Nothing Special   »   [go: up one dir, main page]

JP2018181999A - Method for manufacturing light-emitting diode chip and light-emitting diode chip - Google Patents

Method for manufacturing light-emitting diode chip and light-emitting diode chip Download PDF

Info

Publication number
JP2018181999A
JP2018181999A JP2017077584A JP2017077584A JP2018181999A JP 2018181999 A JP2018181999 A JP 2018181999A JP 2017077584 A JP2017077584 A JP 2017077584A JP 2017077584 A JP2017077584 A JP 2017077584A JP 2018181999 A JP2018181999 A JP 2018181999A
Authority
JP
Japan
Prior art keywords
transparent substrate
wafer
back surface
emitting diode
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017077584A
Other languages
Japanese (ja)
Inventor
卓 岡村
Taku Okamura
卓 岡村
宏 北村
Hiroshi Kitamura
宏 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2017077584A priority Critical patent/JP2018181999A/en
Publication of JP2018181999A publication Critical patent/JP2018181999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Led Devices (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting diode chip capable of obtaining sufficient luminance and a method for manufacturing the same.SOLUTION: A method for manufacturing a light-emitting diode chip comprises: a wafer rear surface processing step of forming a plurality of recesses or a plurality of grooves corresponding to each LED circuit on a rear surface of a wafer which includes a laminate layer in which a plurality of semiconductor layers containing a light-emitting layer are formed on a transparent substrate and in which an LED circuit 19 is formed in each of the regions partitioned by a plurality of division schedule lines mutually crossing a surface; a transparent substrate processing step of forming a plurality of recesses corresponding to each LED circuit on a surface or a rear surface of a first transparent substrate or a second transparent substrate in which a plurality of through holes are formed across the whole surface; a transparent substrate sticking step of forming an integrated wafer by sticking a surface of the first transparent substrate to a rear surface of the wafer and a surface of the second transparent substrate to a rear surface of the first transparent substrate; and a dividing step of dividing the integrated wafer into individual light-emitting diode chips 31 by cutting the wafer together with the first transparent substrate and the second transparent substrate along the division schedule lines.SELECTED DRAWING: Figure 13

Description

本発明は、発光ダイオードチップの製造方法及び発光ダイオードチップに関する。   The present invention relates to a method of manufacturing a light emitting diode chip and a light emitting diode chip.

サファイア基板、GaN基板、SiC基板等の結晶成長用基板の表面にn型半導体層、発光層、p型半導体層が複数積層された積層体層が形成され、この積層体層に交差する複数の分割予定ラインによって区画された領域に複数のLED(Light Emitting Diode)等の発光デバイスが形成されたウエーハは、分割予定ラインに沿って切断されて個々の発光デバイスチップに分割され、分割された発光デバイスチップは携帯電話、パソコン、照明機器等の各種電気機器に広く利用されている。   A laminate layer in which a plurality of n-type semiconductor layers, light emitting layers, and p-type semiconductor layers are stacked is formed on the surface of a crystal growth substrate such as a sapphire substrate, a GaN substrate, or a SiC substrate. A wafer on which a plurality of light emitting devices such as light emitting diodes (LEDs) are formed in a region partitioned by a planned dividing line is cut along the planned dividing line and divided into individual light emitting device chips, and the divided light emission Device chips are widely used in various electric devices such as mobile phones, personal computers, and lighting devices.

発光デバイスチップの発光層から出射される光は等方性を有しているため、結晶成長用基板の内部にも照射されて基板の裏面及び側面からも光が出射する。然し、基板の内部に照射された光のうち空気層との界面での入射角が臨界角以上の光は界面で全反射されて基板内部に閉じ込められ、基板から外部に出射されることがないから発光デバイスチップの輝度の低下を招くという問題がある。   Since the light emitted from the light emitting layer of the light emitting device chip is isotropic, it is also irradiated to the inside of the crystal growth substrate and the light is emitted also from the back surface and the side surface of the substrate. However, among the light emitted to the inside of the substrate, light having an incident angle at the interface with the air layer of not less than the critical angle is totally reflected at the interface and confined inside the substrate and is not emitted from the substrate to the outside As a result, there is a problem that the luminance of the light emitting device chip is reduced.

この問題を解決するために、発光層から出射された光が基板の内部に閉じ込められるのを抑制するために、基板の裏面に透明部材を貼着して輝度の向上を図るようにした発光ダイオード(LED)が特開2014−175354号公報に記載されている。   In order to solve this problem, in order to suppress the light emitted from the light emitting layer from being trapped inside the substrate, a light emitting diode in which a transparent member is stuck on the back surface of the substrate to improve the brightness (LED) is described in Unexamined-Japanese-Patent No. 2014-175354.

特開2014−175354号公報JP, 2014-175354, A

然し、特許文献1に開示された発光ダイオードでは、基板の裏面に透明部材を貼着することにより輝度が僅かに向上したものの十分な輝度が得られないという問題がある。   However, the light emitting diode disclosed in Patent Document 1 has a problem that although the luminance is slightly improved by sticking the transparent member on the back surface of the substrate, sufficient luminance can not be obtained.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、十分な輝度が得られる発光ダイオードチップの製造方法及び発光ダイオードチップを提供することである。   The present invention has been made in view of these points, and an object of the present invention is to provide a method of manufacturing a light emitting diode chip and a light emitting diode chip capable of obtaining sufficient brightness.

請求項1記載の発明によると、発光ダイオードチップの製造方法であって、結晶成長用の透明基板上に発光層を含む複数の半導体層が形成された積層体層を有し、該積層体層の表面に互いに交差する複数の分割予定ラインによって区画された各領域にそれぞれLED回路が形成されたウエーハを準備するウエーハ準備工程と、該ウエーハの裏面に各LED回路に対応して複数の凹部又は溝を形成するウエーハ裏面加工工程と、全面に渡り複数の貫通孔が形成された第1の透明基板又は第2の透明基板の少なくともどちらか一方の表面又は裏面に各LED回路に対応して複数の窪みを形成する透明基板加工工程と、該ウエーハ裏面加工工程及び該透明基板加工工程を実施した後、ウエーハの裏面に該第1の透明基板の表面を貼着すると共に該第1の透明基板の裏面に該第2の透明基板の表面を貼着して一体化ウエーハを形成する透明基板貼着工程と、該透明基板貼着工程を実施した後、該ウエーハを該分割予定ラインに沿って該第1及び第2の透明基板と共に切断して該一体化ウエーハを個々の発光ダイオードチップに分割する分割工程と、を備えたことを特徴とする発光ダイオードチップの製造方法が提供される。   According to the invention of claim 1, there is provided a method of manufacturing a light emitting diode chip, comprising: a laminate layer in which a plurality of semiconductor layers including a light emitting layer are formed on a transparent substrate for crystal growth; A wafer preparing step of preparing a wafer in which an LED circuit is formed in each area partitioned by a plurality of planned dividing lines crossing each other on the front surface of the wafer, and a plurality of recesses or A wafer back surface processing step of forming a groove, and a plurality of first transparent substrates or second transparent substrates having a plurality of through holes formed over the entire surface corresponding to each LED circuit on at least one of the front and back surfaces. After performing the transparent substrate processing step of forming the hollow of the wafer, the wafer back surface processing step and the transparent substrate processing step, the surface of the first transparent substrate is attached to the back surface of the wafer and Attaching the surface of the second transparent substrate to the back surface of the transparent substrate to form an integrated wafer, and after performing the transparent substrate attaching step, the wafer is subjected to the planned dividing line And c) dividing the integrated wafer into individual light emitting diode chips by cutting together with the first and second transparent substrates. Ru.

好ましくは、該ウエーハ裏面加工工程において、凹部又は溝は切削ブレード、エッチング、サンドブラスト、レーザーの何れかで形成される。   Preferably, in the wafer backside processing step, the recess or groove is formed by any of a cutting blade, etching, sand blast, and laser.

好ましくは、透明基板加工工程において形成される窪みの形状は、三角形状、四角形状、又は円形状の何れかである。好ましくは、透明基板加工工程において形成される窪みはエッチング、サンドブラスト、レーザーの何れかで形成される。   Preferably, the shape of the depression formed in the transparent substrate processing step is any of triangular, square or circular. Preferably, the depressions formed in the transparent substrate processing step are formed by any of etching, sand blast, and laser.

好ましくは、該第1及び第2の透明基板は、透明セラミックス、光学ガラス、サファイア、透明樹脂の何れかで形成され、該透明基板貼着工程において第1の透明基板は透明接着剤でウエーハに貼着され、第2の透明基板は透明接着剤で第1の透明基板に接着される。   Preferably, the first and second transparent substrates are formed of any of transparent ceramics, optical glass, sapphire, and transparent resin, and in the transparent substrate bonding step, the first transparent substrate is a wafer with a transparent adhesive. Bonded, the second transparent substrate is bonded to the first transparent substrate with a transparent adhesive.

請求項6記載の発明によると、発光ダイオードチップであって、表面にLED回路が形成され裏面に凹部又は溝が形成された発光ダイオードと、該発光ダイオードの裏面に貼着された複数の貫通孔を有する第1の透明部材と、該第1の透明部材の裏面に貼着された第2の透明部材と、を備え、該第1の透明部材又は該第2の透明部材の少なくともどちらか一方の表面又は裏面に窪みが形成されている発光ダイオードチップが提供される。   According to the invention of claim 6, the light emitting diode chip is a light emitting diode chip having an LED circuit formed on the surface and a recess or groove formed on the back surface, and a plurality of through holes attached to the back surface of the light emitting diode. And at least one of the first transparent member and the second transparent member, and a second transparent member attached to the back surface of the first transparent member. A light emitting diode chip is provided in which a recess is formed on the front or back surface of

本発明の発光ダイオードチップは、発光ダイオードの裏面に凹部又は溝が形成され、複数の貫通孔を有する第1の透明部材又は第2の透明部材の少なくともどちらか一方の表面又は裏面に窪みが形成されているので、第1の透明部材又は第2の透明部材の表面積が増大することに加え、少なくとも2層の透明部材と窪みとによって光が複雑に屈折して第1及び第2の透明部材内に閉じ込められる光が減少し、第1及び第2の透明部材から出射される光の量が増大して発光ダイオードチップの輝度が向上する。   In the light emitting diode chip of the present invention, a recess or a groove is formed on the back surface of the light emitting diode, and a recess is formed on the surface or the back surface of at least one of the first transparent member or the second transparent member having a plurality of through holes. In addition to the increase in the surface area of the first transparent member or the second transparent member, the light is complicatedly refracted by the at least two layers of the transparent member and the depression to form the first and second transparent members. The light confined inside is reduced, and the amount of light emitted from the first and second transparent members is increased to improve the brightness of the light emitting diode chip.

光デバイスウエーハの表面側斜視図である。It is a surface side perspective view of an optical device wafer. 図2(A)は切削ブレードによるウエーハの裏面加工工程を示す斜視図、図2(B)〜図2(D)は形成された溝形状を示す断面図である。FIG. 2 (A) is a perspective view showing a back surface processing step of a wafer by a cutting blade, and FIGS. 2 (B) to 2 (D) are cross-sectional views showing the formed groove shape. 図3(A)はウエーハの裏面に形成された第1の方向に伸長する複数の溝を有するウエーハの裏面側斜視図、図3(B)はウエーハの裏面に形成された第1の方向及び第1の方向に直交する第2の方向に伸長する複数の溝が形成されたウエーハの裏面側斜視図である。FIG. 3A is a perspective view of the back side of the wafer having a plurality of grooves extending in the first direction formed on the back side of the wafer, and FIG. 3B is a first direction formed on the back side of the wafer and It is a back surface side perspective view of the wafer in which the some groove | channel extended in the 2nd direction orthogonal to a 1st direction was formed. 図4(A)はウエーハの裏面にマスクを貼着する様子を示す斜視図、図4(B)はウエーハの裏面に複数の穴を有するマスクが貼着された状態の斜視図、図4(C)〜図4(E)はウエーハの裏面に形成された凹部の形状を示すウエーハの部分的斜視図である。4A is a perspective view showing how a mask is attached to the back surface of the wafer, and FIG. 4B is a perspective view of a state where a mask having a plurality of holes is attached to the back surface of the wafer, FIG. C) to 4 (E) are partial perspective views of the wafer showing the shape of the recess formed on the back surface of the wafer. 図5(A)はレーザービームによりウエーハの裏面に溝を形成する様子を示す斜視図、図5(B)は溝形状を示すウエーハの部分断面図、図5(C)はレーザービームによりウエーハの裏面に円形凹部を形成する様子を示す斜視図、図5(D)は形成された円形の凹部を示すウエーハの部分斜視図である。Fig. 5 (A) is a perspective view showing how a groove is formed on the back surface of the wafer by a laser beam, Fig. 5 (B) is a partial sectional view of the wafer showing the groove shape, and Fig. 5 (C) is a wafer by a laser beam. FIG. 5 (D) is a partial perspective view of the wafer showing the formed circular recess on the back surface. 図6(A)は全面に渡り複数の貫通孔が形成された第1の透明基板の表面に光デバイスウエーハの各LED回路に対応した複数の穴を有するマスクを貼着する様子を示す斜視図、図6(B)は第1の透明基板の表面にマスクを貼着した状態の斜視図、図6(C)〜図6(E)は第1の透明基板の表面に形成された窪みの形状を示す部分斜視図である。FIG. 6A is a perspective view showing how a mask having a plurality of holes corresponding to each LED circuit of the optical device wafer is attached to the surface of the first transparent substrate having a plurality of through holes formed over the entire surface. 6 (B) is a perspective view of a state in which a mask is attached to the surface of the first transparent substrate, and FIGS. 6 (C) to 6 (E) are depressions formed on the surface of the first transparent substrate. It is a partial perspective view showing shape. 図7(A)はレーザービームの照射により第1の透明基板の表面に光デバイスウエーハの各LED回路に対応した複数の窪みを形成する様子を示す斜視図、図7(B)は窪みの形状を示す部分斜視図である。FIG. 7A is a perspective view showing how a plurality of depressions corresponding to each LED circuit of the optical device wafer are formed on the surface of the first transparent substrate by laser beam irradiation, and FIG. 7B shows the shape of the depressions. It is a partial perspective view showing. 図8(A)は複数の窪みを表面に有する第1の透明基板をウエーハの裏面に貼着して一体化する第1一体化工程を示す斜視図、図8(B)は第1一体化ウエーハの斜視図である。FIG. 8A is a perspective view showing a first integration step of bonding and integrating a first transparent substrate having a plurality of depressions on its surface to the back surface of the wafer, and FIG. 8B is a first integration step. It is a perspective view of a wafer. 図9(A)は第1一体化ウエーハの第1の透明基板の裏面に第2の透明基板の表面を貼着して一体化する第2一体化工程を示す斜視図、図9(B)は第2一体化ウエーハの斜視図である。FIG. 9 (A) is a perspective view showing a second integration step in which the surface of the second transparent substrate is adhered and integrated on the back surface of the first transparent substrate of the first integrated wafer, FIG. 9 (B) Is a perspective view of a second integrated wafer. 第2一体化ウエーハをダイシングテープを介して環状フレームで支持する支持工程を示す斜視図である。It is a perspective view which shows the support process which supports a 2nd integrated wafer by an annular frame via a dicing tape. 第2一体化ウエーハを発光ダイオードチップに分割する分割工程を示す斜視図である。It is a perspective view which shows the division process which divides | segments a 2nd integrated wafer into a light emitting diode chip. 分割工程終了後の第2一体化ウエーハの斜視図である。It is a perspective view of the 2nd integrated wafer after the end of a division process. 本発明実施形態に係る発光ダイオードチップの斜視図である。1 is a perspective view of a light emitting diode chip according to an embodiment of the present invention.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1を参照すると、光デバイスウエーハ(以下、単にウエーハと略称することがある)11の表面側斜視図が示されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, a front side perspective view of an optical device wafer (hereinafter sometimes simply referred to as a wafer) 11 is shown.

光デバイスウエーハ11は、サファイア基板13上に窒化ガリウム(GaN)等のエピタキシャル層(積層体層)15が積層されて構成されている。光デバイスウエーハ11は、エピタキシャル層15が積層された表面11aと、サファイア基板13が露出した裏面11bとを有している。   The optical device wafer 11 is configured by laminating an epitaxial layer (laminate layer) 15 such as gallium nitride (GaN) on a sapphire substrate 13. The optical device wafer 11 has a surface 11 a on which the epitaxial layer 15 is stacked and a back surface 11 b on which the sapphire substrate 13 is exposed.

ここで、本実施形態の光デバイスウエーハ11では、結晶成長用基板としてサファイア基板13を採用しているが、サファイア基板13に替えGaN基板又はSiC基板等を採用するようにしてもよい。   Here, in the optical device wafer 11 of the present embodiment, the sapphire substrate 13 is adopted as a substrate for crystal growth, but instead of the sapphire substrate 13, a GaN substrate or a SiC substrate may be adopted.

積層体層(エピタキシャル層)15は、電子が多数キャリアとなるn型半導体層(例えば、n型GaN層)、発光層となる半導体層(例えば、InGaN層)、正孔が多数キャリアとなるp型半導体層(例えば、p型GaN層)を順にエピタキシャル成長させることにより形成される。   The stack layer (epitaxial layer) 15 is an n-type semiconductor layer (for example, an n-type GaN layer) in which electrons are majority carriers, a semiconductor layer (for example, InGaN layer) It forms by carrying out epitaxial growth of the semiconductor layer (for example, p-type GaN layer) in order.

サファイア基板13は例えば100μmの厚みを有しており、積層体層15は例えば5μmの厚みを有している。積層体層15に複数のLED回路19が格子状に形成された複数の分割予定ライン17によって区画されて形成されている。ウエーハ11は、LED回路19が形成された表面11aと、サファイア基板13が露出した裏面11bとを有している。   The sapphire substrate 13 has a thickness of, for example, 100 μm, and the laminate layer 15 has a thickness of, for example, 5 μm. A plurality of LED circuits 19 are formed in the laminate layer 15 by being divided by a plurality of planned division lines 17 formed in a lattice shape. The wafer 11 has a surface 11 a on which the LED circuit 19 is formed and a back surface 11 b on which the sapphire substrate 13 is exposed.

本発明実施形態の発光ダイオードチップの製造方法によると、まず図1に示すような光デバイスウエーハ11を準備するウエーハ準備工程を実施する。更に、ウエーハ11の裏面11bにLED回路19に対応して複数の溝3を形成するウエーハ裏面加工工程を実施する。   According to the method of manufacturing a light emitting diode chip of the embodiment of the present invention, first, a wafer preparation step of preparing an optical device wafer 11 as shown in FIG. 1 is performed. Further, a wafer back surface processing step of forming a plurality of grooves 3 corresponding to the LED circuits 19 on the back surface 11 b of the wafer 11 is performed.

このウエーハ裏面加工工程は、例えば、よく知られた切削装置を用いて実施する。図2(A)に示すように、切削装置の切削ユニット10は、スピンドルハウジング12と、スピンドルハウジング12中に回転可能に挿入された図示しないスピンドルと、スピンドルの先端に装着された切削ブレード14とを含んでいる。   This wafer backside processing step is performed, for example, using a well-known cutting apparatus. As shown in FIG. 2A, the cutting unit 10 of the cutting apparatus includes a spindle housing 12, a spindle (not shown) rotatably inserted in the spindle housing 12, and a cutting blade 14 attached to the tip of the spindle. Contains.

切削ブレード14の切り刃は、例えば、ダイヤモンド砥粒をニッケルメッキで固定した電鋳砥石で形成されており、その先端形状は三角形状、四角形状、又は半円形状をしている。   The cutting blade of the cutting blade 14 is formed of, for example, an electroforming grinding stone in which diamond abrasive grains are fixed by nickel plating, and the tip shape thereof is triangular, square, or semicircular.

切削ブレード14の概略上半分はブレードカバー(ホイールカバー)16で覆われており、ブレードカバー16には切削ブレード14の奥側及び手前側に水平に伸長する一対の(1本のみ図示)クーラーノズル18が配設されている。   The upper half of the cutting blade 14 is covered with a blade cover (wheel cover) 16, and the blade cover 16 has a pair of cooler nozzles (only one is shown) extending horizontally to the back and front sides of the cutting blade 14 18 are provided.

ウエーハ11の裏面11bに複数の溝3を形成するウエーハ裏面加工工程では、ウエーハ11の表面11aを図示しない切削装置のチャックテーブルで吸引保持する。そして、切削ブレード14を矢印R方向に高速回転させながらウエーハ11の裏面11bに所定深さ切り込み、図示しないチャックテーブルに保持されたウエーハ11を矢印X1方向に加工送りすることにより、第1の方向に伸長する溝3を切削により形成する。   In the wafer back surface processing step of forming a plurality of grooves 3 on the back surface 11 b of the wafer 11, the front surface 11 a of the wafer 11 is suctioned and held by a chuck table of a cutting device (not shown). Then, while rotating the cutting blade 14 at high speed in the direction of arrow R, the back surface 11b of the wafer 11 is cut to a predetermined depth while processing the wafer 11 held by the chuck table (not shown) in the direction of arrow X1. The groove 3 extending in the direction is formed by cutting.

ウエーハ11を矢印X1方向に直交する方向にウエーハ11の分割予定ライン17のピッチずつ割り出し送りしながら、ウエーハ11の裏面11bを切削して、図3(A)に示すように、第1の方向に伸長する複数の溝3を次々と形成する。   The rear surface 11b of the wafer 11 is cut while indexing and feeding the wafer 11 in the direction orthogonal to the direction of the arrow X1 at the pitch of the planned dividing line 17 of the wafer 11, as shown in FIG. Forming a plurality of grooves 3 extending one after the other.

図3(A)に示すように、ウエーハ11の裏面11bに形成する複数の溝3は一方向にのみ伸長する形態であってもよいし、或いは、図3(B)に示すように、第1の方向及び該第1の方向に直交する第2の方向に伸長する複数の溝3をウエーハ11の裏面11bに形成するようにしてもよい。   As shown in FIG. 3A, the plurality of grooves 3 formed on the back surface 11b of the wafer 11 may extend in only one direction, or as shown in FIG. A plurality of grooves 3 extending in a direction 1 and a second direction orthogonal to the first direction may be formed on the back surface 11 b of the wafer 11.

ウエーハ11の裏面11bに形成する溝は、図2(B)に示すような断面三角形状の溝3、又は図2(C)に示すような断面四角形状の溝3A、又は図2(D)に示すような断面半円形状の溝3Bの何れであってもよい。   The groove formed on the back surface 11b of the wafer 11 is a groove 3 having a triangular cross section as shown in FIG. 2B, or a groove 3A having a rectangular cross section as shown in FIG. 2C, or FIG. It may be any of the grooves 3B having a semicircular cross section as shown in FIG.

ウエーハ11の裏面11bに切削により複数の溝3,3A,3Bを形成する実施形態に替えて、ウエーハ11の裏面11bにLED回路19に対応して複数の凹部を形成するようにしてもよい。この実施形態では、図4(A)に示すように、ウエーハ11のLED回路19に対応した複数の穴4を有するマスク2を使用する。   Instead of forming a plurality of grooves 3, 3A, 3B on the back surface 11b of the wafer 11 by cutting, a plurality of recesses may be formed on the back surface 11b of the wafer 11 corresponding to the LED circuits 19. In this embodiment, as shown in FIG. 4A, a mask 2 having a plurality of holes 4 corresponding to the LED circuits 19 of the wafer 11 is used.

図4(B)に示すように、マスク2の穴4をウエーハ11の各LED回路19に対応させてウエーハ11の裏面11bに貼着する。そして、ウェットエッチング又はプラズマエッチングによりウエーハ11の裏面11bに、図4(C)に示すように、マスク2の穴4の形状に対応した三角形状の凹部5を形成する。   As shown in FIG. 4B, the holes 4 of the mask 2 are adhered to the back surface 11 b of the wafer 11 in correspondence with the LED circuits 19 of the wafer 11. Then, as shown in FIG. 4C, triangular concave portions 5 corresponding to the shapes of the holes 4 of the mask 2 are formed on the back surface 11 b of the wafer 11 by wet etching or plasma etching.

マスク2の穴4の形状を四角形状、又は円形状に変更することにより、ウエーハ11の裏面11bに図4(D)に示すような四角形状の凹部5Aを形成するか、図4(E)に示すようなウエーハ11の裏面11bに円形状の凹部5Bを形成するようにしてもよい。   By changing the shape of the hole 4 of the mask 2 into a square shape or a circular shape, a quadrangular recess 5A as shown in FIG. 4D is formed on the back surface 11b of the wafer 11, or FIG. A circular recess 5B may be formed on the back surface 11b of the wafer 11 as shown in FIG.

本実施形態の変形例として、ウエーハ11の裏面11bにマスク2を貼着した後、サンドブラスト加工を実施することにより、ウエーハ11の裏面11bに、図4(C)に示すような三角形状の凹部5、又は図4(D)に示すような四角形状の凹部5A、又は図4(E)に示すような円形状凹部5Bを形成するようにしてもよい。   As a modification of the present embodiment, after attaching the mask 2 to the back surface 11 b of the wafer 11, sand blasting is performed to form a triangular concave portion as shown in FIG. 4C on the back surface 11 b of the wafer 11. Alternatively, a square recess 5A as shown in FIG. 4 (D) or a circular recess 5B as shown in FIG. 4 (E) may be formed.

ウエーハ11の裏面11bにLED回路19に対応した複数の溝又は複数の凹部を形成するのに、レーザー加工装置を利用するようにしてもよい。レーザー加工による第1実施形態では、図5(A)に示すように、ウエーハ11に対して吸収性を有する波長(例えば、266nm)のレーザービームを集光器(レーザーヘッド)24からウエーハ11の裏面11bに照射しながら、ウエーハ11を保持した図示しないチャックテーブルを矢印X1方向に加工送りすることにより、第1の方向に伸長する溝7をウエーハ11の裏面11bにアブレーションにより形成する。   A laser processing apparatus may be used to form a plurality of grooves or a plurality of recesses corresponding to the LED circuits 19 on the back surface 11 b of the wafer 11. In the first embodiment by laser processing, as shown in FIG. 5A, a laser beam of a wavelength (for example, 266 nm) having absorption to the wafer 11 is transferred from a condenser (laser head) 24 to the wafer 11. A chuck table (not shown) holding the wafer 11 is processed and fed in the direction of arrow X1 while irradiating the back surface 11b, thereby forming grooves 7 extending in the first direction on the back surface 11b of the wafer 11 by ablation.

ウエーハ11を矢印X1方向に直交する方向にウエーハ11の分割予定ライン17のピッチずつ割り出し送りしながら、ウエーハ11の裏面11bをアブレーション加工して、第1の方向に伸長する複数の溝7を次々と形成する。溝7の断面形状は、例えば図5(B)に示すような、半円形状であってもよいし、他の形状であってもよい。   The rear surface 11b of the wafer 11 is subjected to ablation processing while indexing and feeding the wafer 11 in the direction orthogonal to the direction of the arrow X1 by the pitch of the planned dividing line 17 of the wafer 11 to successively advance a plurality of grooves 7 extending in the first direction. Form with. The cross-sectional shape of the groove 7 may be, for example, a semicircular shape as shown in FIG. 5 (B) or another shape.

代替実施形態として、図5(C)に示すように、集光器24からウエーハ11に対して吸収性を有する波長(例えば、266nm)のパルスレーザービームを間欠的に照射して、ウエーハ11の裏面11bにLED回路19に対応した複数の凹部9を形成するようにしてもよい。凹部9の形状は、通常はレーザービームのスポット形状に対応した図5(D)に示すような円形状となる。   As an alternative embodiment, as shown in FIG. 5C, a pulse laser beam of a wavelength (for example, 266 nm) having absorption from the condenser 24 to the wafer 11 is intermittently applied to the wafer 11. A plurality of recesses 9 corresponding to the LED circuits 19 may be formed on the back surface 11 b. The shape of the recess 9 is usually circular as shown in FIG. 5 (D) corresponding to the spot shape of the laser beam.

ウエーハ裏面加工工程を実施した後、又は実施する前に、ウエーハ11の裏面11bに貼着する全面に渡り複数の貫通孔29が形成された第1の透明基板21の表面又は裏面、或いは第1の透明基板21の裏面に貼着する第2の透明基板21Aの表面又は裏面にLED回路19に対応して複数の窪みを形成する透明基板加工工程を実施する。   After or before the wafer back surface processing step, the surface or back surface of the first transparent substrate 21 having a plurality of through holes 29 formed over the entire surface to be attached to the back surface 11 b of the wafer 11 or The transparent substrate processing step of forming a plurality of recesses corresponding to the LED circuits 19 on the front surface or the back surface of the second transparent substrate 21A attached to the back surface of the transparent substrate 21 is performed.

この透明基板加工工程では、例えば図6(A)に示すように、ウエーハ11のLED回路19に対応した複数の穴4を有するマスク2を使用する。図6(B)に示すように、マスク2の穴4をウエーハ11の各LED回路19に対応させてマスクを全面に渡り複数の貫通孔29が形成された第1の透明基板21の表面21aに貼着する。   In this transparent substrate processing step, for example, as shown in FIG. 6A, a mask 2 having a plurality of holes 4 corresponding to the LED circuits 19 of the wafer 11 is used. As shown in FIG. 6B, the holes 4 of the mask 2 are made to correspond to the respective LED circuits 19 of the wafer 11, the mask is spread over the entire surface, and the surface 21a of the first transparent substrate 21 is formed with a plurality of through holes 29. Stick to

そして、ウェットエッチング又はプラズマエッチングにより第1の透明基板21の表面21aに、図6(C)に示すように、マスク2の穴4の形状に対応した三角形状の窪み(凹部)35を形成する。   Then, as shown in FIG. 6C, triangular depressions (recesses) 35 corresponding to the shapes of the holes 4 of the mask 2 are formed on the surface 21 a of the first transparent substrate 21 by wet etching or plasma etching. .

マスク2の穴4の形状を四角形状、又は円形状に変更することにより、第1の透明基板21の表面21aに図6(D)に示すような四角形状の窪み35Aを形成するか、図6(E)に示すような第1の透明基板21の表面21aに円形状の窪み35Bを形成するようにしてもよい。   By changing the shape of the hole 4 of the mask 2 into a square shape or a circular shape, a square shaped recess 35A as shown in FIG. 6D is formed in the surface 21a of the first transparent substrate 21 or A circular recess 35B may be formed on the surface 21a of the first transparent substrate 21 as shown in FIG. 6 (E).

第1の透明基板21は、透明樹脂、光学ガラス、サファイア、透明セラミックスの何れかから形成される。本実施形態では、光学ガラスに比べて耐久性のあるポリカーボネイト、アクリル等の透明樹脂から第1の透明基板21を形成した。   The first transparent substrate 21 is formed of any of a transparent resin, an optical glass, sapphire, and a transparent ceramic. In the present embodiment, the first transparent substrate 21 is formed of a transparent resin such as polycarbonate or acrylic which is more durable than optical glass.

本実施形態の変形例として、第1の透明基板21の表面21aにマスク2を貼着した後、サンドブラスト加工を実施することにより、第1の透明基板21の表面21aに、図6(C)に示すような三角形状の窪み35、又は図6(D)に示すような四角形状の窪み35A、又は図6(E)に示すような円形状の窪み35Bを形成するようにしてもよい。   As a modification of this embodiment, after attaching the mask 2 to the surface 21 a of the first transparent substrate 21, sandblasting is performed to form the surface 21 a of the first transparent substrate 21 as shown in FIG. It is also possible to form a triangular depression 35 as shown in FIG. 6 or a square depression 35A as shown in FIG. 6 (D) or a circular depression 35B as shown in FIG. 6 (E).

第1の透明基板21の表面21aにLED回路19に対応した複数の窪みを形成するのに、レーザー加工装置を利用するようにしてもよい。レーザー加工による実施形態では、図7(A)に示すように、第1の透明基板21に対して吸収性を有する波長(例えば、266nm)のレーザービームを集光器(レーザーヘッド)24から第1の透明基板21の表面21aに間欠的に照射しながら、第1の透明基板21を保持した図示しないチャックテーブルを矢印X1方向に加工送りすることにより、第1の透明基板21の表面21aにウエーハ11のLED回路19に対応した複数の窪み39をアブレーションにより形成する。   A laser processing apparatus may be used to form a plurality of depressions corresponding to the LED circuits 19 on the surface 21 a of the first transparent substrate 21. In the embodiment by laser processing, as shown in FIG. 7A, a laser beam of a wavelength (for example, 266 nm) having absorption to the first transparent substrate 21 is collected from the condenser (laser head) 24. The chuck table (not shown) holding the first transparent substrate 21 is processed and fed in the direction of arrow X1 while intermittently irradiating the surface 21a of the first transparent substrate 21 to the surface 21a of the first transparent substrate 21. A plurality of depressions 39 corresponding to the LED circuits 19 of the wafer 11 are formed by ablation.

第1の透明基板21を矢印X1方向に直交する方向にウエーハ11の分割予定ライン17のピッチずつ割り出し送りしながら、第1の透明基板21の表面21aをアブレーション加工して、複数の窪み39を次々と形成する。窪み39の断面形状は、通常はレーザービームのスポット形状に対応した図7(B)に示すような円形状となる。   The surface 21a of the first transparent substrate 21 is subjected to ablation processing to index a plurality of recesses 39 while indexing and feeding the first transparent substrate 21 in the direction orthogonal to the direction of the arrow X1 by the pitch of the planned dividing line 17 of the wafer 11. Form one after another. The cross-sectional shape of the depression 39 is usually a circular shape as shown in FIG. 7B corresponding to the spot shape of the laser beam.

上述した透明基板加工工程では、第1の透明基板21の表面21aに複数の窪み35,35A,35B,39を形成しているが、この実施形態に替えて、第1の透明基板21の裏面21bに複数の窪み35,35A,35B,39を形成するようにしてもよい。   In the transparent substrate processing step described above, the plurality of depressions 35, 35A, 35B, 39 are formed in the surface 21a of the first transparent substrate 21. However, the back surface of the first transparent substrate 21 is changed to this embodiment. A plurality of depressions 35, 35A, 35B, 39 may be formed in 21b.

或いは、第1の透明基板21の表面及び裏面には何ら加工を施すことなく、第2の透明基板21Aの表面21a又は裏面21bにウエーハ11の各LED回路に対応して複数の窪み35,35A,35B,39を形成するようにしてもよい。第2の透明基板21Aも第1の透明基板21と同様に透明樹脂、光学ガラス、サファイア、透明セラミックスの何れかから形成される。   Alternatively, without performing any processing on the front surface and the back surface of the first transparent substrate 21, a plurality of recesses 35, 35A corresponding to the respective LED circuits of the wafer 11 on the front surface 21a or the back surface 21b of the second transparent substrate 21A. , 35B, 39 may be formed. Similarly to the first transparent substrate 21, the second transparent substrate 21A is also formed of any of transparent resin, optical glass, sapphire, and transparent ceramics.

透明基板加工工程を実施した後、ウエーハ11の裏面11bに第1の透明基板21の表面21aを貼着すると共に第1の透明基板21の裏面21bに第2の透明基板21Aの表面21aを貼着する透明基板貼着工程を実施する。   After carrying out the transparent substrate processing step, the front surface 21a of the first transparent substrate 21 is adhered to the back surface 11b of the wafer 11, and the front surface 21a of the second transparent substrate 21A is adhered to the back surface 21b of the first transparent substrate 21. Implement the transparent substrate bonding process to be worn.

この透明基板貼着工程では、まず、図8(A)に示すように、表面21aにウエーハ11のLED回路19に対応して複数の窪み39が形成された第1の透明基板21の表面21aに、ウエーハ11の裏面11bを透明接着剤より接着して、図8(B)に示すように、ウエーハ11と第1の透明基板21とを一体化して第1一体化ウエーハ25を形成する。   In this transparent substrate bonding step, first, as shown in FIG. 8A, the surface 21a of the first transparent substrate 21 in which a plurality of depressions 39 are formed on the surface 21a corresponding to the LED circuits 19 of the wafer 11. Then, the back surface 11b of the wafer 11 is bonded with a transparent adhesive, and as shown in FIG. 8B, the wafer 11 and the first transparent substrate 21 are integrated to form a first integrated wafer 25.

次いで、図9(A)に示すように、第1一体化ウエーハ25の第1の透明基板21の裏面21bに第2の透明基板21Aの表面21aを貼着して、図9(B)に示すような第2一体化ウエーハ25Aを形成する。   Next, as shown in FIG. 9A, the front surface 21a of the second transparent substrate 21A is attached to the back surface 21b of the first transparent substrate 21 of the first integrated wafer 25. Then, as shown in FIG. A second integrated wafer 25A as shown is formed.

この透明基板貼着工程は、上述した順序に限定されるものではなく、第1の透明基板21の裏面21bに第2の透明基板21Aの表面21aを貼着した後、第1の透明基板21の表面21aをウエーハ11の裏面11bに貼着して第2一体化ウエーハ25Aを形成するようにしてもよい。   The transparent substrate attaching step is not limited to the above-described order, and the first transparent substrate 21 is attached after the surface 21a of the second transparent substrate 21A is attached to the back surface 21b of the first transparent substrate 21. The front surface 21a of the second integrated wafer 25A may be bonded to the back surface 11b of the wafer 11 to form the second integrated wafer 25A.

透明基板貼着工程を実施した後、図10に示すように、第2一体化ウエーハ25Aの第2の透明基板21Aを外周部が環状フレームFに貼着されたダイシングテープTに貼着してフレームユニットを形成し、第2一体化ウエーハ25AをダイシングテープTを介して環状フレームFで支持する支持工程を実施する。   After carrying out the transparent substrate bonding step, as shown in FIG. 10, the second transparent substrate 21A of the second integrated wafer 25A is bonded to a dicing tape T whose outer peripheral portion is bonded to the annular frame F. A frame unit is formed, and a supporting step of supporting the second integrated wafer 25A with the annular frame F via the dicing tape T is performed.

支持工程を実施した後、フレームユニットを切削装置に投入し、切削装置で第2一体化ウエーハ25を切削して個々の発光ダイオードチップに分割する分割工程を実施する。この分割工程について、図11を参照して説明する。   After carrying out the supporting step, the frame unit is put into a cutting device, and the dividing step of cutting the second integrated wafer 25 with the cutting device and dividing it into individual light emitting diode chips is carried out. This division process will be described with reference to FIG.

分割ステップでは、第2一体化ウエーハ25AをフレームユニットのダイシングテープTを介して切削装置のチャックテーブル20で吸引保持し、環状フレームFは図示しないクランプでクランプして固定する。   In the dividing step, the second integrated wafer 25A is sucked and held by the chuck table 20 of the cutting apparatus through the dicing tape T of the frame unit, and the annular frame F is clamped and fixed by a clamp (not shown).

そして、切削ブレード14を矢印R方向に高速回転させながら切削ブレード14の先端がダイシングテープTに届くまでウエーハ11の分割予定ライン17に切り込み、クーラーノズル18から切削ブレード14及びウエーハ11の加工点に向かって切削液を供給しつつ、第2一体化ウエーハ25Aを矢印X1方向に加工送りすることにより、ウエーハ11の分割予定ライン17に沿ってウエーハ11及び第1及び第2の透明基板21,21Aを切断する切断溝27を形成する。   Then, while rotating the cutting blade 14 at high speed in the direction of arrow R, the dividing line 17 of the wafer 11 is cut until the tip of the cutting blade 14 reaches the dicing tape T, and the cooler nozzle 18 is used to cut the cutting blade 14 and the wafer 11 By feeding the second integrated wafer 25A in the direction of arrow X1 while supplying the cutting fluid toward the wafer 11, the first transparent substrate 21 and the second transparent substrate 21 along the planned dividing line 17 of the wafer 11. Cutting groove 27 is formed.

切削ユニット10をY軸方向に割り出し送りしながら、第1の方向に伸長する分割予定ライン17に沿って同様な切断溝27を次々と形成する。次いで、チャックテーブル20を90°回転してから、第1の方向に直交する第2の方向に伸長する全ての分割予定ライン17に沿って同様な切断溝27を形成して、図12に示す状態にすることで、第2一体化ウエーハ25Aを図9に示すような発光ダイオードチップ31に分割する。   Similar cutting grooves 27 are formed one after another along the planned dividing line 17 extending in the first direction while indexing and feeding the cutting unit 10 in the Y-axis direction. Next, after rotating the chuck table 20 by 90 °, similar cutting grooves 27 are formed along all the planned dividing lines 17 extending in the second direction orthogonal to the first direction, as shown in FIG. By setting the state, the second integrated wafer 25A is divided into light emitting diode chips 31 as shown in FIG.

上述した実施形態では、第2一体化ウエーハ25Aを個々の発光ダイオードチップ31に分割するのに切削装置を使用しているが、ウエーハ11及び透明基板21,21Aに対して透過性を有する波長のレーザービームを分割予定ライン13に沿ってウエーハ11に照射して、ウエーハ11及び透明基板21,21Aの内部に厚み方向に複数層の改質層を形成し、次いで、第2一体化ウエーハ25Aに外力を付与して、改質層を分割起点に第2一体化ウエーハ25Aを個々の発光ダイオードチップ31に分割するようにしてもよい。   In the embodiment described above, a cutting device is used to divide the second integrated wafer 25A into the individual light emitting diode chips 31, but at a wavelength having transparency to the wafer 11 and the transparent substrates 21 and 21A. A laser beam is applied to the wafer 11 along the dividing lines 13 to form a plurality of modified layers in the thickness direction inside the wafer 11 and the transparent substrates 21 and 21A, and then the second integrated wafer 25A is formed. An external force may be applied to divide the second integrated wafer 25A into the individual light emitting diode chips 31 using the modified layer as the dividing start point.

図13に示された発光ダイオードチップ31は、表面にLED回路19を有し裏面に凹部5を有するLED13Aの裏面に複数の貫通孔29を有する第1の透明部材21´が貼着されている。また、第1の透明部材21´の表面に窪み35,35A,35B又は窪み39が形成されている。更に、第1の透明部材21´の裏面に第2の透明部材21A´が貼着されている。   The light emitting diode chip 31 shown in FIG. 13 has a first transparent member 21 ′ having a plurality of through holes 29 on the back surface of the LED 13A having the LED circuit 19 on the front surface and the recess 5 on the back surface. . Moreover, the hollow 35, 35A, 35B or the hollow 39 is formed in the surface of 1st transparent member 21 '. Furthermore, a second transparent member 21A 'is attached to the back surface of the first transparent member 21'.

従って、図13に示す発光ダイオードチップ31では、第1の透明部材21´の表面に窪みが形成されているため、第1の透明部材21´の表面積が増大する。更に、発光ダイオードチップ31のLED回路19から出射され第1の透明部材21´に入射する光の一部は窪み部分で屈折されてから第1の透明部材21´内に進入する。   Therefore, in the light emitting diode chip 31 shown in FIG. 13, since the depression is formed on the surface of the first transparent member 21 ', the surface area of the first transparent member 21' is increased. Furthermore, a part of the light emitted from the LED circuit 19 of the light emitting diode chip 31 and incident on the first transparent member 21 'is refracted by the hollow portion and then enters the first transparent member 21'.

従って、第1の透明部材21´及び第2の透明部材21A´から外部に屈折して光が出射する際、第1及び第2の透明部材21´,21A´と空気層との界面での入射角が臨界角以上となる光の割合が減少し、第1、第2の透明部材21´,21A´から出射される光の量が増大し、発光ダイオードチップ31の輝度が向上する。   Therefore, when light is refracted from the first transparent member 21 'and the second transparent member 21A' and emitted, the light is emitted at the interface between the first and second transparent members 21 'and 21A' and the air layer. The proportion of light whose incident angle is equal to or greater than the critical angle decreases, the amount of light emitted from the first and second transparent members 21 ′ and 21A ′ increases, and the brightness of the light emitting diode chip 31 improves.

2 マスク
3,3A,3B 切削溝
5,5A,5B,9 凹部
10 切削ユニット
11 光デバイスウエーハ(ウエーハ)
13 サファイア基板
14 切削ブレード
15 積層体層
17 分割予定ライン
19 LED回路
21 第1の透明基板
21´ 第1の透明部材
21A 第2の透明基板
21A´ 第2の透明部材
25 第1一体化ウエーハ
25A 第2一体化ウエーハ
27 切断溝
29 貫通孔
31 発光ダイオードチップ
35,35A,35B,39 窪み
2 mask 3, 3A, 3B cutting groove 5, 5A, 5B, 9 recess 10 cutting unit 11 optical device wafer (wafer)
13 sapphire substrate 14 cutting blade 15 laminated body layer 17 division intended line 19 LED circuit 21 first transparent substrate 21 'first transparent member 21A second transparent substrate 21A' second transparent member 25 first integrated wafer 25A Second integrated wafer 27 cutting groove 29 through hole 31 light emitting diode chip 35, 35A, 35B, 39 hollow

Claims (6)

発光ダイオードチップの製造方法であって、
結晶成長用の透明基板上に発光層を含む複数の半導体層が形成された積層体層を有し、該積層体層の表面に互いに交差する複数の分割予定ラインによって区画された各領域にそれぞれLED回路が形成されたウエーハを準備するウエーハ準備工程と、
該ウエーハの裏面に各LED回路に対応して複数の凹部又は溝を形成するウエーハ裏面加工工程と、
全面に渡り複数の貫通孔が形成された第1の透明基板又は第2の透明基板の少なくともどちらか一方の表面又は裏面に各LED回路に対応して複数の窪みを形成する透明基板加工工程と、
該ウエーハ裏面加工工程及び該透明基板加工工程を実施した後、ウエーハの裏面に該第1の透明基板の表面を貼着すると共に該第1の透明基板の裏面に該第2の透明基板の表面を貼着して一体化ウエーハを形成する透明基板貼着工程と、
該透明基板貼着工程を実施した後、該ウエーハを該分割予定ラインに沿って該第1及び第2の透明基板と共に切断して該一体化ウエーハを個々の発光ダイオードチップに分割する分割工程と、
を備えたことを特徴とする発光ダイオードチップの製造方法。
A method of manufacturing a light emitting diode chip, comprising
It has a laminate layer in which a plurality of semiconductor layers including a light emitting layer are formed on a transparent substrate for crystal growth, and in each of the regions partitioned by a plurality of planned dividing lines crossing each other on the surface of the laminate layer. A wafer preparation step of preparing a wafer on which an LED circuit is formed;
A wafer back surface processing step of forming a plurality of recesses or grooves corresponding to each LED circuit on the back surface of the wafer;
A transparent substrate processing step of forming a plurality of recesses corresponding to each LED circuit on the front surface or the back surface of at least one of the first transparent substrate and the second transparent substrate having a plurality of through holes formed over the entire surface; ,
After carrying out the wafer back surface processing step and the transparent substrate processing step, the front surface of the first transparent substrate is attached to the back surface of the wafer and the front surface of the second transparent substrate is on the back surface of the first transparent substrate. A transparent substrate pasting step of pasting together to form an integrated wafer;
A dividing step of dividing the integrated wafer into individual light emitting diode chips by cutting the wafer along with the dividing lines with the first and second transparent substrates after performing the transparent substrate bonding step; ,
A method of manufacturing a light emitting diode chip, comprising:
該ウエーハ裏面加工工程において、前記凹部又は前記溝は切削ブレード、エッチング、サンドブラスト、レーザーの何れかで形成される請求項1記載の発光ダイオードチップの製造方法。   The method for manufacturing a light emitting diode chip according to claim 1, wherein the recess or the groove is formed by any one of a cutting blade, etching, sand blast, and laser in the wafer back surface processing step. 該透明基板加工工程で形成される前記窪みの形状は三角形状、四角形状、円形状の何れかである請求項1記載の発光ダイオードチップの製造方法。   The method for manufacturing a light emitting diode chip according to claim 1, wherein a shape of the recess formed in the transparent substrate processing step is any one of a triangular shape, a square shape and a circular shape. 該透明基板加工工程において、前記窪みはエッチング、サンドブラスト、レーザーの何れかで形成される請求項1記載の発光ダイオードチップの製造方法。   The method for manufacturing a light emitting diode chip according to claim 1, wherein the recess is formed by any of etching, sand blast, and laser in the transparent substrate processing step. 該第1及び第2の透明基板は、透明セラミックス、光学ガラス、サファイア、透明樹脂の何れかで形成され、該透明基板貼着工程において該第1の透明基板は透明接着剤を使用して該ウエーハの裏面に貼着され、該第2の透明基板は透明接着剤を使用して該第1の透明基板の裏面に貼着される請求項1記載の発光ダイオードチップの製造方法。   The first and second transparent substrates are formed of any of transparent ceramics, optical glass, sapphire, and transparent resin, and in the transparent substrate bonding step, the first transparent substrate is formed of a transparent adhesive. The method for manufacturing a light emitting diode chip according to claim 1, wherein the second transparent substrate is attached to the back surface of the wafer, and the second transparent substrate is attached to the back surface of the first transparent substrate using a transparent adhesive. 発光ダイオードチップであって、
表面にLED回路が形成され裏面に凹部又は溝が形成された発光ダイオードと、
該発光ダイオードの裏面に貼着された複数の貫通孔を有する第1の透明部材と、
該第1の透明部材の裏面に貼着された第2の透明部材と、
を備え、
該第1の透明部材又は該第2の透明部材の少なくともどちらか一方の表面又は裏面に窪みが形成されている発光ダイオードチップ。
A light emitting diode chip,
A light emitting diode in which an LED circuit is formed on the front surface and a recess or a groove is formed on the back surface;
A first transparent member having a plurality of through holes attached to the back surface of the light emitting diode;
A second transparent member attached to the back surface of the first transparent member;
Equipped with
A light emitting diode chip in which a recess is formed on the surface or the back surface of at least one of the first transparent member and the second transparent member.
JP2017077584A 2017-04-10 2017-04-10 Method for manufacturing light-emitting diode chip and light-emitting diode chip Pending JP2018181999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077584A JP2018181999A (en) 2017-04-10 2017-04-10 Method for manufacturing light-emitting diode chip and light-emitting diode chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077584A JP2018181999A (en) 2017-04-10 2017-04-10 Method for manufacturing light-emitting diode chip and light-emitting diode chip

Publications (1)

Publication Number Publication Date
JP2018181999A true JP2018181999A (en) 2018-11-15

Family

ID=64275967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077584A Pending JP2018181999A (en) 2017-04-10 2017-04-10 Method for manufacturing light-emitting diode chip and light-emitting diode chip

Country Status (1)

Country Link
JP (1) JP2018181999A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009305A (en) * 2009-06-23 2011-01-13 Koito Mfg Co Ltd Light-emitting module
JP2012038862A (en) * 2010-08-05 2012-02-23 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2012527742A (en) * 2009-05-22 2012-11-08 パナソニック株式会社 Semiconductor light emitting device and light source device using the same
JP2015531995A (en) * 2012-07-10 2015-11-05 東芝テクノセンター株式会社 Light emitting diode device and manufacturing method thereof
JP2016062899A (en) * 2014-09-12 2016-04-25 株式会社東芝 Semiconductor light-emitting device
JP2016076685A (en) * 2014-10-08 2016-05-12 株式会社東芝 Semiconductor light-emitting device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527742A (en) * 2009-05-22 2012-11-08 パナソニック株式会社 Semiconductor light emitting device and light source device using the same
JP2011009305A (en) * 2009-06-23 2011-01-13 Koito Mfg Co Ltd Light-emitting module
JP2012038862A (en) * 2010-08-05 2012-02-23 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2015531995A (en) * 2012-07-10 2015-11-05 東芝テクノセンター株式会社 Light emitting diode device and manufacturing method thereof
JP2016062899A (en) * 2014-09-12 2016-04-25 株式会社東芝 Semiconductor light-emitting device
JP2016076685A (en) * 2014-10-08 2016-05-12 株式会社東芝 Semiconductor light-emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2018014422A (en) Method for manufacturing light-emitting diode chip, and light-emitting diode chip
JP2018181875A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018181998A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148094A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018186171A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018116968A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018029110A (en) Light-emitting diode chip manufacturing method and light-emitting diode chip
JP2018014421A (en) Method for manufacturing light-emitting diode chip, and light-emitting diode chip
JP2018181999A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182000A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018181876A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182170A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182167A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182171A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182166A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018181997A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182001A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018186165A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148093A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018129342A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018129344A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148095A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018129348A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip and
JP2018129346A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018186169A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629