Nothing Special   »   [go: up one dir, main page]

JP2018106814A - Lighting device and vehicle lamp - Google Patents

Lighting device and vehicle lamp Download PDF

Info

Publication number
JP2018106814A
JP2018106814A JP2016249038A JP2016249038A JP2018106814A JP 2018106814 A JP2018106814 A JP 2018106814A JP 2016249038 A JP2016249038 A JP 2016249038A JP 2016249038 A JP2016249038 A JP 2016249038A JP 2018106814 A JP2018106814 A JP 2018106814A
Authority
JP
Japan
Prior art keywords
diffusion
laser light
light
wavelength conversion
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016249038A
Other languages
Japanese (ja)
Inventor
剛司 藁谷
Takeshi Waragaya
剛司 藁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016249038A priority Critical patent/JP2018106814A/en
Publication of JP2018106814A publication Critical patent/JP2018106814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make light emission distribution uniform and reduce optical loss.SOLUTION: A lighting device includes: a laser light source for radiating laser light; a condenser lens for condensing laser light from the laser light source; and a wavelength conversion member having a diffuser panel for diffusing laser light that is condensed by the condenser lens and enters the panel and a wavelength conversion layer for converting laser light diffused by the diffuser panel into a desired wavelength. The diffuser panel has a diffusion degree that is configured so as to become high in the incident center of laser light depending on intensity distribution of laser light and becomes lower as being separated from the incident center of laser light.SELECTED DRAWING: Figure 1

Description

本発明は、レーザダイオード(LD)等の素子から照射された光を波長変換部材により変換して所望の波長の光を照射する照明装置及び該照明装置を備えた車両用灯具に関する。   The present invention relates to an illumination device that irradiates light with a desired wavelength by converting light emitted from an element such as a laser diode (LD) by a wavelength conversion member, and a vehicular lamp including the illumination device.

レーザダイオード(LD)からの光の一部を、波長変換部材により所望波長の光に変換して照明光として用いる照明装置が知られている。特許文献1には、LDから照射された青色光を、青色光の照射方向に配置された光散乱層(光拡散板ともいう)及び波長変換層からなる波長変換部材に入射させ、LDからの青色光を光散乱層において拡散させた後に波長変換層において白色光に変換して外部に射出する照明装置が開示されている。特許文献1の照明装置のようにLDを光源として用いる場合、レーザ光の単色性とコヒーレント性によりレンズで光を集光しやすく、LEDを光源とする場合に比して集光効率が高く、高輝度の照明装置を実現することができるという利点がある。また、このような照明装置では、発光時にLDから熱が生じる他、LDの青色光を波長変換する際に波長変換層から熱が生じ、波長変換効率が減少してしまうため、放熱する必要がある。そこで、LDと波長変換部材とを離れた位置に配置することにより、それぞれが発生する熱を分散させて照明装置の発光特性の低下を抑制している。   2. Description of the Related Art There is known an illumination device that uses a part of light from a laser diode (LD) as illumination light after being converted into light having a desired wavelength by a wavelength conversion member. In Patent Document 1, blue light emitted from an LD is incident on a wavelength conversion member composed of a light scattering layer (also referred to as a light diffusion plate) and a wavelength conversion layer arranged in the direction of blue light irradiation, An illuminating device is disclosed in which blue light is diffused in a light scattering layer and then converted into white light in a wavelength conversion layer and emitted to the outside. When using an LD as a light source as in the illumination device of Patent Document 1, it is easy to condense light with a lens due to monochromaticity and coherency of laser light, and the light collection efficiency is higher than when using an LED as a light source, There is an advantage that a high-luminance lighting device can be realized. In addition, in such an illumination device, heat is generated from the LD during light emission, and heat is generated from the wavelength conversion layer when the wavelength of the blue light of the LD is converted, so that the wavelength conversion efficiency is reduced. is there. Therefore, by disposing the LD and the wavelength conversion member at positions separated from each other, the heat generated by each of the LD and the wavelength conversion member is dispersed to suppress the deterioration of the light emission characteristics of the lighting device.

特開2016−9693号公報Japanese Patent Laid-Open No. 2006-9963

ところで、照明装置の光源としてLDを適用した場合、レーザ光の強度は、ガウス分布を示すので、ビーム中心が最も光出力が強く、中心から離れるほど光出力が弱くなる特性がある。従って、レーザ光を波長変換部材に入射させる場合には、発光面における色むらや、輝度飽和、熱飽和の問題が生じる。このため、光散乱層は、LDから入射した青色光を拡散して波長変換層に均一に入射させることが要求される。   By the way, when the LD is applied as the light source of the illuminating device, the intensity of the laser light exhibits a Gaussian distribution, so that the light output is strongest at the center of the beam, and the light output becomes weaker as the distance from the center increases. Therefore, when laser light is incident on the wavelength conversion member, problems such as color unevenness on the light emitting surface, luminance saturation, and heat saturation occur. For this reason, the light scattering layer is required to diffuse the blue light incident from the LD and uniformly enter the wavelength conversion layer.

しかしながら、光散乱層の散乱剤の拡散濃度が低い場合には、LDからの青色光を十分に拡散させることができないため、青色光は光密度分布を持った状態で波長変換層に入射され、波長変換層において色むらが発生してしまう。反対に、光散乱層の拡散濃度が高い場合には、青色光は十分に拡散され、波長変換層の発光面における色むらは解消されるものの、光散乱層によって入射側に戻される光(後方散乱)が大きく、光損失となり、照明装置として光量が低下してしまう。このように、色むらと光量とはトレードオフの関係にあり、光散乱層の散乱剤の拡散濃度を適正に維持する必要がある。   However, when the diffusion concentration of the scattering agent in the light scattering layer is low, the blue light from the LD cannot be sufficiently diffused, so the blue light is incident on the wavelength conversion layer with a light density distribution, Color unevenness occurs in the wavelength conversion layer. On the other hand, when the diffusion density of the light scattering layer is high, the blue light is sufficiently diffused and the color unevenness on the light emitting surface of the wavelength conversion layer is eliminated, but the light returned to the incident side by the light scattering layer (rear side) Scattering) is large, resulting in light loss, and the amount of light as an illumination device decreases. As described above, the color unevenness and the light amount are in a trade-off relationship, and it is necessary to appropriately maintain the diffusion concentration of the scattering agent in the light scattering layer.

本発明は、上記事情に鑑みてなされたものであり、発光分布を均一化させ、かつ、光損失を低減させることを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to make the light emission distribution uniform and reduce light loss.

本発明の一態様は、レーザ光を照射するレーザ光源と、該レーザ光源からのレーザ光を集光する集光レンズと、該集光レンズにより集光されて入射したレーザ光を拡散する拡散板と、該拡散板において拡散されたレーザ光を所望の波長に変換する波長変換層とを有する波長変換部材と、を備え、前記拡散板の散乱剤の拡散濃度を、レーザ光の強度分布に応じてレーザ光の入射中心を高く、レーザ光の入射中心から離れる程低く構成した照明装置を提供する。   One embodiment of the present invention includes a laser light source that emits laser light, a condensing lens that condenses the laser light from the laser light source, and a diffusion plate that diffuses the incident laser light that is collected by the condensing lens. And a wavelength conversion member having a wavelength conversion layer that converts the laser light diffused in the diffusion plate into a desired wavelength, and the diffusion concentration of the scattering agent of the diffusion plate is set according to the intensity distribution of the laser light. The illumination device is configured such that the incident center of laser light is high and the distance from the incident center of laser light is low.

本発明によれば、発光分布を均一化させ、かつ、光損失を低減させることができる。   According to the present invention, the light emission distribution can be made uniform and light loss can be reduced.

本発明の第1の実施形態に係る照明装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態の係る照明装置における波長変換部材の拡散板に対する入射する光と拡散度合との関係を示す説明図であり、(A)は拡散濃度が小さい場合、(B)は拡散濃度が大きい場合を示す。It is explanatory drawing which shows the relationship between the light which injects with respect to the diffuser plate of the wavelength conversion member in the illuminating device which concerns on the 1st Embodiment of this invention, and a diffusion degree, (A) is a case where diffusion density is small, (B) is The case where the diffusion concentration is large is shown. 本発明の第1の実施形態の係る照明装置における波長変換部材の拡散板に対する入射する光と拡散度合との関係を示す説明図であり、(A)は、波長変換部材の構成、(B)は(A)の波長変換部材にレーザ光が入射した場合の強度分布を示す。It is explanatory drawing which shows the relationship between the light which injects with respect to the diffuser plate of the wavelength conversion member in the illuminating device which concerns on the 1st Embodiment of this invention, and a diffusion degree, (A) is a structure of a wavelength conversion member, (B) Shows the intensity distribution when laser light is incident on the wavelength conversion member of (A). 本発明の第1の実施形態の係る照明装置における波長変換部材における熱の流れを示す説明図である。It is explanatory drawing which shows the heat flow in the wavelength conversion member in the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の各実施形態の変形例1に係り、(A)は第1の実施形態に係る照明装置を車両用灯具に適用した場合の概略構成を示す断面図であり、(B)は第2の実施形態に係る照明装置を車両用灯具に適用した場合の概略構成を示す断面図である。FIG. 7A is a cross-sectional view illustrating a schematic configuration when the lighting device according to the first embodiment is applied to a vehicle lamp according to a first modification of each embodiment of the present invention, and FIG. It is sectional drawing which shows schematic structure at the time of applying the illuminating device which concerns on this embodiment to a vehicle lamp. (A)〜(H)は、本発明の実施形態の変形例2に係り、照明装置に適用される波長変換部材の他の例を示す参考図断面図である。(A)-(H) are related with the modification 2 of embodiment of this invention, and are reference figure sectional drawings which show the other example of the wavelength conversion member applied to an illuminating device.

以下、本発明の一実施形態について図面を参照して説明する。なお、以下に示す図面において、理解の容易及び視認性向上のため、断面図であってもハッチングを適宜省略している。以下の説明において、同一の構成には同一の符号を付し、その説明を省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings shown below, hatching is appropriately omitted even in a cross-sectional view for easy understanding and improved visibility. In the following description, the same components are denoted by the same reference numerals, and the description thereof is omitted.

(第1の実施形態)
本発明の第1の実施形態に係る照明装置について説明する。
図1に示すように、本実施形態に係る照明装置は、筐体5内に収容されたレーザ光を照射するレーザ光源11と、レーザ光源からのレーザ光を集光する集光レンズ12と、集光レンズ12により集光されて入射したレーザ光を拡散し所望の波長の光に変換する波長変換部材13と、波長変換部材の周囲を覆う反射部材14と、波長変換部材13及び反射部材14の下面に配置された支持基板15とを備えている。
(First embodiment)
An illumination device according to the first embodiment of the present invention will be described.
As shown in FIG. 1, the illumination device according to the present embodiment includes a laser light source 11 that irradiates laser light housed in a housing 5, a condenser lens 12 that condenses the laser light from the laser light source, A wavelength conversion member 13 that diffuses and converts the incident laser light collected by the condenser lens 12 into light having a desired wavelength, a reflection member 14 that covers the periphery of the wavelength conversion member, and the wavelength conversion member 13 and the reflection member 14. And a support substrate 15 disposed on the lower surface of the substrate.

筐体5は、底面にレーザ光源11を収容し、レーザ光源11から出射される光の光軸方向に集光レンズ12を保持し、集光レンズ12により集光された光を出射するための開口部5Aを備えている。開口部5Aの縁部には、後述する支持基板15に支持された波長変換部材13及び反射部材14が配置されている。   The housing 5 accommodates the laser light source 11 on the bottom surface, holds the condenser lens 12 in the optical axis direction of the light emitted from the laser light source 11, and emits the light condensed by the condenser lens 12. An opening 5A is provided. A wavelength conversion member 13 and a reflection member 14 supported by a support substrate 15 described later are disposed at the edge of the opening 5A.

レーザ光源11(以下、単に「LD」という)は、例えば、レーザダイオードを含み、パッケージ化されたCAN型の半導体レーザ光源を適用することができる。レーザ光源11としては、青色域(例えば、発光波長450nm)、近紫外域(例えば、発光波長405nm)又はそれ以外の波長の光を発光するものを適用することができる。LD11は、筐体5内に収容されることで、酸化が防止され、酸化に起因するLD11の劣化が抑制される。   As the laser light source 11 (hereinafter, simply referred to as “LD”), for example, a packaged CAN type semiconductor laser light source including a laser diode can be applied. As the laser light source 11, a light source that emits light in a blue region (for example, an emission wavelength of 450 nm), a near ultraviolet region (for example, an emission wavelength of 405 nm), or other wavelengths can be applied. The LD 11 is housed in the housing 5, so that oxidation is prevented and deterioration of the LD 11 due to oxidation is suppressed.

集光レンズ12は、照明装置の輝度を向上させるため、レーザ光源11から照射された光を集光して後述する波長変換部材13に入射させる。支持基板15は、波長変換部材13において生じる熱を支持基板15によって放熱する。そのために支持基板15は、できるだけ大きいことが望ましい。そこで、ここでは支持基板15のレーザ光を通過させる開口径をできるだけ小さくし、集光レンズ12により、波長変換部材13に対するレーザ光のスポット径を支持基板の開口径を通過できる所望の大きさとすることで、支持基板15の大きさを確保している。   The condensing lens 12 condenses the light emitted from the laser light source 11 and makes it incident on a wavelength conversion member 13 described later in order to improve the luminance of the illumination device. The support substrate 15 radiates heat generated in the wavelength conversion member 13 by the support substrate 15. Therefore, the support substrate 15 is desirably as large as possible. Therefore, here, the diameter of the aperture of the support substrate 15 through which the laser beam passes is made as small as possible, and the spot diameter of the laser beam with respect to the wavelength conversion member 13 is set to a desired size that can pass through the aperture diameter of the support substrate by the condenser lens 12. Thus, the size of the support substrate 15 is secured.

波長変換部材13は、集光レンズ12により集光されて入射したレーザ光を拡散する拡散板31と、拡散板31において拡散されたレーザ光を所望の波長に変換する波長変換層32とを有する。
拡散板31は、散乱剤もしくは散乱剤として作用する構造を含む部材によって構成される。散乱剤もしくは散乱剤として作用する構造は、レーザ光の波長以上のサイズであることが望ましい。拡散板31は、散乱剤もしくは散乱剤として作用する構造により、入射したレーザ光を前方散乱すると同時に後方散乱も生じる。また、散乱剤もしくは散乱剤として作用する構造の濃度(拡散濃度)を調整することにより、光の拡散度合又は散乱度合(散乱強度)を調整することができ、散乱剤等の拡散濃度が大きいほど光の散乱度合が大きい。
The wavelength conversion member 13 includes a diffusion plate 31 that diffuses the incident laser light collected by the condenser lens 12 and a wavelength conversion layer 32 that converts the laser light diffused by the diffusion plate 31 to a desired wavelength. .
The diffusion plate 31 is configured by a scattering agent or a member including a structure that acts as a scattering agent. The scattering agent or the structure acting as a scattering agent is preferably a size not less than the wavelength of the laser beam. Due to the structure that acts as a scattering agent or a scattering agent, the diffuser plate 31 causes the incident laser light to be forward scattered and simultaneously backscattered. Further, by adjusting the concentration of the scattering agent or the structure acting as a scattering agent (diffusion concentration), the degree of light diffusion or the degree of scattering (scattering intensity) can be adjusted, and the larger the diffusion concentration of the scattering agent, etc. The degree of light scattering is large.

例えば、散乱剤としては、粒子やフィラー等の添加物、もしくは、気泡を用い、これらをマトリクス材料である、樹脂、ガラス、または、セラミックスに分散させた部材を拡散板31として用いることができる。粒子やフィラーは、樹脂、ガラス、セラミックスまたは金属製のものを用いることができる。散乱剤として作用する構造としては、結晶粒界を用いることができる。例えば結晶粒界を含むセラミックスを拡散板31として用いることができる。拡散板31として用いる部材は、レーザ光を吸収しない特性を有し、レーザ光が照射された際の到達温度であっても、溶融や変形しないものであることが望ましい。具体的には、気泡や粒界を含むアルミナ焼結体や、YAG結晶の粒界とAl結晶の粒界とが混在するYAG/Al多結晶体によって構成された拡散板31を用いることができる。 For example, as the scattering agent, an additive such as particles and fillers, or air bubbles, which are dispersed in a matrix material such as resin, glass, or ceramics can be used as the diffusion plate 31. Particles and fillers can be made of resin, glass, ceramics or metal. As the structure acting as a scattering agent, a crystal grain boundary can be used. For example, ceramics including crystal grain boundaries can be used as the diffusion plate 31. It is desirable that the member used as the diffusing plate 31 has a characteristic that does not absorb the laser beam and does not melt or deform even at the temperature reached when the laser beam is irradiated. Specifically, an alumina sintered body containing bubbles and grain boundaries, or a diffusion plate composed of YAG / Al 2 O 3 polycrystals in which YAG crystal grain boundaries and Al 2 O 3 crystal grain boundaries coexist. 31 can be used.

ここで、拡散板31に入射するLD11からのレーザ光の強度は、ガウス分布を示すので、ビーム中心が最も光強度が強く、中心から離れるほど光強度が弱くなる特性がある。このため、拡散板31における拡散度合が一様に低い場合には、LD11からの光を十分に拡散させることができず、LD11からの光は光強度分布を持った状態で波長変換層に入射され、波長変換層において色むらが発生してしまう(図2(A))。反対に、拡散板31の拡散度合が一様に高い場合には、LDからの光は十分に拡散されて波長変換層の発光面における色むらは解消されるものの、拡散板31によって入射側に戻される光(後方散乱)が大きく光損失となり、照明装置として光量が低下してしまうだけでなく、LD11の動作に影響を与える。   Here, since the intensity of the laser light from the LD 11 incident on the diffusion plate 31 exhibits a Gaussian distribution, there is a characteristic that the light intensity is strongest at the center of the beam and the light intensity becomes weaker as the distance from the center increases. For this reason, when the diffusion degree in the diffusion plate 31 is uniformly low, the light from the LD 11 cannot be sufficiently diffused, and the light from the LD 11 is incident on the wavelength conversion layer with a light intensity distribution. As a result, color unevenness occurs in the wavelength conversion layer (FIG. 2A). On the other hand, when the diffusion degree of the diffusion plate 31 is uniformly high, the light from the LD is sufficiently diffused and uneven color on the light emitting surface of the wavelength conversion layer is eliminated. The returned light (backscattering) becomes a large loss of light, which not only reduces the amount of light as an illumination device, but also affects the operation of the LD 11.

そこで、本実施形態において、拡散板31は、拡散板31に入射した光を拡散させる度合いを示す拡散度合を、入射するレーザ光の強度分布に応じてレーザ光の入射中心を高く、レーザ光の入射中心から離れる程低く構成している。   Therefore, in the present embodiment, the diffusion plate 31 has a diffusion degree indicating a degree of diffusing the light incident on the diffusion plate 31 with a high incident center of the laser light according to the intensity distribution of the incident laser light, The distance from the incident center is lower.

入射するレーザ光の強度分布に応じてレーザ光の入射中心を高く、レーザ光の入射中心から離れる程低くするために、拡散板31は、拡散度合の異なる少なくとも2以上の拡散層を有する構成とすることができる。例えば、図3(A)に示すように、拡散度合が比較的低い第1の拡散層31Aと拡散度合が比較的高い第2の拡散層31Bとを積層した構成とすることができる。   In order to increase the incident center of the laser beam according to the intensity distribution of the incident laser beam and lower the distance from the incident center of the laser beam, the diffusion plate 31 has a configuration having at least two diffusion layers having different diffusion degrees. can do. For example, as shown in FIG. 3A, the first diffusion layer 31A having a relatively low diffusion degree and the second diffusion layer 31B having a relatively high diffusion degree may be stacked.

この場合、2層以上の拡散層31A,31Bのうち、入射するレーザ光の入射中心の厚さが最も熱く、中心から離れるにつれて薄くなる高拡散濃度の拡散層を、すなわち、拡散度合が比較的高い第2の拡散層31Bがレーザ光の入射中心に位置するように積層している。図3(A)の例では、第2の拡散層31Bは、レーザ光の入射面がレーザ光の入射中心を中心に左右に夫々傾斜した傾斜面を有している。すなわち、第2の拡散層31Bをレーザ光の強度分布に応じた厚さを有する形状とし、第2の拡散層31Bの周囲に第1の拡散層31Aを配置することもできる。なお、第1の拡散層31Aと第2の拡散層31Bとでは、高拡散度合の高い第2の拡散層31Bが、第1の拡散層31Aよりも高屈折率であることが好ましい。   In this case, among the two or more diffusion layers 31A and 31B, a diffusion layer having a high diffusion concentration in which the thickness of the incident center of the incident laser beam is the hottest and becomes thinner as it goes away from the center, that is, the diffusion degree is relatively high. The high second diffusion layer 31B is laminated so as to be positioned at the center of incidence of the laser beam. In the example of FIG. 3A, the second diffusion layer 31B has inclined surfaces in which the incident surface of the laser light is inclined to the left and right around the incident center of the laser light. That is, the second diffusion layer 31B can be shaped to have a thickness corresponding to the intensity distribution of the laser light, and the first diffusion layer 31A can be disposed around the second diffusion layer 31B. In the first diffusion layer 31A and the second diffusion layer 31B, the second diffusion layer 31B having a high degree of diffusion is preferably higher in refractive index than the first diffusion layer 31A.

このように拡散板31を構成することで、図3(B)に示すように、先ず、拡散板31にLD11からの光が、拡散板31の下面に位置する第1の拡散層31Aに入射して、第1の拡散層31A内を拡散、なわち、等方散乱する。第1の拡散層31Aは拡散度合が小さいので、等方散乱の度合いも小さく後方散乱も小さく光損失が小さい(図3(A)、(B)中、破線A)。このとき、図3(B)に示すように入射した光の強度は、入射中心が高い状態となる。   By configuring the diffusion plate 31 in this way, as shown in FIG. 3B, first, light from the LD 11 enters the diffusion plate 31 and enters the first diffusion layer 31A located on the lower surface of the diffusion plate 31. Thus, the first diffusion layer 31A is diffused, that is, isotropically scattered. Since the first diffusion layer 31A has a small diffusion degree, the degree of isotropic scattering is small, the back scattering is small, and the light loss is small (the broken line A in FIGS. 3A and 3B). At this time, as shown in FIG. 3B, the incident light has a high incident center.

続いて、LD11からの光の一部は第2の拡散層31Bに到達し(図3中、破線B)、第2の拡散層31Bの斜面及び第2の拡散層31B内において等方散乱される。このとき、先ず光強度が強い中心付近から光散乱が開始される。第2の拡散層31B内を全て透過することで波長変換層32に到達するまでに万遍なく十分にレーザ光が拡散される。また、第2の拡散層31Bの斜面で散乱された光は、その多くが拡散板31の側面に到達し、波長変換層32側に反射されるため、入射側に散乱されて戻り光となる量が少なく、波長変換層32に到達する光量を多くすることができる。拡散板31の下層に、後述する波長変換層32において変換された励起光を反射するためのダイクロイックミラーを設けることもできる。   Subsequently, a part of the light from the LD 11 reaches the second diffusion layer 31B (broken line B in FIG. 3), and is isotropically scattered in the slope of the second diffusion layer 31B and in the second diffusion layer 31B. The At this time, light scattering is first started from the vicinity of the center where the light intensity is strong. By completely transmitting through the second diffusion layer 31B, the laser light is diffused sufficiently and uniformly before reaching the wavelength conversion layer 32. Further, most of the light scattered on the slope of the second diffusion layer 31B reaches the side surface of the diffusion plate 31 and is reflected to the wavelength conversion layer 32 side, so that it is scattered to the incident side and becomes return light. The amount of light reaching the wavelength conversion layer 32 is small and the amount of light reaching the wavelength conversion layer 32 can be increased. A dichroic mirror for reflecting the excitation light converted in the wavelength conversion layer 32 to be described later can be provided in the lower layer of the diffusion plate 31.

波長変換層32は、LD11から照射され拡散板31により拡散された光を所望の波長に変換して外部に照射する。波長変換層32として、蛍光体を適用することができ、例えば、蛍光体粒子をバインダ中に分散させた板状体や、蛍光体結晶、蛍光体ガラス、蛍光体セラミックを用いることができる。波長変換層32に、LD11からの光が青色域(例えば、発光波長450nm)である場合には黄色発光する蛍光体を適用するか、又は、近紫外域(例えば、発光波長405nm)である場合には赤、緑、青の3色を発光する蛍光体を組み合わせて適用することで白色発光する照明装置とすることができる。   The wavelength conversion layer 32 converts the light irradiated from the LD 11 and diffused by the diffusion plate 31 into a desired wavelength and irradiates the outside. As the wavelength conversion layer 32, a phosphor can be applied. For example, a plate-like body in which phosphor particles are dispersed in a binder, phosphor crystal, phosphor glass, or phosphor ceramic can be used. When the light from the LD 11 is in the blue region (e.g., emission wavelength 450 nm), a phosphor that emits yellow light is applied to the wavelength conversion layer 32 or in the near ultraviolet region (e.g., emission wavelength 405 nm). Can be used as a lighting device that emits white light by combining phosphors that emit three colors of red, green, and blue.

なお、黄色発光する蛍光体としては、例えばCeドープされたYAGが用いられる。LD11からの光をさらに拡散されることを目的として、拡散体としてのアルミナを蛍光体と併せて用いることができる。例えば、アルミナとCeドープされたYAGを混合して作製してもよい。波長変換層32の下層に、波長変換層32において変換された励起光を反射するためのダイクロイックミラーを設けることもできる。   For example, Ce-doped YAG is used as the phosphor that emits yellow light. For the purpose of further diffusing the light from the LD 11, alumina as a diffuser can be used in combination with the phosphor. For example, alumina and Ce-doped YAG may be mixed. A dichroic mirror for reflecting the excitation light converted in the wavelength conversion layer 32 may be provided below the wavelength conversion layer 32.

反射部材14は、波長変換部材13の周囲を覆うように設けられ、波長変換層32の側面から出射する光を遮蔽する。反射部材14としては、酸化チタン粒子を樹脂中に分散させた白色樹脂を用いることができる。   The reflection member 14 is provided so as to cover the periphery of the wavelength conversion member 13 and shields light emitted from the side surface of the wavelength conversion layer 32. As the reflecting member 14, a white resin in which titanium oxide particles are dispersed in a resin can be used.

支持基板15は、波長変換部材13を支持すると共に、波長変換部材13の波長変換層32においてLD11からの光を波長変換する際に生じる熱を放熱する放熱部材として機能する。支持基板15として、熱伝導率の高い金属を用いることができる他、波長変換部材13と熱膨張係数を合わせるためにセラミックスを適用することができる。支持基板15と波長変換部材13との接合には金属接合や樹脂材を用いる。   The support substrate 15 supports the wavelength conversion member 13 and functions as a heat dissipation member that radiates heat generated when the wavelength of the light from the LD 11 is converted in the wavelength conversion layer 32 of the wavelength conversion member 13. As the support substrate 15, a metal having high thermal conductivity can be used, and ceramics can be applied to match the wavelength conversion member 13 and the thermal expansion coefficient. Metal bonding or a resin material is used for bonding the support substrate 15 and the wavelength conversion member 13.

波長変換層32は、LD11からの光を吸収して波長変換した光を照射する際に、熱を生じる。図4の矢印がこのときの熱の流れを示している。熱により波長変換層32の波長変換効率が低下してしまうため、放熱機能を有する支持基板15を配置する必要がある。図4に示すように、波長変換層32に出生じた熱は、拡散板31を介して支持基板15により放熱されるため、支持基板15の面積を大きくすることが好ましい。一方、支持基板15には、LD11からのレーザ光を拡散板31に入射させる開口15Aを設ける必要があり、この開口径が大きい方が入光ロスを小さくできるという利点がある。このように、開口径と支持基板15の面積とはトレードオフの関係にあるため、レーザ光を集光レンズ12により所望のスポット径に絞ることで、入光ロスを低減させ、且つ、支持基板15の大きさを確保している。   The wavelength conversion layer 32 generates heat when irradiating the light whose wavelength is converted by absorbing the light from the LD 11. The arrows in FIG. 4 indicate the heat flow at this time. Since the wavelength conversion efficiency of the wavelength conversion layer 32 is reduced by heat, it is necessary to dispose the support substrate 15 having a heat dissipation function. As shown in FIG. 4, since the heat generated in the wavelength conversion layer 32 is radiated by the support substrate 15 through the diffusion plate 31, it is preferable to increase the area of the support substrate 15. On the other hand, it is necessary to provide the support substrate 15 with an opening 15A for allowing the laser light from the LD 11 to enter the diffusion plate 31, and the larger the opening diameter, the smaller the incident light loss. Thus, since the aperture diameter and the area of the support substrate 15 are in a trade-off relationship, the incident light loss is reduced by narrowing the laser beam to a desired spot diameter by the condenser lens 12, and the support substrate is reduced. A size of 15 is secured.

本実施形態に係る照明装置によれば、拡散板31について、拡散板31に入射した光を拡散させる度合いを、入射するレーザ光の強度分布に応じてレーザ光の入射中心を高く、レーザ光の入射中心から離れる程低く構成し、かつ、入射面に拡散度合の低い第1の拡散層31Aを配置している。これにより、拡散板に入射した光は、まず拡散度合の低い部分で拡散されて等方散乱する。このとき第1の拡散層31Aの拡散度合が低いため、等方散乱の度合いも小さく後方散乱も小さく光損失が小さい。続いて、レーザ光は拡散度合の高い部分に到達して、先ず光強度が強い中心付近から光散乱が開始され、拡散板の拡散度合の高い部分を全て透過することで波長変換層に到達するまでに万遍なく散乱され、波長変換層に到達する光量を多くすることができる。従って、発光分布を均一化させながらも光損失を小さくすることができる。   According to the illuminating device according to the present embodiment, with respect to the diffusion plate 31, the degree of diffusing the light incident on the diffusion plate 31 is set such that the incident center of the laser light is increased according to the intensity distribution of the incident laser light, The first diffusion layer 31A having a lower degree of diffusion and a lower diffusion degree is disposed on the incident surface as the distance from the incident center increases. As a result, the light incident on the diffusion plate is first diffused and isotropically scattered in a portion having a low diffusion degree. At this time, since the diffusion degree of the first diffusion layer 31A is low, the degree of isotropic scattering is small, the back scattering is small, and the light loss is small. Subsequently, the laser light reaches a portion with a high degree of diffusion. First, light scattering starts from the vicinity of the center where the light intensity is strong, and reaches the wavelength conversion layer by passing through all the portions with a high degree of diffusion of the diffusion plate. It is possible to increase the amount of light that is scattered evenly and reaches the wavelength conversion layer. Therefore, it is possible to reduce the light loss while making the light emission distribution uniform.

(第2の実施形態)
上述した第1の実施形態では、LD11からのレーザ光を集光レンズ12で集光させた後、そのまま拡散板31に入射させている例について説明した。図5に示すように、本実施形態では、LD11からのレーザ光を集光レンズ12で集光させた後、ファイバ20を介して拡散板31に入射させる例について説明する。
(Second Embodiment)
In the above-described first embodiment, the example in which the laser beam from the LD 11 is condensed by the condenser lens 12 and then directly incident on the diffusion plate 31 has been described. As shown in FIG. 5, in the present embodiment, an example in which laser light from the LD 11 is collected by the condenser lens 12 and then incident on the diffusion plate 31 through the fiber 20 will be described.

筐体5は、底面にレーザ光源11を収容し、レーザ光源11から出射される光の光軸方向に集光レンズ12を保持し、集光レンズ12により集光された光を出射するための開口部5Aを備えている。開口部5Aの縁部にはフェルール6を介してファイバ20の一端が取り付けられている。
ファイバ20の他端はフェルール6を介して支持部材7に保持され、支持部材7に設けられた波長変換部材13にLD11からのレーザ光を導光するようになっている。
The housing 5 accommodates the laser light source 11 on the bottom surface, holds the condenser lens 12 in the optical axis direction of the light emitted from the laser light source 11, and emits the light condensed by the condenser lens 12. An opening 5A is provided. One end of a fiber 20 is attached to the edge of the opening 5A via a ferrule 6.
The other end of the fiber 20 is held by the support member 7 via the ferrule 6, and guides the laser light from the LD 11 to the wavelength conversion member 13 provided on the support member 7.

本実施形態によれば、ファイバ20を用いることで、LD11からのレーザ光の入光ロスを低減させて光損失を低減させた状態で拡散板31に導光することができる。なお、ファイバ20を用いた場合には、拡散板31に入射する光の強度分布は円錐形状となる。従って、第2の拡散層をこれに合わせた形状とし、第1の拡散層を第2の拡散層の周囲に配置することが好ましい。   According to the present embodiment, by using the fiber 20, it is possible to guide the light to the diffusion plate 31 in a state where the light loss of the laser light from the LD 11 is reduced and the light loss is reduced. When the fiber 20 is used, the intensity distribution of light incident on the diffusion plate 31 has a conical shape. Therefore, it is preferable that the second diffusion layer has a shape matching this, and the first diffusion layer is disposed around the second diffusion layer.

(変形例1)
上述した各実施形態における照明装置は、車両用灯具の光源装置として用いることができる。図6(A)及び(B)に示すように、照明装置から照射された光を反射するリフレクタ3と、リフレクタ3により反射された光を集光又は拡散するレンズ4を備えている。
これにより、照明装置から照射された所望波長の光は、リフレクタで反射され、レンズ4を介して所望の形状の光束として外部に照射される。
(Modification 1)
The illuminating device in each embodiment mentioned above can be used as a light source device of a vehicle lamp. As shown in FIGS. 6A and 6B, a reflector 3 that reflects the light emitted from the illumination device and a lens 4 that collects or diffuses the light reflected by the reflector 3 are provided.
Thereby, the light of the desired wavelength irradiated from the illumination device is reflected by the reflector, and is irradiated to the outside through the lens 4 as a light beam having a desired shape.

(変形例2)
上記した各実施形態では、波長変換部材13の拡散板31が、拡散度合が比較的高く斜面を有する第2の拡散層と、入射面及び第2の拡散層の周囲に設けられた拡散度合が第2の拡散層よりも低い第1の拡散層とを備える構成について説明した。拡散板31は、上記した構成に限られず、図7(A)〜(E)に示すように第2の拡散層31Bの形状を適宜変更し、第1の拡散層31Aを第2の拡散層31Bの周囲を覆うように設けた形状とすることができる。また、図7(F)〜(H)のように、第1の拡散層31Aと第2の拡散層31Bとの間に、拡散度合が第1の拡散層31Aよりも高く第2の拡散層31Bよりも低い第3の拡散層31Cを設けることもできる。
(Modification 2)
In each of the embodiments described above, the diffusion plate 31 of the wavelength conversion member 13 has the second diffusion layer having a relatively high diffusion degree and a slope, and the diffusion degree provided around the incident surface and the second diffusion layer. The configuration including the first diffusion layer lower than the second diffusion layer has been described. The diffusion plate 31 is not limited to the configuration described above, and the shape of the second diffusion layer 31B is appropriately changed as shown in FIGS. 7A to 7E, and the first diffusion layer 31A is changed to the second diffusion layer. It can be set as the shape provided so that the circumference | surroundings of 31B might be covered. Further, as shown in FIGS. 7F to 7H, the second diffusion layer has a higher degree of diffusion than the first diffusion layer 31A between the first diffusion layer 31A and the second diffusion layer 31B. A third diffusion layer 31C lower than 31B can also be provided.

5・・・筐体、6・・・フェルール、7・・・支持部材、11・・・レーザ光源、12・・・集光レンズ、13・・・波長変換部材、14・・・反射部材、15・・・支持基板、31・・・拡散板、31A・・・第1の拡散層、31B・・・第2の拡散層、31C・・・第3の拡散層、32・・・波長変換層(蛍光体)

DESCRIPTION OF SYMBOLS 5 ... Case, 6 ... Ferrule, 7 ... Support member, 11 ... Laser light source, 12 ... Condensing lens, 13 ... Wavelength conversion member, 14 ... Reflective member, DESCRIPTION OF SYMBOLS 15 ... Support substrate, 31 ... Diffusing plate, 31A ... 1st diffused layer, 31B ... 2nd diffused layer, 31C ... 3rd diffused layer, 32 ... Wavelength conversion Layer (phosphor)

Claims (8)

レーザ光を照射するレーザ光源と、
該レーザ光源からのレーザ光を集光する集光レンズと、
該集光レンズにより集光されて入射したレーザ光を拡散する拡散板と、該拡散板において拡散されたレーザ光を所望の波長に変換する波長変換層とを有する波長変換部材と、を備え、
前記拡散板の拡散度合を、レーザ光の強度分布に応じてレーザ光の入射中心を高く、レーザ光の入射中心から離れる程低く構成した照明装置。
A laser light source for irradiating laser light;
A condensing lens that condenses the laser light from the laser light source;
A wavelength conversion member having a diffusion plate for diffusing the incident laser light collected by the condenser lens, and a wavelength conversion layer for converting the laser light diffused in the diffusion plate to a desired wavelength,
An illuminating device in which a diffusion degree of the diffusion plate is configured such that the incident center of the laser beam is high according to the intensity distribution of the laser beam and decreases as the distance from the incident center of the laser beam increases.
前記拡散板が、拡散度合の異なる少なくとも2以上の拡散層を有する請求項1記載の照明装置。   The lighting device according to claim 1, wherein the diffusion plate has at least two diffusion layers having different diffusion degrees. 前記拡散板が、2層以上の拡散層のうち、入射するレーザ光の入射中心に高拡散度合の拡散層を配置した請求項2記載の照明装置。   The illuminating device according to claim 2, wherein the diffusion plate has a diffusion layer having a high diffusion degree arranged at an incident center of incident laser light among two or more diffusion layers. 前記拡散板の前記レーザ光の入射面全体に、前記高拡散度合の拡散層よりも低拡散度合の拡散層を配置した請求項3記載の照明装置。   The illuminating device according to claim 3, wherein a diffusion layer having a lower diffusion degree than the diffusion layer having a higher diffusion degree is disposed on the entire incident surface of the laser beam on the diffusion plate. 前記高拡散度合の拡散層が、他の拡散層よりも高屈折率である請求項3又は請求項4記載の照明装置。   The lighting device according to claim 3 or 4, wherein the diffusion layer having a high diffusion degree has a higher refractive index than other diffusion layers. 前記高拡散度合の拡散層が、入射するレーザ光の入射面に対して傾斜面を有する請求項2乃至請求項5の何れか1項記載の照明装置。   The illumination device according to claim 2, wherein the diffusion layer having a high diffusion degree has an inclined surface with respect to an incident surface of incident laser light. 前記波長変換部材の周囲を覆う反射部材を備えた請求項1乃至請求項6の何れか1項記載の照明装置。   The lighting device according to claim 1, further comprising a reflection member that covers the periphery of the wavelength conversion member. 請求項1乃至請求項7の何れか1項記載の照明装置を備えた車両用灯具。   A vehicular lamp provided with the illumination device according to any one of claims 1 to 7.
JP2016249038A 2016-12-22 2016-12-22 Lighting device and vehicle lamp Pending JP2018106814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249038A JP2018106814A (en) 2016-12-22 2016-12-22 Lighting device and vehicle lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249038A JP2018106814A (en) 2016-12-22 2016-12-22 Lighting device and vehicle lamp

Publications (1)

Publication Number Publication Date
JP2018106814A true JP2018106814A (en) 2018-07-05

Family

ID=62787348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249038A Pending JP2018106814A (en) 2016-12-22 2016-12-22 Lighting device and vehicle lamp

Country Status (1)

Country Link
JP (1) JP2018106814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073254B2 (en) 2019-08-22 2021-07-27 Nichia Corporation Light emission device having a planoconvex lens, collimated light source and housing for irradiating an optical member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073254B2 (en) 2019-08-22 2021-07-27 Nichia Corporation Light emission device having a planoconvex lens, collimated light source and housing for irradiating an optical member
US11499695B2 (en) 2019-08-22 2022-11-15 Nichia Corporation Optical member and light emission device

Similar Documents

Publication Publication Date Title
JP6342279B2 (en) Light emitting device
JP5380498B2 (en) Light source device, lighting device, vehicle headlamp, and vehicle
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP6246622B2 (en) Light source device and lighting device
US9366399B2 (en) Light emitting device, illumination device, and vehicle headlamp
JP5323998B2 (en) Luminaire with phosphor, excitation light source, optical system, and heat sink
US9316372B2 (en) Light emitting device and vehicle lamp
JP6164518B2 (en) Vehicle headlamp
US8662691B2 (en) Light-emitting device
WO2009131126A1 (en) Vehicular lighting fixture
US20120106127A1 (en) Light emitting device
JP6271216B2 (en) Light emitting unit and lighting device
JP6688306B2 (en) Light emitter and lighting device
JP5722068B2 (en) Light source device, lighting device and vehicle headlamp
JP5891858B2 (en) Light emitting device and vehicle lamp
JP2018106814A (en) Lighting device and vehicle lamp
WO2017043121A1 (en) Light-emitting device and illumination device
JP6072447B2 (en) Lighting device and vehicle headlamp
JP2017228390A (en) Lighting device
JP6085204B2 (en) Light emitting device
JP2014211982A (en) Light emitting device and vehicle lighting tool
JP2017224528A (en) Illumination device
JP2018166064A (en) Lighting device