross section in the direction), and elemental analysis with FE-SEM-EDX (field emission scanning electron microscope with energy dispersive X-ray analyzer) and FE-EPMA (field emission electron beam microanalyzer) It is possible to measure.
本実施形態に係るめっき鋼線(例えば、極細めっき鋼線)1の被覆Cuめっき層13、及び、第2めっき層15の平均厚みは、伸線加工前の被覆Cuめっき層13、及び、第2めっき層15の平均厚みと、加工度と、によって制御することができる。また、伸線加工前の被覆Cuめっき層13、及び、第2めっき層15の平均厚みは、電気めっき法の場合、電気めっきの電流密度及び通線速度などによって調整することができ、溶融めっき法の場合、浸漬時間及びワイピング条件などによって調整することができる。また、伸線加工前の被覆Cuめっき層13、及び、第2めっき層15の平均厚みは、蒸着めっき法の場合、真空度及び蒸着源の加熱条件などによって調整することができる。
The average thickness of the coated Cu plated
従来のブラスめっきでは、接着強度の経年劣化を抑制するために、Cu濃度を低くして、Cuの供給を抑制することが重要であった。これに対して、本発明では、第2めっき層15の欠陥部からCuが供給され、欠陥部以外の部分ではCuの拡散が抑制されるため、鋼線11上に存在する第1層には、純Cuをめっきしたものを用いることが可能である。更に、第2めっき層15の欠陥部にゴムが流れ込むことで、アンカー効果によりゴムとの密着性を向上させることが可能である。
In the conventional brass plating, it is important to reduce the Cu concentration and suppress the supply of Cu in order to suppress the aging deterioration of the adhesive strength. On the other hand, in this invention, since Cu is supplied from the defect part of the
ブラスめっきの場合、CuとSとの反応をZnが抑制するため、加硫時のCu硫化物の形成を促進することが重要であり、ゴム中に触媒として有機コバルト塩を配合している。しかしながら、本発明では、Cuとゴムが接触している箇所において、加硫時にCuとSとの反応を阻害する元素が存在しないため、ゴムにCo塩を添加しなくとも、短時間で、厚みが十分であり、かつ、組成がCu2Sに近い接着層が形成され、接着強度を確保することができる。更には、第2めっき層15の欠陥部の中にゴムが流れ込むことで、アンカー効果によっても密着強度を確保することができる。
In the case of brass plating, since Zn suppresses the reaction between Cu and S, it is important to promote the formation of Cu sulfide during vulcanization, and an organic cobalt salt is blended in the rubber as a catalyst. However, in the present invention, there is no element that inhibits the reaction between Cu and S at the time of vulcanization at the place where Cu and rubber are in contact with each other. Is sufficient, and an adhesive layer having a composition close to that of Cu 2 S is formed, and the adhesive strength can be ensured. Furthermore, since the rubber flows into the defective portion of the
以上説明したように、本実施形態に係るめっき鋼線は、かかるめっき鋼線を用いてゴムとの複合体を製造した際に、スチールコードなどの極細めっき鋼線とゴムとの接着強度が、加硫直後から良好であり、かつ、タイヤの使用時などの高温及び多湿の環境で時間が経過しても接着強度の劣化が小さく、優れたゴムとの接着性を確保することができる。更に、本実施形態に係るめっき鋼線を用いてゴムとの複合体を製造する際に、ゴムに対して有機Co塩を含有させる必要がなく、めっきを合金化させる拡散処理も不要となり、加えて、長期間でもCuの拡散による枯渇及びCuと硫黄の粗大粒の発生が抑制される。そのため、本実施形態に係るめっき鋼線では、めっき鋼線の高寿命化を図ることが可能であり、産業上の貢献が極めて顕著である。 As described above, when the plated steel wire according to the present embodiment is used to produce a composite with rubber using such a plated steel wire, the bond strength between the ultrafine plated steel wire such as a steel cord and rubber is as follows. It is good immediately after vulcanization, and even when time passes in a high temperature and high humidity environment such as when a tire is used, the deterioration of the adhesive strength is small, and excellent adhesion to rubber can be ensured. Furthermore, when producing a composite with rubber using the plated steel wire according to the present embodiment, it is not necessary to contain an organic Co salt in the rubber, and a diffusion treatment for alloying the plating becomes unnecessary. Thus, depletion due to diffusion of Cu and generation of coarse grains of Cu and sulfur are suppressed even for a long period of time. Therefore, in the plated steel wire according to the present embodiment, it is possible to extend the life of the plated steel wire, and the industrial contribution is extremely remarkable.
(めっき鋼線の製造方法について)
次に、図2を参照しながら、本実施形態に係るめっき鋼線(例えば、極細めっき鋼線)1の製造方法について、電気めっき法を用いる場合を例に挙げて、説明する。図2は、本実施形態に係るめっき鋼線の製造プロセスの一例を模式的に示した説明図である。
(About manufacturing method of plated steel wire)
Next, a method for manufacturing a plated steel wire (for example, ultra-fine plated steel wire) 1 according to the present embodiment will be described with reference to FIG. FIG. 2 is an explanatory view schematically showing an example of a manufacturing process of the plated steel wire according to the present embodiment.
本実施形態に係るめっき鋼線の製造方法では、まず、線径が3mm〜5.5mm程度である鋼線を熱間圧延によって製造し、デスケーリングを行った後に、かかる鋼線を線径1mm〜3mmまで伸線加工(乾式伸線加工)し、コイル状に巻き取る。次に、コイル状に巻き取られた線径1〜3mmの鋼線を繰り出しながら、かかる鋼線に対し、必要に応じてパテンティング熱処理を行った後、めっき処理を施す。かかる電気めっきは、後述のように、被覆Cuめっき層13を形成するためのCuめっきと、第2めっき層15を形成するための、元素群Xに含まれる元素を用いた第2めっきと、を含む。かかるめっき処理が施された鋼線を、再びコイル状に巻き取る。続いて、コイル状に巻き取られた鋼線を繰り出しながら、めっき鋼線の線径が0.1mm〜0.4mm程度になるように、伸線加工(湿式伸線加工)を行う。めっき鋼線の引張強さは、伸線加工の加工度によって調整する。
In the method for producing a plated steel wire according to the present embodiment, first, a steel wire having a wire diameter of about 3 mm to 5.5 mm is manufactured by hot rolling, and after descaling, the steel wire is obtained with a wire diameter of 1 mm. The wire is drawn to 3 mm (dry wire drawing) and wound into a coil. Next, while feeding a steel wire having a wire diameter of 1 to 3 mm wound in a coil shape, the steel wire is subjected to a patenting heat treatment as necessary, and then subjected to a plating treatment. As will be described later, the electroplating includes Cu plating for forming the covering
上記めっき処理は、主に電気めっきによって行う。線径1〜3mmの鋼線に熱処理を施して、伸線加工などの影響を除去した上で、図2に詳細に示したように、酸洗、脱脂などの前処理を行う。その後、電気めっきで、被覆Cuめっきを行い、被覆Cuめっき層13を形成し、次に、拡散防止層である第2めっき層15を形成する。第2めっき層15は、元素群X(Fe,Co,Cr,Nb,V,Moを一種又は二種以上組み合わせたもの)からなる。電気Cuめっきは、安全性とめっき密着性とを確保するために、ピロリン酸銅めっきにより実施することが好ましい。伸線加工前の被覆Cuめっき層13、及び、第2めっき層15の平均厚みは、電気めっきの電流密度及び通線速度によって調整することができる。
The plating process is mainly performed by electroplating. Heat treatment is performed on a steel wire having a wire diameter of 1 to 3 mm to remove the influence of wire drawing and the like, and then pretreatment such as pickling and degreasing is performed as shown in detail in FIG. Thereafter, the coated Cu plating is performed by electroplating to form the coated
ここで、めっき密着性を確保するために、伸線加工前の被覆Cuめっき層13の平均厚みを30nm以上にすることが好ましい。また、湿式伸線加工でのめっき剥離を防止するためには、伸線加工前の被覆Cuめっき層13の平均厚みの上限を、1μmとすることが好ましい。
Here, in order to ensure plating adhesion, it is preferable that the average thickness of the coated
第2めっき層15が元素群X(Fe,Co,Cr,Nb,V,Moを一種又は二種以上組み合わせたもの)である場合、めっき鋼線とゴムとの接着強度の経年劣化を防止するため、伸線加工前の元素群Xによる第2めっきの平均厚みを、10nm以上とすることが好ましい。一方、元素群Xは硬質なものも多く、伸線加工後に第2めっきを残留させるために、厚くしすぎないことが好ましい。そのため、伸線加工前の第2めっき層15の平均厚みの好ましい上限は、800nmである。
When the
元素群Xによる第2めっき層15を複数の元素による積層構造とする際に、伸線前の工程において元素群Xをめっきした場合、その後の熱処理や加工により、第2めっき層15中の元素同士は拡散しうる。使用用途によってその条件を変えても、第2めっき層15中の元素とCuとは合金化することはないため、伸線後の第2めっき層15の被覆率が変化しなければ、ゴムとの密着性などは変化しない。
When the
以上説明したような、めっき鋼線1を製造するための工程は、あくまでも一例である。例えば、先だって簡単に言及したように、図2に示したように、湿式伸線の前に第2めっきを行うのではなく、湿式伸線後に第2めっきを実施してもよい。特に、元素群Xの第2めっき層が伸線によって剥離しやすいものや、元素群Xの元素が伸線効率を低下させるものである場合は、鋼線を撚り合わせる前の段階や撚り合わせた後の段階で、第2めっきを実施することが好ましい。この場合、第2めっきは、被覆Cuめっき層13の露出率を所定の範囲内に制御するために、被覆Cuめっき層13を全て被覆しないような方法で、実施しなければならない。例えば、被覆Cuめっき層13の一部をマスキングするか、めっきの初期段階において被覆率にばらつきのあるめっき方法を採用するなどして、意図的に第2めっき層15をまばらに形成することが重要である。
The process for manufacturing the plated
以上、本実施形態に係るめっき鋼線1の製造方法について、簡単に説明した。
In the above, the manufacturing method of the plated
(スチールコードについて)
以上説明したような、本実施形態に係るめっき鋼線1を、タイヤなどに適用する場合は、タイヤの走行性能にあわせて、本実施形態に係るめっき鋼線1を単独で用いたり、適宜複数本撚り合わせたりして、スチールコードとする。めっき鋼線1を複数本撚り合わせることにより単独のめっき鋼線1を用いる場合に比べて、強度を増すことができ、さらに撓みや変形に対する強靭さを備えることができる。
(About steel cord)
When the plated
(ゴム−スチールコード複合体について)
上述したスチールコードを、ゴムとカーボンブラック、硫黄、酸化亜鉛、その他各種添加剤を配合した原材料を練ったシート状ゴムに挟み込んで、補強ベルト構造とする。その後、タイヤ構成部材を貼り合わせてグリーンタイヤとしたものを加硫機にセットし、プレス及び加熱し、ゴムの強度を発現するための架橋と同時にゴムとめっき鋼線との接着を行う。これにより、タイヤに代表されるようなゴム−スチールコード複合体を製造することが可能となる。
(About rubber-steel cord composite)
The steel cord described above is sandwiched between rubber and carbon black, sulfur, zinc oxide and other raw material blended with various additives to form a reinforced belt structure. After that, the tire constituent members are bonded together to form a green tire, set in a vulcanizer, pressed and heated, and the rubber and the plated steel wire are bonded simultaneously with crosslinking for expressing the strength of the rubber. Thereby, it becomes possible to manufacture a rubber-steel cord composite as represented by a tire.
上述しためっき鋼線1、又は、上述したスチールコードが埋設されるゴム組成物の種類は特に限定されるものではなく、例えば、一般に公知の天然ゴムや合成ゴムを単独で、又は、2種以上を混合して使用することができる。合成ゴムとしては、例えば、ブタジエンゴム、スチレン−ブタジエンゴム、イソプレンゴム、クロロプレンゴム、アクリロニトリル−ブタジエンゴム等のジエン系ゴムや、ブチルゴム、エチレン−プロピレンゴム、エチレン−酢酸ビニルゴム、クロロスロホン化ポリエチレン、アクリルゴム等のオレフィン系ゴムや、ウレタンゴムや、フッ素ゴムや、多硫化ゴムなどを用いることができる。
The type of rubber composition in which the above-described plated
また、上記ゴム組成物には、ゴムの性能を向上・調整するためにゴム業界で通常使用される配合剤を通常の配合量で適宜配合することができる。具体的には、配合剤としては、例えば、カーボンブラックやシリカ等の充填剤、アロマオイル等の軟化剤、ジフェニルグアニジン等のグアニジン類、メルカプトベンゾチアゾール等のチアゾール類、N,N’−ジシクロへキシル−2−ベンゾチアゾリルスルフェンアミド等のスルフェンアミド類、テトラメチルチウラムジスルフィド等のチウラム類などの加硫促進剤、酸化亜鉛等の加硫促進助剤、ポリ(2,2,4−トリメチル−1,2一ジヒドロキノリン)、フェニル−α−ナフチルアミン等のアミン類などの老化防止剤等を挙げることができる。なお、本実施形態においては、このようなゴム業界で通常使用される配合剤がゴム中に共存していた場合であっても、鋼線11の防食と第2めっき層15の腐食の抑制とを両立させることができる。
In the rubber composition, a compounding agent usually used in the rubber industry for improving and adjusting the performance of the rubber can be appropriately blended in a usual compounding amount. Specifically, examples of the compounding agent include fillers such as carbon black and silica, softeners such as aroma oil, guanidines such as diphenylguanidine, thiazoles such as mercaptobenzothiazole, and N, N′-dicyclohexane. Vulcanization accelerators such as sulfenamides such as xyl-2-benzothiazolylsulfenamide, thiurams such as tetramethylthiuram disulfide, vulcanization accelerators such as zinc oxide, poly (2,2,4- And anti-aging agents such as amines such as trimethyl-1,2-dihydroquinoline) and phenyl-α-naphthylamine. In the present embodiment, even when such a compounding agent normally used in the rubber industry coexists in the rubber, the corrosion prevention of the
更に、上述しためっき鋼線1、又は、上述したスチールコードにおいては、第2めっき層15とゴムとの間に、耐食性や伸線加工性を更に向上させるための別の皮膜や、めっき鋼線1又はスチールコードとゴムとの密着性を向上させるための別の皮膜が存在してもよい。このような皮膜としては、所望の特性を有する皮膜であれば特に限定されないが、例えば、Cu皮膜、Sn皮膜、Cr皮膜及びこれらの合金や、リン酸塩皮膜やクロメート皮膜やシランカップリング剤や有機樹脂皮膜等を挙げることができる。また、これら皮膜に限らず他の公知の皮膜を適用することもできる。また、必要に応じて、上述した皮膜を2種以上組み合わせた多層膜を適用することも可能である。
Furthermore, in the above-described plated
上記有機樹脂皮膜の樹脂成分としては、例えば、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリエーテルサルホン系樹脂、メラミンアルキッド系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリ酢酸ビニル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、天然ゴム系樹脂、合成ゴム系樹脂などが利用可能である。このとき、第2めっき層15等への密着性を向上させるために、上記各種の樹脂に対してシラノール基などを導入してもよい。また、樹脂層の形成には、これらの樹脂を単独で使用してもよいし、これら樹脂の混合物を使用してもよく、これら樹脂の積層構造を形成してもよい。更に、これら樹脂の特性を改善するために、顔料等を含んでも良い。
Examples of the resin component of the organic resin film include an epoxy resin, a urethane resin, a polyester resin, a phenol resin, a polyether sulfone resin, a melamine alkyd resin, an acrylic resin, a polyamide resin, and a polyimide resin. Resins, silicone resins, polyvinyl acetate resins, polyolefin resins, polystyrene resins, vinyl chloride resins, vinyl acetate resins, natural rubber resins, synthetic rubber resins, and the like can be used. At this time, in order to improve the adhesion to the
以下、本発明の実施例について説明する。なお、以下に示す実施例に記載の内容により、本発明の内容が制限されるものではない。 Examples of the present invention will be described below. In addition, the content of this invention is not restrict | limited by the content as described in the Example shown below.
以下の表1に示す成分を有する鋼を熱間圧延し、線径が5.5mmの鋼線を製造した。得られた鋼線を酸洗してスケールを除去した後、石灰処理を行い、ステアリン酸Naを主体とした乾式潤滑剤を用いて線径1.0〜3.0mmまで伸線加工した。得られた鋼線を950℃に加熱して75秒間保持し、金属組織をオーステナイトにした後、570℃の鉛浴に20秒間浸漬するパテンティング処理を行った。 Steel having the components shown in Table 1 below was hot-rolled to produce a steel wire having a wire diameter of 5.5 mm. The obtained steel wire was pickled to remove the scale, and then subjected to lime treatment, and was drawn to a wire diameter of 1.0 to 3.0 mm using a dry lubricant mainly composed of Na stearate. The obtained steel wire was heated to 950 ° C. and held for 75 seconds to convert the metal structure to austenite, and then subjected to a patenting treatment in which the steel wire was immersed in a 570 ° C. lead bath for 20 seconds.
パテンティング処理を行った鋼線に、連続して、硫酸による電解酸洗とアルカリ溶液による電解脱脂とを施し、ピロリン酸銅めっきを行った。その後、元素群Xに含まれるFe、Co、Cr、Nb、V、Moを一種又は二種以上組み合わせた、何れかのめっきを行い、伸線加工後に巻き取った。なお、伸線加工により線径が約0.2mmになるように、伸線加工を行った。 The steel wire subjected to the patenting treatment was successively subjected to electrolytic pickling with sulfuric acid and electrolytic degreasing with an alkaline solution to perform copper pyrophosphate plating. Then, any plating which combined 1 type, or 2 or more types of Fe, Co, Cr, Nb, V, and Mo contained in the element group X was performed, and it wound up after wire drawing. The wire drawing was performed so that the wire diameter was about 0.2 mm by wire drawing.
得られためっき鋼線から試料を採取し、レーザー式非接触線径測定装置によって、めっき鋼線の線径を測定した。また、被覆Cuめっき層13、及び、第2めっき層15の平均厚みは、断面SEM像から測定した。また、めっきが薄すぎるものは、TEMを用いて上記の方法により算出した。
A sample was collected from the obtained plated steel wire, and the wire diameter of the plated steel wire was measured with a laser-type non-contact wire diameter measuring device. Moreover, the average thickness of the coating
表2に、伸線加工後のめっき鋼線の線径、第2めっき層の種類、被覆Cuめっき層及び第2めっき層の平均厚みのそれぞれを、あわせて示した。 Table 2 shows the wire diameter of the plated steel wire after wire drawing, the type of the second plating layer, the average thickness of the coated Cu plating layer and the second plating layer.
次に、めっき鋼線の引張試験を行い、従来のブラスめっき鋼線の引張強さを100とした指数で評価した。 Next, a tensile test of the plated steel wire was performed, and an evaluation was performed with an index where the tensile strength of the conventional brass-plated steel wire was 100.
また、表2に示した各めっき鋼線4本を、5mmのピッチで撚り合わせてスチールコードとした。かかるスチールコードを金型にセットして、表3に示すゴム組成物に埋め込み、160℃で30分加熱するホットプレスにより加硫処理を行ってゴム−スチールコード複合体を製造し、接着性評価用試料とした。 Further, four plated steel wires shown in Table 2 were twisted at a pitch of 5 mm to form steel cords. The steel cord is set in a mold, embedded in the rubber composition shown in Table 3, and vulcanized by a hot press heated at 160 ° C. for 30 minutes to produce a rubber-steel cord composite, and evaluation of adhesiveness A sample was prepared.
これらの試料を用いて、初期の接着強度(初期接着強度)及び接着強度の経時による劣化(経年劣化)を評価した。初期接着強度は、引張試験装置でコードをゴムから引き抜いた時の引抜力を測定し、最大引抜力で評価した。また、接着強度の経年劣化は、試料を80℃の純水に0〜7日浸漬した後、初期接着強度と同様にして、コードをゴムから引き抜いた時の最大引抜力として評価した。なお、初期接着強度及び経年劣化は、比較のために製造したブラスめっき鋼線の初期接着強度を100とし、これに対する指数で評価した。具体的には、本試験において、経年劣化が、3日で指数40以上、又は、7日で指数20以上であったものを合格とした。 Using these samples, initial adhesive strength (initial adhesive strength) and deterioration of adhesive strength over time (aging deterioration) were evaluated. The initial adhesive strength was evaluated by measuring the pulling force when the cord was pulled out of the rubber with a tensile test device and measuring the maximum pulling force. Further, the aging deterioration of the adhesive strength was evaluated as the maximum pulling force when the cord was pulled out from the rubber in the same manner as the initial bonding strength after the sample was immersed in pure water at 80 ° C. for 0 to 7 days. The initial bond strength and aging degradation were evaluated by using an index for the initial bond strength of a brass-plated steel wire manufactured for comparison as 100. Specifically, in this test, aged deterioration was an index of 40 or more on 3 days or an index of 20 or more on 7 days.
以下の表2に、ゴム組成物のCo塩の有無(ゴム種類)、めっき鋼線とゴムとの初期接着強度及び経年劣化の0〜7日浸漬による評価結果を、あわせて示した。 Table 2 below also shows the presence or absence of the Co salt in the rubber composition (rubber type), the initial adhesion strength between the plated steel wire and the rubber, and the evaluation results of the aging degradation by 0-7 days immersion.
上記表2から明らかなように、本発明に係るめっき鋼線は、ナフテン酸コバルト塩を配合しない条件であっても十分な初期接着強度が確保され、かつ、経年劣化がブラスめっきに比べて小さいことがわかる。一方、本発明の比較例に該当するめっき鋼線は、経年劣化が大きいことがわかる。 As is apparent from Table 2 above, the plated steel wire according to the present invention ensures sufficient initial adhesive strength even under conditions where no cobalt naphthenate is blended, and is less deteriorated over time than brass plating. I understand that. On the other hand, it can be seen that the plated steel wire corresponding to the comparative example of the present invention is greatly deteriorated over time.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
本発明に係るめっき鋼線は、かかるめっき鋼線を用いてゴムとの複合体を製造した際に、ゴムと補強材とが強固に接着され、時間が経過してもその接着強度の低下が著しく小さいために、ゴム製品の強度を高く維持可能である。従って、本発明に係るめっき鋼線は、タイヤコード及びビードワイヤだけでなく、ゴムホースやベルトの補強材として使用することが可能であり、産業上の利用可能性が極めて高い。 When a plated steel wire according to the present invention is used to produce a composite with rubber using such a plated steel wire, the rubber and the reinforcing material are firmly bonded, and the adhesive strength is reduced even after a lapse of time. Since it is remarkably small, the strength of the rubber product can be maintained high. Therefore, the plated steel wire according to the present invention can be used not only as a tire cord and a bead wire, but also as a reinforcing material for rubber hoses and belts, and has very high industrial applicability.
1 めっき鋼線
11 鋼線
13 被覆Cuめっき層
15 第2めっき層
DESCRIPTION OF
Claims (8)
前記被覆Cuめっき層上に位置し、Fe、Co、Cr、Nb、V又はMoの少なくとも何れかの元素を含む第2めっき層と、
を備え、
前記第2めっき層による前記被覆Cuめっき層の被覆率は、5%以上70%以下である、めっき鋼線。 A coating Cu plating layer located on the surface of the steel wire and covering the steel wire;
A second plating layer located on the coated Cu plating layer and containing at least one element of Fe, Co, Cr, Nb, V or Mo;
With
The coating rate of the said covering Cu plating layer by the said 2nd plating layer is a plated steel wire which is 5% or more and 70% or less.
前記第2めっき層の厚みは、3nm〜300nmである、請求項1〜3の何れか1項に記載のめっき鋼線。 The thickness of the coated Cu plating layer is 20 nm to 500 nm,
The thickness of the said 2nd plating layer is a plated steel wire of any one of Claims 1-3 which are 3 nm-300 nm.
A rubber-steel cord composite in which the steel cord according to claim 6 or 7 is embedded in rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017012442A JP2018119190A (en) | 2017-01-26 | 2017-01-26 | Plated steel wire, steel cord and rubber-steel cord complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017012442A JP2018119190A (en) | 2017-01-26 | 2017-01-26 | Plated steel wire, steel cord and rubber-steel cord complex |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018119190A true JP2018119190A (en) | 2018-08-02 |
Family
ID=63043545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017012442A Pending JP2018119190A (en) | 2017-01-26 | 2017-01-26 | Plated steel wire, steel cord and rubber-steel cord complex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018119190A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019244524A1 (en) | 2018-06-22 | 2019-12-26 | 日本製鉄株式会社 | Steel sheet, tailored blank, hot-press formed article, steel pipe, hollow quenching formed article, method for manufacturing steel sheet, method for manufacturing tailored blank, method for manufacturing hot-press formed article, method for manufacturing steel pipe, and method for manufacturing hollow quenching formed article |
WO2019245025A1 (en) | 2018-06-22 | 2019-12-26 | 日本製鉄株式会社 | Steel plate, tailored blank, hot press-formed product, steel pipe, hollow quenched formed product, and method for manufacturing steel plate |
US11447886B2 (en) | 2018-03-12 | 2022-09-20 | Hongduk Industrial Co., Ltd. | Electroplated bead wire having excellent oxidation resistance |
-
2017
- 2017-01-26 JP JP2017012442A patent/JP2018119190A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11447886B2 (en) | 2018-03-12 | 2022-09-20 | Hongduk Industrial Co., Ltd. | Electroplated bead wire having excellent oxidation resistance |
JP7162067B2 (en) | 2018-03-12 | 2022-10-27 | ホンドク インダストリアル カンパニー リミテッド | Electroplated bead wire with excellent oxidation resistance |
WO2019244524A1 (en) | 2018-06-22 | 2019-12-26 | 日本製鉄株式会社 | Steel sheet, tailored blank, hot-press formed article, steel pipe, hollow quenching formed article, method for manufacturing steel sheet, method for manufacturing tailored blank, method for manufacturing hot-press formed article, method for manufacturing steel pipe, and method for manufacturing hollow quenching formed article |
WO2019245025A1 (en) | 2018-06-22 | 2019-12-26 | 日本製鉄株式会社 | Steel plate, tailored blank, hot press-formed product, steel pipe, hollow quenched formed product, and method for manufacturing steel plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333332B2 (en) | Ultra-fine plated steel wire with excellent adhesion to rubber | |
JP2018119189A (en) | Plated steel wire, steel cord and rubber-steel cord complex | |
WO2011076746A1 (en) | A brass coated wire with a zinc gradient in the coating and its method manufacturing | |
JP5333331B2 (en) | Ultra-fine plated steel wire with excellent adhesion to rubber | |
US6602614B2 (en) | Coated metal wire, wire-reinforced elastomeric article containing the same and method of manufacture | |
JP6729722B2 (en) | Plated steel wire, method of manufacturing plated steel wire, steel cord, and rubber composite | |
JP2018119190A (en) | Plated steel wire, steel cord and rubber-steel cord complex | |
JP2018119191A (en) | Plated steel wire, steel cord and rubber-steel cord complex | |
JP6572783B2 (en) | Plating steel wire, rubber composite using the same, and method for producing plated steel wire | |
JP6248862B2 (en) | Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same | |
WO2018139615A1 (en) | Plated steel wire, steel cord, and rubber-plated steel wire composite | |
US20090155620A1 (en) | Brass-plated steel wire for reinforcing rubber articles and method for manufacturing the same | |
WO2023042867A1 (en) | Rubber composite material, and method for producing rubber composite material | |
KR20190056703A (en) | Steel cord for reinforcing rubber and method for the same | |
JP6379999B2 (en) | Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same | |
JP2007186736A (en) | Method for manufacturing metallic wire, metallic cord for reinforcing rubber product, and vehicle tire | |
RU2768910C1 (en) | Steel cord for improving rubber and method of production thereof | |
JP2018119192A (en) | Steel wire for reinforcing rubber product, steel cord for reinforcing rubber product and method for manufacturing steel wire for reinforcing rubber product | |
JP2018119193A (en) | Rubber product reinforcement steel wire, rubber product reinforcement steel cord, and method for manufacturing rubber product reinforcement steel wire | |
JP3905768B2 (en) | Brass plating material with excellent adhesion to rubber and composites thereof | |
EP1004689B1 (en) | Coated metal wire and method of manufacture | |
JP4563235B2 (en) | Rubber reinforcing linear body excellent in corrosion resistance, and composite of rubber reinforcing linear body and rubber | |
JP2017145449A (en) | Steel wire and rubber-metal composite layering the steel wire | |
JP2007270346A (en) | Method for manufacturing metal wire, metal cord for reinforcing rubber article, and car tire | |
JP2008261073A (en) | Steel wire material, steel cord, and pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190208 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190508 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200609 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201208 |