Nothing Special   »   [go: up one dir, main page]

JP2018035277A - Resin composition and resin molding - Google Patents

Resin composition and resin molding Download PDF

Info

Publication number
JP2018035277A
JP2018035277A JP2016170161A JP2016170161A JP2018035277A JP 2018035277 A JP2018035277 A JP 2018035277A JP 2016170161 A JP2016170161 A JP 2016170161A JP 2016170161 A JP2016170161 A JP 2016170161A JP 2018035277 A JP2018035277 A JP 2018035277A
Authority
JP
Japan
Prior art keywords
resin
resin composition
copolymer
cellulose acylate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016170161A
Other languages
Japanese (ja)
Other versions
JP6805647B2 (en
Inventor
八百 健二
Kenji Yao
健二 八百
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016170161A priority Critical patent/JP6805647B2/en
Priority to EP17845745.3A priority patent/EP3480247B1/en
Priority to CN201780049199.9A priority patent/CN109563315A/en
Priority to PCT/JP2017/011879 priority patent/WO2018042734A1/en
Publication of JP2018035277A publication Critical patent/JP2018035277A/en
Priority to US16/244,413 priority patent/US20190144637A1/en
Application granted granted Critical
Publication of JP6805647B2 publication Critical patent/JP6805647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition capable of giving a resin molding having excellent impact resistance and a high flexural modulus.SOLUTION: The resin composition contains: a cellulose acylate having a weight-average molecular weight of 30,000 or more and 90,000 or less; and an olefin-(meth)acrylate-glycidyl methacrylate copolymer in which the mass ratio Ma/Mb of the content Ma of a constituent unit represented by formula (a) to the content Mb of a constituent unit represented by formula (b) is 4 or more and 10 or less. In the formula, Rrepresents a hydrogen atom or a methyl group, and Rrepresents a C1-10 alkyl group.SELECTED DRAWING: None

Description

本発明は、樹脂組成物、及び、樹脂成形体に関する。   The present invention relates to a resin composition and a resin molded body.

従来、熱可塑性樹脂としては種々のものが提供され、各種用途に使用されている。例えば、家電製品、自動車等の各種部品、事務機器、電子電気機器等の筐体などに、熱可塑性樹脂が使用されている。
近年では、熱可塑性樹脂として植物由来の樹脂が利用されており、従来から知られている植物由来の樹脂の一つにセルロースアシレートがある。
Conventionally, various thermoplastic resins have been provided and used for various applications. For example, thermoplastic resins are used in various parts of home appliances, automobiles, office equipment, electronic electrical equipment, and the like.
In recent years, plant-derived resins have been used as thermoplastic resins, and cellulose acylate is one of conventionally known plant-derived resins.

例えば、特許文献1には、「セルロースエステル樹脂と、前記セルロースエステル樹脂と反応し得る官能基を有しない非反応性可塑剤と、炭素数2以上4以下のオレフィンが重合したポリオレフィンを主成分とし且つ前記セルロースエステル樹脂と反応し得る官能基を複数有するポリオレフィン含有多官能エラストマーと、を少なくとも有する樹脂組成物。」が開示されている。   For example, Patent Literature 1 includes, as a main component, “a cellulose ester resin, a non-reactive plasticizer having no functional group capable of reacting with the cellulose ester resin, and a polyolefin obtained by polymerizing an olefin having 2 to 4 carbon atoms. And a resin composition having at least a polyolefin-containing polyfunctional elastomer having a plurality of functional groups capable of reacting with the cellulose ester resin.

また、特許文献2には、「(A)セルロースエステル100質量部に対して、(B)可塑剤2〜100質量部、(C)(メタ)アクリル酸アルキルエステル単位を含むコアシェル構造の熱可塑性エラストマー1〜50質量部を含有するセルロースエステル組成物。」が開示されている。   Patent Document 2 discloses that “(A) thermoplasticity of a core-shell structure containing 2 to 100 parts by weight of a plasticizer and (C) a (meth) acrylic acid alkyl ester unit with respect to 100 parts by weight of a cellulose ester. "A cellulose ester composition containing 1 to 50 parts by weight of an elastomer."

特開2016−069397号公報JP 2006-069397 A 特開2014−084343号公報JP 2014-084343 A

本発明が解決しようとする課題は、重量平均分子量3万以上9万以下のセルロースアシレート、及び、オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含有する樹脂組成物において、前記共重合体に含まれる下記式(a)で表される構成単位の量Maと下記式(b)で表される構成単位の量Mbとの質量比率Ma/Mbが4未満であるか、又は、10を超える場合に比べ、耐衝撃性に優れ、曲げ弾性率の高い樹脂成形体が得られる樹脂組成物を提供することである。   The problem to be solved by the present invention is a resin composition comprising a cellulose acylate having a weight average molecular weight of 30,000 to 90,000 and an olefin- (meth) acrylate-glycidyl methacrylate copolymer. The mass ratio Ma / Mb between the amount Ma of the structural unit represented by the following formula (a) and the amount Mb of the structural unit represented by the following formula (b) is less than 4, or 10 Compared with the case where it exceeds, it is providing the resin composition which is excellent in impact resistance and from which a resin molding with a high bending elastic modulus is obtained.

上記課題は、以下の手段により解決される。   The above problem is solved by the following means.

請求項1に係る発明は、
重量平均分子量3万以上9万以下のセルロースアシレート、及び、共重合体に含まれる下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含む樹脂組成物である。
The invention according to claim 1
The cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and the content Ma of the structural unit represented by the following formula (a) contained in the copolymer and the structural unit represented by the following formula (b) It is a resin composition containing the olefin- (meth) acrylate-glycidyl methacrylate copolymer whose mass ratio Ma / Mb with content Mb is 4-10.

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。 In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.

請求項2に係る発明は、
前記オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が、エチレン−(メタ)アクリレート−グリシジルメタクリレート共重合体である請求項1に記載の樹脂組成物である。
The invention according to claim 2
The resin composition according to claim 1, wherein the olefin- (meth) acrylate-glycidyl methacrylate copolymer is an ethylene- (meth) acrylate-glycidyl methacrylate copolymer.

請求項3に係る発明は、
前記セルロースアシレートの置換度が、2.0以上2.5以下である請求項1又は請求項2に記載の樹脂組成物である。
The invention according to claim 3
The resin composition according to claim 1 or 2, wherein a substitution degree of the cellulose acylate is 2.0 or more and 2.5 or less.

請求項4に係る発明は、
前記セルロースアシレートが、アセチル基を少なくとも有する請求項1乃至請求項3のいずれか1項に記載の樹脂組成物である。
The invention according to claim 4
The resin composition according to any one of claims 1 to 3, wherein the cellulose acylate has at least an acetyl group.

請求項5に係る発明は、
前記共重合体の含有量が、前記セルロースアシレート100質量部に対し、0.5質量部以上10質量部以下である請求項1乃至請求項4のいずれか1項に記載の樹脂組成物である。
The invention according to claim 5
The resin composition according to any one of claims 1 to 4, wherein a content of the copolymer is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the cellulose acylate. is there.

請求項6に係る発明は、
アジピン酸エステル含有化合物を更に含む請求項1乃至請求項5のいずれか1項に記載の樹脂組成物である。
The invention according to claim 6
The resin composition according to any one of claims 1 to 5, further comprising an adipic acid ester-containing compound.

請求項7に係る発明は、
請求項1乃至請求項6のいずれか1項に記載の樹脂組成物を成形してなる樹脂成形体である。
The invention according to claim 7 provides:
It is a resin molding formed by shape | molding the resin composition of any one of Claim 1 thru | or 6.

請求項8に係る発明は、
重量平均分子量3万以上9万以下のセルロースアシレート、及び、共重合体に含まれる下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が反応してなる樹脂を含む樹脂成形体である。
The invention according to claim 8 provides:
The cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and the content Ma of the structural unit represented by the following formula (a) contained in the copolymer and the structural unit represented by the following formula (b) It is a resin molding containing a resin formed by reaction of an olefin- (meth) acrylate-glycidyl methacrylate copolymer having a mass ratio Ma / Mb of 4 to 10 with respect to the content Mb.

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。 In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.

請求項9に係る発明は、
前記オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が、エチレン−(メタ)アクリレート−グリシジルメタクリレート共重合体である請求項8に記載の樹脂成形体である。
The invention according to claim 9 is:
The resin molded product according to claim 8, wherein the olefin- (meth) acrylate-glycidyl methacrylate copolymer is an ethylene- (meth) acrylate-glycidyl methacrylate copolymer.

請求項1に係る発明によれば、重量平均分子量3万以上9万以下のセルロースアシレート、及び、オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含有する樹脂組成物において、前記共重合体に含まれる前記式(a)で表される構成単位の量Maと前記式(b)で表される構成単位の量Mbとの質量比率Ma/Mbが4未満であるか、又は、10を超える場合に比べ、耐衝撃性に優れ、曲げ弾性率の高い樹脂成形体が得られる樹脂組成物が提供される。
請求項2に係る発明によれば、前記共重合体が、エチレン以外のオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体である場合に比べ、耐衝撃性により優れ、曲げ弾性率のより高い樹脂成形体が得られる樹脂組成物が提供される。
請求項3に係る発明によれば、セルロースアシレートの置換度が2.0未満であるか、又は、2.5を超える場合に比べ、耐衝撃性により優れる樹脂成形体が得られる樹脂組成物が提供される。
請求項4に係る発明によれば、前記共重合体における前記質量比率Ma/Mbが4未満であるか、又は、10を超える場合に比べ、前記セルロースアシレートとしてセルロースアセテートを含み、耐衝撃性により優れ、曲げ弾性率のより高い樹脂成形体が得られる樹脂組成物が提供される。
請求項5に係る発明によれば、前記共重合体の含有量が、前記セルロースアシレート100質量部に対し、0.5質量部未満であるか、又は、10質量部を超える場合に比べ、耐衝撃性により優れる樹脂成形体が得られる樹脂成形体が提供される。
請求項6に係る発明によれば、前記共重合体における前記質量比率Ma/Mbが4未満であるか、又は、10を超える場合に比べ、アジピン酸エステル含有化合物を含み、樹脂成形時における成形性に優れ、耐衝撃性により優れる樹脂成形体が得られる樹脂組成物が提供される。
According to the invention of claim 1, in the resin composition containing a cellulose acylate having a weight average molecular weight of 30,000 to 90,000 and an olefin- (meth) acrylate-glycidyl methacrylate copolymer, the copolymer The mass ratio Ma / Mb between the amount Ma of the structural unit represented by the formula (a) and the amount Mb of the structural unit represented by the formula (b) contained in the formula is less than 4, or 10 Compared with the case where it exceeds, the resin composition which is excellent in impact resistance and can obtain the resin molding with a high bending elastic modulus is provided.
According to the invention which concerns on Claim 2, compared with the case where the said copolymer is an olefin- (meth) acrylate-glycidyl methacrylate copolymer other than ethylene, it is excellent in impact resistance, and resin with a higher bending elastic modulus. A resin composition from which a molded body can be obtained is provided.
According to the invention of claim 3, the resin composition is obtained in which the degree of substitution of the cellulose acylate is less than 2.0 or more than 2.5 when the resin molded article is superior in impact resistance. Is provided.
According to the invention of claim 4, the mass ratio Ma / Mb in the copolymer is less than 4, or contains cellulose acetate as the cellulose acylate as compared with the case where it exceeds 10, and has impact resistance. Thus, a resin composition is obtained that is superior and can provide a resin molded product having a higher flexural modulus.
According to the invention which concerns on Claim 5, content of the said copolymer is less than 0.5 mass part with respect to 100 mass parts of the said cellulose acylate, or compared with the case where it exceeds 10 mass parts, There is provided a resin molded body from which a resin molded body excellent in impact resistance can be obtained.
According to the invention which concerns on Claim 6, the said mass ratio Ma / Mb in the said copolymer is less than 4, or contains the adipate ester containing compound compared with the case where it exceeds 10, and the shaping | molding at the time of resin molding There is provided a resin composition that provides a resin molded article that is superior in impact properties and superior in impact resistance.

請求項7に係る発明によれば、重量平均分子量3万以上9万以下のセルロースアシレート、及び、オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含有する樹脂組成物において、前記共重合体に含まれる前記式(a)で表される構成単位の量Maと前記式(b)で表される構成単位の量Mbとの質量比率Ma/Mbが4未満であるか、又は、10を超える樹脂組成物を用いた場合に比べ、耐衝撃性に優れ、曲げ弾性率の高い樹脂成形体が提供される。   According to the invention of claim 7, in the resin composition containing a cellulose acylate having a weight average molecular weight of 30,000 to 90,000 and an olefin- (meth) acrylate-glycidyl methacrylate copolymer, the copolymer The mass ratio Ma / Mb between the amount Ma of the structural unit represented by the formula (a) and the amount Mb of the structural unit represented by the formula (b) contained in the formula is less than 4, or 10 Compared with the case where the resin composition exceeding is used, the resin molded object which is excellent in impact resistance and has a high bending elastic modulus is provided.

請求項8に係る発明によれば、重量平均分子量3万以上9万以下のセルロースアシレート、及び、オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が反応してなる樹脂を含む樹脂成形体において、前記共重合体に含まれる前記式(a)で表される構成単位の量Maと前記式(b)で表される構成単位の量Mbとの質量比率Ma/Mbが4未満であるか、又は、10を超える場合に比べ、耐衝撃性に優れ、曲げ弾性率の高い樹脂成形体が提供される。
請求項9に係る発明によれば、前記共重合体が、エチレン以外のオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体である場合に比べ、耐衝撃性により優れ、曲げ弾性率のより高い樹脂成形体が提供される。
According to the invention concerning Claim 8, in the resin molding containing the resin formed by the reaction of cellulose acylate having a weight average molecular weight of 30,000 to 90,000 and an olefin- (meth) acrylate-glycidyl methacrylate copolymer Whether the mass ratio Ma / Mb between the amount Ma of the structural unit represented by the formula (a) and the amount Mb of the structural unit represented by the formula (b) contained in the copolymer is less than 4. Or compared with the case where it exceeds 10, the resin molded object which is excellent in impact resistance and has a high bending elastic modulus is provided.
According to the invention of claim 9, the resin is superior in impact resistance and has a higher flexural modulus than the case where the copolymer is an olefin- (meth) acrylate-glycidyl methacrylate copolymer other than ethylene. A shaped body is provided.

以下、本発明の一例である実施形態について説明する。   Embodiments that are examples of the present invention will be described below.

[樹脂組成物]
本実施形態に係る樹脂組成物は、重量平均分子量3万以上9万以下のセルロースアシレート、及び、共重合体に含まれる下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含む。
[Resin composition]
The resin composition according to the present embodiment includes cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and the content Ma of the structural unit represented by the following formula (a) contained in the copolymer and the following formula The olefin- (meth) acrylate-glycidyl methacrylate copolymer whose mass ratio Ma / Mb with respect to content Mb of the structural unit represented by (b) is 4-10 is included.

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。 In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.

本実施形態に係る樹脂組成物は、上記構成により、耐衝撃性に優れ、曲げ弾性率の高い樹脂成形体が得られる。その理由は、次の通り推測される。   The resin composition which concerns on this embodiment is excellent in impact resistance by the said structure, and a resin molding with a high bending elastic modulus is obtained. The reason is estimated as follows.

セルロースは剛直な化学構造であり、かつ分子内及び分子間水素結合力が強いことから極めて高い弾性率と耐熱性を有する一方、熱流動性がほとんどないため、プラスチックとしてはあまり用いられていない。
そこで、セルロースに置換基(特にアシル基)をつけることにより、可塑性を付与し、溶融温度を低下させることで熱流動性を向上し、プラスチックとして利用可能になった。
Cellulose has a rigid chemical structure and a strong intramolecular and intermolecular hydrogen bonding force, so it has extremely high elastic modulus and heat resistance, but has almost no thermal fluidity, so it is rarely used as plastic.
Therefore, by adding a substituent (particularly an acyl group) to cellulose, the plasticity is imparted, and the thermal fluidity is improved by lowering the melting temperature, making it usable as a plastic.

セルロースアシレートは、CO排出量が本質的に少なく、優れた環境性能を示す。しかしながら、例えば複写機及び家電部品などの筐体用途に用いる場合には、セルロースアシレートにおける分子内及び分子間水素結合が強く、剛性が高い半面、耐衝撃強度が低い。
また、特許文献1では、セルロースアシレート等のセルロースエステル100質量部に対して、可塑剤2〜100質量部、及び、(メタ)アクリル酸アルキルエステル単位を含むコアシェル構造の熱可塑性エラストマー1〜50質量部を含有させることによって、耐衝撃強度を向上させているが、本来の強みであった剛性、具体的には曲げ弾性率が低下する。
Cellulose acylate has essentially low CO 2 emissions and exhibits excellent environmental performance. However, when used for casing applications such as copying machines and home appliance parts, the intramolecular and intermolecular hydrogen bonds in cellulose acylate are strong, the rigidity is high, and the impact strength is low.
Moreover, in patent document 1, with respect to 100 mass parts of cellulose esters, such as a cellulose acylate, 2-100 mass parts of plasticizers, and the thermoplastic elastomer 1-50 of the core-shell structure containing a (meth) acrylic-acid alkylester unit. By including the mass part, the impact strength is improved, but the rigidity, which is the original strength, specifically, the bending elastic modulus is lowered.

本実施形態では、セルロースアシレートを使用した場合であっても、耐衝撃強度を向上させ、かつ本来の特性である曲げ弾性率の高さも確保することに成功した。具体的には、重量平均分子量3万以上9万以下のセルロースアシレート、及び、共重合体に含まれる前記式(a)で表される構成単位の含有量Maと前記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含む樹脂組成物により、耐衝撃性に優れ、曲げ弾性率の高い樹脂成形体が得られる。
前記セルロースアシレートの水酸基やエステル基と、前記共重合体におけるグリシジル基とが反応し、結合することにより、側鎖が前記式(a)で表される構成単位を含む嵩高い構造になり、水素結合力を緩和し、耐衝撃強度が向上する。
しかしながら、側鎖が嵩高くなると、通常はセルロースアシレートの特性である曲げ弾性率が低下する。
そこで、重量平均分子量3万以上9万以下の従来より分子量が低いセルロースアシレート、及び、前記質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を用いることによって、分子末端の水酸基もグリシジル基と反応し、分子鎖延長、側鎖の嵩高さ及び水素結合量が適切なバランスとなることで、高い曲げ弾性率を保ったまま耐衝撃性にも優れた樹脂成形体が得られる。
なお、セルロースアシレートの重量平均分子量が3万未満であると、分子鎖延長が不十分になり、曲げ弾性率が低下する。一方、セルロースアシレートの重量平均分子量が9万を超えると、分子末端とグリシジル基との反応確率が低くなり、曲げ弾性率の低下が起こる。
更に、前記共重合体の前記質量比率Ma/Mbが4未満であると、セルロースアシレートと前記共重合体との反応が進み過ぎて、水素結合性を低下させてしまうことにより、曲げ弾性率が低下する。また、前記共重合体の前記質量比率Ma/Mbが10を越えると、反応する共重合体が減少し、耐衝撃強度が不足する。
In the present embodiment, even when cellulose acylate is used, the impact strength is improved and the high bending elastic modulus, which is the original characteristic, has been successfully achieved. Specifically, the cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and the content Ma of the structural unit represented by the formula (a) contained in the copolymer and the formula (b) The resin composition containing an olefin- (meth) acrylate-glycidyl methacrylate copolymer having a mass ratio Ma / Mb of 4 to 10 with respect to the content Mb of the structural unit is excellent in impact resistance and flexural modulus. High resin molding is obtained.
By reacting and bonding the hydroxyl group or ester group of the cellulose acylate and the glycidyl group in the copolymer, the side chain becomes a bulky structure containing the structural unit represented by the formula (a), Reduces hydrogen bonding strength and improves impact strength.
However, when the side chain becomes bulky, the bending elastic modulus, which is usually a characteristic of cellulose acylate, decreases.
Therefore, a cellulose acylate having a weight average molecular weight of 30,000 to 90,000 and a olefin- (meth) acrylate-glycidyl methacrylate copolymer having a mass ratio Ma / Mb of 4 to 10 is used. As a result, the hydroxyl group at the end of the molecule also reacts with the glycidyl group, and the molecular chain extension, the bulkiness of the side chain, and the amount of hydrogen bonds are in an appropriate balance. A resin molded body is obtained.
In addition, when the weight average molecular weight of cellulose acylate is less than 30,000, the molecular chain extension becomes insufficient and the flexural modulus decreases. On the other hand, when the weight average molecular weight of cellulose acylate exceeds 90,000, the reaction probability between the molecular terminal and the glycidyl group is lowered, and the flexural modulus is lowered.
Furthermore, when the mass ratio Ma / Mb of the copolymer is less than 4, the reaction between the cellulose acylate and the copolymer proceeds excessively, resulting in a decrease in hydrogen bonding properties. Decreases. On the other hand, when the mass ratio Ma / Mb of the copolymer exceeds 10, the copolymer to be reacted is decreased and the impact strength is insufficient.

以下、本実施形態に係る樹脂組成物の詳細について説明する。   Hereinafter, the detail of the resin composition which concerns on this embodiment is demonstrated.

<セルロースアシレート>
本実施形態に係る樹脂組成物は、重量平均分子量3万以上9万以下のセルロースアシレートを含む。
<Cellulose acylate>
The resin composition according to this embodiment includes cellulose acylate having a weight average molecular weight of 30,000 to 90,000.

本実施形態に用いられるセルロースアシレートは、重量平均分子量3万以上9万以下、置換度2.0以上2.5以下のセルロースアシレートであることが好ましい。この特性を持つセルロースアシレートは、溶融温度が低く、透明性の高い。そして、前記特性を持つセルロースアシレートを樹脂成形体に使用すると、成形性が高く(例えば射出成形性が高く)、耐衝撃性により優れる樹脂成形体が得られる。
ただし、本実施形態に用いられるセルロースアシレートの特性は、重量平均分子量3万以上9万以下であること以外は、上記特性に限られず、セルロースアシレートの使用目的に応じて選択される。
The cellulose acylate used in the present embodiment is preferably a cellulose acylate having a weight average molecular weight of 30,000 to 90,000 and a substitution degree of 2.0 to 2.5. Cellulose acylate having this characteristic has a low melting temperature and high transparency. When a cellulose acylate having the above characteristics is used for a resin molded body, a resin molded body having high moldability (for example, high injection moldability) and excellent impact resistance can be obtained.
However, the properties of the cellulose acylate used in the present embodiment are not limited to the above properties except that the weight average molecular weight is 30,000 or more and 90,000 or less, and are selected according to the intended use of the cellulose acylate.

本実施形態に用いられるセルロースアシレートは、重量平均分子量3万以上9万以下であり、得られる樹脂成形体の耐衝撃性の観点から、4万以上9万以下が好ましく、6万以上9万以下がより好ましい。   The cellulose acylate used in the present embodiment has a weight average molecular weight of 30,000 to 90,000, preferably 40,000 to 90,000, and preferably 60,000 to 90,000 from the viewpoint of impact resistance of the resulting resin molded product. The following is more preferable.

本実施形態におけるセルロースアシレートの重量平均分子量は、以下の方法により測定する。
ジメチルアセトアミド/塩化リチウム=90/10溶液を用い、ゲルパーミエーションクロマトグラフィ装置(GPC装置:東ソー(株)製、HLC−8320GPC、カラム:TSKgelα−M)にてポリスチレン換算で測定する。
The weight average molecular weight of the cellulose acylate in this embodiment is measured by the following method.
A dimethylacetamide / lithium chloride = 90/10 solution is used and measured in terms of polystyrene using a gel permeation chromatography apparatus (GPC apparatus: manufactured by Tosoh Corporation, HLC-8320GPC, column: TSKgelα-M).

本実施形態に係るセルロースアシレートの重合度は、溶融温度の低減(成形性の向上)、得られる樹脂成形体の耐衝撃性の観点から、100以上350以下が好ましく、150以上350以下がより好ましく、200以上350以下が特に好ましい。   The degree of polymerization of the cellulose acylate according to this embodiment is preferably 100 or more and 350 or less, more preferably 150 or more and 350 or less, from the viewpoint of reduction of the melting temperature (improvement of moldability) and impact resistance of the obtained resin molding. Preferably, it is 200 or more and 350 or less.

ここで、重合度は、以下の手順で重量平均分子量から求める。
まず、セルロースアシレートの重量平均分子量を前記方法により測定する。
次いで、セルロースアシレートの構成単位分子量で割ることで、セルロースアシレートの重合度を求める。なお、例えば、セルロースアシレートの置換基がアセチル基の場合、構成単位分子量は、置換度が2.4のとき263、置換度が2.9のとき284となる
Here, the degree of polymerization is determined from the weight average molecular weight by the following procedure.
First, the weight average molecular weight of cellulose acylate is measured by the above method.
Next, the degree of polymerization of cellulose acylate is determined by dividing by the molecular weight of the structural unit of cellulose acylate. For example, when the substituent of cellulose acylate is an acetyl group, the structural unit molecular weight is 263 when the degree of substitution is 2.4, and 284 when the degree of substitution is 2.9.

本実施形態に係るセルロースアシレートの置換度は、溶融温度の低減(成形性の向上)、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、2.0以上2.5以下が好ましく、2.1以上2.5以下がより好ましく、2.2以上2.5以下が特に好ましい。   The degree of substitution of the cellulose acylate according to this embodiment is 2.0 or more and 2.5 or less from the viewpoint of reduction of melting temperature (improvement of moldability), impact resistance and bending elastic modulus of the obtained resin molded body. Preferably, 2.1 or more and 2.5 or less are more preferable, and 2.2 or more and 2.5 or less are especially preferable.

ここで、置換度とは、セルロースが有する水酸基がアシル基により置換されている程度を示す指標である。つまり、置換度は、セルロースアシレートのアシル化の程度を示す指標となる。具体的には、置換度は、セルロースアシレートのD−グルコピラノース単位に3個ある水酸基がアシル基で置換された置換個数の分子内平均を意味する。
そして、置換度は、H−NMR(JMN−ECA/JEOL RESONANCE社製)にて、セルロース由来水素とアシル基由来ピークの積分比から測定する。
Here, the degree of substitution is an index indicating the degree to which the hydroxyl group of cellulose is substituted with an acyl group. That is, the degree of substitution is an index indicating the degree of acylation of cellulose acylate. Specifically, the degree of substitution means an intramolecular average of the number of substitutions in which three hydroxyl groups in the D-glucopyranose unit of cellulose acylate are substituted with acyl groups.
The degree of substitution is measured from the integral ratio of the cellulose-derived hydrogen and the acyl group-derived peak by 1 H-NMR (manufactured by JMN-ECA / JEOL RESONANCE).

本実施形態に用いられるセルロースアシレートが有するアシル基としては、特に制限はないが、得られる成形体の耐衝撃性及び曲げ弾性率の観点から、直鎖状又は分岐鎖状の炭素数1以上6以下のアシル基であることが好ましく、ホルミル基、アセチル基、プロピオニル基、ブチロイル基、2−メチルプロピオニル基、及び、ペンタノイル基よりなる群から選ばれた少なくとも1種のアシル基であることがより好ましく、アセチル基、及び、プロピオニル基よりなる群から選ばれた少なくとも1種のアシル基であることが更に好ましく、アセチル基であることが特に好ましい。
また、実施形態に用いられるセルロースアシレートは、アシル基を1種単独で有していても、2種以上を有していてもよい。
The acyl group possessed by the cellulose acylate used in the present embodiment is not particularly limited, but from the viewpoint of impact resistance and bending elastic modulus of the obtained molded product, linear or branched carbon number of 1 or more. The acyl group is preferably 6 or less, and is at least one acyl group selected from the group consisting of formyl group, acetyl group, propionyl group, butyroyl group, 2-methylpropionyl group, and pentanoyl group. More preferably, it is more preferably at least one acyl group selected from the group consisting of an acetyl group and a propionyl group, and particularly preferably an acetyl group.
Moreover, the cellulose acylate used in the embodiment may have one acyl group alone or two or more acyl groups.

本実施形態に用いられるセルロースアシレートとして具体的には、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、及び、セルロースアセテートブチレート等が挙げられる。   Specific examples of the cellulose acylate used in the present embodiment include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.

本実施形態に用いられるセルロースアシレートは、1種単独で使用しても、2種以上を併用してもよい。
本実施形態に係る樹脂組成物におけるセルロースアシレートの含有量は、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、樹脂組成物の全質量に対し、50質量%以上99.9質量%以下であることが好ましく、65質量%以上99.8質量%以下であることがより好ましく、75質量%以上99.5質量%以下であることが特に好ましい。
The cellulose acylate used in this embodiment may be used alone or in combination of two or more.
The content of cellulose acylate in the resin composition according to the present embodiment is 50% by mass or more and 99.9% with respect to the total mass of the resin composition from the viewpoint of impact resistance and bending elastic modulus of the obtained resin molded body. It is preferably at most mass%, more preferably at least 65 mass% and at most 99.8 mass%, particularly preferably at least 75 mass% and at most 99.5 mass%.

なお、本実施形態に係る樹脂組成物は、前記セルロースアシレートと前記共重合体とが全量ではないものの、一部反応していると推定される。
前記セルロースアシレートの含有量は、未反応のセルロースアシレートの量だけでなく、反応した樹脂におけるセルロースアシレート成分の量も含めるものとする。
また、本実施形態に係る樹脂組成物は、前記セルロースアシレートと前記共重合体とが反応してなる樹脂を含むことが好ましい。
In addition, although the resin composition which concerns on this embodiment is not the whole quantity, it is estimated that the said cellulose acylate and the said copolymer have partially reacted.
The cellulose acylate content includes not only the amount of unreacted cellulose acylate but also the amount of cellulose acylate component in the reacted resin.
Moreover, it is preferable that the resin composition which concerns on this embodiment contains resin formed by the said cellulose acylate and the said copolymer reacting.

本実施形態に用いられるセルロースアシレートの製造方法は、特に制限はなく、例えば、セルロースに対し、アシル化、及び、低分子量化(解重合)、並びに、必要に応じて、脱アシル化を行う方法により好適に製造される。また、市販品のセルロースアシレートを、前記重量平均分子量となるように、低分子量化(解重合)等を行って製造してもよい。   There is no restriction | limiting in particular in the manufacturing method of the cellulose acylate used for this embodiment, For example, acylation, low molecular weight (depolymerization), and deacylation are performed with respect to a cellulose as needed. It is suitably manufactured by the method. Moreover, you may manufacture a cellulose acylate of a commercial item by performing low molecular weight (depolymerization) etc. so that it may become the said weight average molecular weight.

<オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体>
本実施形態に係る樹脂組成物は、オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含み、前記共重合体は、下記式(a)で表される構成単位及び下記式(b)で表される構成単位を有し、前記共重合体における下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下である。
<Olefin- (meth) acrylate-glycidyl methacrylate copolymer>
The resin composition according to the present embodiment includes an olefin- (meth) acrylate-glycidyl methacrylate copolymer, and the copolymer is represented by a structural unit represented by the following formula (a) and a formula (b) below. The mass ratio Ma / of the content Ma of the structural unit represented by the following formula (a) in the copolymer and the content Mb of the structural unit represented by the following formula (b) in the copolymer Mb is 4 or more and 10 or less.

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。 In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.

式(a)で表される構成単位は、(メタ)アクリレート由来の構成単位であることが好ましい。
式(a)におけるRは、水素原子であることが好ましい。
式(a)におけるRは、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、炭素数1以上6以下のアルキル基であることが好ましく、炭素数1以上4以下のアルキル基であることがより好ましく、メチル基又はエチル基であることが更に好ましく、メチル基であることが特に好ましい。
また、Rにおける前記アルキル基は、直鎖アルキル基であっても、分岐アルキル基であってもよい。
The structural unit represented by the formula (a) is preferably a structural unit derived from (meth) acrylate.
R 1 in formula (a) is preferably a hydrogen atom.
R 2 in the formula (a) is preferably an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 4 carbon atoms from the viewpoint of impact resistance and bending elastic modulus of the obtained resin molded body. Is more preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
Further, the alkyl group in R 2 may be a linear alkyl group or a branched alkyl group.

前記共重合体において、式(a)で表される構成単位を1種単独で有していても、2種以上を有していてもよい。
前記共重合体における式(a)で表される構成単位の含有量は、得られる樹脂成形体の耐衝撃性の観点から、前記共重合体の全質量に対し、10質量%以上40質量%以下であることが好ましく、12質量%以上35質量%以下であることがより好ましく、15質量%以上30質量%以下であることが特に好ましい。
In the copolymer, the structural unit represented by the formula (a) may be used alone or in combination of two or more.
The content of the structural unit represented by the formula (a) in the copolymer is 10% by mass or more and 40% by mass with respect to the total mass of the copolymer from the viewpoint of impact resistance of the obtained resin molding. Or less, more preferably 12% by mass or more and 35% by mass or less, and particularly preferably 15% by mass or more and 30% by mass or less.

式(b)で表される構成単位は、グリシジルメタクリレート由来の構成単位であることが好ましい。
前記共重合体における式(b)で表される構成単位の含有量は、得られる樹脂成形体の耐衝撃性の観点から、前記共重合体の全質量に対し、0.5質量%以上15質量%以下であることが好ましく、1質量%以上12質量%以下であることがより好ましく、2質量%以上10質量%以下であることが特に好ましい。
The structural unit represented by the formula (b) is preferably a structural unit derived from glycidyl methacrylate.
The content of the structural unit represented by the formula (b) in the copolymer is 0.5% by mass or more and 15% by mass or more based on the total mass of the copolymer from the viewpoint of impact resistance of the obtained resin molded body. It is preferably at most mass%, more preferably at least 1 mass% and at most 12 mass%, particularly preferably at least 2 mass% and at most 10 mass%.

前記共重合体における前記式(a)で表される構成単位の含有量Maと前記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbは、4以上10以下であり、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、5以上9以下であることが好ましく、6以上8.5以下であることがより好ましい。   The mass ratio Ma / Mb between the content Ma of the structural unit represented by the formula (a) and the content Mb of the structural unit represented by the formula (b) in the copolymer is 4 or more and 10 or less. In view of the impact resistance and the flexural modulus of the resin molded product obtained, it is preferably 5 or more and 9 or less, and more preferably 6 or more and 8.5 or less.

前記共重合体は、オレフィン由来の構成単位を有する。
前記共重合体に共重合するオレフィンとしては、エチレン性不飽和基を有する脂肪族炭化水素化合物であることが好ましく、エチレン及びα−オレフィンよりなる群から選ばれた少なくとも1種の化合物であることが好ましく、エチレン及びプロピレンよりなる群から選ばれた少なくとも1種の化合物であることが更に好ましく、エチレンであることが特に好ましい。
また、前記共重合体は、前記オレフィン由来の構成単位として、下記式(c)で表される構成単位を有することが好ましい。
The copolymer has structural units derived from olefins.
The olefin copolymerized with the copolymer is preferably an aliphatic hydrocarbon compound having an ethylenically unsaturated group, and is at least one compound selected from the group consisting of ethylene and α-olefins. It is more preferable that it is at least one compound selected from the group consisting of ethylene and propylene, and ethylene is particularly preferable.
Moreover, it is preferable that the said copolymer has a structural unit represented by following formula (c) as a structural unit derived from the said olefin.

式中、Rは水素原子又は炭素数1以上8以下のアルキル基を表す。 In the formula, R 3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.

式(c)におけるRは、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、水素原子又は炭素数1以上6以下のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが特に好ましい。
また、Rにおける前記アルキル基は、直鎖アルキル基であっても、分岐アルキル基であってもよいが、直鎖アルキル基であることが好ましい。
R 3 in the formula (c) is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms from the viewpoint of impact resistance and bending elastic modulus of the obtained resin molded body, and is preferably a hydrogen atom or a methyl group. More preferably, it is particularly preferably a hydrogen atom.
The alkyl group in R 3 may be a linear alkyl group or a branched alkyl group, but is preferably a linear alkyl group.

前記共重合体において、式(c)で表される構成単位を1種単独で有していても、2種以上を有していてもよい。
前記共重合体における式(c)で表される構成単位の含有量は、得られる樹脂成形体の耐衝撃性の観点から、前記共重合体の全質量に対し、50質量%以上89.5質量%以下であることが好ましく、60質量%以上85質量%以下であることがより好ましく、65質量%以上80質量%以下であることが特に好ましい。
In the copolymer, the structural unit represented by the formula (c) may be used alone or in combination of two or more.
The content of the structural unit represented by the formula (c) in the copolymer is 50% by mass or more and 89.5% by mass with respect to the total mass of the copolymer from the viewpoint of impact resistance of the obtained resin molded body. It is preferably at most mass%, more preferably at least 60 mass% and at most 85 mass%, particularly preferably at least 65 mass% and at most 80 mass%.

前記共重合体は、式(a)乃至式(c)で表される構成単位以外の他の構成単位を有していてもよいが、有しないことが好ましい。
他の構成単位を形成するモノマーとしては、特に制限はなく、前述した以外の公知のエチレン性不飽和化合物が挙げられる。
他の構成単位を形成するモノマーとして具体的には、スチレン化合物、ビニルエーテル化合物、ビニルエステル化合物、及び、前述した以外の(メタ)アクリレート化合物等が挙げられる。
Although the said copolymer may have other structural units other than the structural unit represented by Formula (a) thru | or Formula (c), it is preferable not to have.
There is no restriction | limiting in particular as a monomer which forms another structural unit, Well-known ethylenically unsaturated compounds other than having mentioned above are mentioned.
Specific examples of monomers that form other structural units include styrene compounds, vinyl ether compounds, vinyl ester compounds, and (meth) acrylate compounds other than those described above.

前記共重合体において、他の構成単位を1種単独で有していても、2種以上を有していてもよい。
前記共重合体における他の構成単位の含有量は、前記共重合体の全質量に対し、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、他の構成単位を有しないことが特に好ましい。
The said copolymer may have another structural unit individually by 1 type, or may have 2 or more types.
The content of other structural units in the copolymer is preferably 10% by mass or less, more preferably 5% by mass or less, and more preferably 1% by mass or less with respect to the total mass of the copolymer. More preferably, it is particularly preferable that there is no other structural unit.

前記共重合体は、オレフィン−(メタ)アクリレート−グリシジルメタクリレートの3元共重合体であることが好ましい。
また、前記共重合体は、式(a)で表される構成単位、式(b)で表される構成単位、及び、式(c)で表される構成単位からなる共重合体であることが好ましい。
The copolymer is preferably an olefin- (meth) acrylate-glycidyl methacrylate ternary copolymer.
The copolymer is a copolymer composed of a structural unit represented by the formula (a), a structural unit represented by the formula (b), and a structural unit represented by the formula (c). Is preferred.

前記共重合体の末端の構造は、特に制限はなく、反応条件や反応停止剤の種類により、種々の基を形成する場合があるが、水素原子、ヒドロキシ基、エチレン性不飽和基、アルコキシ基、及び、アルキルチオ基等が挙げられる。   The terminal structure of the copolymer is not particularly limited and may form various groups depending on the reaction conditions and the type of reaction terminator. However, a hydrogen atom, a hydroxy group, an ethylenically unsaturated group, an alkoxy group may be formed. And an alkylthio group.

前記共重合体の重量平均分子量Mwは、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、5,000以上20万以下であることが好ましく、1万以上10万以下であることがより好ましい。   The weight average molecular weight Mw of the copolymer is preferably 5,000 or more and 200,000 or less, preferably 10,000 or more and 100,000 or less, from the viewpoint of impact resistance and bending elastic modulus of the obtained resin molding. Is more preferable.

本実施形態に用いられる前記共重合体は、1種単独で使用しても、2種以上を併用してもよい。
本実施形態に係る樹脂組成物における前記共重合体の含有量は、得られる樹脂成形体の耐衝撃性及び曲げ弾性率の観点から、前記セルロースアシレート100質量部に対し、0.1質量部以上20質量部以下であることが好ましく、0.5質量部以上10質量部以下であることがより好ましく、1質量部以上8質量部以下であることが特に好ましい。
The said copolymer used for this embodiment may be used individually by 1 type, or may use 2 or more types together.
The content of the copolymer in the resin composition according to the present embodiment is 0.1 part by mass with respect to 100 parts by mass of the cellulose acylate from the viewpoint of impact resistance and bending elastic modulus of the obtained resin molding. It is preferably 20 parts by mass or less, more preferably 0.5 parts by mass or more and 10 parts by mass or less, and particularly preferably 1 part by mass or more and 8 parts by mass or less.

本実施形態に係る樹脂組成物は、必要に応じて、可塑剤、その他の成分等を含んでもよい。   The resin composition according to the present embodiment may include a plasticizer, other components, and the like as necessary.

<可塑剤>
本実施形態に係る樹脂組成物は、成形性及び得られる樹脂成形体の耐衝撃性の観点から、可塑剤を含むことが好ましい。
また、本実施形態に係る樹脂組成物は、得られる樹脂成形体の曲げ弾性率の観点からは、可塑剤を含まないことが好ましい。
可塑剤としては、例えば、アジピン酸エステル含有化合物、ポリエーテルエステル化合物、セバシン酸エステル化合物、グリコールエステル化合物、酢酸エステル、二塩基酸エステル化合物、リン酸エステル化合物、フタル酸エステル化合物、樟脳、クエン酸エステル、ステアリン酸エステル、金属石鹸、ポリオール、ポリアルキレンオキサイド等が挙げられる。
これらの中でも、アジピン酸エステル含有化合物、ポリエーテルエステル化合物が好ましく、アジピン酸エステル含有化合物がより好ましい。
<Plasticizer>
The resin composition according to the present embodiment preferably contains a plasticizer from the viewpoints of moldability and impact resistance of the obtained resin molded body.
Moreover, it is preferable that the resin composition which concerns on this embodiment does not contain a plasticizer from a viewpoint of the bending elastic modulus of the resin molding obtained.
Examples of plasticizers include adipic acid ester-containing compounds, polyether ester compounds, sebacic acid ester compounds, glycol ester compounds, acetate esters, dibasic acid ester compounds, phosphate ester compounds, phthalate ester compounds, camphor, citric acid Examples include esters, stearates, metal soaps, polyols, polyalkylene oxides, and the like.
Among these, adipic acid ester-containing compounds and polyether ester compounds are preferable, and adipic acid ester-containing compounds are more preferable.

−アジピン酸エステル含有化合物−
アジピン酸エステル含有化合物(アジピン酸エステルを含む化合物)とは、アジピン酸エステル単独の化合物、又は、アジピン酸エステルとアジピン酸エステル以外の成分(アジピン酸エステルとは異なる化合物)との混合物であることを示す。但し、アジピン酸エステル含有化合物は、アジピン酸エステルを全成分に対して50質量%以上で含むことがよい。
-Adipate-containing compound-
The adipic acid ester-containing compound (compound containing adipic acid ester) is a compound of adipic acid ester alone or a mixture of adipic acid ester and a component other than adipic acid ester (a compound different from adipic acid ester) Indicates. However, the adipic acid ester-containing compound may contain 50% by mass or more of the adipic acid ester with respect to all components.

アジピン酸エステルとしては、例えば、アジピン酸ジエステル、アジピン酸ポリエステルが挙げられる。具体的には、下記一般式(AE−1)で示されるアジピン酸ジエステル、及び下記一般式(AE−2)で示されるアジピン酸ポリエステル等が挙げられる。   Examples of the adipic acid ester include adipic acid diester and adipic acid polyester. Specifically, an adipic acid diester represented by the following general formula (AE-1), an adipic acid polyester represented by the following general formula (AE-2), and the like can be given.

一般式(AE−1)及び(AE−2)中、RAE1及びRAE2は、それぞれ独立に、アルキル基、又はポリオキシアルキル基[−(C2X−O)−RA1](但し、RA1はアルキル基を、xは1以上10以下の整数を、yは1以上10以下の整数を、表す。)を表す。
AE3は、アルキレン基を表す。
m1は、1以上20以下の整数を表す。
m2は、1以上10以下の整数を表す。
In General Formulas (AE-1) and (AE-2), R AE1 and R AE2 are each independently an alkyl group or a polyoxyalkyl group [— (C x H 2X —O) y —R A1 ] ( However, R A1 represents an alkyl group, x represents an integer of 1 to 10, and y represents an integer of 1 to 10.
R AE3 represents an alkylene group.
m1 represents an integer of 1 or more and 20 or less.
m2 represents an integer of 1 or more and 10 or less.

一般式(AE−1)及び(AE−2)中、RAE1及びRAE2が表すアルキル基は、炭素数1以上6以下のアルキル基が好ましく、炭素数1以上4以下のアルキル基がより好ましい。RAE1及びRAE2が表すアルキル基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状、分岐状が好ましい。
一般式(AE−1)及び(AE−2)中、RAE1及びRAE2が表すポリオキシアルキル基[−(C2X−O)−RA1]において、RA1が表すアルキル基は、炭素数1以上6以下のアルキル基が好ましく、炭素数1以上4以下のアルキル基がより好ましい。RA1が表すアルキル基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状、分岐状が好ましい。
In general formulas (AE-1) and (AE-2), the alkyl group represented by R AE1 and R AE2 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. . The alkyl group represented by R AE1 and R AE2 may be linear, branched or cyclic, but is preferably linear or branched.
In the general formulas (AE-1) and (AE-2), in the polyoxyalkyl group [— (C x H 2X —O) y —R A1 ] represented by R AE1 and R AE2 , the alkyl group represented by R A1 is An alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable. The alkyl group represented by R A1 may be linear, branched or cyclic, but is preferably linear or branched.

一般式(AE−2)中、RAE3が表すアルキレン基は、炭素数1以上6以下のアルキレン基が好ましく、炭素数1以上4以下のアルキレン基がより好ましい。アルキレン基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状、分岐状が好ましい。 In general formula (AE-2), the alkylene group represented by R AE3 is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms. The alkylene group may be linear, branched or cyclic, but is preferably linear or branched.

一般式(AE−1)及び(AE−2)中、各符号が表す基は、置換基で置換されていてもよい。置換基としては、アルキル基、アリール基、ヒドロキシル基等が挙げられる。   In general formulas (AE-1) and (AE-2), the group represented by each symbol may be substituted with a substituent. Examples of the substituent include an alkyl group, an aryl group, and a hydroxyl group.

アジピン酸エステルの分子量(又は重量平均分子量)は、200以上5000以下が好ましく、300以上2000以下がより好ましい。なお、重量平均分子量は、前述のセルロースアシレートの重量平均分子量の測定方法に準拠して測定された値である。   The molecular weight (or weight average molecular weight) of the adipic acid ester is preferably 200 or more and 5000 or less, and more preferably 300 or more and 2000 or less. The weight average molecular weight is a value measured according to the above-described method for measuring the weight average molecular weight of cellulose acylate.

以下、アジピン酸エステル含有化合物の具体例を示すが、これに限られるわけではない。   Hereinafter, although the specific example of an adipic acid ester containing compound is shown, it is not necessarily restricted to this.

−ポリエーテルエステル化合物−
ポリエーテルエステル化合物として具体的には、例えば、一般式(EE)で表されるポリエーテルエステル化合物が挙げられる。
-Polyetherester compound-
Specific examples of the polyetherester compound include a polyetherester compound represented by the general formula (EE).


一般式(EE)中、REE1及びREE2はそれぞれ独立に、炭素数2以上10以下のアルキレン基を表す。AEE1及びAEE2はそれぞれ独立に、炭素数1以上6以下のアルキル基、炭素数6以上12以下のアリール基、又は、炭素数7以上18以下のアラルキル基を表す。mは、1以上の整数を表す。 In general formula (EE), REE1 and REE2 each independently represent an alkylene group having 2 to 10 carbon atoms. AEE1 and AEE2 each independently represent an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms. m represents an integer of 1 or more.

一般式(EE)中、REE1が表すアルキレン基としては、炭素数3以上10以下のアルキレン基が好ましく、炭素数3以上6以下のアルキレン基がより好ましい。REE1が表すアルキレン基は、直鎖状、分岐状、及び環式のいずれであってもよいが、直鎖状が好ましい。
EE1が表すアルキレン基の炭素数を3以上にすると、樹脂組成物の流動性の低下が抑制され、熱可塑性が発現しやすくなる。REE1が表すアルキレン基の炭素数を10以下又はREE1が表すアルキレン基を直鎖状にすると、セルロースアシレートとの親和性が高まりやすくなる。このため、REE1が表すアルキレン基を直鎖状とし、且つ炭素数を上記範囲とすると、樹脂組成物の成形性が向上する。
これら観点から、特に、REE1が表すアルキレン基は、n−ヘキシレン基(−(CH−)が好ましい。つまり、ポリエーテルエステル化合物は、REE1としてn−ヘキシレン基(−(CH−)を表す化合物であることが好ましい。
In general formula (EE), as an alkylene group which REE1 represents, a C3-C10 alkylene group is preferable and a C3-C6 alkylene group is more preferable. The alkylene group represented by REE1 may be linear, branched, or cyclic, but is preferably linear.
When the number of carbon atoms of the alkylene group represented by REE1 is 3 or more, a decrease in fluidity of the resin composition is suppressed, and thermoplasticity is easily exhibited. When the alkylene group represented by REE1 has 10 or less carbon atoms or the alkylene group represented by REE1 is linear, the affinity with cellulose acylate is likely to increase. For this reason, when the alkylene group represented by REE1 is linear, and the carbon number is in the above range, the moldability of the resin composition is improved.
From these viewpoints, the alkylene group represented by REE1 is particularly preferably an n-hexylene group (— (CH 2 ) 6 —). That is, the polyether ester compound is preferably a compound representing an n-hexylene group (— (CH 2 ) 6 —) as R EE1 .

一般式(EE)中、REE2が表すアルキレン基としては、炭素数3以上10以下のアルキレン基が好ましく、炭素数3以上6以下のアルキレン基がより好ましい。REE2が表すアルキレン基は、直鎖状、分岐状、及び環式のいずれであってもよいが、直鎖状が好ましい。
EE2が表すアルキレン基の炭素数を3以上にすると、樹脂組成物の流動性の低下が抑制され、熱可塑性が発現しやすくなる。REE2が表すアルキレン基の炭素数を10以下又はREE2が表すアルキレン基を直鎖状にすると、セルロースアシレートとの親和性が高まりやすくなる。このため、REE2が表すアルキレン基を直鎖状とし、且つ炭素数を上記範囲とすると、樹脂組成物の成形性が向上する。
これら観点から、特に、REE2が表すアルキレン基は、n−ブチレン基(−(CH−)が好ましい。つまり、ポリエーテルエステル化合物は、REE2としてn−ブチレン基(−(CH−)を表す化合物であることが好ましい。
In general formula (EE), as an alkylene group which REE2 represents, a C3-C10 alkylene group is preferable and a C3-C6 alkylene group is more preferable. The alkylene group represented by REE2 may be linear, branched or cyclic, but is preferably linear.
When the number of carbon atoms of the alkylene group represented by REE2 is 3 or more, a decrease in fluidity of the resin composition is suppressed and thermoplasticity is easily exhibited. When the alkylene group represented by REE2 has a carbon number of 10 or less or the alkylene group represented by REE2 is linear, the affinity with cellulose acylate is likely to increase. For this reason, when the alkylene group represented by REE2 is linear and the carbon number is in the above range, the moldability of the resin composition is improved.
From these viewpoints, the alkylene group represented by REE2 is particularly preferably an n-butylene group (— (CH 2 ) 4 —). That is, the polyether ester compound is preferably a compound representing an n-butylene group (— (CH 2 ) 4 —) as REE2 .

一般式(EE)中、AEE1、及びAEE2が表すアルキル基は、炭素数1以上6以下のアルキル基であり、炭素数2以上4以下のアルキル基がより好ましい。AEE1、及びAEE2が表すアルキル基は、直鎖状、分岐状、及び環式のいずれであってもよいが、分岐状が好ましい。
EE1、及びAEE2が表すアリール基は、炭素数6以上12以下のアリール基であり、フェニル基、ナフチル基等の無置換アリール基、又はt−ブチルフェニル基、ヒドロキシフェニル基等の置換フェニル基が挙げられる。
EE1、及びAEE2が表すアラルキル基としては、−R−Phで示される基である。Rは、直鎖状又は分岐状の炭素数1以上6以下(好ましくは炭素数2以上4以下)のアルキレン基を表す。Phは、無置換フェニル基、又は直鎖状若しくは分岐状の炭素数1以上6以下(好ましくは炭素数2以上6以下)のアルキル基で置換された置換フェニル基を表す。アラルキル基として具体的には、例えば、ベンジル基、フェニルメチル基(フェネチル基)、フェニルプロピル基、フェニルブチル基等の無置換アラルキル基、又はメチルベンジル基、ジメチルベンジル基、メチルフェネチル基等の置換アラルキル基が挙げられる。
In the general formula (EE), the alkyl group represented by A EE1, and A EE2 is an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 2 to 4 carbon atoms. A EE1, and alkyl group represented by A EE2 are linear, branched, and may be either cyclic, branched is preferred.
Aryl groups A EE1, and represented by A EE2 is an aryl group having 6 to 12 carbon atoms, a phenyl group, an unsubstituted aryl group such as a naphthyl group, or t- butyl phenyl, substituted phenyl such as hydroxyphenyl group Groups.
A EE1, and aralkyl group represented by A EE2, a group represented by -R A -Ph. R A represents a linear or branched alkylene group having 1 to 6 carbon atoms (preferably 2 to 4 carbon atoms). Ph represents an unsubstituted phenyl group or a substituted phenyl group substituted with a linear or branched alkyl group having 1 to 6 carbon atoms (preferably 2 to 6 carbon atoms). Specific examples of the aralkyl group include unsubstituted aralkyl groups such as benzyl group, phenylmethyl group (phenethyl group), phenylpropyl group, and phenylbutyl group, or substituted groups such as methylbenzyl group, dimethylbenzyl group, and methylphenethyl group. An aralkyl group is mentioned.

EE1、及びAEE2の少なくとも一方は、アリール基又はアラルキル基を表すことが好ましい。つまり、ポリエーテルエステル化合物は、AEE1、及びAEE2の少なくとも一方としてアリール基(好ましくはフェニル基)又はアラルキル基を表す化合物であることが好ましく、AEE1、及びAEE2の双方としてアリール基(好ましくはフェニル基)又はアラルキル基を表す化合物であることが好ましい。 At least one of A EE1, and A EE2 is preferably an aryl group or an aralkyl group. In other words, a polyether ester compound, A EE1, and preferably (preferably a phenyl group) an aryl group as at least one of A EE2 is a compound represented or aralkyl group, A EE1, and aryl groups as both A EE2 ( A compound that preferably represents a phenyl group) or an aralkyl group is preferred.

次に、ポリエーテルエステル化合物の特性について説明する。   Next, the characteristics of the polyetherester compound will be described.

ポリエーテルエステル化合物の重量平均分子量(Mw)は、450以上650以下が好ましく、500以上600以下がより好ましい。
重量平均分子量(Mw)を450以上にすると、ブリード(析出する現象)し難くなる。重量平均分子量(Mw)を650以下にすると、セルロースアシレートとの親和性が高まりやすくなる。このため、重量平均分子量(Mw)を上記範囲にすると、樹脂組成物の成形性が向上する。
なお、ポリエーテルエステル化合物の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)により測定される値である。具体的には、GPCによる分子量測定は、測定装置として東ソー(株)製、HPLC1100を用い、東ソー(株)製カラム・TSKgel GMHHR−M+TSKgel GMHHR−M(7.8mmI.D.30cm)を使用し、クロロホルム溶媒で行う。そして、重量平均分子量は、この測定結果から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出する。
The weight average molecular weight (Mw) of the polyetherester compound is preferably from 450 to 650, more preferably from 500 to 600.
When the weight average molecular weight (Mw) is 450 or more, bleeding (a phenomenon of precipitation) becomes difficult. When the weight average molecular weight (Mw) is 650 or less, the affinity with cellulose acylate is likely to increase. For this reason, when a weight average molecular weight (Mw) is made into the said range, the moldability of a resin composition will improve.
In addition, the weight average molecular weight (Mw) of a polyetherester compound is a value measured by a gel permeation chromatograph (GPC). Specifically, the molecular weight measurement by GPC uses Tosoh Co., Ltd. product and HPLC1100 as a measuring apparatus, and uses Tosoh Co., Ltd. column and TSKgel GMHHR-M + TSKgel GMHHR-M (7.8 mm ID30cm). Perform with chloroform solvent. The weight average molecular weight is calculated from the measurement result using a molecular weight calibration curve prepared with a monodisperse polystyrene standard sample.

ポリエーテルエステル化合物の25℃における粘度は、35mPa・s以上50mPa・s以下が好ましく、40mPa・s以上45mPa・s以下がより好ましい。
粘度を35mPa・s以上にすると、セルロースアシレートへの分散性が向上しやすくなる。粘度を50mPa・s以下にすると、ポリエーテルエステル化合物の分散の異方性が出現し難くなる。このため、粘度を上記範囲にすると、樹脂組成物の成形性が向上する。
なお、粘度は、E型粘度計により測定される値である。
The viscosity of the polyether ester compound at 25 ° C. is preferably 35 mPa · s or more and 50 mPa · s or less, and more preferably 40 mPa · s or more and 45 mPa · s or less.
When the viscosity is 35 mPa · s or more, dispersibility in cellulose acylate is easily improved. When the viscosity is 50 mPa · s or less, the anisotropy of the dispersion of the polyetherester compound hardly appears. For this reason, when a viscosity is made into the said range, the moldability of a resin composition will improve.
The viscosity is a value measured with an E-type viscometer.

ポリエーテルエステル化合物の溶解度パラメータ(SP値)が、9.5以上9.9以下が好ましく、9.6以上9.8以下がより好ましい。
溶解度パラメータ(SP値)を9.5以上9.9以下にすると、セルロースアシレートへの分散性が向上しやすくなる。
溶解度パラメータ(SP値)は、Fedorの方法により算出された値である、具体的には、溶解度パラメータ(SP値)は、例えば、Polym.Eng.Sci.,vol.14,p.147(1974)の記載に準拠し、下記式によりSP値を算出する。
式:SP値=√(Ev/v)=√(ΣΔei/ΣΔvi)
(式中、Ev:蒸発エネルギー(cal/mol)、v:モル体積(cm/mol)、Δei:それぞれの原子又は原子団の蒸発エネルギー、Δvi:それぞれの原子又は原子団のモル体積)
なお、溶解度パラメータ(SP値)は、単位として(cal/cm1/2を採用するが、慣行に従い単位を省略し、無次元で表記する。
The solubility parameter (SP value) of the polyether ester compound is preferably from 9.5 to 9.9, and more preferably from 9.6 to 9.8.
When the solubility parameter (SP value) is 9.5 or more and 9.9 or less, the dispersibility in cellulose acylate is easily improved.
The solubility parameter (SP value) is a value calculated by the method of Fedor. Specifically, the solubility parameter (SP value) is, for example, Polym. Eng. Sci. , Vol. 14, p. 147 (1974), the SP value is calculated by the following formula.
Formula: SP value = √ (Ev / v) = √ (ΣΔei / ΣΔvi)
(Wherein Ev: evaporation energy (cal / mol), v: molar volume (cm 3 / mol), Δei: evaporation energy of each atom or atomic group, Δvi: molar volume of each atom or atomic group)
The solubility parameter (SP value) employs (cal / cm 3 ) 1/2 as a unit, but the unit is omitted in accordance with common practice and expressed in a dimensionless manner.

以下、ポリエーテルエステル化合物の具体例を示すが、これに限られるわけではない。   Hereinafter, although the specific example of a polyetherester compound is shown, it is not necessarily restricted to this.

本実施形態に係る樹脂組成物における可塑剤の含有量は、樹脂組成物の全質量に対し、15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。可塑剤の比率が上記範囲であることにより、弾性率がより高くなり、耐熱性もより高くなる。また、可塑剤のブリードも抑制される。   The content of the plasticizer in the resin composition according to this embodiment is preferably 15% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less with respect to the total mass of the resin composition. When the ratio of the plasticizer is within the above range, the elastic modulus becomes higher and the heat resistance becomes higher. In addition, bleeding of the plasticizer is also suppressed.

<その他の成分>
その他の成分としては、例えば、難燃剤、相溶化剤、酸化防止剤、離型剤、耐光剤、耐候剤、着色剤、顔料、改質剤、ドリップ防止剤、帯電防止剤、加水分解防止剤、充填剤、補強剤(ガラス繊維、炭素繊維、タルク、クレー、マイカ、ガラスフレーク、ミルドガラス、ガラスビーズ、結晶性シリカ、アルミナ、窒化ケイ素、窒化アルミニウム、ボロンナイトライド等)などが挙げられる。これらの成分の含有量は、樹脂組成物全体に対してそれぞれ、0質量%以上5質量%以下であることが好ましい。ここで、「0質量%」とはその他の成分を含まないことを意味する。
<Other ingredients>
Examples of other components include flame retardants, compatibilizers, antioxidants, mold release agents, light proofing agents, weathering agents, colorants, pigments, modifiers, anti-drip agents, antistatic agents, and hydrolysis inhibitors. , Fillers, reinforcing agents (glass fiber, carbon fiber, talc, clay, mica, glass flake, milled glass, glass beads, crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, etc.). The content of these components is preferably 0% by mass to 5% by mass with respect to the entire resin composition. Here, “0 mass%” means that other components are not included.

(他の樹脂)
本実施形態に係る樹脂組成物は、前記セルロースアシレート及び前記共重合体以外の他の樹脂を含有していてもよい。但し、他の樹脂は、樹脂組成物の全質量に対し、5質量%以下であることが好ましく、1質量%であることがより好ましく、他の樹脂を含有しないことが特に好ましい。
他の樹脂としては、例えば、従来公知の熱可塑性樹脂が挙げられ、具体的には、ポリカーボネート樹脂;ポリプロピレン樹脂;ポリエステル樹脂;ポリオレフィン樹脂;ポリエステルカーボネート樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンスルフィド樹脂;ポリスルホン樹脂;ポリエーテルスルホン樹脂;ポリアリーレン樹脂;ポリエーテルイミド樹脂;ポリアセタール樹脂;ポリビニルアセタール樹脂;ポリケトン樹脂;ポリエーテルケトン樹脂;ポリエーテルエーテルケトン樹脂;ポリアリールケトン樹脂;ポリエーテルニトリル樹脂;液晶樹脂;ポリベンズイミダゾール樹脂;ポリパラバン酸樹脂;芳香族アルケニル化合物、メタクリル酸エステル、アクリル酸エステル、及びシアン化ビニル化合物よりなる群から選ばれる1種以上のビニル単量体を、重合若しくは共重合させて得られるビニル系重合体若しくは共重合体樹脂;ジエン−芳香族アルケニル化合物共重合体樹脂;シアン化ビニル−ジエン−芳香族アルケニル化合物共重合体樹脂;芳香族アルケニル化合物−ジエン−シアン化ビニル−N−フェニルマレイミド共重合体樹脂;シアン化ビニル−(エチレン−ジエン−プロピレン(EPDM))−芳香族アルケニル化合物共重合体樹脂;塩化ビニル樹脂;塩素化塩化ビニル樹脂;などが挙げられる。これら樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Other resins)
The resin composition according to the present embodiment may contain a resin other than the cellulose acylate and the copolymer. However, it is preferable that other resin is 5 mass% or less with respect to the total mass of a resin composition, It is more preferable that it is 1 mass%, It is especially preferable not to contain other resin.
Examples of the other resin include conventionally known thermoplastic resins. Specifically, polycarbonate resin; polypropylene resin; polyester resin; polyolefin resin; polyester carbonate resin; polyphenylene ether resin; Polyethersulfone resin; Polyarylene resin; Polyetherimide resin; Polyacetal resin; Polyvinyl acetal resin; Polyketone resin; Polyetherketone resin; Polyetheretherketone resin; Polyarylketone resin; Polyethernitrile resin; Imidazole resin; polyparabanic acid resin; selected from the group consisting of aromatic alkenyl compounds, methacrylic acid esters, acrylic acid esters, and vinyl cyanide compounds Vinyl-based polymer or copolymer resin obtained by polymerizing or copolymerizing two or more kinds of vinyl monomers; diene-aromatic alkenyl compound copolymer resin; vinyl cyanide-diene-aromatic alkenyl compound copolymer Polymer resin; aromatic alkenyl compound-diene-vinyl cyanide-N-phenylmaleimide copolymer resin; vinyl cyanide- (ethylene-diene-propylene (EPDM))-aromatic alkenyl compound copolymer resin; vinyl chloride resin Chlorinated vinyl chloride resin; and the like. These resins may be used alone or in combination of two or more.

[樹脂組成物の製造方法]
本実施形態の樹脂組成物の製造方法は、前記セルロースアシレート及び前記共重合体を含む樹脂組成物を調製する工程を有する。
本実施形態に係る樹脂組成物は、例えば、セルロースアシレートと、必要に応じて、可塑剤、その他の成分等と、を少なくとも含む混合物を溶融混練することにより製造される。他に、本実施形態に係る樹脂組成物は、例えば、上記成分を溶剤に溶解することによっても製造される。
溶融混練の手段としては公知の手段が挙げられ、具体的には例えば、二軸押出機、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、多軸スクリュー押出機、コニーダ等が挙げられる。
なお、混練の際の温度は、使用するセルロースアシレートの溶融温度に応じて決定すればよいが、熱分解と流動性の点から、例えば、140℃以上240℃以下が好ましく、160℃以上210℃以下がより好ましい。
[Method for Producing Resin Composition]
The manufacturing method of the resin composition of this embodiment has the process of preparing the resin composition containing the said cellulose acylate and the said copolymer.
The resin composition according to the present embodiment is produced, for example, by melt-kneading a mixture containing at least cellulose acylate and, if necessary, a plasticizer and other components. In addition, the resin composition according to the present embodiment is produced, for example, by dissolving the above components in a solvent.
Examples of the melt-kneading means include known means, and specific examples include a twin screw extruder, a Henschel mixer, a Banbury mixer, a single screw extruder, a multi-screw extruder, and a kneader.
The temperature at the time of kneading may be determined according to the melting temperature of the cellulose acylate to be used. From the viewpoint of thermal decomposition and fluidity, for example, 140 ° C. or higher and 240 ° C. or lower is preferable, and 160 ° C. or higher and 210 ° C. or lower. More preferably, it is not higher than ° C.

[樹脂成形体及びその製造方法]
本実施形態に係る樹脂成形体は、重量平均分子量3万以上9万以下のセルロースアシレート、及び、共重合体に含まれる下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が反応してなる樹脂を含む。
[Resin molding and its production method]
The resin molded body according to the present embodiment includes a cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and a content Ma of the structural unit represented by the following formula (a) contained in the copolymer and the following formula: It includes a resin formed by reaction of an olefin- (meth) acrylate-glycidyl methacrylate copolymer having a mass ratio Ma / Mb of 4 to 10 with respect to the content Mb of the structural unit represented by (b).

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。 In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.

本実施形態に係る樹脂成形体における前記セルロースアシレート及び前記共重合体における好ましい態様は、前述した本実施形態に係る樹脂組成物における前記セルロースアシレート及び前記共重合体における好ましい態様とそれぞれ同じである。   The preferable aspect in the said cellulose acylate and the said copolymer in the resin molding which concerns on this embodiment is the same as the preferable aspect in the said cellulose acylate and the said copolymer in the resin composition which concerns on this embodiment mentioned above, respectively. is there.

本実施形態に係る樹脂成形体は、本実施形態に係る樹脂組成物を成形してなることが好ましい。本実施形態に係る樹脂組成物に含まれる前記セルロースアシレート及び前記共重合体の少なくとも一部が成形時に反応し、前記セルロースアシレート及び前記共重合体が反応してなる樹脂が形成される。
また、本実施形態に係る樹脂成形体の製造方法は、本実施形態に係る樹脂組成物を成形する工程を有することが好ましい。
成形方法は、例えば、射出成形、押し出し成形、ブロー成形、熱プレス成形、カレンダ成形、コーティング成形、キャスト成形、ディッピング成形、真空成形、トランスファ成形などを適用してよい。
The resin molded body according to the present embodiment is preferably formed by molding the resin composition according to the present embodiment. At least a part of the cellulose acylate and the copolymer contained in the resin composition according to the present embodiment reacts at the time of molding to form a resin formed by the reaction of the cellulose acylate and the copolymer.
Moreover, it is preferable that the manufacturing method of the resin molding which concerns on this embodiment has the process of shape | molding the resin composition which concerns on this embodiment.
As the molding method, for example, injection molding, extrusion molding, blow molding, hot press molding, calendar molding, coating molding, cast molding, dipping molding, vacuum molding, transfer molding, or the like may be applied.

本実施形態に係る樹脂成形体の製造方法は、形状の自由度が高い点で、射出成形を行うが好ましい。射出成形については、樹脂組成物を加熱溶融し、金型に流し込み、固化させることで成形体が得られる。射出圧縮成形によって成形してもよい。
射出成形のシリンダ温度は、140℃以上240℃以下であることが好ましく、150℃以上220℃以下であることがより好ましく、160℃以上220℃以下であることが更に好ましい。射出成形の金型温度は、30℃以上120℃以下が好ましく、40℃以上80℃以下がより好ましい。射出成形は、例えば、日精樹脂工業(株)製NEX500、日精樹脂工業(株)製NEX150、日精樹脂工業(株)製NEX70000、東芝機械(株)製SE50D等の市販の装置を用いて行ってもよい。
The method for producing a resin molded body according to the present embodiment is preferably performed by injection molding in terms of a high degree of freedom in shape. About injection molding, a resin composition is heated and melted, poured into a mold, and solidified to obtain a molded body. You may shape | mold by injection compression molding.
The cylinder temperature for injection molding is preferably 140 ° C. or higher and 240 ° C. or lower, more preferably 150 ° C. or higher and 220 ° C. or lower, and further preferably 160 ° C. or higher and 220 ° C. or lower. The mold temperature for injection molding is preferably 30 ° C. or higher and 120 ° C. or lower, and more preferably 40 ° C. or higher and 80 ° C. or lower. The injection molding is performed using, for example, a commercially available apparatus such as NEX500 manufactured by Nissei Plastic Industry Co., Ltd., NEX150 manufactured by Nissei Plastic Industry Co., Ltd., NEX70000 manufactured by Nissei Plastic Industry Co., Ltd., SE50D manufactured by Toshiba Machine Co., Ltd. Also good.

本実施形態に係る樹脂成形体は、電子・電気機器、事務機器、家電製品、自動車内装材、エンジンカバー、車体、容器などの用途に好適に用いられる。より具体的には、電子・電気機器や家電製品の筐体;電子・電気機器や家電製品の各種部品;自動車の内装部品;CD−ROMやDVD等の収納ケース;食器;飲料ボトル;食品トレイ;ラップ材;フィルム;シート;などである。   The resin molded body according to the present embodiment is suitably used for applications such as electronic / electrical equipment, office equipment, home appliances, automobile interior materials, engine covers, vehicle bodies, and containers. More specifically, casings for electronic / electrical equipment and home appliances; various parts of electronic / electrical equipment and home appliances; interior parts for automobiles; storage cases such as CD-ROM and DVD; tableware; beverage bottles; Wrap material; film; sheet;

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に制限されるものではない。なお、特に断りのない限り「部」は「質量部」を表す。   EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. Note that “part” means “part by mass” unless otherwise specified.

<セルロースアシレートの合成>
(セルロースアセテートCA1の合成)
アセチル化:セルロース粉末(日本製紙ケミカル(株)製、KCフロックW50)3部、硫酸0.15部、酢酸30部、及び、無水酢酸6部を反応容器に入れ、20℃で4時間撹拌し、セルロースのアセチル化を行った。
脱アセチル及び低分子量化:アセチル化を行った溶液に撹拌終了後ただちに3部の酢酸と1.2部の純水とを加え、20℃で30分間撹拌後、0.2M塩酸水溶液4.5部を加え、75℃に加熱して、5時間撹拌した。この溶液を、200部の純水に2時間かけて滴下し、20時間静置した後、孔径6μmのフィルターを通してろ過し、4部の白色粉末を得た。
洗浄:得られた白色粉末を、フィルタープレス((株)栗田機械製作所製、SF(PP))を用い、純水にて電導度が50μS以下になるまで洗浄後、乾燥した。
後処理:乾燥後の白色粉末3部に0.2部の酢酸カルシウムと30部の純水とを加え、25℃で2時間撹拌した後、ろ過し、得られた粉末を60℃で72時間乾燥し、セルロースアセテートCA1を約2.5部得た。
<Synthesis of cellulose acylate>
(Synthesis of cellulose acetate CA1)
Acetylation: 3 parts of cellulose powder (manufactured by Nippon Paper Chemicals Co., Ltd., KC Flock W50), 0.15 part of sulfuric acid, 30 parts of acetic acid and 6 parts of acetic anhydride are placed in a reaction vessel and stirred at 20 ° C. for 4 hours. Cellulose was acetylated.
Deacetylation and molecular weight reduction: 3 parts of acetic acid and 1.2 parts of pure water were immediately added to the acetylated solution after stirring, and the mixture was stirred at 20 ° C. for 30 minutes. Part was added, heated to 75 ° C. and stirred for 5 hours. This solution was dropped into 200 parts of pure water over 2 hours, allowed to stand for 20 hours, and then filtered through a filter having a pore size of 6 μm to obtain 4 parts of white powder.
Washing: The obtained white powder was washed with pure water using a filter press (manufactured by Kurita Machinery Co., Ltd., SF (PP)) until the conductivity was 50 μS or less, and then dried.
Post-treatment: Add 3 parts of calcium acetate and 30 parts of pure water to 3 parts of the dried white powder, stir at 25 ° C. for 2 hours, filter, and obtain the resulting powder at 60 ° C. for 72 hours. It dried and obtained about 2.5 parts of cellulose acetate CA1.

(セルロースアセテートCA2の合成)
アセチル化に用いる硫酸量0.15部を0.30部とした以外はCA1と同様にしてセルロースアセテートCA2を得た。
(Synthesis of cellulose acetate CA2)
Cellulose acetate CA2 was obtained in the same manner as CA1, except that the amount of sulfuric acid used for acetylation was changed to 0.10 part.

(セルロースアセテートCA3の合成)
アセチル化に用いる硫酸量0.15部を0.03部とした以外はCA1と同様にしてセルロースアセテートCA3を得た。
(Synthesis of cellulose acetate CA3)
Cellulose acetate CA3 was obtained in the same manner as CA1, except that the amount of sulfuric acid used for acetylation was changed to 0.03 part.

(セルロースアセテートCA4の合成)
脱アセチル化及び低分子量化において、5時間撹拌したところを7時間に変えた以外は、CA1と同様の方法でセルロースアセテートCA4を得た。
(Synthesis of cellulose acetate CA4)
In deacetylation and molecular weight reduction, cellulose acetate CA4 was obtained in the same manner as CA1, except that the place of stirring for 5 hours was changed to 7 hours.

(セルロースアセテートCA5の合成)
脱アセチル化及び低分子量化において、75℃で5時間撹拌するところを、65℃で7時間撹拌した以外は、CA1と同様にしてセルロースアセテートCA5を得た。
(Synthesis of cellulose acetate CA5)
In deacetylation and molecular weight reduction, cellulose acetate CA5 was obtained in the same manner as CA1, except that stirring at 75 ° C. for 5 hours was performed at 65 ° C. for 7 hours.

(セルロースアセテートCA6の合成)
脱アセチル化及び低分子量化において、75℃で5時間撹拌するところを、80℃で4時間撹拌した以外は、CA1と同様にしてセルロースアセテートCA6を得た。
(Synthesis of cellulose acetate CA6)
In deacetylation and molecular weight reduction, cellulose acetate CA6 was obtained in the same manner as CA1, except that stirring at 75 ° C. for 5 hours was performed at 80 ° C. for 4 hours.

(セルロースプロピオネートCP1の合成)
アセチル化において、無水酢酸2部を用いたところを、無水プロピオン酸2.5部用い、脱アセチル及び低分子量化における反応時間5時間を7時間に変えた以外は、CA1と同様にしてセルロースプロピオネートCP1を得た。
(Synthesis of cellulose propionate CP1)
In the acetylation, cellulose pro-acetate was used in the same manner as CA1, except that 2 parts of acetic anhydride was used, 2.5 parts of propionic anhydride was used, and the reaction time in deacetylation and molecular weight reduction was changed to 7 hours. Pionate CP1 was obtained.

(セルロースアセテートCA7−1乃至3の準備)
市販のセルロースアセテート((株)ダイセル製、L50)をセルロースアセテートCA7−1、((株)ダイセル製、L20)をセルロースアセテートCA7−2、(イーストマンケミカル(株)、CA398−3)をCA7−3として準備した。
(Preparation of cellulose acetate CA7-1 to 3)
Commercially available cellulose acetate (manufactured by Daicel Corporation, L50) is cellulose acetate CA7-1, (manufactured by Daicel Corporation, L20) is cellulose acetate CA7-2, (Eastman Chemical Corporation, CA398-3) is CA7. -3.

(セルロースアセテートCA8の合成)
脱アセチル化及び低分子量化において、5時間撹拌したところを4時間30分に変えた以外は、CA1と同様の方法でセルロースアセテートCA8を得た。
(Synthesis of cellulose acetate CA8)
In deacetylation and low molecular weight reduction, cellulose acetate CA8 was obtained in the same manner as CA1, except that the place where stirring was performed for 5 hours was changed to 4 hours 30 minutes.

(セルロースアセテートCA9の合成)
アセチル化で得られた溶液を室温(20℃、以下同様)で10時間放置した後、脱アセチル化及び低分子量化を行った以外は、CA1と同様にしてセルロースアセテートCA9を得た。
(Synthesis of cellulose acetate CA9)
Cellulose acetate CA9 was obtained in the same manner as CA1, except that the solution obtained by acetylation was allowed to stand at room temperature (20 ° C., hereinafter the same) for 10 hours and then deacetylated and reduced in molecular weight.

<重量平均分子量、重合度、置換度の測定>
セルロースアシレートの重合度は、以下の手順で重量平均分子量から求められる。
まず、セルロースアシレートの重量平均分子量を、ジメチルアセトアミド/塩化リチウム=90/10溶液を用い、GPC装置(東ソー(株)製、HLC−8320GPC、カラム:TSKgelα−M)にてポリスチレン換算で測定する。
次いで、セルロースアシレートの構成単位分子量で割ることでセルロースアシレートの重合度は求められる。構成単位分子量は、例えばアセチル基で置換度2.4の場合は263、置換度2.9の場合は287となる。この方法で合成したセルロースアシレートの重合度と置換度とを評価した結果を表1にまとめる。
<Measurement of weight average molecular weight, degree of polymerization, degree of substitution>
The degree of polymerization of cellulose acylate is determined from the weight average molecular weight by the following procedure.
First, the weight average molecular weight of cellulose acylate is measured in terms of polystyrene using a dimethylacetamide / lithium chloride = 90/10 solution with a GPC apparatus (manufactured by Tosoh Corporation, HLC-8320GPC, column: TSKgelα-M). .
Next, the degree of polymerization of cellulose acylate is determined by dividing by the molecular weight of the structural unit of cellulose acylate. The molecular weight of the structural unit is, for example, 263 when the substitution degree is 2.4 with an acetyl group and 287 when the substitution degree is 2.9. The results of evaluating the degree of polymerization and the degree of substitution of cellulose acylate synthesized by this method are summarized in Table 1.

<エチレン−(メタ)アクリレート−グリシジルメタクリレート共重合体の合成>
(EAG1乃至3の準備)
市販のエチレン−(メタ)アクリレート−グリシジルメタクリレート共重合体である、アルケマ社製LOTADER AX8930を(EAG1)、住友化学(株)製ボンドファーストBF−7Mを(EGA2)、アルケマ社製LOTDER AX8900を(EGA3)とした。
<Synthesis of ethylene- (meth) acrylate-glycidyl methacrylate copolymer>
(Preparation of EAG1 to 3)
Commercially available ethylene- (meth) acrylate-glycidyl methacrylate copolymer, LAKEDER AX8930 manufactured by Arkema (EAG1), BondFirst BF-7M manufactured by Sumitomo Chemical Co., Ltd. (EGA2), LOTDER AX8900 manufactured by Arkema ( EGA3).

(EAG4の合成)
エチレンモノマー72質量部、メチルアクリレート20質量部、グリシジルメタクリル酸モノマー8質量部をテトラヒドロフランに溶解し、アゾビスイソブチロニトリル0.05質量部を加え、40℃で24時間撹拌したものを、純水中に滴下し、生じた沈殿をろ過、乾燥しエチレン−メチルメタクリレート−グリシジルメタクリレート共重合体(EAG4)を得た。
(Synthesis of EAG4)
A solution obtained by dissolving 72 parts by mass of ethylene monomer, 20 parts by mass of methyl acrylate, and 8 parts by mass of glycidyl methacrylic acid monomer in tetrahydrofuran, adding 0.05 part by mass of azobisisobutyronitrile, and stirring for 24 hours at 40 ° C. The resultant precipitate was dropped into water, and the resulting precipitate was filtered and dried to obtain an ethylene-methyl methacrylate-glycidyl methacrylate copolymer (EAG4).

(EAG5乃至9の合成)
表2に示す組成比で、エチレンモノマー、プロピレン(1−メチルエチレン)モノマー、(メタ)アクリレートモノマー、又は、グリシジルメタクリレートモノマーを使用した以外は、(EAG4)の合成と同様にして(EAG5)乃至(EAG8)をそれぞれ得た。
(Synthesis of EAG5 to 9)
(EAG5) to (EAG5) in the same manner as in the synthesis of (EAG4) except that ethylene monomers, propylene (1-methylethylene) monomers, (meth) acrylate monomers, or glycidyl methacrylate monomers were used at the composition ratios shown in Table 2. (EAG8) was obtained respectively.

なお、表2に記載のMAはメチルアクリレートを表し、EAはエチルアクリレートを表し、BAはn−ブチルアクリレートを表す。   In Table 2, MA represents methyl acrylate, EA represents ethyl acrylate, and BA represents n-butyl acrylate.

<アジピン酸エステル含有化合物の準備>
市販のアジピン酸エステル含有化合物(大八化学工業(株)製、Daifatty101)を化合物AE1として準備した。
<Preparation of adipic acid ester-containing compound>
A commercially available adipic acid ester-containing compound (Daifatty 101, manufactured by Daihachi Chemical Industry Co., Ltd.) was prepared as Compound AE1.

<耐衝撃強度、及び、曲げ弾性率の評価>
表3に示す仕込み組成比で、シリンダ温度Aにより2軸混練装置(東芝機械(株)製、TEX41SS)にて混練を実施し、樹脂組成物(ペレット)を得た。
なお、比較例7及び8については、特開2014−084343号公報に記載の実施例1又は3の組成で混練し、ペレットを得た。
具体的には、比較例7では、セルロースアセテートCA7−1((株)ダイセル製、L50)100質量部に対し、アジピン酸エステル含有化合物(大八化学工業(株)製、Daifatty101)を25質量部、及び、ローム・アンド・ハース社製パラロイド(登録商標)EXL−2602(ブタジエン−メチルメタクリレート共重合体からなるコア/シェル型グラフト共重合体)を14質量部使用した。
比較例8では、セルロースアセテートCA7−1((株)ダイセル製、L50)100質量部に対し、トリフェニルホスフェート(大八化学工業(株)製)を25質量部、及び、ローム・アンド・ハース社製パラロイド(登録商標)EXL−2602(ブタジエン−メチルメタクリレート共重合体からなるコア/シェル型グラフト共重合体)を14質量部使用した。
<Evaluation of impact strength and flexural modulus>
Kneading was carried out with a biaxial kneading apparatus (Toshiki Machine Co., Ltd., TEX41SS) at a charging composition ratio shown in Table 3 to obtain a resin composition (pellet).
In addition, about the comparative examples 7 and 8, it knead | mixed with the composition of Example 1 or 3 as described in Unexamined-Japanese-Patent No. 2014-084343, and obtained the pellet.
Specifically, in Comparative Example 7, 25 parts by mass of adipic acid ester-containing compound (Daifaty 101, manufactured by Daihachi Chemical Industry Co., Ltd.) with respect to 100 parts by mass of cellulose acetate CA7-1 (manufactured by Daicel Corporation, L50). 14 parts by mass and Rohm and Haas Paraloid (registered trademark) EXL-2602 (core / shell type graft copolymer made of butadiene-methyl methacrylate copolymer) were used.
In Comparative Example 8, 25 parts by mass of triphenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.) and Rohm and Haas for 100 parts by mass of cellulose acetate CA7-1 (manufactured by Daicel Corporation, L50) 14 parts by mass of Paraloid (registered trademark) EXL-2602 (a core / shell type graft copolymer made of a butadiene-methyl methacrylate copolymer) was used.

得られたペレットについて、射出成形機(日精樹脂工業(株)製、NEX140III)を用い、射出ピーク圧力が180MPaを越えないシリンダ温度Bで、ISO多目的ダンベル(測定部寸法:幅100mm×厚さ40mm)を成形した。
なお、シリンダ温度A及びBについては表3に示した。
得られたISO多目的ダンベル試験片を用いて、ISO179に準拠した方法で、ノッチ付き衝撃試験片に加工し、衝撃強度測定装置((株)東洋精機製作所製、シャルピーオートインパクテスタCHN3型)にて、23℃におけるノッチ付き衝撃強度の測定を行った。結果を表3に示す。
また、万能試験装置((株)島津製作所製、オートグラフAG−Xplus)を用いて、ISO−178に準拠する方法で曲げ弾性率で測定を行った。結果を表3に示す。
For the obtained pellets, an ISO multipurpose dumbbell (measurement part dimensions: width 100 mm × thickness 40 mm) is used with an injection molding machine (Nex140III, manufactured by Nissei Plastic Industry Co., Ltd.) at a cylinder temperature B where the injection peak pressure does not exceed 180 MPa. ).
The cylinder temperatures A and B are shown in Table 3.
Using the obtained ISO multipurpose dumbbell test piece, it was processed into a notched impact test piece by a method in accordance with ISO 179, and an impact strength measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd., Charpy Auto Impact Tester CHN3 type) The impact strength with a notch at 23 ° C. was measured. The results are shown in Table 3.
Moreover, it measured by the bending elastic modulus by the method based on ISO-178 using the universal testing apparatus (Corporation | KK Shimadzu Corp. make, autograph AG-Xplus). The results are shown in Table 3.

上記結果から、本実施例の樹脂組成物は、比較例の樹脂組成物に比べ、耐衝撃性に優れ、かつ高い曲げ弾性率を有する樹脂成形体が得られることがわかる。   From the said result, it turns out that the resin composition of a present Example is excellent in impact resistance compared with the resin composition of a comparative example, and the resin molding which has a high bending elastic modulus is obtained.

Claims (9)

重量平均分子量3万以上9万以下のセルロースアシレート、及び、
共重合体に含まれる下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体を含む
樹脂組成物。

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。
Cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and
The mass ratio Ma / Mb between the content Ma of the structural unit represented by the following formula (a) contained in the copolymer and the content Mb of the structural unit represented by the following formula (b) is 4 or more and 10 or less. A resin composition comprising an olefin- (meth) acrylate-glycidyl methacrylate copolymer.

In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.
前記オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が、エチレン−(メタ)アクリレート−グリシジルメタクリレート共重合体である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the olefin- (meth) acrylate-glycidyl methacrylate copolymer is an ethylene- (meth) acrylate-glycidyl methacrylate copolymer. 前記セルロースアシレートの置換度が、2.0以上2.5以下である請求項1又は請求項2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, wherein a substitution degree of the cellulose acylate is 2.0 or more and 2.5 or less. 前記セルロースアシレートが、アセチル基を少なくとも有する請求項1乃至3のいずれか1項に記載の樹脂組成物。   The resin composition according to claim 1, wherein the cellulose acylate has at least an acetyl group. 前記共重合体の含有量が、前記セルロースアシレート100質量部に対し、0.5質量部以上10質量部以下である請求項1乃至請求項4のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 4, wherein a content of the copolymer is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the cellulose acylate. アジピン酸エステル含有化合物を更に含む請求項1乃至請求項5のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, further comprising an adipic acid ester-containing compound. 請求項1乃至請求項6のいずれか1項に記載の樹脂組成物を成形してなる樹脂成形体。   The resin molding formed by shape | molding the resin composition of any one of Claims 1 thru | or 6. 重量平均分子量3万以上9万以下のセルロースアシレート、及び、共重合体に含まれる下記式(a)で表される構成単位の含有量Maと下記式(b)で表される構成単位の含有量Mbとの質量比率Ma/Mbが4以上10以下であるオレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が反応してなる樹脂を含む
樹脂成形体。

式中、Rは水素原子又はメチル基を表し、Rは炭素数1以上10以下のアルキル基を表す。
The cellulose acylate having a weight average molecular weight of 30,000 to 90,000, and the content Ma of the structural unit represented by the following formula (a) contained in the copolymer and the structural unit represented by the following formula (b) A resin molded body comprising a resin formed by a reaction of an olefin- (meth) acrylate-glycidyl methacrylate copolymer having a mass ratio Ma / Mb of 4 to 10 with respect to the content Mb.

In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 10 carbon atoms.
前記オレフィン−(メタ)アクリレート−グリシジルメタクリレート共重合体が、エチレン−(メタ)アクリレート−グリシジルメタクリレート共重合体である請求項8に記載の樹脂成形体。   The resin molded product according to claim 8, wherein the olefin- (meth) acrylate-glycidyl methacrylate copolymer is an ethylene- (meth) acrylate-glycidyl methacrylate copolymer.
JP2016170161A 2016-08-31 2016-08-31 Resin composition and resin molded product Active JP6805647B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016170161A JP6805647B2 (en) 2016-08-31 2016-08-31 Resin composition and resin molded product
EP17845745.3A EP3480247B1 (en) 2016-08-31 2017-03-23 Resin composition and resin molded article
CN201780049199.9A CN109563315A (en) 2016-08-31 2017-03-23 Resin combination and synthetic resin
PCT/JP2017/011879 WO2018042734A1 (en) 2016-08-31 2017-03-23 Resin composition and resin molded article
US16/244,413 US20190144637A1 (en) 2016-08-31 2019-01-10 Resin compostion and resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170161A JP6805647B2 (en) 2016-08-31 2016-08-31 Resin composition and resin molded product

Publications (2)

Publication Number Publication Date
JP2018035277A true JP2018035277A (en) 2018-03-08
JP6805647B2 JP6805647B2 (en) 2020-12-23

Family

ID=61566386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170161A Active JP6805647B2 (en) 2016-08-31 2016-08-31 Resin composition and resin molded product

Country Status (1)

Country Link
JP (1) JP6805647B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693746A (en) * 1979-12-21 1981-07-29 Bayer Ag Thermoplastic molding composition
JP2008038142A (en) * 2006-07-12 2008-02-21 Toray Ind Inc Resin composition and molded article made thereof
JP2012092155A (en) * 2010-10-22 2012-05-17 Fuji Xerox Co Ltd Resin composition, and resin molded product
JP2014123046A (en) * 2012-12-21 2014-07-03 Dainippon Printing Co Ltd Retardation film
JP2014123047A (en) * 2012-12-21 2014-07-03 Dainippon Printing Co Ltd Retardation film
JP2015189831A (en) * 2014-03-27 2015-11-02 富士ゼロックス株式会社 Resin composition and resin molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693746A (en) * 1979-12-21 1981-07-29 Bayer Ag Thermoplastic molding composition
JP2008038142A (en) * 2006-07-12 2008-02-21 Toray Ind Inc Resin composition and molded article made thereof
JP2012092155A (en) * 2010-10-22 2012-05-17 Fuji Xerox Co Ltd Resin composition, and resin molded product
JP2014123046A (en) * 2012-12-21 2014-07-03 Dainippon Printing Co Ltd Retardation film
JP2014123047A (en) * 2012-12-21 2014-07-03 Dainippon Printing Co Ltd Retardation film
JP2015189831A (en) * 2014-03-27 2015-11-02 富士ゼロックス株式会社 Resin composition and resin molding

Also Published As

Publication number Publication date
JP6805647B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US10308790B2 (en) Resin composition and resin molding
JP2018127579A (en) Resin composition and resin molding
JP2019026700A (en) Resin composition and resin molding
JP2016069397A (en) Resin composition and resin molding
WO2018042734A1 (en) Resin composition and resin molded article
JP6657922B2 (en) Resin composition and molded resin
JP6365728B1 (en) Resin composition and resin molded body
JP6107910B2 (en) Resin composition and resin molded body
JP2018131484A (en) Resin composition and resin molding
JP2017114938A (en) Resin composition and resin molded body
JP6848267B2 (en) Resin composition and resin molded product
JP2016183285A (en) Resin composition and resin molded article
JP6705343B2 (en) Resin composition and resin molding
JP6805647B2 (en) Resin composition and resin molded product
JP6897196B2 (en) Resin composition and resin molded product
US9725584B2 (en) Resin composition and resin molded article
JP2018131485A (en) Resin composition and resin molding
JP6183515B1 (en) Method for producing cellulose acylate
JP2019026729A (en) Resin composition and resin molding
JP6197928B1 (en) Method for producing cellulose acylate, method for producing resin composition, and method for producing resin molded body
JP2016183278A (en) Resin composition, method of preparing resin molded article, and resin molded article
JP6900810B2 (en) Resin composition and molded product
JP2017171854A (en) Resin composition, resin molding, and method for producing resin composition
JP6904129B2 (en) Resin composition and molded product
JP6156558B1 (en) Method for producing cellulose acylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6805647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350