Nothing Special   »   [go: up one dir, main page]

JP2018182301A - Composite magnetic material and motor - Google Patents

Composite magnetic material and motor Download PDF

Info

Publication number
JP2018182301A
JP2018182301A JP2018023553A JP2018023553A JP2018182301A JP 2018182301 A JP2018182301 A JP 2018182301A JP 2018023553 A JP2018023553 A JP 2018023553A JP 2018023553 A JP2018023553 A JP 2018023553A JP 2018182301 A JP2018182301 A JP 2018182301A
Authority
JP
Japan
Prior art keywords
magnetic material
composite
particles
composite magnetic
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018023553A
Other languages
Japanese (ja)
Inventor
笹栗 大助
Daisuke Sasakuri
大助 笹栗
西村 直樹
Naoki Nishimura
直樹 西村
達夫 岸川
Tatsuo KISHIKAWA
達夫 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/946,583 priority Critical patent/US20180301255A1/en
Publication of JP2018182301A publication Critical patent/JP2018182301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic material which includes an iron element, and which is high in aging stability.SOLUTION: A composite magnetic material 101 comprises: a soft magnetic material S; and a hard magnetic material H. The soft magnetic material S and the hard magnetic material H each include an iron element; 90 atom % or more and 100 atom % or less of the iron element included in the soft magnetic material S forms a first oxide or first composite oxide, and 90 atom % or more and 100 atom % or less of the iron element included in the hard magnetic material H forms a second oxide or second composite oxide.SELECTED DRAWING: Figure 1

Description

本発明は、複合磁性材料、およびモータに関する。   The present invention relates to a composite magnetic material and a motor.

高性能な磁石として、ネオジム磁石(組成:NdFe14B等)が知られている。ネオジム磁石は残留磁束密度および保磁力がともに大きいため、広く利用されている。 A neodymium magnet (composition: Nd 2 Fe 14 B, etc.) is known as a high-performance magnet. Neodymium magnets are widely used due to their high residual magnetic flux density and coercivity.

ネオジム磁石は希土類元素であるネオジムを必須成分としている。希土類元素は高価であるとともに供給が不安定になる恐れがあるため、希土類元素の使用量を抑制したいという要請がある。そこで、希土類の使用量を抑制しつつ、高性能な磁石を作製する試みが行われている。   The neodymium magnet contains neodymium, which is a rare earth element, as an essential component. Since rare earth elements are expensive and there is a possibility that the supply may become unstable, there is a demand to suppress the use amount of the rare earth elements. Therefore, attempts have been made to manufacture high-performance magnets while suppressing the amount of rare earth used.

特許文献1には、イプシロン酸化鉄(ε−Fe)を含む硬質磁性相のコアと、アルファ鉄(α−Fe)を含み、かつコアの少なくとも一部を被覆する軟質磁性相のシェルと、を有する、コアシェル型の磁性材料が記載されている。特許文献1では、保磁力の高い硬質磁性相としてε−Fe、飽和磁束密度の高い軟質磁性相としてα−Fe、をそれぞれ用い、両者を交換結合作用によって磁気的に結合させたナノコンポジット磁石を作製している。 Patent Document 1 discloses a core of a hard magnetic phase containing epsilon iron oxide (ε-Fe 2 O 3 ) and a shell of a soft magnetic phase containing alpha iron (α-Fe) and covering at least a part of the core. And a core-shell type magnetic material is described. In Patent Document 1, a nano-structure in which ε-Fe 2 O 3 is used as a hard magnetic phase with high coercivity, and α-Fe is used as a soft magnetic phase with high saturation magnetic flux density, and both are magnetically coupled by exchange coupling action. Composite magnets are manufactured.

特開2011−35006号公報JP, 2011-35006, A

鉄元素を含む鉄系材料を用いた磁性材料においては、鉄系材料が磁性材料の表面に露出する場合がある。これは、鉄系材料を特許文献1に記載のようにコアシェル型の磁性材料のシェルとして用いた場合に特に顕著になる。   In a magnetic material using an iron-based material containing an iron element, the iron-based material may be exposed on the surface of the magnetic material. This becomes particularly remarkable when iron-based materials are used as shells of core-shell type magnetic materials as described in Patent Document 1.

鉄系材料として鉄や鉄合金を用いた場合、鉄や鉄合金は空気や水分によって酸化されやすい。そのため、磁性材料を構成する鉄や鉄合金が表面に露出していると空気や水分によって酸化され、磁性材料の磁気特性が低下してしまう。すなわち、鉄元素を含む複合磁性材料は、経時安定性が低いという課題があった。   When iron or an iron alloy is used as the iron-based material, the iron or iron alloy is easily oxidized by air or moisture. Therefore, if the iron or iron alloy constituting the magnetic material is exposed to the surface, it is oxidized by air or moisture, and the magnetic properties of the magnetic material are degraded. That is, the composite magnetic material containing an iron element has a problem that the stability over time is low.

そこで本発明では、上述の課題に鑑み、鉄元素を含む複合磁性材料であって、経時安定性の高い磁性材料を提供することを目的とする。   Then, in view of the above-mentioned subject, in the present invention, it is a composite magnetic material containing iron, and it aims at providing a magnetic material with high temporal stability.

本発明の一側面としての複合磁性材料は、軟質磁性材料と硬質磁性材料とを含有する複合磁性材料であって、前記軟質磁性材料および前記硬質磁性材料が鉄元素をそれぞれ含み、前記軟質磁性材料に含まれる鉄元素の90原子%以上100原子%以下が第1の酸化物または第1の複合酸化物を形成しており、前記硬質磁性材料に含まれる鉄元素の90原子%以上100原子%以下が第2の酸化物または第2の複合酸化物を形成していることを特徴とする。   The composite magnetic material according to one aspect of the present invention is a composite magnetic material containing a soft magnetic material and a hard magnetic material, wherein the soft magnetic material and the hard magnetic material each contain an iron element, and the soft magnetic material 90 atomic% or more and 100 atomic% or less of the iron element contained in the first oxide or the first composite oxide, 90 atomic% or more and 100 atomic% or more of the iron element contained in the hard magnetic material The following is characterized in that a second oxide or a second composite oxide is formed.

本発明によれば、鉄元素を含む複合磁性材料であって、経時安定性の高い複合磁性材料を提供することができる。   According to the present invention, it is possible to provide a composite magnetic material containing iron element and having high stability over time.

第1の実施形態に係る複合磁性材料の構造を模式的に示す図である。It is a figure which shows typically the structure of the composite magnetic material which concerns on 1st Embodiment. 第1の実施形態に係る複合磁性材料の構造を模式的に示す図である。It is a figure which shows typically the structure of the composite magnetic material which concerns on 1st Embodiment.

以下、本発明の実施の形態について説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments, and appropriate modifications may be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Those to which improvements and the like have been added are also included in the scope of the present invention.

(第1の実施形態)
本実施形態に係る複合磁性材料は、軟質磁性材料と硬質磁性材料とを含有する複合磁性材料であって、軟質磁性材料および硬質磁性材料が鉄元素をそれぞれ含んでいる。さらに、軟質磁性材料に含まれる鉄元素の90原子%以上100原子%以下が第1の酸化物または第1の複合酸化物を形成しており、硬質磁性材料に含まれる鉄元素の90原子%以上100原子%以下が第2の酸化鉄または第2の複合酸化物を形成している。
First Embodiment
The composite magnetic material according to the present embodiment is a composite magnetic material containing a soft magnetic material and a hard magnetic material, and the soft magnetic material and the hard magnetic material each contain an iron element. Furthermore, 90 atomic% or more and 100 atomic% or less of the iron element contained in the soft magnetic material forms the first oxide or the first composite oxide, and 90 atomic% of the iron element contained in the hard magnetic material The above 100 at% or less forms the second iron oxide or the second composite oxide.

ここで、本明細書において「軟質磁性材料」とは、保磁力が小さく、飽和磁束密度が大きな材料を指す。また、本明細書において「硬質磁性材料」とは、保磁力が大きい材料を指す。   Here, in the present specification, the “soft magnetic material” refers to a material having a small coercive force and a large saturation magnetic flux density. Further, in the present specification, “hard magnetic material” refers to a material having a large coercive force.

本実施形態に係る複合磁性材料は、軟質磁性材料の相(軟質磁性相)と硬質磁性材料の相(硬質磁性相)の2つの相がnm(ナノメートル)オーダーで隣接して存在する微細な混合構造を有する。このような微細な混合構造を有することで、軟質磁性相と硬質磁性相との間に交換結合作用を働かせることができる。軟質磁性相と硬質磁性相との間に交換結合作用が働いていると、反転磁場を与えたときに、交換結合している硬質磁性相の磁化によって軟質磁性相の磁化反転が抑制される。このとき磁化曲線は、交換結合作用により軟質磁性相と硬質磁性相とがあたかも単相磁石であるかのように振る舞う。そのため、軟質磁性相の大きな飽和磁束密度と、硬質磁性相の大きな保磁力を併せ持つ磁化曲線が実現されるようになる。その結果、高いエネルギー積(BH)maxを実現することができる。なお、このように軟質磁性相と硬質磁性相との間に交換結合作用を働かせた磁石は、ナノコンポジット磁石や交換スプリング磁石として知られている。 The composite magnetic material according to the present embodiment is fine in which two phases of a soft magnetic material phase (soft magnetic phase) and a hard magnetic material phase (hard magnetic phase) are adjacent to each other on the order of nm (nanometer). It has a mixed structure. By having such a fine mixed structure, an exchange coupling action can be exerted between the soft magnetic phase and the hard magnetic phase. When the exchange coupling action is working between the soft magnetic phase and the hard magnetic phase, the magnetization reversal of the soft magnetic phase is suppressed by the magnetization of the exchange-coupled hard magnetic phase when a reverse magnetic field is applied. At this time, the magnetization curve behaves as if it were a single phase magnet as if it were a soft magnetic phase and a hard magnetic phase by the exchange coupling action. Therefore, a magnetization curve having a large saturation magnetic flux density of the soft magnetic phase and a large coercivity of the hard magnetic phase is realized. As a result, high energy product (BH) max can be realized. A magnet which exerts an exchange coupling action between the soft magnetic phase and the hard magnetic phase as described above is known as a nanocomposite magnet or a replacement spring magnet.

図1は、第1の実施形態に係る複合磁性材料の構造例を模式的に示す図である。本実施形態に係る複合磁性材料101は、図1(a)や図1(b)に示すように、軟質磁性材料Sを含む海部中に、硬質磁性材料Hを含む島部と、を有する海島構造を有する。   FIG. 1 is a view schematically showing a structural example of the composite magnetic material according to the first embodiment. The composite magnetic material 101 according to the present embodiment is, as shown in FIG. 1A and FIG. 1B, an island having an island portion including the hard magnetic material H in a sea portion including the soft magnetic material S. It has a structure.

(軟質磁性材料S)
軟質磁性材料Sは、硬質磁性材料Hよりも飽和磁束密度が大きな材料である。軟質磁性材料Sの飽和磁束密度は特に限定されるものではないが、50emu/g以上であることが好ましく、70emu/g以上であることがより好ましい。
(Soft magnetic material S)
The soft magnetic material S is a material having a larger saturation magnetic flux density than the hard magnetic material H. The saturation magnetic flux density of the soft magnetic material S is not particularly limited, but is preferably 50 emu / g or more, and more preferably 70 emu / g or more.

軟質磁性材料Sは鉄元素を含み、軟質磁性材料Sに含まれる鉄元素の90原子%以上100原子%以下が第1の酸化物または第1の複合酸化物を形成している。軟質磁性材料Sに含まれる鉄元素が鉄または鉄合金を形成している場合、当該鉄元素は酸化されやすく、軟質磁性材料Sの磁気特性の経時安定性が低くなる恐れがある。一方、本実施形態では軟質磁性材料Sに含まれる鉄元素の90原子%以上が第1の酸化物または第1の複合酸化物を形成しているため、当該鉄元素が酸化されにくく、軟質磁性材料Sの磁気特性が経時的に低下してしまうことを抑制することができる。   The soft magnetic material S contains an iron element, and 90 atomic% or more and 100 atomic% or less of the iron element contained in the soft magnetic material S form a first oxide or a first composite oxide. When the iron element contained in the soft magnetic material S forms iron or an iron alloy, the iron element is easily oxidized, and the temporal stability of the magnetic properties of the soft magnetic material S may be lowered. On the other hand, in the present embodiment, since 90 atomic% or more of the iron element contained in the soft magnetic material S forms the first oxide or the first composite oxide, the iron element is unlikely to be oxidized, and the soft magnetic material It can suppress that the magnetic characteristic of material S falls temporally.

軟質磁性材料Sに含まれる鉄元素が形成している第1の酸化物または第1の複合酸化物は、FeまたはFeのFeの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含むことが好ましい。Fe(マグネタイト)は大気下での安定性が高く、軟質磁性材料SがFeを含むことで、複合磁性材料101の経時安定性をより効果的に向上させることができる。またFeは鉄系酸化物材料の中では特に高い飽和磁束密度を有しているため、軟質磁性材料SがFeを含むことで複合磁性材料101の飽和磁束密度を高くすることができ、エネルギー積(BH)maxをより高めることができる。 In the first oxide or the first complex oxide formed by the iron element contained in the soft magnetic material S, part of Fe in Fe 3 O 4 or Fe 3 O 4 is Ga, Al, Ni, Co It is preferable to include a complex oxide substituted with at least one selected from the group consisting of Fe 3 O 4 (magnetite) has high stability in the air, and the soft magnetic material S containing Fe 3 O 4 can more effectively improve the temporal stability of the composite magnetic material 101. Further, since Fe 3 O 4 has a particularly high saturation magnetic flux density among iron-based oxide materials, the soft magnetic material S contains Fe 3 O 4 to increase the saturation magnetic flux density of the composite magnetic material 101. The energy product (BH) max can be further increased.

軟質磁性材料Sに含まれる鉄元素が形成している第1の酸化物または第1の複合酸化物は、γ−Feまたはγ−FeのFeの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含むことが好ましい。γ−Feは大気下での安定性が高く、軟質磁性材料Sがγ−Feを含むことで、複合磁性材料101の経時安定性をより効果的に向上させることができる。 In the first oxide or the first composite oxide formed by the iron element contained in the soft magnetic material S, part of Fe of γ-Fe 2 O 3 or γ-Fe 2 O 3 is Ga, Al It is preferable to include a complex oxide substituted by at least one selected from the group consisting of Ni and Co. γ-Fe 2 O 3 has high stability in the atmosphere, and the soft magnetic material S containing γ-Fe 2 O 3 can improve the temporal stability of the composite magnetic material 101 more effectively. .

また、軟質磁性材料Sに含まれる鉄元素が形成している第1の酸化物または第1の複合酸化物は、α−Feまたはα−FeのFeの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含んでいてもよい。 In the first oxide or the first composite oxide formed by the iron element contained in the soft magnetic material S, part of Fe of α-Fe 2 O 3 or α-Fe 2 O 3 is Ga And the complex oxide substituted by at least one selected from the group consisting of Al, Ni and Co.

(硬質磁性材料H)
硬質磁性材料Hは、軟質磁性材料Sよりも保磁力が大きな材料である。硬質磁性材料Hの保磁力は特に限定されるものではないが、500Oe以上であることが好ましく、1000Oe以上であることがより好ましい。
(Hard magnetic material H)
The hard magnetic material H is a material having a larger coercive force than the soft magnetic material S. The coercive force of the hard magnetic material H is not particularly limited, but is preferably 500 Oe or more, and more preferably 1000 Oe or more.

硬質磁性材料Hは鉄元素を含み、硬質磁性材料Hに含まれる鉄元素の90原子%以上100原子%以下が第2の酸化物または第2の複合酸化物を形成している。硬質磁性材料Hに含まれる鉄元素が鉄または鉄合金を形成している場合、当該鉄元素は酸化されやすく、硬質磁性材料Hの磁気特性の経時安定性が低くなる恐れがある。一方、本実施形態では硬質磁性材料Hに含まれる鉄元素の90原子%以上が第2の酸化物または第2の複合酸化物を形成しているため、当該鉄元素が酸化されにくく、硬質磁性材料Hの磁気特性が経時的に低下してしまうことを抑制することができる。   The hard magnetic material H contains an iron element, and 90 atomic% or more and 100 atomic% or less of the iron element contained in the hard magnetic material H form a second oxide or a second composite oxide. When the iron element contained in the hard magnetic material H forms iron or an iron alloy, the iron element is easily oxidized, and the temporal stability of the magnetic characteristics of the hard magnetic material H may be lowered. On the other hand, in the present embodiment, since 90 atomic% or more of the iron element contained in the hard magnetic material H forms the second oxide or the second composite oxide, the iron element is not easily oxidized, and the hard magnetic material H is hard It can suppress that the magnetic characteristic of the material H falls with time.

硬質磁性材料Hに含まれる鉄元素が形成している第2の酸化物または第2の複合酸化物は、ε−Feまたはε−Feの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含むことが好ましい。ε−Feは大気下での安定性が高く、硬質磁性材料Hがε−Feを含むことで、複合磁性材料101の経時安定性をより効果的に向上させることができる。またε−Feは鉄系酸化物材料の中では特に高い保磁力を有しているため、硬質磁性材料Hがε−Feを含むことで、複合磁性材料101の保磁力を高くすることができ、エネルギー積(BH)maxをより高めることができる。 In the second oxide or the second composite oxide formed by the iron element contained in the hard magnetic material H, part of ε-Fe 2 O 3 or ε-Fe 2 O 3 is Ga, Al, Ni It is preferable to include complex oxide substituted with at least one selected from the group consisting of ε-Fe 2 O 3 has high stability in the atmosphere, and the hard magnetic material H containing ε-Fe 2 O 3 can improve the temporal stability of the composite magnetic material 101 more effectively. . Further, since ε-Fe 2 O 3 has a particularly high coercive force among iron-based oxide materials, the hard magnetic material H contains ε-Fe 2 O 3 to make the coercivity of the composite magnetic material 101. The energy product (BH) max can be further increased.

(複合磁性材料の構成元素)
本実施形態に係る複合磁性材料101は、複合磁性材料101の全量を100質量%としたときに、Nd元素の含有量が0質量%以上3質量%以下であることが好ましく、0質量%以上1質量%以下であることがより好ましい。複合磁性材料101は、Nd元素を実質的に含まないことが特に好ましい。このように、複合磁性材料101中のNd元素の含有量を小さくすることで、複合磁性材料101のコストを低減させることができる。
(Elements of composite magnetic material)
In the composite magnetic material 101 according to the present embodiment, when the total amount of the composite magnetic material 101 is 100% by mass, the content of Nd element is preferably 0% by mass or more and 3% by mass or less, and 0% by mass or more It is more preferable that it is 1 mass% or less. The composite magnetic material 101 particularly preferably contains substantially no Nd element. Thus, by reducing the content of the Nd element in the composite magnetic material 101, the cost of the composite magnetic material 101 can be reduced.

本実施形態に係る複合磁性材料101に含まれる鉄元素は、複合磁性材料101に含まれる鉄元素の全量を100原子%としたときに、90原子%以上100原子%以下が酸化物または複合酸化物を形成していることが好ましい。   The iron element contained in the composite magnetic material 101 according to the present embodiment is 90 atomic% or more and 100 atomic% or less of an oxide or complex oxide when the total amount of iron elements contained in the composite magnetic material 101 is 100 atomic%. It is preferable to form an object.

(構造)
本実施形態に係る複合磁性材料101は、軟質磁性材料Sを含む海部と、硬質磁性材料Hを含む島部と、を有する海島構造を有する。
(Construction)
The composite magnetic material 101 according to the present embodiment has a sea-island structure having a sea part containing the soft magnetic material S and an island part containing the hard magnetic material H.

なお、本実施形態では海部が軟質磁性材料Sを含み、島部が硬質磁性材料Hを含むものとしたが、海部が硬質磁性材料Hを含み、島部が軟質磁性材料Sを含んでいてもよい。   In the present embodiment, although the sea portion includes the soft magnetic material S and the island portion includes the hard magnetic material H, the sea portion may include the hard magnetic material H and the island portion may include the soft magnetic material S. Good.

軟質磁性材料Sと硬質磁性材料Hとは、交換結合作用によって磁気的に結合していることが好ましい。そのため、島部と海部との間の界面から交換結合作用が働く距離(以下、「交換結合距離」と称する)をaとすると、複合磁性材料101において、隣接する2つの島部の間の平均距離dは、d≦2aを満たすことが好ましい。すなわち、隣接する2つの島部の間の平均距離は、交換結合距離の2倍以下であることが好ましい。   The soft magnetic material S and the hard magnetic material H are preferably magnetically coupled by the exchange coupling action. Therefore, assuming that the distance at which the exchange coupling action works from the interface between the island and the sea (hereinafter referred to as “exchange coupling distance”) is a, in composite magnetic material 101, the average between two adjacent islands. The distance d preferably satisfies d ≦ 2a. That is, the average distance between two adjacent islands is preferably not more than twice the exchange coupling distance.

硬質磁性材料Hを含む粒子状の島部の平均粒径は、硬質磁性材料Hの保磁力が低下しない程度に大きいことが好ましい。また、硬質磁性材料Hがε−Feを含む場合、硬質磁性材料Hを含む粒子状の島部の平均粒径は、ε−Feがイプシロン構造を保つことができる程度に小さいことが好ましい。具体的には、硬質磁性材料Hを含む粒子状の島部の平均粒径は、5nm以上60nm以下であることが好ましく、10nm以上40nm以下であることがより好ましい。 The average particle diameter of the particulate island containing the hard magnetic material H is preferably as large as possible so that the coercive force of the hard magnetic material H does not decrease. Also, if the hard magnetic material H comprises ε-Fe 2 O 3, an average particle size of the particulate island portion comprising hard magnetic material H is the extent to which ε-Fe 2 O 3 it is possible to maintain the epsilon structure It is preferable to be small. Specifically, the average particle diameter of the particulate island including the hard magnetic material H is preferably 5 nm or more and 60 nm or less, and more preferably 10 nm or more and 40 nm or less.

(複合磁性材料の製造方法)
本実施形態に係る複合磁性材料101の製造方法は特に限定はされないが、例えば下記の方法が挙げられる。
(Method of manufacturing composite magnetic material)
The method for producing the composite magnetic material 101 according to the present embodiment is not particularly limited, and for example, the following method may be mentioned.

第1の方法は、軟質磁性材料Sの粒子と、硬質磁性材料Hの粒子と、をそれぞれ準備して、これらを適当な混合比で混合する方法である。これらを混合して圧縮成型した後に、熱処理してもよい。   The first method is a method in which particles of the soft magnetic material S and particles of the hard magnetic material H are prepared and mixed at an appropriate mixing ratio. After mixing and compression molding these, they may be heat treated.

軟質磁性材料SとしてFeを用いる場合は、溶液中での化学的プロセスを用いて酸化鉄や水酸化鉄のナノ粒子を生成し、生成したナノ粒子を還元雰囲気下で熱処理することでFeナノ粒子を比較的容易に合成することができる。還元雰囲気下で熱処理を行う場合、熱処理の温度を高くしすぎたり時間を長くしすぎたりすると、還元が進行しすぎてα−Feなどが生成する可能性がある。そのため、熱処理の温度は200℃以上400℃以下とすることが好ましく、時間は2時間以上5時間以下とすることが好ましい。 When Fe 3 O 4 is used as the soft magnetic material S, nanoparticles of iron oxide or iron hydroxide are formed using a chemical process in solution, and the generated nanoparticles are heat-treated in a reducing atmosphere. Fe 3 O 4 nanoparticles can be synthesized relatively easily. When the heat treatment is performed in a reducing atmosphere, if the temperature of the heat treatment is too high or the time is too long, the reduction may proceed too much and α-Fe and the like may be generated. Therefore, the temperature of the heat treatment is preferably 200 ° C. or more and 400 ° C. or less, and the time is preferably 2 hours or more and 5 hours or less.

軟質磁性材料Sとしてγ−Feを用いる場合は、溶液中での化学的プロセスを用いて酸化鉄や水酸化鉄のナノ粒子を生成し、生成したナノ粒子を酸化雰囲気下で熱処理することでγ−Feナノ粒子を比較的容易に合成することができる。例えば、熱処理の温度は200℃以上400℃以下とすることが好ましく、時間は2時間以上5時間以下とすることが好ましい。 When γ-Fe 2 O 3 is used as the soft magnetic material S, nanoparticles of iron oxide or iron hydroxide are produced using a chemical process in solution, and the produced nanoparticles are heat-treated in an oxidizing atmosphere Thus, γ-Fe 2 O 3 nanoparticles can be relatively easily synthesized. For example, the temperature of the heat treatment is preferably 200 ° C. or more and 400 ° C. or less, and the time is preferably 2 hours or more and 5 hours or less.

硬質磁性材料Hとしてε−Feを用いる場合は、溶液中での化学的プロセスを用いて酸化鉄や水酸化鉄のナノ粒子を生成し、生成したナノ粒子を酸化雰囲気で加熱することで比較的容易にε−Fe粒子を合成することができる。溶液中での化学的プロセスとしては、例えば、硝酸鉄水和物を出発原料とした逆ミセル法やゾルゲル法等を用いることができる。なお、ε−Fe粒子を合成する工程においては、ε−Fe粒子の表面をシリカ(SiO)で被覆する工程を加えてもよい。 When ε-Fe 2 O 3 is used as the hard magnetic material H, iron oxide or iron hydroxide nanoparticles are formed using a chemical process in solution, and the generated nanoparticles are heated in an oxidizing atmosphere The ε-Fe 2 O 3 particles can be synthesized relatively easily. As a chemical process in a solution, for example, a reverse micelle method or a sol-gel method using iron nitrate hydrate as a starting material can be used. In the step of synthesizing the ε-Fe 2 O 3 particles, the surface of the ε-Fe 2 O 3 particles may be added step of coating with silica (SiO 2).

第2の方法は、軟質磁性材料Sの粒子、および硬質磁性材料Hの粒子のいずれかを準備して、軟質磁性材料Sの粒子または硬質磁性材料Hの粒子に対して処理を施すことで、一方の磁性材料の一部をもう一方の磁性材料に変化させる方法である。   The second method is to prepare either particles of the soft magnetic material S or particles of the hard magnetic material H, and treat the particles of the soft magnetic material S or the particles of the hard magnetic material H, It is a method of changing a part of one magnetic material to the other magnetic material.

例えば、軟質磁性材料SとしてFeを用い、硬質磁性材料Hとしてε−Feを用いる場合、上述の方法でε−Fe粒子を合成した後に、ε−Fe粒子を還元雰囲気下で熱処理する方法がある。これにより、ε−Feの一部が還元され、Feが生成される。この場合、後述する第2の実施形態のようなコアシェル型の複合磁性材料が生成される。 For example, a Fe 3 O 4 as a soft magnetic material S, when using a ε-Fe 2 O 3 as a hard magnetic material H, after synthesizing the ε-Fe 2 O 3 particles in the manner described above, ε-Fe 2 O There is a method of heat treating 3 particles in a reducing atmosphere. Thereby, a part of ε-Fe 2 O 3 is reduced to generate Fe 3 O 4 . In this case, a core-shell type composite magnetic material as in the second embodiment described later is generated.

第3の方法は、軟質磁性材料Sおよび硬質磁性材料Hのうちの一方の材料の原料が溶解した溶液中にもう一方の材料の粒子を分散させた分散液を用意し、この分散液中で前記原料から磁性材料粒子またはその前駆体粒子を析出させる方法である。その後、得られた複合粒子の粉末を熱処理してもよい。   The third method is to prepare a dispersion in which particles of the other material are dispersed in a solution in which the raw material of one of the soft magnetic material S and the hard magnetic material H is dissolved. It is a method of depositing magnetic material particles or precursor particles thereof from the raw material. Thereafter, the powder of the obtained composite particles may be heat-treated.

例えば、軟質磁性材料Sに含まれる少なくとも1種の遷移金属元素がイオン化して溶解した溶液中に硬質磁性材料Hの粒子(硬質磁性粒子)を分散させて分散液を得る。その後、分散液を撹拌しながら、分散液にpH調整剤等の添加剤を添加して、前記遷移金属を含有する粒子を析出させる。このとき、析出させる粒子は目的の軟質磁性材料Sの粒子であってもよいし、その後の熱処理等によって軟質磁性材料Sに変換可能な前駆体粒子であってもよい。分散液中には硬質磁性粒子が分散されているため、分散液中において、硬質磁性粒子の周りには、硬質磁性粒子を取り囲むように、上記イオンが存在している。この状態でイオンが反応し、イオン中の遷移金属元素を含む粒子または析出物が析出するため、硬質磁性粒子の周囲を囲む形で粒子または析出物が析出する。なお、軟質磁性材料Sと硬質磁性材料Hを入れ替えても、同様の方法で複合磁性材料を形成できる。   For example, particles of the hard magnetic material H (hard magnetic particles) are dispersed in a solution in which at least one transition metal element contained in the soft magnetic material S is ionized and dissolved to obtain a dispersion. Thereafter, while the dispersion is stirred, an additive such as a pH adjuster is added to the dispersion to precipitate particles containing the transition metal. At this time, the particles to be deposited may be particles of the target soft magnetic material S, or may be precursor particles that can be converted into the soft magnetic material S by subsequent heat treatment or the like. Since hard magnetic particles are dispersed in the dispersion, the ions are present around the hard magnetic particles in the dispersion so as to surround the hard magnetic particles. Ions react in this state, and particles or precipitates containing transition metal elements in the ions precipitate, so that particles or precipitates precipitate in a form surrounding the hard magnetic particles. Incidentally, even if the soft magnetic material S and the hard magnetic material H are interchanged, the composite magnetic material can be formed by the same method.

例えば、塩化鉄(III)、硫酸鉄(III)、または硝酸鉄(III)等の3価の鉄を含む原料を水に溶解させて得られるFe3+イオンを含む水溶液にpH調整剤であるアンモニア水を添加してpHを変化させると、水酸化鉄(Fe(OH))を析出させることができる。この方法によれば、析出する水酸化鉄粒子の平均粒径は析出条件に依存するが、おおむね5nmから15nm程度になる。この水酸化鉄を第1の方法と同様に還元処理することで、軟質磁性材料SであるFeを得ることができる。 For example, ammonia which is a pH adjuster in an aqueous solution containing Fe 3+ ion obtained by dissolving a raw material containing trivalent iron such as iron (III) chloride, iron (III) sulfate or iron (III) nitrate in water By adding water to change the pH, iron hydroxide (Fe (OH) 3 ) can be precipitated. According to this method, the average particle diameter of the precipitated iron hydroxide particles depends on the deposition conditions, but is approximately 5 nm to 15 nm. By reducing the iron hydroxide in the same manner as in the first method, Fe 3 O 4 as the soft magnetic material S can be obtained.

また、塩化鉄(II)等の2価の鉄を含む原料を水に溶解させて得られるFe2+イオンを含む水溶液にpH調整剤であるアンモニア水を添加してpHを変化させると、Fe粒子を析出させることができる。この方法によれば、析出するFe粒子の平均粒径は析出条件に依存するが、おおむね13nmから100nm程度になる。 When the pH is changed by adding ammonia water, which is a pH adjuster, to an aqueous solution containing Fe 2+ ions obtained by dissolving a raw material containing divalent iron such as iron (II) chloride in water, Fe 3 O 4 particles can be deposited. According to this method, the average particle size of the precipitated Fe 3 O 4 particles depends on the precipitation conditions, but is approximately 13 nm to about 100 nm.

(磁石)
本実施形態に係る複合磁性材料は、所望の形状に成形してナノコンポジット磁石とすることができる。本実施形態に係るナノコンポジット磁石は、軟質磁性材料と硬質磁性材料とを含有し、質磁性材料が鉄または鉄合金を含み、軟質磁性材料の表面が結晶性の酸化鉄で被覆されている。本実施形態に係るナノコンポジット磁石は、焼結磁石であってもよいし、ボンド磁石であってもよい。
(magnet)
The composite magnetic material according to the present embodiment can be formed into a desired shape to be a nanocomposite magnet. The nanocomposite magnet according to this embodiment contains a soft magnetic material and a hard magnetic material, the quality magnetic material contains iron or an iron alloy, and the surface of the soft magnetic material is coated with crystalline iron oxide. The nanocomposite magnet according to the present embodiment may be a sintered magnet or a bonded magnet.

[1]焼結磁石
本実施形態に係る複合磁性材料を所望の形状に成形し、得られた成形体を不活性雰囲気下または真空下で熱処理することで、焼結磁石が得られる。また、プラズマ活性化焼結(PAS:Plasma Activated Sintering)、または放電プラズマ焼結(SPS:Spark Plasma Sintering)で成形体を焼結することによっても、焼結磁石を得ることができる。また、磁場中で成形することで、異方性焼結磁石が得られる。
[1] Sintered Magnet A sintered magnet can be obtained by forming the composite magnetic material according to the present embodiment into a desired shape, and heat treating the obtained molded body in an inert atmosphere or under vacuum. A sintered magnet can also be obtained by sintering a compact by plasma activated sintering (PAS) or spark plasma sintering (SPS). Also, by molding in a magnetic field, an anisotropic sintered magnet can be obtained.

[2]ボンド磁石
本実施形態に係る複合磁性材料と結合剤(バインダ)とを配合し、成形することによってボンド磁石が得られる。結合剤としては、熱可塑性樹脂、熱硬化性樹脂等の樹脂材料、またはAl、Pb、Sn、Zn、Mg等の低融点金属、もしくはこれらの低融点金属からなる合金等を用いることができる。複合磁性材料と結合剤との混合物を圧縮成形したり射出成形したりすることによって、複合磁性材料を所望の形状に成形できる。また、複合磁性材料を磁場中で成形することで、異方性ボンド磁石が得られる。
[2] Bonded Magnet A bonded magnet can be obtained by blending and molding the composite magnetic material according to the present embodiment and a binder (binder). As the binder, a resin material such as a thermoplastic resin or a thermosetting resin, or a low melting metal such as Al, Pb, Sn, Zn, or Mg, or an alloy composed of these low melting metals can be used. The composite magnetic material can be formed into a desired shape by compression molding or injection molding a mixture of the composite magnetic material and the binder. Also, by molding the composite magnetic material in a magnetic field, an anisotropic bonded magnet can be obtained.

(モータ)
本実施形態に係る複合磁性材料は、モータ中の回転子(ロータ)を形成する材料として好適に用いることができる。すなわち、本実施形態に係るモータは、磁石を有し、当該磁石が本実施形態に係る複合磁性材料を含有している。
(motor)
The composite magnetic material according to the present embodiment can be suitably used as a material for forming a rotor in a motor. That is, the motor according to the present embodiment has a magnet, and the magnet contains the composite magnetic material according to the present embodiment.

(第2の実施形態)
図2は、第2の実施形態に係る複合磁性材料の構造例を模式的に示す図である。本実施形態に係る複合磁性材料201は、図2に示すように、硬質磁性材料Hを含むコア部と、コア部の少なくとも一部を被覆する軟質磁性材料Sを含むシェル部と、を有するコアシェル構造を有する。さらに、複合磁性材料201は、軟質磁性材料Sの表面の少なくとも一部を被覆する結晶性の酸化鉄Oを有する。複合磁性材料201が有する硬質磁性材料H、軟質磁性材料S、および結晶性の酸化鉄O等、第1の実施形態と同様である説明については、適宜省略する。
Second Embodiment
FIG. 2: is a figure which shows typically the structural example of the composite magnetic material which concerns on 2nd Embodiment. As shown in FIG. 2, the composite magnetic material 201 according to the present embodiment has a core shell having a core portion including a hard magnetic material H and a shell portion including a soft magnetic material S covering at least a part of the core portion. It has a structure. Furthermore, the composite magnetic material 201 has crystalline iron oxide O covering at least a part of the surface of the soft magnetic material S. The description similar to that of the first embodiment, such as the hard magnetic material H, the soft magnetic material S, and the crystalline iron oxide O which the composite magnetic material 201 has, is appropriately omitted.

(構造)
本実施形態に係る複合磁性材料201は、硬質磁性材料Hを含むコア部と、コア部の少なくとも一部を被覆する軟質磁性材料Sを含むシェル部と、を有するコアシェル構造を有する。複合磁性材料201は、図2に示すように、複数のコアシェル粒子の集合体であってもよい。
(Construction)
The composite magnetic material 201 according to the present embodiment has a core-shell structure having a core portion including the hard magnetic material H and a shell portion including the soft magnetic material S covering at least a part of the core portion. The composite magnetic material 201 may be an aggregate of a plurality of core-shell particles, as shown in FIG.

軟質磁性材料Sと硬質磁性材料Hとは、交換結合作用によって磁気的に結合していることが好ましい。そのため、コア部とシェル部との間の界面から交換結合作用が働く距離(以下、「交換結合距離」と称する)をaとすると、シェル部の厚さtは、t≦aを満たすことが好ましい。すなわち、シェル部の厚さは交換結合距離以下であることが好ましい。   The soft magnetic material S and the hard magnetic material H are preferably magnetically coupled by the exchange coupling action. Therefore, assuming that the distance at which the exchange coupling action works from the interface between the core portion and the shell portion (hereinafter referred to as “exchange coupling distance”) is a, the thickness t of the shell portion satisfies t ≦ a. preferable. That is, the thickness of the shell portion is preferably equal to or less than the exchange coupling distance.

硬質磁性材料Hを含むコア部の平均粒径は、硬質磁性材料Hの保磁力が低下しない程度に大きいことが好ましい。また、硬質磁性材料Hがε−Feを含む場合、硬質磁性材料Hを含むコア部の平均粒径は、ε−Feがイプシロン構造を保つことができる程度に小さいことが好ましい。具体的には、硬質磁性材料Hを含むコア部の平均粒径は、5nm以上60nm以下であることが好ましく、10nm以上40nm以下であることがより好ましい。 The average particle diameter of the core portion containing the hard magnetic material H is preferably as large as the coercivity of the hard magnetic material H does not decrease. Also, if the hard magnetic material H comprises ε-Fe 2 O 3, an average particle diameter of the core part including the hard magnetic material H, it ε-Fe 2 O 3 be small enough to be able to keep the epsilon structure preferable. Specifically, the average particle diameter of the core portion containing the hard magnetic material H is preferably 5 nm or more and 60 nm or less, and more preferably 10 nm or more and 40 nm or less.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。なお、以下に使用される「%」は、特に示さない限りすべて質量基準である。   Hereinafter, the present invention will be described in more detail using examples, but the technical scope of the present invention is not limited to the following examples. In addition, unless otherwise indicated, "%" used below is a mass reference | standard.

[実施例1]
実施例1では、Feナノ粒子とε−Fe粒子とをそれぞれ作製し、これらを混合して熱処理することで、Feとε−Feとを含む複合磁性材料を作製した。
Example 1
In Example 1, Fe 3 O 4 nanoparticles and ε-Fe 2 O 3 particles are prepared, and these are mixed and heat-treated to obtain a composite containing Fe 3 O 4 and ε-Fe 2 O 3 A magnetic material was produced.

(Feナノ粒子の作製)
軟質磁性材料であるFeナノ粒子を、以下の手順で作製した。
(Preparation of Fe 3 O 4 nanoparticles)
Fe 3 O 4 nanoparticles, which are soft magnetic materials, were produced by the following procedure.

まず、硝酸鉄水和物(Fe(NO・9HO)を6g秤量し、純水75mLに溶解させて、硝酸鉄水溶液を得た。28%アンモニア水75mLを撹拌しながら、アンモニア水に対して硝酸鉄水溶液を添加して、水酸化鉄(Fe(OH))を析出させた。析出させた水酸化鉄をフィルターろ過により回収し、純水で十分に洗浄した後に真空乾燥して、水酸化鉄ナノ粒子を得た。得られた水酸化鉄ナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は8nmであった。 First, 6 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an iron nitrate aqueous solution. An aqueous iron nitrate solution was added to aqueous ammonia while stirring 75 mL of 28% aqueous ammonia to precipitate iron hydroxide (Fe (OH) 3 ). The precipitated iron hydroxide was recovered by filter filtration, thoroughly washed with pure water, and then vacuum dried to obtain iron hydroxide nanoparticles. As a result of measuring the particle size of the obtained iron hydroxide nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 8 nm.

次に、得られた水酸化鉄ナノ粒子をアルミナルツボに入れ、水酸化鉄ナノ粒子を還元雰囲気下で加熱処理することで、Feナノ粒子を得た。加熱処理の際の雰囲気ガスとして2%水素−98%窒素の混合ガスを用い、該混合ガスの流量は300sccmとした。加熱処理の際の温度は350℃とし、350℃で3時間保持した後、室温まで冷却した。得られたFeナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は18nmであった。また、得られたFeナノ粒子の結晶構造をX線回折(XRD)によって評価した結果、マグネタイト(Fe)の回折ピークが確認され、それ以外の結晶構造に由来する回折ピークは確認されなかった。 Next, the obtained iron hydroxide nanoparticles were put into an alumina crucible, and the iron hydroxide nanoparticles were heat-treated in a reducing atmosphere to obtain Fe 3 O 4 nanoparticles. A mixed gas of 2% hydrogen and 98% nitrogen was used as an atmosphere gas at the time of heat treatment, and the flow rate of the mixed gas was set to 300 sccm. The temperature during the heat treatment was 350 ° C., held at 350 ° C. for 3 hours, and cooled to room temperature. As a result of measuring the particle size of the obtained Fe 3 O 4 nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 18 nm. Moreover, as a result of evaluating the crystal structure of the obtained Fe 3 O 4 nanoparticles by X-ray diffraction (XRD), a diffraction peak of magnetite (Fe 3 O 4 ) is confirmed, and a diffraction peak derived from other crystal structures Was not confirmed.

(ε−Fe粒子の作製)
硬質磁性材料であるε−Fe粒子を、以下の手順で作製した。
(Preparation of ε-Fe 2 O 3 Particles)
The ε-Fe 2 O 3 particles as the hard magnetic material, was prepared by the following procedure.

(1)まず、2種類のミセル溶液(ミセル溶液(A)およびミセル溶液(B))を、以下のように調製した。   (1) First, two types of micelle solutions (micellar solution (A) and micelle solution (B)) were prepared as follows.

(1−1)反応容器に、純水30mL、n−オクタン92mL、および1−ブタノール19mLを入れて混合した。そこに、硝酸鉄水和物(Fe(NO・9HO)を6g添加し、撹拌しながら十分に溶解させた。次に、界面活性剤としての臭化セチルトリメチルアンモニウムを、(純水のモル数)/(界面活性剤のモル数)で表されるモル比が30となるような量で添加し、撹拌により溶解させた。これにより、ミセル溶液(A)を得た。 (1-1) In a reaction vessel, 30 mL of pure water, 92 mL of n-octane, and 19 mL of 1-butanol were added and mixed. Thereto, 6 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was added and sufficiently dissolved with stirring. Next, cetyltrimethylammonium bromide as a surfactant is added in an amount such that the molar ratio represented by (the number of moles of pure water) / (the number of moles of the surfactant) is 30, and stirring is performed. It was dissolved. Thus, a micelle solution (A) was obtained.

(1−2)別の反応容器に、28%アンモニア水10mLを純水20mLに混ぜて撹拌し、その後、さらにn−オクタン92mLと1−ブタノール19mLを加え、よく撹拌した。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、((純水+アンモニア水中の水分)のモル数)/(界面活性剤のモル数)で表されるモル比が30となるような量で添加し、撹拌により溶解させた。これにより、ミセル溶液(B)を得た。   (1-2) In another reaction vessel, 10 mL of 28% aqueous ammonia was mixed with 20 mL of pure water and stirred, and then 92 mL of n-octane and 19 mL of 1-butanol were added and stirred well. In the solution, cetyltrimethylammonium bromide as a surfactant is used, and the molar ratio represented by (number of moles of ((pure water + water in ammonia)) / (number of moles of surfactant) is 30. The amount was added and dissolved by stirring. Thus, a micelle solution (B) was obtained.

(2)ミセル溶液(A)をよく撹拌しながら、ミセル溶液(A)に対してミセル溶液(B)を滴下した。滴下が完了した後は、継続して30分間撹拌した。   (2) The micelle solution (B) was dropped to the micelle solution (A) while well stirring the micelle solution (A). After the addition was completed, stirring was continued for 30 minutes.

(3)得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン(TEOS)7.5mLを加え、そのまま1日の間撹拌を継続した。この工程で、混合液中の鉄含有粒子の表面にシリカ層を形成した。   (3) While stirring the obtained mixture, 7.5 mL of tetraethoxysilane (TEOS) was added to the mixture, and stirring was continued for 1 day. In this step, a silica layer was formed on the surface of the iron-containing particles in the mixed solution.

(4)得られた溶液を遠心分離機にセットして、4500rpmの回転数で30分間遠心分離処理し、沈殿物を回収した。回収された沈殿物をエタノールで複数回洗浄した。   (4) The obtained solution was set in a centrifuge and centrifuged for 30 minutes at a rotational speed of 4500 rpm to collect a precipitate. The collected precipitate was washed several times with ethanol.

(5)得られた沈殿物を乾燥させた後、大気雰囲気の焼成炉内に入れ、1150℃で4時間加熱処理を行った。   (5) After drying the obtained precipitate, it was put in a baking furnace of an air atmosphere and heat-treated at 1150 ° C. for 4 hours.

(6)加熱処理後の粉末を濃度2mol/LのNaOH水溶液中に分散させ、24時間撹拌して、粒子表面のシリカ層を除去した。その後、ろ過・水洗・乾燥して、ε−Fe粒子を得た。また、得られたε−Fe粒子の結晶構造をXRDによって評価した結果、ε−Feの回折ピークが確認され、それ以外の結晶構造に由来する回折ピークは確認されなかった。 (6) The heat-treated powder was dispersed in a 2 mol / L aqueous NaOH solution and stirred for 24 hours to remove the silica layer on the particle surface. Then, filtration, water washing and drying were carried out to obtain ε-Fe 2 O 3 particles. Moreover, as a result of evaluating the crystal structure of the obtained ε-Fe 2 O 3 particles by XRD, a diffraction peak of ε-Fe 2 O 3 was confirmed, and no diffraction peak derived from other crystal structures was confirmed. .

(複合磁性材料の作製)
上述の方法によってそれぞれ作製したFeナノ粒子とε−Fe粒子を、それぞれ0.31g、0.2g秤量し、遊星ボールミルを用いて窒素ガス雰囲気下で混合した。次に、この混合粉末を加圧成型機で加工し、成形体を得た。
(Preparation of composite magnetic material)
0.31 g and 0.2 g of Fe 3 O 4 nanoparticles and ε-Fe 2 O 3 particles respectively produced by the above-mentioned method were weighed and mixed under a nitrogen gas atmosphere using a planetary ball mill. Next, this mixed powder was processed by a pressure molding machine to obtain a molded body.

得られた成型体を電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、270℃で5時間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、270℃で3時間加熱処理して、複合磁性材料1を得た。 The resulting set to molded an electric furnace, hydrogen and a mixed gas of nitrogen (2% H 2 -98% N 2) atmosphere for 5 hours of heat treatment at 270 ° C.. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the hydrogen mixed gas (2% H 2 -98% N 2) atmosphere of nitrogen, and 3 hours of heat treatment at 270 ° C., the composite magnetic material 1 Obtained.

(複合磁性材料の構造分析)
得られた複合磁性材料1の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 1 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) can be confirmed, respectively, and they are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料1の断面をTEMで観察した結果、Feからなる海(連続相)中に、ε−Feからなる島が複数存在する海島構造が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material 1 by TEM, it is possible to confirm a sea-island structure in which a plurality of islands composed of ε-Fe 2 O 3 exist in the sea (continuous phase) composed of Fe 3 O 4 The

(複合磁性材料の磁気特性評価)
得られた複合磁性材料1について、磁気特性の経時安定性を評価した。複合磁性材料の作製直後に振動試料型磁力計を用いて残留磁束密度と保磁力を測定し、大気雰囲気下、室温で30日間保存した後、同様にしてもう一度残留磁束密度と保磁力を測定した。磁気特性の経時安定性は、30日経過後の残留磁束密度と保磁力の、作製直後の残留磁束密度と保磁力に対する比率(保持率)で評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
The temporal stability of the magnetic characteristics of the obtained composite magnetic material 1 was evaluated. Immediately after the preparation of the composite magnetic material, the residual magnetic flux density and the coercive force were measured using a vibrating sample magnetometer, and after storing for 30 days at room temperature in the air atmosphere, the residual magnetic flux density and the coercive force were measured again in the same manner. . The temporal stability of the magnetic characteristics was evaluated by the ratio (retention ratio) of the residual magnetic flux density and the coercive force after 30 days to the residual magnetic flux density and the coercive force immediately after the preparation. The results are shown in Table 1.

[実施例2]
実施例2では、ε−Fe粒子を還元雰囲気下で加熱処理することでε−Fe粒子の表面を還元し、ε−Fe粒子のコアと、該コアを覆うFeのシェルと、を有するコアシェル粒子状の複合磁性材料を作製した。
Example 2
In Example 2, reducing the surface of the ε-Fe 2 O 3 particles by heating the ε-Fe 2 O 3 particles in a reducing atmosphere, and the core of the ε-Fe 2 O 3 particles, covering the core A core-shell particulate composite magnetic material having an Fe 3 O 4 shell was produced.

(ε−Fe粒子の作製)
実施例1と同様の方法で、ε−Fe粒子を作製した。
(Preparation of ε-Fe 2 O 3 Particles)
Ε-Fe 2 O 3 particles were produced in the same manner as in Example 1.

(複合磁性材料の作製)
作製したε−Fe粒子を電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、250℃で30分間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、250℃で30分間加熱処理して、複合磁性材料2を得た。
(Preparation of composite magnetic material)
Set the fabricated ε-Fe 2 O 3 particles in an electric furnace, a gas mixture (2% H 2 -98% N 2) under an atmosphere of hydrogen and nitrogen, was heated at 250 ° C. 30 min. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the gas mixture (2% H 2 -98% N 2) under an atmosphere of hydrogen and nitrogen, and heated for 30 minutes at 250 ° C., a composite magnetic material 2 Obtained.

(複合磁性材料の構造分析)
得られた複合磁性材料2の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 2 by XRD, it is possible to confirm the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) respectively, which are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料2の断面をTEMで観察した結果、ε−Fe粒子の表層にマグネタイト(Fe)層が形成されていることが確認できた。 Moreover, as a result of observing the cross section of the particulate-form composite magnetic material 2 by TEM, it could be confirmed that a magnetite (Fe 3 O 4 ) layer was formed on the surface layer of ε-Fe 2 O 3 particles.

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料2の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
The temporal stability of the magnetic properties of the composite magnetic material 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例3]
実施例1の「Feナノ粒子の作製」の際の加熱処理の雰囲気ガスおよび「複合磁性材料の作製」の際の加熱処理の雰囲気ガスを2%水素−98%窒素の混合ガスから水素ガスに変えた以外は実施例1と同様にして、複合磁性材料3を作製した。
[Example 3]
The atmosphere gas for heat treatment at the time of "preparation of Fe 3 O 4 nanoparticles" in Example 1 and the atmosphere gas for heat treatment at the time of "preparation of composite magnetic material" are mixed gases of 2% hydrogen and 98% nitrogen. A composite magnetic material 3 was produced in the same manner as in Example 1 except that hydrogen gas was used.

(複合磁性材料の構造分析)
得られた複合磁性材料3の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 3 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) can be confirmed, respectively, and they are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料3の断面をTEMで観察した結果、Feからなる海(連続相)中に、ε−Feからなる島が複数存在する海島構造が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material 3 by TEM, it is possible to confirm a sea-island structure in which a plurality of islands consisting of ε-Fe 2 O 3 exist in the sea (continuous phase) consisting of Fe 3 O 4 The

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料3の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
The temporal stability of the magnetic properties of the composite magnetic material 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例4]
実施例3の「Feナノ粒子の作製」の際の加熱処理の温度および「複合磁性材料の作製」の際の加熱処理の温度を350℃から370℃に変えた以外は実施例3と同様にして、複合磁性材料4を作製した。
Example 4
Example 3 except that the temperature of the heat treatment at the time of “preparation of Fe 3 O 4 nanoparticles” of Example 3 and the temperature of the heat treatment at “preparation of the composite magnetic material” were changed from 350 ° C. to 370 ° C. A composite magnetic material 4 was produced in the same manner as in the above.

(複合磁性材料の構造分析)
得られた複合磁性材料4の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 4 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) can be confirmed respectively, and they are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料4の断面をTEMで観察した結果、Feからなる海(連続相)中に、ε−Feからなる島が複数存在する海島構造が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material 4 by TEM, it is possible to confirm a sea-island structure in which a plurality of islands consisting of ε-Fe 2 O 3 exist in the sea (continuous phase) consisting of Fe 3 O 4 The

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料4の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
The temporal stability of the magnetic properties of the composite magnetic material 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例5]
実施例5では、γ−Feナノ粒子とε−Fe粒子とをそれぞれ作製し、これらを混合して熱処理することで、γ−Feとε−Feとを含む複合磁性材料を作製した。
[Example 5]
In Example 5, γ-Fe 2 O 3 nanoparticles and ε-Fe 2 O 3 particles are prepared respectively, and these are mixed and heat-treated to obtain γ-Fe 2 O 3 and ε-Fe 2 O 3. And a composite magnetic material containing

(γ−Feナノ粒子の作製)
軟質磁性材料であるγ−Feナノ粒子を、以下の手順で作製した。
(Preparation of γ-Fe 2 O 3 nanoparticles)
The γ-Fe 2 O 3 nanoparticles of a soft magnetic material, was prepared by the following procedure.

まず、硝酸鉄水和物(Fe(NO・9HO)を6g秤量し、純水75mLに溶解させて、硝酸鉄水溶液を得た。28%アンモニア水75mLを撹拌しながら、アンモニア水に対して硝酸鉄水溶液を添加して、水酸化鉄(Fe(OH))を析出させた。析出させた水酸化鉄をフィルターろ過により回収し、純水で十分に洗浄した後に真空乾燥して、水酸化鉄ナノ粒子を得た。得られた水酸化鉄ナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は8nmであった。 First, 6 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an iron nitrate aqueous solution. An aqueous iron nitrate solution was added to aqueous ammonia while stirring 75 mL of 28% aqueous ammonia to precipitate iron hydroxide (Fe (OH) 3 ). The precipitated iron hydroxide was recovered by filter filtration, thoroughly washed with pure water, and then vacuum dried to obtain iron hydroxide nanoparticles. As a result of measuring the particle size of the obtained iron hydroxide nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 8 nm.

次に、得られた水酸化鉄ナノ粒子をアルミナルツボに入れ、水酸化鉄ナノ粒子を酸化雰囲気下で加熱処理することで、γ−Feナノ粒子を得た。加熱処理の際の雰囲気ガスとして空気を用い、空気の流量は300sccmとした。加熱処理の際の温度は350℃とし、350℃で3時間保持した後、室温まで冷却した。得られたγ−Feナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は20nmであった。また、得られたγ−Feナノ粒子の結晶構造をX線回折(XRD)によって評価した結果、γ−Feの回折ピークが確認され、それ以外の結晶構造に由来する回折ピークは確認されなかった。 Next, the obtained iron hydroxide nanoparticles were put into an alumina crucible, and the iron hydroxide nanoparticles were heat-treated in an oxidizing atmosphere to obtain γ-Fe 2 O 3 nanoparticles. Air was used as an atmosphere gas at the time of heat treatment, and the flow rate of air was 300 sccm. The temperature during the heat treatment was 350 ° C., held at 350 ° C. for 3 hours, and cooled to room temperature. As a result of measuring the particle size of the obtained γ-Fe 2 O 3 nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 20 nm. Moreover, as a result of evaluating the crystal structure of the obtained γ-Fe 2 O 3 nanoparticles by X-ray diffraction (XRD), a diffraction peak of γ-Fe 2 O 3 is confirmed, and diffraction derived from other crystal structures No peaks were identified.

(ε−Fe粒子の作製)
実施例1と同様の方法で、ε−Fe粒子を作製した。
(Preparation of ε-Fe 2 O 3 Particles)
Ε-Fe 2 O 3 particles were produced in the same manner as in Example 1.

(複合磁性材料の作製)
上述の方法によってそれぞれ作製したγ−Feナノ粒子とε−Fe粒子を、それぞれ0.32g、0.2g秤量し、遊星ボールミルを用いて窒素ガス雰囲気下で混合した。次に、この混合粉末を加圧成型機で加工し、成形体を得た。
(Preparation of composite magnetic material)
0.32 g and 0.2 g of γ-Fe 2 O 3 nanoparticles and ε-Fe 2 O 3 particles respectively produced by the above-described method were weighed, and mixed under a nitrogen gas atmosphere using a planetary ball mill. Next, this mixed powder was processed by a pressure molding machine to obtain a molded body.

得られた成型体を電気炉にセットし、空気雰囲気下、270℃で5時間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、空気雰囲気下、270℃で3時間加熱処理して、複合磁性材料5を得た。   The obtained molded body was set in an electric furnace, and was heat-treated at 270 ° C. for 5 hours in an air atmosphere. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. The powder obtained by the coarse pulverization was again set in an electric furnace, and heat treated at 270 ° C. for 3 hours in an air atmosphere to obtain a composite magnetic material 5.

(複合磁性材料の構造分析)
得られた複合磁性材料5の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとγ−Feの回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 5 by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of γ-Fe 2 O 3 can be confirmed respectively, and diffraction derived from other crystal structures is possible. No peaks were identified.

また、粒子状の複合磁性材料5の断面をTEMで観察した結果、ε−Feとγ−Feの複合構造が確認できた。 Observation of the cross section of the particulate composite magnetic material 5 in TEM, the composite structure of ε-Fe 2 O 3 γ- Fe 2 O 3 was confirmed.

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料5の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
In the same manner as in Example 1, the temporal stability of the magnetic properties of the composite magnetic material 5 was evaluated. The results are shown in Table 1.

[比較例1]
比較例1では、αFeナノ粒子とε−Fe粒子とをそれぞれ作製し、これらを混合して熱処理することで、α鉄(α−Fe)とε−Feとを含む複合磁性材料を作製した。
Comparative Example 1
In Comparative Example 1, α-Fe nanoparticles and ε-Fe 2 O 3 particles are prepared, and these are mixed and heat-treated to obtain a composite containing α-iron (α-Fe) and ε-Fe 2 O 3. A magnetic material was produced.

(α−Feナノ粒子の作製)
軟質磁性材料であるα−Feナノ粒子を、以下の手順で作製した。
(Preparation of α-Fe nanoparticles)
The soft magnetic material α-Fe nanoparticles were produced by the following procedure.

まず、実施例1と同様にして水酸化鉄ナノ粒子を得た。得られた水酸化鉄ナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は8nmであった。   First, iron hydroxide nanoparticles were obtained in the same manner as in Example 1. As a result of measuring the particle size of the obtained iron hydroxide nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 8 nm.

次に、得られた水酸化鉄ナノ粒子をアルミナルツボに入れ、水酸化鉄ナノ粒子を還元雰囲気下で加熱処理することで、α−Feナノ粒子を得た。加熱処理の際の雰囲気ガスとして2%水素−98%窒素の混合ガスを用い、該混合ガスの流量は300sccmとした。加熱処理の際の温度は500℃とし、500℃で5時間保持した後、室温まで冷却した。得られたα−Feナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は25nmであった。また、得られたα−Feナノ粒子の結晶構造をXRDによって評価した結果、α−Fe(アルファ鉄)の回折ピークが確認され、それ以外の結晶構造に由来する回折ピークは確認されなかった。   Next, the obtained iron hydroxide nanoparticles were put into an alumina crucible, and the iron hydroxide nanoparticles were heat-treated in a reducing atmosphere to obtain α-Fe nanoparticles. A mixed gas of 2% hydrogen and 98% nitrogen was used as an atmosphere gas at the time of heat treatment, and the flow rate of the mixed gas was set to 300 sccm. The temperature during the heat treatment was 500 ° C., held at 500 ° C. for 5 hours, and cooled to room temperature. As a result of measuring the particle size of the obtained α-Fe nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 25 nm. Further, as a result of evaluating the crystal structure of the obtained α-Fe nanoparticles by XRD, a diffraction peak of α-Fe (alpha iron) was confirmed, and a diffraction peak derived from other crystal structures was not confirmed.

(ε−Fe粒子の作製)
実施例1と同様の方法で、ε−Fe粒子を作製した。
(Preparation of ε-Fe 2 O 3 Particles)
Ε-Fe 2 O 3 particles were produced in the same manner as in Example 1.

(複合磁性材料の作製)
上述の方法によってそれぞれ作製したα−Feナノ粒子とε−Fe粒子を、それぞれ0.48g、0.2g秤量し、遊星ボールミルを用いて窒素ガス雰囲気下で混合した。次に、この混合粉末を加圧成型機で加工し、成形体を得た。
(Preparation of composite magnetic material)
0.48 g and 0.2 g of each of the α-Fe nanoparticles and the ε-Fe 2 O 3 particles produced by the above-mentioned method were weighed, respectively, and mixed under a nitrogen gas atmosphere using a planetary ball mill. Next, this mixed powder was processed by a pressure molding machine to obtain a molded body.

得られた成型体を電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、260℃で5時間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、260℃で3時間加熱処理して、複合磁性材料6を得た。 The resulting set to molded an electric furnace, hydrogen and a mixed gas of nitrogen (2% H 2 -98% N 2) atmosphere for 5 hours of heat treatment at 260 ° C.. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the hydrogen mixed gas (2% H 2 -98% N 2) atmosphere of nitrogen, and 3 hours of heat treatment at 260 ° C., the composite magnetic material 6 Obtained.

(複合磁性材料の構造分析)
得られた複合磁性材料6の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとα−Feの回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 6 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of α-Fe can be confirmed respectively, and the diffraction peaks derived from other crystal structures are confirmed It was not done.

また、粒子状の複合磁性材料6の断面をTEMで観察した結果、ε−FeとαFeの複合構造が確認できた。また、粒子表面に露出したα−Feの表層には、約3nmの厚さで非晶質の酸化鉄が形成されていた。 Observation of the cross section of the particulate composite magnetic material 6 in TEM, the composite structure of ε-Fe 2 O 3 and αFe was confirmed. In addition, in the surface layer of α-Fe exposed to the particle surface, amorphous iron oxide was formed with a thickness of about 3 nm.

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料6の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
In the same manner as in Example 1, the temporal stability of the magnetic properties of the composite magnetic material 6 was evaluated. The results are shown in Table 1.

[比較例2]
比較例2では、ε−Fe粒子を還元雰囲気下で加熱処理することでε−Fe粒子の表面を還元し、ε−Fe粒子のコアと、該コアを覆うα−Feのシェルと、を有するコアシェル粒子状の複合磁性材料を作製した。
Comparative Example 2
In Comparative Example 2, a core of ε-Fe 2 O 3 particles to reduce the surface of the ε-Fe 2 O 3 particles by a heat treatment in a reducing atmosphere, ε-Fe 2 O 3 particles, covering the core A core-shell particulate composite magnetic material having an α-Fe shell was produced.

(ε−Fe粒子の作製)
実施例1と同様の方法で、ε−Fe粒子を作製した。
(Preparation of ε-Fe 2 O 3 Particles)
Ε-Fe 2 O 3 particles were produced in the same manner as in Example 1.

(複合磁性材料の作製)
作製したε−Fe粒子を電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、500℃で30分間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、500℃で30分間加熱処理して、複合磁性材料7を得た。
(Preparation of composite magnetic material)
Set the fabricated ε-Fe 2 O 3 particles in an electric furnace, a gas mixture (2% H 2 -98% N 2) under an atmosphere of hydrogen and nitrogen, was heated at 500 ° C. 30 min. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the gas mixture (2% H 2 -98% N 2) under an atmosphere of hydrogen and nitrogen, and heated at 500 ° C. 30 minutes, a composite magnetic material 7 Obtained.

(複合磁性材料の構造分析)
得られた複合磁性材料7の結晶構造をXRDで評価した結果、ε−FeとαFeの回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 7 by XRD, diffraction peaks of ε-Fe 2 O 3 and αFe can be confirmed, respectively, and diffraction peaks derived from other crystal structures are not confirmed.

また、粒子状の複合磁性材料7の断面をTEMで観察した結果、ε−Fe粒子を覆うようにしてα−Fe層が形成されていることが確認できた。さらに、粒子表面に露出したαFeの表層には、約3nmの厚さで非晶質の酸化鉄が形成されていた。 Moreover, as a result of observing the cross section of the particulate-form composite magnetic material 7 by TEM, it could be confirmed that the α-Fe layer was formed so as to cover the ε-Fe 2 O 3 particles. Furthermore, in the surface layer of α-Fe exposed to the particle surface, amorphous iron oxide was formed with a thickness of about 3 nm.

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料7の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
The temporal stability of the magnetic properties of the composite magnetic material 7 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例6]
実施例6では、ε−Fe粒子を分散した分散液中でFe(OH)粒子を析出させて、これを熱処理することで、Feとε−Feとを含む複合磁性材料を作製した。
[Example 6]
In Example 6, Fe (OH) 3 particles are precipitated in a dispersion in which ε-Fe 2 O 3 particles are dispersed, and heat-treated to precipitate Fe 3 O 4 and ε-Fe 2 O 3 . A composite magnetic material was prepared.

(分散液の作製)
硝酸鉄水和物(Fe(NO・9HO)を6g秤量し、純水75mLに溶解させて、硝酸鉄水溶液を得た。次に、比較例1と同様にして得られたε−Fe粒子を0.36g秤量して硝酸鉄水溶液に添加し、超音波分散機で十分に分散させ、分散液を作製した。
(Preparation of dispersion)
6 g of iron nitrate hydrate (Fe (NO 3 ) 3. 9H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an aqueous iron nitrate solution. Next, 0.36 g of ε-Fe 2 O 3 particles obtained in the same manner as in Comparative Example 1 was weighed, added to an aqueous iron nitrate solution, and sufficiently dispersed by an ultrasonic disperser to prepare a dispersion.

(前駆体粒子の析出)
作製した分散液を撹拌しながら28%アンモニア水75mLを添加して、Feの前駆体粒子となるFe(OH)粒子を析出させ、Fe(OH)粒子とε−Fe粒子とを含む複合粒子を形成した。得られた複合粒子中のFe(OH)粒子の粒径をSEMで観察したところ、10nm〜20nmであった。
(Precipitate of precursor particles)
While stirring the prepared dispersion, 75 mL of 28% ammonia water is added to precipitate Fe (OH) 3 particles as precursor particles of Fe 3 O 4 , and Fe (OH) 3 particles and ε-Fe 2 O A composite particle containing three particles was formed. It was 10 nm-20 nm when the particle size of Fe (OH) 3 particle | grains in the obtained composite particle was observed by SEM.

(複合磁性材料の作製)
Fe(OH)粒子を還元してFeに変換し、複合磁性材料を作製した。Fe(OH)粒子とε−Fe粒子の複合粒子の粉末1gを加圧成型機で加工し、成形体を作製した。
(Preparation of composite magnetic material)
The Fe (OH) 3 particles were reduced and converted to Fe 3 O 4 to prepare a composite magnetic material. 1 g of powder of composite particles of Fe (OH) 3 particles and ε-Fe 2 O 3 particles was processed by a pressure molding machine to produce a molded body.

得られた成形体を電気炉にセットし、水素と窒素の混合ガス(2%H−98%N)雰囲気下、350℃で5時間加熱処理した。なお、混合ガスの流量は300sccmとした。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、空気雰囲気下、270℃で3時間加熱処理して、複合磁性材料8を得た。 The resulting set in the molded body in an electric furnace, hydrogen and a mixed gas of nitrogen (2% H 2 -98% N 2) atmosphere for 5 hours of heat treatment at 350 ° C.. The flow rate of the mixed gas was 300 sccm. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. The powder obtained by the coarse pulverization was again set in an electric furnace, and heat treated at 270 ° C. for 3 hours in an air atmosphere to obtain a composite magnetic material 8.

(複合磁性材料の構造分析)
得られた複合磁性材料8の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 8 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) can be confirmed, respectively, and they are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料8の断面をTEMで観察した結果、Feからなる海(連続相)中に、ε−Feからなる島が複数存在する海島構造が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material 8 by TEM, it is possible to confirm a sea-island structure in which a plurality of islands consisting of ε-Fe 2 O 3 exist in the sea (continuous phase) consisting of Fe 3 O 4 The

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料8の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
In the same manner as in Example 1, the temporal stability of the magnetic properties of the composite magnetic material 8 was evaluated. The results are shown in Table 1.

[実施例7]
実施例7では、ε−Fe粒子を分散した分散液中でFe粒子を析出させて、Feとε−Feとを含む複合磁性材料を作製した。
[Example 7]
In Example 7, Fe 3 O 4 particles were precipitated in a dispersion liquid in which ε-Fe 2 O 3 particles are dispersed, to prepare a composite magnetic material containing Fe 3 O 4 and ε-Fe 2 O 3 .

(分散液の作製)
塩化鉄水和物(FeCl・4HO)を3g秤量し、純水75mLに溶解させて、塩化鉄水溶液を得た。次に、比較例1と同様にして得られたε−Fe粒子を0.36g秤量して塩化鉄水溶液に添加し、超音波分散機で十分に分散させ、分散液を作製した。
(Preparation of dispersion)
3 g of iron chloride hydrate (FeCl 2 · 4 H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an iron chloride aqueous solution. Next, 0.36 g of ε-Fe 2 O 3 particles obtained in the same manner as in Comparative Example 1 was weighed, added to an aqueous iron chloride solution, and sufficiently dispersed by an ultrasonic disperser to prepare a dispersion.

(前駆体粒子の析出)
作製した分散液を撹拌しながら28%アンモニア水75mLを添加して、Fe粒子を析出させ、Fe粒子とε−Fe粒子との複合粒子を形成した。得られた複合粒子中のFe粒子の粒径をSEMで観察したところ、50nm〜80nmであった。
(Precipitate of precursor particles)
The prepared dispersion was added with stirring 28% aqueous ammonia 75 mL, to precipitate the Fe 3 O 4 particles to form composite particles with the Fe 3 O 4 particles and ε-Fe 2 O 3 particles. The particle size of the Fe 3 O 4 particles obtained composite particles were observed by SEM, it was 50Nm~80nm.

(複合磁性材料の作製)
得られた複合粒子の粉末を加熱処理し、複合磁性材料を作製した。Fe粒子とε−Fe粒子の複合粒子の粉末1gを加圧成型機で加工し、成形体を作製した。
(Preparation of composite magnetic material)
The powder of the obtained composite particles was heat-treated to prepare a composite magnetic material. 1 g of powder of composite particles of Fe 3 O 4 particles and ε-Fe 2 O 3 particles was processed by a pressure molding machine to produce a molded body.

得られた成形体を電気炉にセットし、窒素ガス雰囲気下、410℃で5時間加熱処理した。なお、窒素ガスの流量は300sccmとした。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、空気雰囲気下、270℃で3時間加熱処理して、複合磁性材料9を得た。   The obtained molded body was set in an electric furnace, and was heat-treated at 410 ° C. for 5 hours in a nitrogen gas atmosphere. The flow rate of nitrogen gas was 300 sccm. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. The powder obtained by the coarse crushing was again set in an electric furnace, and heat treated at 270 ° C. for 3 hours in an air atmosphere to obtain a composite magnetic material 9.

(複合磁性材料の構造分析)
得られた複合磁性材料9の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 9 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) can be confirmed, respectively, and they are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料9の断面をTEMで観察した結果、Feからなる海(連続相)中に、ε−Feからなる島が複数存在する海島構造が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material 9 by TEM, it is possible to confirm a sea-island structure in which a plurality of islands consisting of ε-Fe 2 O 3 exist in the sea (continuous phase) consisting of Fe 3 O 4 The

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料9の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
In the same manner as in Example 1, the temporal stability of the magnetic properties of the composite magnetic material 9 was evaluated. The results are shown in Table 1.

[実施例8]
実施例8では、ε−Fe粒子を分散した分散液中でFe粒子を析出させて、Feとε−Feとを含む複合磁性材料を作製した。実施例8では、実施例7よりも析出させるFe粒子の粒径を小さくして、複合磁性材料を作製した。
[Example 8]
In Example 8, Fe 3 O 4 particles were precipitated in a dispersion liquid in which ε-Fe 2 O 3 particles are dispersed, to prepare a composite magnetic material containing Fe 3 O 4 and ε-Fe 2 O 3 . In Example 8, the particle size of Fe 3 O 4 particles to be deposited was made smaller than in Example 7, to prepare a composite magnetic material.

(分散液の作製)
塩化鉄水和物(FeCl・4HO)を1.5g秤量し、純水150mLに溶解させて、塩化鉄水溶液を得た。次に、比較例1と同様にして得られたε−Fe粒子を0.18g秤量して塩化鉄水溶液に添加し、超音波分散機で十分に分散させ、分散液を作製した。
(Preparation of dispersion)
1.5 g of iron chloride hydrate (FeCl 2 · 4 H 2 O) was weighed and dissolved in 150 mL of pure water to obtain an iron chloride aqueous solution. Next, 0.18 g of ε-Fe 2 O 3 particles obtained in the same manner as in Comparative Example 1 was weighed, added to an aqueous iron chloride solution, and sufficiently dispersed by an ultrasonic disperser to prepare a dispersion.

(前駆体粒子の析出)
作製した分散液を撹拌しながら28%アンモニア水75mLを添加して、Fe粒子を析出させ、Fe粒子とε−Fe粒子との複合粒子を形成した。得られた複合粒子中のFe粒子の粒径をSEMで観察したところ、10nm〜30nmであった。
(Precipitate of precursor particles)
The prepared dispersion was added with stirring 28% aqueous ammonia 75 mL, to precipitate the Fe 3 O 4 particles to form composite particles with the Fe 3 O 4 particles and ε-Fe 2 O 3 particles. The particle size of the Fe 3 O 4 particles obtained composite particles were observed by SEM, it was 10 nm to 30 nm.

(複合磁性材料の作製)
得られた複合粒子の粉末を加熱処理し、複合磁性材料を作製した。Fe粒子とε−Fe粒子の複合粒子の粉末1gを加圧成型機で加工し、成形体を作製した。
(Preparation of composite magnetic material)
The powder of the obtained composite particles was heat-treated to prepare a composite magnetic material. 1 g of powder of composite particles of Fe 3 O 4 particles and ε-Fe 2 O 3 particles was processed by a pressure molding machine to produce a molded body.

得られた成形体を電気炉にセットし、窒素ガス雰囲気下、400℃で5時間加熱処理した。なお、窒素ガスの流量は300sccmとした。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、空気雰囲気下、270℃で3時間加熱処理して、複合磁性材料10を得た。   The obtained molded body was set in an electric furnace, and was heat treated at 400 ° C. for 5 hours in a nitrogen gas atmosphere. The flow rate of nitrogen gas was 300 sccm. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. The powder obtained by the coarse grinding was again set in an electric furnace, and heat treated at 270 ° C. for 3 hours in an air atmosphere to obtain a composite magnetic material 10.

(複合磁性材料の構造分析)
得られた複合磁性材料10の結晶構造をXRDによって評価した結果、ε−Feの回折ピークとマグネタイト(Fe)の回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of evaluating the crystal structure of the obtained composite magnetic material 10 by XRD, the diffraction peak of ε-Fe 2 O 3 and the diffraction peak of magnetite (Fe 3 O 4 ) can be confirmed respectively, and they are derived from other crystal structures. No diffraction peak was confirmed.

また、粒子状の複合磁性材料10の断面をTEMで観察した結果、Feからなる海(連続相)中に、ε−Feからなる島が複数存在する海島構造が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material 10 by TEM, it is possible to confirm a sea-island structure in which a plurality of islands consisting of ε-Fe 2 O 3 exist in the sea (continuous phase) consisting of Fe 3 O 4 The

(複合磁性材料の磁気特性評価)
実施例1と同様にして、複合磁性材料10の磁気特性の経時安定性を評価した。結果を表1に示す。
(Magnetic characterization of composite magnetic materials)
The temporal stability of the magnetic properties of the composite magnetic material 10 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 2018182301
Figure 2018182301

表1に示すように、実施例1〜8の複合磁性材料はいずれも、残留磁束密度、保磁力の保持率が99%以上と高く、経時安定性が高かった。一方、比較例1〜2の複合磁性材料はいずれも、残留磁束密度、保磁力の保持率が80%程度と低く、経時安定性が低かった。   As shown in Table 1, in all of the composite magnetic materials of Examples 1 to 8, the retention rate of residual magnetic flux density and coercivity was as high as 99% or more, and the temporal stability was high. On the other hand, in all of the composite magnetic materials of Comparative Examples 1 and 2, the retention ratio of residual magnetic flux density and coercivity was as low as about 80%, and the temporal stability was low.

S 軟質磁性材料
H 硬質磁性材料
S Soft magnetic material H Hard magnetic material

Claims (9)

軟質磁性材料と硬質磁性材料とを含有する複合磁性材料であって、
前記軟質磁性材料および前記硬質磁性材料が鉄元素をそれぞれ含み、
前記軟質磁性材料に含まれる鉄元素の90原子%以上100原子%以下が第1の酸化物または第1の複合酸化物を形成しており、
前記硬質磁性材料に含まれる鉄元素の90原子%以上100原子%以下が第2の酸化物または第2の複合酸化物を形成していることを特徴とする複合磁性材料。
A composite magnetic material comprising a soft magnetic material and a hard magnetic material,
The soft magnetic material and the hard magnetic material each contain an iron element,
90 atomic% or more and 100 atomic% or less of the iron element contained in the soft magnetic material forms a first oxide or a first composite oxide,
A composite magnetic material, wherein 90 atomic% or more and 100 atomic% or less of iron element contained in the hard magnetic material forms a second oxide or a second complex oxide.
前記第2の酸化物または前記第2の複合酸化物が、ε−Feまたはε−FeのFeの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含むことを特徴とする請求項1に記載の複合磁性材料。 In the second oxide or the second composite oxide, at least a portion of Fe of ε-Fe 2 O 3 or ε-Fe 2 O 3 is selected from the group consisting of Ga, Al, Ni, and Co. The composite magnetic material according to claim 1, comprising a composite oxide substituted by one. 前記第1の酸化物または前記第1の複合酸化物が、FeまたはFeのFeの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含むことを特徴とする請求項1または請求項2に記載の複合磁性材料。 In the first oxide or the first composite oxide, a part of Fe in Fe 3 O 4 or Fe 3 O 4 is substituted with at least one selected from the group consisting of Ga, Al, Ni, and Co The composite magnetic material according to claim 1, wherein the composite magnetic material comprises a composite oxide as described above. 前記第1の酸化物または前記第1の複合酸化物が、γ−Feまたはγ−FeのFeの一部がGa、Al、Ni、Coからなる群から選択される少なくとも1つで置換された複合酸化物を含むことを特徴とする請求項1乃至請求項3のいずれか一項に記載の複合磁性材料。 In the first oxide or the first composite oxide, at least a portion of Fe of γ-Fe 2 O 3 or γ-Fe 2 O 3 is selected from the group consisting of Ga, Al, Ni, and Co. The composite magnetic material according to any one of claims 1 to 3, comprising a composite oxide substituted by one. 前記軟質磁性材料を含む海部と、前記硬質磁性材料を含む島部と、を有する海島構造を有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の複合磁性材料。   The composite magnetic material according to any one of claims 1 to 4, having a sea-island structure having a sea part containing the soft magnetic material and an island part containing the hard magnetic material. 前記硬質磁性材料を含むコア部と、前記コア部の少なくとも一部を被覆する前記軟質磁性材料を有するシェル部と、を有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の複合磁性材料。   The core part containing the said hard magnetic material and the shell part which has the said soft magnetic material which coat | covers at least one part of the said core part in any one of the Claims 1 thru | or 4 characterized by the above-mentioned. Composite magnetic material as described. 前記軟質磁性材料と前記硬質磁性材料とが磁気的に結合していることを特徴とする請求項1乃至請求項6のいずれか一項に記載の複合磁性材料。   The composite magnetic material according to any one of claims 1 to 6, wherein the soft magnetic material and the hard magnetic material are magnetically coupled. Nd元素の含有量が3質量%以下であることを特徴とする請求項1乃至請求項7のいずれか一項に記載の複合磁性材料。   The composite magnetic material according to any one of claims 1 to 7, wherein the content of the Nd element is 3% by mass or less. 磁石を有するモータであって、
前記磁石が請求項1乃至請求項8のいずれか一項に記載の複合磁性材料を含有することを特徴とするモータ。
A motor having a magnet,
A motor, wherein the magnet contains the composite magnetic material according to any one of claims 1 to 8.
JP2018023553A 2017-04-12 2018-02-13 Composite magnetic material and motor Pending JP2018182301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/946,583 US20180301255A1 (en) 2017-04-12 2018-04-05 Composite magnetic material and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017079190 2017-04-12
JP2017079190 2017-04-12

Publications (1)

Publication Number Publication Date
JP2018182301A true JP2018182301A (en) 2018-11-15

Family

ID=64276289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023553A Pending JP2018182301A (en) 2017-04-12 2018-02-13 Composite magnetic material and motor

Country Status (1)

Country Link
JP (1) JP2018182301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032031A1 (en) * 2018-08-10 2020-02-13 ソニー株式会社 Magnetic powder and method for manufacturing same, and magnetic recording medium
WO2020137741A1 (en) * 2018-12-27 2020-07-02 キヤノン株式会社 Magnet and magnet production method
WO2021149717A1 (en) * 2020-01-21 2021-07-29 国立研究開発法人産業技術総合研究所 Composite magnetic powder and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032031A1 (en) * 2018-08-10 2020-02-13 ソニー株式会社 Magnetic powder and method for manufacturing same, and magnetic recording medium
JPWO2020032031A1 (en) * 2018-08-10 2021-08-26 ソニーグループ株式会社 Magnetic powder and its manufacturing method, and magnetic recording medium
JP7351301B2 (en) 2018-08-10 2023-09-27 ソニーグループ株式会社 Method for manufacturing magnetic powder and magnetic recording medium
WO2020137741A1 (en) * 2018-12-27 2020-07-02 キヤノン株式会社 Magnet and magnet production method
JP2020107732A (en) * 2018-12-27 2020-07-09 キヤノン株式会社 Magnet and method of manufacturing the same
CN113168962A (en) * 2018-12-27 2021-07-23 佳能株式会社 Magnet and method for manufacturing magnet
JP7278768B2 (en) 2018-12-27 2023-05-22 キヤノン株式会社 Magnet and method for manufacturing magnet
WO2021149717A1 (en) * 2020-01-21 2021-07-29 国立研究開発法人産業技術総合研究所 Composite magnetic powder and method for producing same

Similar Documents

Publication Publication Date Title
JP6676493B2 (en) Method for producing iron-based oxide magnetic particle powder
JP7033071B2 (en) Epsilon type iron oxide magnetic particles and their manufacturing method, magnetic powder composed of magnetic particles, magnetic paint and magnetic recording medium
JP5708454B2 (en) Alcohol solution and sintered magnet
US10978228B2 (en) Magnetic material and manufacturing method therefor
JP5347146B2 (en) Magnetic material, magnet, and method of manufacturing magnetic material
JP2016130208A (en) Ferrous oxide magnetic particle powder, method for manufacturing the same, coating material, and magnetic recording medium
JP5906214B2 (en) Method for producing magnetic particles for magnetic recording
JP2008100871A (en) METHOD OF PRODUCING epsi-IRON OXIDE
JP6427062B2 (en) Core-shell-core nanoparticle system, method of preparing core-shell-core FeCo / SiO2 / MnBi nanoparticle system, and core-shell-core nanoaggregates of FeCo / SiO2 nanoparticles with MnBi nanoparticles
KR20130106825A (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet
WO2016047559A1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
EP3690071A1 (en) Magnetic material and method for producing same
JP2018182301A (en) Composite magnetic material and motor
WO2012101752A1 (en) Magnetic material, magnet and method of producing magnetic material
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
JP6427061B2 (en) Method of preparing core-shell-shell FeCo / SiO2 / MnBi nanoparticles, and core-shell-shell FeCo / SiO2 / MnBi nanoparticles
US20200243231A1 (en) Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material
JP2004319923A (en) Iron nitride-based magnetic powder
US20180301255A1 (en) Composite magnetic material and motor
JP3647995B2 (en) Powder for permanent magnet, method for producing the same and anisotropic permanent magnet using the powder
JP2018182302A (en) Composite magnetic material, motor, and method for manufacturing composite magnetic material
US9431159B2 (en) Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
WO2018193900A1 (en) Composite magnetic material, motor and method for producing composite magnetic material
WO2020137741A1 (en) Magnet and magnet production method
RO135885A0 (en) Core-shell ce(feco)b/feco nanoparticles and process for preparing the same