Nothing Special   »   [go: up one dir, main page]

JP2018021760A - Thickness measurement device - Google Patents

Thickness measurement device Download PDF

Info

Publication number
JP2018021760A
JP2018021760A JP2016151158A JP2016151158A JP2018021760A JP 2018021760 A JP2018021760 A JP 2018021760A JP 2016151158 A JP2016151158 A JP 2016151158A JP 2016151158 A JP2016151158 A JP 2016151158A JP 2018021760 A JP2018021760 A JP 2018021760A
Authority
JP
Japan
Prior art keywords
light
optical fiber
thickness
wavelength
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016151158A
Other languages
Japanese (ja)
Other versions
JP6730124B2 (en
Inventor
圭司 能丸
Keiji Nomaru
圭司 能丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016151158A priority Critical patent/JP6730124B2/en
Priority to TW106121251A priority patent/TWI731992B/en
Priority to CN201710623484.9A priority patent/CN107677211B/en
Priority to KR1020170096003A priority patent/KR102305384B1/en
Publication of JP2018021760A publication Critical patent/JP2018021760A/en
Application granted granted Critical
Publication of JP6730124B2 publication Critical patent/JP6730124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thickness measurement device with which it is possible to measure the thickness of a tabular object efficiently in a short time.SOLUTION: The thickness measurement device comprises: a broadband light source 81 for emitting light of a wavelength region having permeability to a tabular object; a spectroscope 82 for spectrally separating the light emitted by the broadband light source; distribution means 83 for changing the distribution direction of light of each wavelength spectrally separated by the spectroscope with the passage of time; light transmission means for transmitting the light of each wavelength condensed by a condenser lens; spectral interference waveform generation means for finding return light retrogressing each optical fiber due to interference between the light reflected on the top face of the tabular object and the light reflected at the underside after transmitting the tabular object, using time which the wavelength of the return light is distributed to each optical fiber by the distribution means, and detecting the optical intensity of each wavelength, then generating a spectral interference waveform in correspondence to each optical fiber; and means for analyzing the spectral interference waveform and calculating the thickness of the tabular object that corresponds to each optical fiber.SELECTED DRAWING: Figure 2

Description

本発明は、板状物の厚みを計測する厚み計測装置に関する。   The present invention relates to a thickness measuring device that measures the thickness of a plate-like object.

IC、LSI等の複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハは、裏面が研削されて所定の厚みに形成された後、ダイシング装置、レーザー加工装置によって個々のデバイスに分割され、携帯電話、パソコン等の電気機器に利用される。   A wafer in which a plurality of devices such as IC, LSI, etc. are defined by dividing lines and formed on the front surface is ground into a predetermined thickness by grinding the back surface, and then divided into individual devices by a dicing apparatus and a laser processing apparatus. Used in electrical equipment such as mobile phones and personal computers.

従来の研削装置に対して、板状のウエーハを保持するチャックテーブルと、該チャックテーブルに保持されたウエーハの裏面を研削する研削砥石が環状に配された研削ホイールを回転可能に備えた研削手段と、ウエーハの厚みを分光干渉波形によって非接触で検出する検出手段と、を少なくとも備えることにより、ウエーハを所望の厚みに研削することが提案されている(例えば、特許文献1を参照。)。   Grinding means comprising a chuck wheel for holding a plate-like wafer and a grinding wheel in which a grinding wheel for grinding a back surface of the wafer held on the chuck table is arranged in an annular manner relative to a conventional grinding apparatus. It is proposed to grind the wafer to a desired thickness by including at least a detecting means for detecting the thickness of the wafer in a non-contact manner using a spectral interference waveform (see, for example, Patent Document 1).

特開2011−143488号公報JP 2011-143488 A

しかし、上記特許文献1に記載された技術では、保持手段に保持されたウエーハの厚みを検出する端子を水平方向に揺動させてウエーハ全面を検出する構成になっており、水平方向の揺動と、ウエーハの移動を適宜繰り返しながらの計測を行わねばならず、このような手段を用いてウエーハ全面の厚みを検出するためには、相当の時間を要し、生産性が悪いという問題がある。   However, in the technique described in the above-mentioned Patent Document 1, the entire surface of the wafer is detected by swinging a terminal for detecting the thickness of the wafer held by the holding means in the horizontal direction. In addition, it is necessary to perform measurement while appropriately repeating the movement of the wafer, and it takes a considerable amount of time to detect the thickness of the entire surface of the wafer using such means, and there is a problem that productivity is poor. .

本発明は、上記事実に鑑みなされたものであり、その主たる技術課題は、短時間で効率よく板状物の厚さを計測することができる厚み計測装置を提供することにある。   This invention is made | formed in view of the said fact, The main technical subject is to provide the thickness measuring apparatus which can measure the thickness of a plate-shaped object efficiently in a short time.

上記主たる技術課題を解決するため、本発明によれば、板状物の厚みを計測する厚み計測装置であって、板状物に対して透過性を有する波長域の光を発するブロードバンド光源と、該ブロードバンド光源が発した光を波長域に分光する分光器と、該分光器によって分光された各波長の光を時間経過で分配方向を変更する分配手段と、該分配手段によって分配された各波長の光を集光する集光レンズと、該集光レンズと対面し、複数の光ファイバーの一方の端面が列をなして配設され該集光レンズによって集光された各波長の光を伝達する光伝達手段と、該光伝達手段を構成する複数の光ファイバーの他方の端面が該板状物に対面して列をなし各端面に対応して該板状物との間に配設される複数の対物レンズを備えた測定端子と、該板状物の上面で反射した光と板状物を透過して下面で反射した光とが干渉し各光ファイバーを逆行した戻り光を、該光伝達手段の光の伝達経路上に配設されて各光ファイバーから分岐する光分岐手段と、該光分岐手段で分岐した各光ファイバーに対応した該戻り光の波長を該分配手段によって各光ファイバーに対して分配した時間から求め各波長の光強度を検出して各光ファイバーに対応して分光干渉波形を生成する分光干渉波形生成手段と、該分光干渉波形生成手段が生成した各光ファイバーに対応した分光干渉波形を波形解析して、各光ファイバーに対応した板状物の厚みを算出する厚み算出手段と、から少なくとも構成される厚み計測装置が提供される。   In order to solve the main technical problem, according to the present invention, a thickness measuring device for measuring the thickness of a plate-like object, a broadband light source that emits light in a wavelength region having transparency to the plate-like object, A spectroscope that splits the light emitted from the broadband light source into a wavelength region, a distribution unit that changes the distribution direction of light of each wavelength dispersed by the spectrograph over time, and each wavelength distributed by the distribution unit A condensing lens that condenses the light of the light, and faces the condensing lens. One end face of a plurality of optical fibers is arranged in a row and transmits light of each wavelength collected by the condensing lens. A plurality of light transmitting means and a plurality of optical fibers constituting the light transmitting means are arranged between the other end faces of the light receiving means so as to face the plate-like object and form a row corresponding to each end face. A measuring terminal equipped with an objective lens and a plate-like object The light reflected by the light and the light transmitted through the plate and reflected by the lower surface interfere with each other and return light that travels backward through each optical fiber is arranged on the light transmission path of the light transmission means and branches from each optical fiber. Corresponding to each optical fiber by detecting the light intensity of each wavelength from the optical branching means and the wavelength of the return light corresponding to each optical fiber branched by the optical branching means from the time distributed to each optical fiber by the distributing means The spectral interference waveform generating means for generating the spectral interference waveform and the spectral interference waveform corresponding to each optical fiber generated by the spectral interference waveform generating means are subjected to waveform analysis, and the thickness of the plate corresponding to each optical fiber is calculated. And a thickness measuring device comprising at least a thickness calculating means.

また、該板状物を保持する保持手段を備え、該測定端子と該保持手段とはX軸方向に相対的に移動可能に構成され、該測定端子を構成する各光ファイバーの端面に対応して配設された対物レンズの列は、X軸方向と直交するY軸方向に位置付けられ、該測定端子と該保持手段との相対的なX軸方向の移動と、Y軸方向に位置付けられた対物レンズとで特定されるX座標、Y座標において、該厚み算出手段で算出された板状物の厚みを記憶する記録手段を備えるようにすることが好ましい。   In addition, a holding means for holding the plate-like object is provided, the measurement terminal and the holding means are configured to be relatively movable in the X-axis direction, and correspond to the end face of each optical fiber constituting the measurement terminal. The arranged rows of objective lenses are positioned in the Y-axis direction orthogonal to the X-axis direction, the relative movement of the measurement terminal and the holding means in the X-axis direction, and the objective positioned in the Y-axis direction. It is preferable to provide recording means for storing the thickness of the plate-like object calculated by the thickness calculating means at the X coordinate and Y coordinate specified by the lens.

本発明の厚み計測装置は、板状物に対して透過性を有する波長域の光を発するブロードバンド光源と、該ブロードバンド光源が発した光を波長域に分光する分光器と、該分光器によって分光された各波長の光を時間経過で分配方向を変更する分配手段と、該分配手段によって分配された各波長の光を集光する集光レンズと、該集光レンズと対面し、複数の光ファイバーの一方の端面が列をなして配設され該集光レンズによって集光された各波長の光を伝達する光伝達手段と、該光伝達手段を構成する複数の光ファイバーの他方の端面が該板状物に対面して列をなし各端面に対応して該板状物との間に配設される複数の対物レンズを備えた測定端子と、該板状物の上面で反射した光と板状物を透過して下面で反射した光とが干渉し各光ファイバーを逆行した戻り光を、該光伝達手段の光の伝達経路上に配設されて各光ファイバーから分岐する光分岐手段と、該光分岐手段で分岐した各光ファイバーに対応した該戻り光の波長を該分配手段によって各光ファイバーに対して分配した時間から求め各波長の光強度を検出して各光ファイバーに対応して分光干渉波形を生成する分光干渉波形生成手段と、該分光干渉波形生成手段が生成した各光ファイバーに対応した分光干渉波形を波形解析して、各光ファイバーに対応した板状物の厚みを算出する厚み算出手段と、から少なくとも構成されるので、複数の列をなして配設される複数の対物レンズと複数の光ファイバーとによって同時に複数の厚さ情報が得られ短時間に必要な計測が可能になる。   The thickness measuring device of the present invention includes a broadband light source that emits light in a wavelength range that is transparent to a plate-like object, a spectroscope that splits the light emitted from the broadband light source into the wavelength range, and spectrally separated by the spectroscope. A distribution unit that changes a distribution direction of the light of each wavelength with time, a condensing lens that condenses the light of each wavelength distributed by the distribution unit, and a plurality of optical fibers facing the condensing lens One end face of the optical fiber is arranged in a row and transmits light of each wavelength collected by the condenser lens, and the other end face of the plurality of optical fibers constituting the light transfer means is the plate. A measuring terminal having a plurality of objective lenses arranged between the plate-like objects corresponding to each end face, and a light and a plate reflected by the upper surface of the plate-like object Each optical fiber interferes with the light transmitted through the object and reflected from the lower surface. The light branching means is arranged on the light transmission path of the light transmission means and branches from each optical fiber, and the wavelength of the return light corresponding to each optical fiber branched by the light branching means. Spectral interference waveform generation means for generating a spectral interference waveform corresponding to each optical fiber by detecting the light intensity of each wavelength obtained from the time distributed to each optical fiber by the distribution means, and generated by the spectral interference waveform generation means And at least a thickness calculating means for calculating the thickness of the plate-like material corresponding to each optical fiber, and arranged in a plurality of rows. A plurality of thickness information can be obtained simultaneously by a plurality of objective lenses and a plurality of optical fibers, and a necessary measurement can be performed in a short time.

本発明に基づき構成される厚み計測装置が適用される研削装置の斜視図である。1 is a perspective view of a grinding device to which a thickness measuring device configured according to the present invention is applied. 本発明に基づき構成される厚み計測装置の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the thickness measuring apparatus comprised based on this invention. 図2に示す厚み計測装置の作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of the thickness measuring apparatus shown in FIG. 図3に示す厚み計測装置を構成するポリゴンミラーの作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of the polygon mirror which comprises the thickness measuring apparatus shown in FIG. 図2に示す厚み計測装置により生成される分光干渉波形の一例を示す図である。It is a figure which shows an example of the spectral interference waveform produced | generated by the thickness measuring apparatus shown in FIG. 図2に示す厚み計測装置により分光干渉波形を波形解析することによって得られる光路長差と信号強度との一例を示す図である。It is a figure which shows an example of the optical path length difference and signal strength which are obtained by carrying out waveform analysis of the spectral interference waveform with the thickness measuring apparatus shown in FIG. 本発明の厚み計測装置によって、各光ファイバー毎に取得されるウエーハの厚みの一例を示す図である。It is a figure which shows an example of the thickness of the wafer acquired for every optical fiber with the thickness measuring apparatus of this invention.

以下、本発明に基づいて構成された厚み計測装置の好適な実施形態について、添付図面を参照して詳細に説明する。図1には、本発明の厚み計測装置を備えた研削装置1の全体斜視図、及び本発明の厚み計測装置により厚みが計測される板状物としてのウエーハ10が示されている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of a thickness measuring device configured according to the invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an overall perspective view of a grinding apparatus 1 equipped with a thickness measuring device of the present invention and a wafer 10 as a plate-like object whose thickness is measured by the thickness measuring device of the present invention.

図1に示す研削装置1は、全体を番号2で示す装置ハウジングを備えている。この装置ハウジング2は、略直方体形状の主部21と、該主部21の後端部(図1において右上端)に設けられ上方に延びる直立壁22とを有している。直立壁22の前面には、研削手段としての研削ユニット3が上下方向に移動可能に装着されている。   The grinding apparatus 1 shown in FIG. 1 is provided with an apparatus housing generally indicated by numeral 2. The device housing 2 has a substantially rectangular parallelepiped main portion 21 and an upright wall 22 provided at a rear end portion (upper right end in FIG. 1) of the main portion 21 and extending upward. A grinding unit 3 as grinding means is mounted on the front surface of the upright wall 22 so as to be movable in the vertical direction.

研削ユニット3は、移動基台31と該移動基台31に装着されたスピンドルユニット4を備えている。移動基台31は、直立壁22に配設された一対の案内レールと摺動可能に係合するように構成されている。このように直立壁22に設けられた一対の該案内レールに摺動可能に装着された移動基台31の前面には、前方に突出した支持部を介して研削手段としてのスピンドルユニット4が取り付けられる。   The grinding unit 3 includes a moving base 31 and a spindle unit 4 mounted on the moving base 31. The movable base 31 is configured to slidably engage with a pair of guide rails disposed on the upright wall 22. Thus, the spindle unit 4 as a grinding means is attached to the front surface of the movable base 31 slidably mounted on the pair of guide rails provided on the upright wall 22 via a support portion protruding forward. It is done.

該スピンドルユニット4は、スピンドルハウジング41と、該スピンドルハウジング41に回転自在に配設された回転スピンドル42と、該回転スピンドル42を回転駆動するための駆動源としてのサーボモータ43とを備えている。スピンドルハウジング41に回転可能に支持された回転スピンドル42は、一端部(図1において下端部)がスピンドルハウジング41の下端から突出して配設されており、下端部にはホイールマウント44が設けられている。そして、このホイールマウント44の下面に研削ホイール5が取り付けられる。この研削ホイール5の下面には複数のセグメントから構成された研削砥石51が配設されている。   The spindle unit 4 includes a spindle housing 41, a rotary spindle 42 rotatably disposed on the spindle housing 41, and a servo motor 43 as a drive source for rotationally driving the rotary spindle 42. . The rotary spindle 42 rotatably supported by the spindle housing 41 has one end portion (lower end portion in FIG. 1) protruding from the lower end of the spindle housing 41, and a wheel mount 44 is provided at the lower end portion. Yes. Then, the grinding wheel 5 is attached to the lower surface of the wheel mount 44. A grinding wheel 51 composed of a plurality of segments is disposed on the lower surface of the grinding wheel 5.

図示の研削装置1は、研削ユニット3を該一対の案内レールに沿って上下方向(後述するチャックテーブルの保持面に対して垂直な方向)に移動させる研削ユニット送り機構6を備えている。この研削ユニット送り機構6は、直立壁22の前側に配設され実質上鉛直に延びる雄ねじロッド61、該雄ねじロッド61を回転駆動するための駆動源としてのパルスモータ62を備え、該移動基台31の背面に備えられた図示しない雄ねじロッド61の軸受部材等から構成される。このパルスモータ62が正転すると移動基台31即ち研磨ユニット3が下降即ち前進させられ、パルスモータ62が逆転すると移動基台31即ち研削ユニット3が上昇即ち後退させられる。   The illustrated grinding apparatus 1 includes a grinding unit feed mechanism 6 that moves the grinding unit 3 in the vertical direction (direction perpendicular to the holding surface of the chuck table described later) along the pair of guide rails. The grinding unit feed mechanism 6 includes a male screw rod 61 disposed on the front side of the upright wall 22 and extending substantially vertically, and a pulse motor 62 as a drive source for rotationally driving the male screw rod 61. It is comprised from the bearing member etc. of the male screw rod 61 (not shown) with which the back surface of 31 was equipped. When the pulse motor 62 is rotated forward, the moving base 31, that is, the polishing unit 3 is lowered or advanced, and when the pulse motor 62 is reversed, the moving base 31, that is, the grinding unit 3 is raised or moved backward.

上記ハウジング2の主部21に被加工物としての板状物(ウエーハ10)を保持する保持手段としてのチャックテーブル機構7が配設されている。チャックテーブル機構7は、チャックテーブル71と、該チャックテーブル71の周囲を覆うカバー部材72と、該カバー部材72の前後に配設された蛇腹手段73および74を備えている。チャックテーブル71は、その上面(保持面)にウエーハ10を図示しない吸引手段を作動することにより吸引保持するように構成されている。さらに、チャックテーブル71は、図示しない回転駆動手段によって回転可能に構成されると共に、図示しないチャックテーブル移動手段によって図1に示す被加工物載置域70aと研削ホイール5と対向する研削域70bとの間(矢印Xで示すX軸方向)で移動させられる。   A chuck table mechanism 7 as a holding means for holding a plate-like object (wafer 10) as a workpiece is disposed on the main portion 21 of the housing 2. The chuck table mechanism 7 includes a chuck table 71, a cover member 72 that covers the periphery of the chuck table 71, and bellows means 73 and 74 disposed before and after the cover member 72. The chuck table 71 is configured to suck and hold the wafer 10 on its upper surface (holding surface) by operating suction means (not shown). Further, the chuck table 71 is configured to be rotatable by a rotation driving means (not shown), and a workpiece placement area 70a and a grinding area 70b facing the grinding wheel 5 shown in FIG. (In the X-axis direction indicated by arrow X).

なお、上述したサーボモータ43、パルスモータ62、図示しないチャックテーブル移動手段等は、後述する制御手段20により制御される。また、ウエーハ10は、図示の実施形態においては外周部に結晶方位を表すノッチが形成されており、その表面に保護部材としての保護テープ12が貼着され、この保護テープ12側がチャックテーブル71の上面(保持面)に保持される。   The servo motor 43, the pulse motor 62, the chuck table moving means (not shown), and the like described above are controlled by the control means 20 described later. Further, in the illustrated embodiment, the wafer 10 has a notch representing a crystal orientation on the outer peripheral portion, and a protective tape 12 as a protective member is attached to the surface of the wafer 10, and the protective tape 12 side is the chuck table 71 side. It is held on the upper surface (holding surface).

図示の研削装置1は、チャックテーブル71に保持されるウエーハ10の厚みを計測する厚み計測装置8を備えている。この厚み計測装置8は、計測ハウジング80に内蔵されており、計測ハウジング80は、図に示すように装置ハウジング2を構成する直方体形状の主部21の上面において、チャックテーブル71が被加工物載置領域70aから研削域70b間を移動させられる経路途中の側方に配設され、チャックテーブル71が被加工物載置領域70aと研削域70b間を移動する際に、チャックテーブル71上に保持されるウエーハ10の全体を上方から計測可能に配置されている。該厚み計測装置8について、図2を参照してさらに説明する。   The illustrated grinding apparatus 1 includes a thickness measuring device 8 that measures the thickness of the wafer 10 held on the chuck table 71. The thickness measuring device 8 is built in a measuring housing 80. The measuring housing 80 has a chuck table 71 mounted on a workpiece on the upper surface of a rectangular parallelepiped main portion 21 constituting the device housing 2 as shown in the figure. The chuck table 71 is disposed on the side of the path that is moved from the placement area 70a to the grinding area 70b, and is held on the chuck table 71 when the chuck table 71 moves between the workpiece placement area 70a and the grinding area 70b. The entire wafer 10 is arranged so that it can be measured from above. The thickness measuring device 8 will be further described with reference to FIG.

図示の実施形態における厚み計測装置8は、被加工物としてのウエーハ10に対して透過性を有する所定の波長領域(例えば、波長1000nm〜1100nm)を含む光を発するブロードバンド光源としての発光源81と、該発光源81からの光8aを反射しつつ所定の波長領域に分光する分光器82を備えている。該発光源81は、LED、SLD(Superluminescent diode)、ASE(Amplified Spontaneous Emission)、SC(Supercontinuum)、ハロゲン光源等を選択することができる。該分光器82は、回析格子により構成され、該回析格子の作用により、1000nm〜1100nm波長から構成される光8aが分光され所定の広がりを持った光8bを形成する。該光8bは、図中下方側に短い波長(1000nm)、上方側に長い波長(1100nm)の光によって構成されるように分光される。   A thickness measuring device 8 in the illustrated embodiment includes a light emitting source 81 as a broadband light source that emits light including a predetermined wavelength region (for example, a wavelength of 1000 nm to 1100 nm) that is transparent to a wafer 10 as a workpiece. A spectroscope 82 is provided for spectroscopically separating the light 8a from the light source 81 into a predetermined wavelength region while reflecting the light 8a. The light emitting source 81 can be selected from an LED, an SLD (Superluminous Diode), an ASE (Amplified Spontaneous Emission), an SC (Supercontinuum), a halogen light source, and the like. The spectroscope 82 is constituted by a diffraction grating, and by the action of the diffraction grating, the light 8a having a wavelength of 1000 nm to 1100 nm is split to form light 8b having a predetermined spread. The light 8b is split so as to be composed of light having a short wavelength (1000 nm) on the lower side and a long wavelength (1100 nm) on the upper side.

分光器82により分光され反射された光8bは、各波長の光を時間経過でその分配方向を変更する機能を有する分配手段により反射される。該分配手段は、各辺が反射面(ミラー)からなる例えば正8面体からなるポリゴンミラー83により構成され、該ポリゴンミラー83は、図中右回りに、所定の回転速度で回転するように構成されている。ポリゴンミラー83の反射面に入射した光8bは、所定の広がりをもって反射され光8cとなってポリゴンミラー83の反射面と対向して配置された集光レンズ84に入射する。そして、集光レンズ84により集光された光8cは、所定間隔で順に配列されて端部が保持部材85で保持された光伝達手段を構成する例えば18本の光ファイバー(1)〜(18)の端面に入射する。なお、ウエーハの直径に対する光ファイバーの直径を小さくして光ファイバーの本数を増やす(例えば100本)ことにより後述する計測の分解能を高めることもできる。本実施形態では、ポリゴンミラー83が図2に示すような所定の角度位置にあるとき、ポリゴンミラー83の一の反射面で反射された光が、全て集光レンズ84に入射される。該保持部材85に保持された光ファイバー(1)〜(18)に対して分光された波長毎に入射されるように分光器82、ポリゴンミラー83、集光レンズ84、及び保持部材85の設置位置、角度等が設定される。なお、ポリゴンミラー83の作用については、追って詳述する。   The light 8b split and reflected by the spectroscope 82 is reflected by a distribution means having a function of changing the distribution direction of light of each wavelength over time. The distributing means is constituted by a polygon mirror 83 having a regular octahedron, for example, each side comprising a reflecting surface (mirror), and the polygon mirror 83 is configured to rotate clockwise at a predetermined rotational speed in the drawing. Has been. The light 8b incident on the reflection surface of the polygon mirror 83 is reflected with a predetermined spread and becomes light 8c, which is incident on the condenser lens 84 disposed opposite to the reflection surface of the polygon mirror 83. The light 8c collected by the condensing lens 84 is arranged in order at predetermined intervals, and has, for example, 18 optical fibers (1) to (18) constituting a light transmission means whose end is held by the holding member 85. Incident on the end face of Note that the measurement resolution described later can be increased by reducing the diameter of the optical fiber relative to the diameter of the wafer and increasing the number of optical fibers (for example, 100). In the present embodiment, when the polygon mirror 83 is at a predetermined angular position as shown in FIG. 2, all the light reflected by one reflecting surface of the polygon mirror 83 is incident on the condenser lens 84. Installation positions of the spectroscope 82, the polygon mirror 83, the condensing lens 84, and the holding member 85 so as to be incident on the optical fibers (1) to (18) held by the holding member 85 for each wavelength separated. , Angle, etc. are set. The operation of the polygon mirror 83 will be described in detail later.

該厚み計測装置8は、光ファイバー(1)〜(18)に入射された光を、光ファイバー(1)〜(18)により形成された光の第1の経路8dを通りチャックテーブル71に保持されたウエーハ10に向かう第2の経路8e側に導くと共に、ウエーハ10で反射し該第2の経路8eを逆行する反射光を分岐して第3の経路8fに導くための光分岐手段86を備えている。なお、該第1〜第3の経路8d〜8fは、光ファイバー(1)〜(18)で構成されており、光分岐手段86は、例えば、偏波保持ファイバーカプラ、偏波保持ファイバーサーキュレータ、シングルモードファイバーカプラ等のいずれかから適宜選択される。   The thickness measuring device 8 held the light incident on the optical fibers (1) to (18) on the chuck table 71 through the first path 8d of the light formed by the optical fibers (1) to (18). A light branching means 86 is provided for guiding the second path 8e toward the wafer 10 to the side of the second path 8e and branching the reflected light reflected by the wafer 10 and going back through the second path 8e to the third path 8f. Yes. The first to third paths 8d to 8f are configured by optical fibers (1) to (18), and the optical branching means 86 is, for example, a polarization maintaining fiber coupler, a polarization maintaining fiber circulator, a single A mode fiber coupler or the like is selected as appropriate.

光分岐手段86を介して第2の経路8eに導かれた光は、チャックテーブル71上に保持されたウエーハ10に臨む測定端子87に導かれる。該測定端子87は、Y軸方向に細長い形状をなし、計測対象であるウエーハ10の直径をカバーする寸法で形成されている。また、該測定端子87は、該光伝達手段を構成する複数の光ファイバー(1)〜(18)の他方の端部を保持し、該端部に導かれた光を端面からチャックテーブル71に保持されたウエーハ10上に導く複数の対物レンズ88が設けられており、該対物レンズ88は、チャックテーブル71が移動する方向(X軸方向)と直交する方向(Y軸方向)に列をなすように配設されている。   The light guided to the second path 8 e via the light branching means 86 is guided to the measurement terminal 87 facing the wafer 10 held on the chuck table 71. The measurement terminal 87 has an elongated shape in the Y-axis direction, and is formed with a dimension that covers the diameter of the wafer 10 to be measured. The measurement terminal 87 holds the other end of the plurality of optical fibers (1) to (18) constituting the light transmission means, and holds the light guided to the end on the chuck table 71 from the end surface. A plurality of objective lenses 88 guided on the wafer 10 are provided, and the objective lenses 88 form a line in a direction (Y axis direction) orthogonal to a direction (X axis direction) in which the chuck table 71 moves. It is arranged.

該第3の経路8fは、第2の経路8eを逆行してくる光が、光分岐手段86において分岐され伝達される光ファイバー(1)〜(18)により形成され、その端面に対向する位置に光の強度を検出する手段としてのラインイメージセンサー90が配設されている。ラインイメージセンサー90により計測された光強度は、該厚み計測装置8を構成する制御装置20に送られ、検出された時間(t)と共に該制御装置20に記憶される。   The third path 8f is formed by the optical fibers (1) to (18) in which the light traveling backward through the second path 8e is branched and transmitted by the light branching means 86, and is located at a position facing the end face. A line image sensor 90 is provided as means for detecting the intensity of light. The light intensity measured by the line image sensor 90 is sent to the control device 20 constituting the thickness measuring device 8, and is stored in the control device 20 together with the detected time (t).

該制御手段20は、コンピュータにより構成され、制御プログラムに従って演算処理する中央演算処理装置(CPU)と、制御プログラム等を格納するリードオンリメモリ(ROM)と、検出した検出値、演算結果等を一時的に格納するための読み書き可能なランダムアクセスメモリ(RAM)と、入力インターフェース、及び出力インターフェースとを備えている(詳細についての図示は省略)。本実施形態における制御手段20は、研削装置1の各駆動部分を制御すると共に、該厚み計測装置8を構成するものであり、上述したように、ラインイメージセンサー90の検出値をランダムアクセスメモリ(RAM)に記憶し、ポリゴンミラー83、発光手段81を駆動することで、ウエーハ10の厚さを算出する機能を有するように構成されている。本実施形態の研削装置1、厚み計測装置8は概略以上のように構成されており、その作用について以下に説明する。   The control means 20 is constituted by a computer, and a central processing unit (CPU) that performs arithmetic processing in accordance with a control program, a read-only memory (ROM) that stores a control program and the like, and temporarily detects detected values and arithmetic results. A random access memory (RAM) that can be read and written, an input interface, and an output interface (details are not shown). The control means 20 in this embodiment controls each drive part of the grinding device 1 and constitutes the thickness measuring device 8. As described above, the control means 20 stores the detection value of the line image sensor 90 in a random access memory ( RAM) and driving the polygon mirror 83 and the light emitting means 81 so as to have a function of calculating the thickness of the wafer 10. The grinding device 1 and the thickness measuring device 8 of the present embodiment are configured as described above, and their operation will be described below.

本発明の厚み計測装置8によるウエーハ10の厚さの計測は、例えば、チャックテーブル71に載置されたウエーハ10を研削装置1によって研削した後、研削域70bから被加工物載置域70aに移動させることにより測定端子87の直下を通過させて行う。その際、制御手段20は、ラインイメージセンサー90による光の強度を示す検出信号から図5に示すような分光干渉波形を求め、該分光干渉波形に基づいて波形解析を実行し、チャックテーブル71上に載置されたウエーハ10の上面で反射され逆行する戻り光と、下面で反射され逆行する戻り光とが辿る光路長の差からウエーハ10の厚み(T)を算出すことが可能である。具体的な算出方法については、後述する。   Measurement of the thickness of the wafer 10 by the thickness measuring device 8 of the present invention is performed, for example, after the wafer 10 placed on the chuck table 71 is ground by the grinding device 1 and then transferred from the grinding area 70b to the workpiece placement area 70a. By moving it, it passes under the measuring terminal 87. At that time, the control means 20 obtains a spectral interference waveform as shown in FIG. 5 from the detection signal indicating the light intensity by the line image sensor 90, executes waveform analysis based on the spectral interference waveform, It is possible to calculate the thickness (T) of the wafer 10 from the difference in the optical path lengths of the return light reflected back from the upper surface of the wafer 10 placed on the back and the return light reflected back from the lower surface. A specific calculation method will be described later.

本実施形態におけるウエーハ10の厚さを算出する手順について図2〜4を参照しながら説明する。ポリゴンミラー83は上述したように、正8角形を成す各辺が反射面(ミラー)により構成されており、図示しないパルスモータ等の駆動手段によりその回転位置が時間(t)と関連付けられて制御手段20のランダムアクセスメモリ(RAM)に記憶されつつ、図中右回り方向に回転駆動される。   A procedure for calculating the thickness of the wafer 10 in the present embodiment will be described with reference to FIGS. As described above, each side of the polygon mirror 83 is formed of a reflecting surface (mirror) with a regular octagon, and its rotational position is associated with time (t) by a driving means such as a pulse motor (not shown). While being stored in the random access memory (RAM) of the means 20, it is rotated in the clockwise direction in the figure.

発光源81から光が照射され、ポリゴンミラー83が図中矢印の方向に回転されると、分光器82により分光され広がりを有する光8bの一部がポリゴンミラー83の反射面83aで反射して反射光8cをなし、集光レンズ84に入射し始める。そして、ポリゴンミラー83の反射面83aが図3(a)に示す状態になったとき、集光レンズ84にて集光された光8cの一部を構成する1000nm波長の領域が保持部材85に一端部が保持された光ファイバー(1)に入射する(時間t1)。光ファイバー(1)に入射した1000nm波長の光は、上述した光伝達手段を構成する第1、第2の経路8d、8eを進行し、測定端子87に到達する。該測定端子87の対物レンズ88に到達した1000nm波長の光は、該測定端子87の直下をX軸方向に移動させられるウエーハ10の上面及び下面で反射し、第2の経路8eを逆行する戻り光を形成し、光分岐手段86で分岐されラインイメージセンサー90における光ファイバー(1)に割り当てられた位置に到達する。その結果、光ファイバー(1)に対し光が入射した時間t1におけるウエーハ10の上面及び下面で反射した戻り光により構成される反射光の光強度が検出される。この光強度は、時間t1と、照射されたウエーハ10のX軸方向のX座標、Y軸方向のY座標の位置と関連付けられて制御手段20のランダムアクセスメモリ(RAM)の任意の記憶領域に記憶される。   When light is emitted from the light source 81 and the polygon mirror 83 is rotated in the direction of the arrow in the figure, a part of the light 8b that is spread and spread by the spectroscope 82 is reflected by the reflecting surface 83a of the polygon mirror 83. The reflected light 8c is formed and enters the condenser lens 84. When the reflecting surface 83a of the polygon mirror 83 is in the state shown in FIG. 3A, the 1000 nm wavelength region constituting a part of the light 8c condensed by the condenser lens 84 is formed on the holding member 85. The light enters the optical fiber (1) having one end held (time t1). The light having a wavelength of 1000 nm incident on the optical fiber (1) travels through the first and second paths 8d and 8e constituting the light transmission means described above, and reaches the measurement terminal 87. The light having a wavelength of 1000 nm that has reached the objective lens 88 of the measurement terminal 87 is reflected by the upper and lower surfaces of the wafer 10 that is moved in the X-axis direction immediately below the measurement terminal 87, and returns in the reverse direction along the second path 8e. Light is formed, branched by the light branching means 86, and reaches a position assigned to the optical fiber (1) in the line image sensor 90. As a result, the light intensity of the reflected light composed of the return light reflected from the upper surface and the lower surface of the wafer 10 at the time t1 when the light is incident on the optical fiber (1) is detected. This light intensity is related to the time t1 and the position of the X coordinate in the X axis direction and the Y coordinate in the Y axis direction of the irradiated wafer 10 in an arbitrary storage area of the random access memory (RAM) of the control means 20. Remembered.

なお、図4は、横軸に時間(t)、縦軸に光ファイバー(1)〜(18)の端部の配設位置を示し、時間(t)の経過に伴い、ポリゴンミラー83で反射された1000nm〜1100nm波長の光のいずれの波長領域が、いずれの光ファイバー(1)〜(18)に入射されるかを示すものであり、例えば、時間t1で、光ファイバー(1)に1000nm波長の光が入射し始めることが理解される。この図4に示す時間(t)と、いずれの波長領域が、いずれの光ファイバー(1)〜(18)に入射されるかを示す関係とが制御手段20に記憶されていることで、ラインイメージセンサー90で検出される光強度が、いずれの波長領域がいずれの光ファイバー(1)〜(18)に入射されているときに検出されたものであるのかを関連付けることができる。   In FIG. 4, the horizontal axis indicates time (t), and the vertical axis indicates the arrangement positions of the end portions of the optical fibers (1) to (18), which are reflected by the polygon mirror 83 as time (t) elapses. It indicates which wavelength region of light having a wavelength of 1000 nm to 1100 nm is incident on which optical fiber (1) to (18). For example, at time t1, light having a wavelength of 1000 nm is applied to the optical fiber (1). Will begin to enter. The time (t) shown in FIG. 4 and the relationship indicating which wavelength region is incident on which optical fiber (1) to (18) are stored in the control means 20, so that a line image is obtained. The light intensity detected by the sensor 90 can be correlated with which wavelength region is detected when entering which optical fiber (1) to (18).

図3に戻り説明を続けると、時間t1で分光器82により分光された光が光ファイバー(1)に入射した以降、ポリゴンミラー83が引き続き回転することにより、光8bに対するポリゴンミラー83の反射面83aの向きが変化し、分光された光8bの1000nm〜1100nm波長の領域が図中下方に移動しながら、順次光ファイバー(1)〜(18)の端部を保持する保持手段85に照射される。そして、時間t2においては、図3(b)に示すように、光ファイバー(1)〜(18)に対して、分光器82により分光された光8cの波長領域の全てが入射された状態となる(図4も併せて参照。)。この状態では、光ファイバー(1)に1100nm波長の領域が入射し、光ファイバー(18)に1000nm波長の領域が入射される。つまり、時間t1からt2にかけて光ファイバー(1)に対して、分光器82によって分光された1000nm〜1100nm波長領域の全てが入射されることになる。   Returning to FIG. 3, the description is continued. After the light split by the spectroscope 82 enters the optical fiber (1) at time t1, the polygon mirror 83 continues to rotate, so that the reflecting surface 83a of the polygon mirror 83 with respect to the light 8b. , And the holding unit 85 that sequentially holds the ends of the optical fibers (1) to (18) is irradiated while the region of the wavelength of 1000 nm to 1100 nm of the dispersed light 8b moves downward in the figure. At time t2, as shown in FIG. 3B, all the wavelength regions of the light 8c dispersed by the spectroscope 82 are incident on the optical fibers (1) to (18). (See also FIG. 4). In this state, a 1100 nm wavelength region is incident on the optical fiber (1), and a 1000 nm wavelength region is incident on the optical fiber (18). In other words, from the time t1 to the time t2, all of the wavelength region of 1000 nm to 1100 nm spectrally separated by the spectroscope 82 is incident on the optical fiber (1).

図3(b)に示す状態から、さらにポリゴンミラー83が回転して時間t3に達すると、図3(c)に示すように分光器82により分光された光の波長領域のうち、1100nm波長の領域が光ファイバー(18)に入射する状態となり、時間t1〜t3にかけて分光器82により分光された1000nm〜1100nm波長の光が光ファイバー(1)〜(18)の全てに照射される。なお、図3、4から理解されるように、さらに時間が経過してt4になると、ポリゴンミラー83の反射面83aに隣接する反射面83bに対して分光された光8bが照射されて1000nm波長の領域が再び光ファイバー(1)に照射され始め、図3(a)と同じ状態となり、以降同様の作動が繰り返される。   When the polygon mirror 83 further rotates and reaches time t3 from the state shown in FIG. 3B, the wavelength region of 1100 nm in the wavelength region of the light dispersed by the spectroscope 82 as shown in FIG. The region enters the optical fiber (18), and light having a wavelength of 1000 nm to 1100 nm dispersed by the spectroscope 82 is applied to all the optical fibers (1) to (18) over time t1 to t3. As will be understood from FIGS. 3 and 4, when time elapses and t4 is reached, the light 8b that has been split is applied to the reflection surface 83b adjacent to the reflection surface 83a of the polygon mirror 83, resulting in a wavelength of 1000 nm. The region of (1) begins to be irradiated again to the optical fiber (1), the same state as in FIG. 3 (a) is obtained, and thereafter the same operation is repeated.

上述したように、制御手段20には、時間(t)に関連付けられてラインイメージセンサー90によって検出される光強度と、図4に示すような該時間(t)における各光ファイバー(1)〜(18)に対してポリゴンミラー83により分配される波長が記憶されており、両者を参照することで、各光ファイバー(1)〜(18)毎に図5に示すような分光干渉波形を生成することができる。図5は、例えば光ファイバー(1)について検出される分光干渉波形(F(1))を示しており、横軸は光ファイバーに入射される反射光波長(λ)、縦軸はラインセンサ90により検出される光強度を示している。
以下、制御手段20が上述した分光干渉波形に基づいて実行する波形解析に基づき、ウエーハ10の厚み、及び高さを算出する例について説明する。
As described above, the control means 20 includes the light intensity detected by the line image sensor 90 in association with the time (t), and the optical fibers (1) to (1) at the time (t) as shown in FIG. 18), the wavelength distributed by the polygon mirror 83 is stored, and a spectral interference waveform as shown in FIG. 5 is generated for each of the optical fibers (1) to (18) by referring to both. Can do. FIG. 5 shows, for example, the spectral interference waveform (F (1)) detected for the optical fiber (1). The horizontal axis indicates the reflected light wavelength (λ) incident on the optical fiber, and the vertical axis indicates the line sensor 90. Shows the light intensity.
Hereinafter, an example in which the thickness and height of the wafer 10 are calculated based on the waveform analysis performed by the control unit 20 based on the above-described spectral interference waveform will be described.

該測定端子87に位置付けられる第2の経路8eにおける光ファイバー(1)〜(18)の端部からチャックテーブル71に保持されたウエーハ10の下面までの光路長を(L1)とし、第2の経路8eにおける光ファイバー(1)〜(18)の端部からチャックテーブル71に保持されたウエーハ10の上面までの光路長を(L2)とし、光路長(L1)と光路長(L2)との差を第1の光路長差(d1=L1−L2)とする。   The optical path length from the end of the optical fibers (1) to (18) in the second path 8e positioned at the measurement terminal 87 to the lower surface of the wafer 10 held by the chuck table 71 is (L1), and the second path The optical path length from the end of the optical fibers (1) to (18) in 8e to the upper surface of the wafer 10 held on the chuck table 71 is (L2), and the difference between the optical path length (L1) and the optical path length (L2) is The first optical path length difference (d1 = L1-L2) is assumed.

次に、制御手段20は、上述した図5に示すような光ファイバー(1)〜(18)毎に対して生成された分光干渉波形(F(1)〜F(18))に基づいて波形解析を実行する。この波形解析は、例えばフーリエ変換理論やウエーブレット変換理論に基づいて実行することができるが、以下に述べる実施形態においては下記数式1、数式2、数式3に示すフーリエ変換式を用いた例について説明する。   Next, the control means 20 analyzes the waveform based on the spectral interference waveforms (F (1) to F (18)) generated for each of the optical fibers (1) to (18) as shown in FIG. Execute. This waveform analysis can be executed based on, for example, Fourier transformation theory or wavelet transformation theory. In the embodiment described below, examples using the Fourier transformation formulas shown in the following formulas 1, 2, and 3 are used. explain.

上記数式において、λは波長、dは上記第1の光路長差(d1=L1−L2)、W(λn)は窓関数である。上記数式1は、cosの理論波形と上記分光干渉波形(I(λn))との比較で最も波の周期が近い(相関性が高い)、即ち分光干渉波形と理論上の波形関数との相関係数が高い光路長差(d)を求める。また、上記数式2は、sinの理論波形と上記分光干渉波形(I(λn))との比較で最も波の周期が近い(相関性が高い)、即ち分光干渉波形と理論上の波形関数との相関係数が第1の光路長差(d1=L1−L2)、を求める。そして、上記数式3は、数式1の結果と数式2の結果の平均値を求める。   In the above formula, λ is a wavelength, d is the first optical path length difference (d1 = L1−L2), and W (λn) is a window function. Equation (1) is the closest wave period (high correlation) in comparison between the theoretical waveform of cos and the spectral interference waveform (I (λn)), that is, the phase between the spectral interference waveform and the theoretical waveform function. An optical path length difference (d) having a high relation number is obtained. Also, the above formula 2 is the closest wave period (highly correlated) in comparison between the theoretical waveform of sin and the spectral interference waveform (I (λn)), that is, the spectral interference waveform and the theoretical waveform function The first optical path length difference (d1 = L1-L2) is obtained. Then, the above Equation 3 obtains the average value of the result of Equation 1 and the result of Equation 2.

制御手段20は、上記数式1、数式2、数式3に基づく演算を実行することにより、反射光に含まれる戻り光の各光路長差に起因する分光の干渉に基づき、図6に示す信号強度の波形を得ることができる。図6において横軸は光路長差(d)を示し、縦軸は信号強度を示している。図6に示す例においては、光路長差(d)が150μmの位置で信号強度が高く表されている。即ち、光路長差(d)が150μmの位置の信号強度は光路長差(d1=L1−L2)であり、ウエーハ10の厚み(T)を表している。そして、該測定端子87と該チャックテーブル71との相対的なX軸方向の位置と、Y軸方向に位置付けられた対物レンズ88の位置とで特定される計測位置の座標(X座標、Y座標)におけるウエーハ10の厚み(T)を記憶する。このような計測を、ウエーハ10をX軸方向に移動させながら全面に対して実行する。   The control means 20 performs the calculation based on the above-described Equation 1, Equation 2, and Equation 3, thereby performing the signal intensity shown in FIG. 6 based on the spectral interference caused by each optical path length difference of the return light included in the reflected light. Waveform can be obtained. In FIG. 6, the horizontal axis represents the optical path length difference (d), and the vertical axis represents the signal intensity. In the example shown in FIG. 6, the signal intensity is high when the optical path length difference (d) is 150 μm. That is, the signal intensity at the position where the optical path length difference (d) is 150 μm is the optical path length difference (d1 = L1−L2), and represents the thickness (T) of the wafer 10. Then, the coordinates (X coordinate, Y coordinate) of the measurement position specified by the relative position of the measurement terminal 87 and the chuck table 71 in the X axis direction and the position of the objective lens 88 positioned in the Y axis direction. The thickness (T) of the wafer 10 is stored. Such measurement is performed on the entire surface while moving the wafer 10 in the X-axis direction.

以上のように、図示の実施形態における厚み計測装置8によれば、ウエーハ10の厚みを容易に求めることができ、反射する反射光の光路長差に起因して得られる分光干渉波形に基づきウエーハ10の加工時におけるウエーハ10の厚み(T)を検出するので、ウエーハ10の表面に貼着された保護テープ12の厚みの変化に影響されることなくウエーハ11の厚み(T)を正確に計測することができる。   As described above, according to the thickness measuring apparatus 8 in the illustrated embodiment, the thickness of the wafer 10 can be easily obtained, and the wafer is based on the spectral interference waveform obtained due to the optical path length difference of the reflected light to be reflected. Since the thickness (T) of the wafer 10 at the time of processing 10 is detected, the thickness (T) of the wafer 11 is accurately measured without being affected by the change in the thickness of the protective tape 12 attached to the surface of the wafer 10. can do.

厚み計測装置8は以上のように構成されており、以下、該厚み計測装置8を備えた研削装置1を用いてウエーハ10を所定の厚みに研削する手順について説明する。   The thickness measuring device 8 is configured as described above. Hereinafter, a procedure for grinding the wafer 10 to a predetermined thickness using the grinding device 1 provided with the thickness measuring device 8 will be described.

表面に保護テープ12が貼着されたウエーハ10は、図1に示す研削装置1における被加工物載置域70aに位置付けられているチャックテーブル71上に保護テープ12側が載置され、図示しない吸引手段を作動することによってチャックテーブル71上に吸引保持される。従って、チャックテーブル71上に吸引保持されたウエーハ11は、裏面10bが上側となる。   The wafer 10 with the protective tape 12 attached to the surface is placed on the chuck table 71 positioned in the workpiece placement area 70a in the grinding apparatus 1 shown in FIG. By operating the means, the chuck table 71 is sucked and held. Therefore, the back surface 10b of the wafer 11 sucked and held on the chuck table 71 is on the upper side.

次に、制御手段20は、ウエーハ10を保持したチャックテーブル71の図示しない移動手段を作動し、チャックテーブル71を移動して研削域70bに位置付け、研削ホイール5の複数の研削砥石51の外周縁がチャックテーブル71の回転中心を通過するように位置付ける。   Next, the control means 20 operates a moving means (not shown) of the chuck table 71 that holds the wafer 10 to move the chuck table 71 to be positioned in the grinding area 70 b, and the outer peripheral edges of the plurality of grinding wheels 51 of the grinding wheel 5. Is positioned so as to pass through the center of rotation of the chuck table 71.

このように研削ホイール5とチャックテーブル71に保持されたウエーハ10が所定の位置関係にセットされ、制御手段20は図示しない回転駆動手段を駆動してチャックテーブル71を例えば300rpmの回転速度で回転するとともに、上記したサーボモータ43を駆動して研削ホイール5を例えば6000rpmの回転速度で回転する。そして、ウエーハ10に対して研削水を供給しつつ、研削ユニット送り機構6のパルスモータ62を正転駆動し研削ホイール5を下降(研削送り)して複数の研削砥石51をウエーハ10の上面(裏面10b)である被研削面に所定の圧力で押圧する。この結果、ウエーハ10のである被研削面が研削される(研削工程)。   In this way, the wafer 10 held on the grinding wheel 5 and the chuck table 71 is set in a predetermined positional relationship, and the control means 20 drives a rotation driving means (not shown) to rotate the chuck table 71 at a rotational speed of, for example, 300 rpm. At the same time, the above-described servo motor 43 is driven to rotate the grinding wheel 5 at a rotational speed of, for example, 6000 rpm. Then, while supplying the grinding water to the wafer 10, the pulse motor 62 of the grinding unit feed mechanism 6 is driven to rotate in the forward direction to lower the grinding wheel 5 (grind feed) so that a plurality of grinding wheels 51 are placed on the upper surface of the wafer 10 ( The surface to be ground which is the back surface 10b) is pressed with a predetermined pressure. As a result, the surface to be ground which is the wafer 10 is ground (grinding step).

該研削工程を終えたならば、研削されたウエーハ10を保持したチャックテーブル71をX軸方向の前方に位置する被加工物載置域70a側に移動させることにより、ウエーハ10を厚み計測装置8の測定端子87の直下に位置付けると共に、上述したように厚み計測装置8を作動させてウエーハ10全面の各部位に対応する分光干渉波形を得ると共に波形解析して、ウエーハ10の厚みを計測する。図7に示す表は、測定端子87がウエーハ10の中心を通りY軸方向に沿った所定の位置において、ウエーハ10の厚み(T)を計測した例を示す。このような計測をウエーハ10のX軸方向における所定間隔毎に実行し、ウエーハ10の表面の厚み(T)を記憶し、研削後のウエーハ10全面の厚みを確認することで、研削工程の良否を判定すると共に、必要に応じて再研削を実施することができる。   When the grinding process is completed, the chuck 10 holding the ground wafer 10 is moved to the workpiece placement area 70a located forward in the X-axis direction, so that the wafer 10 is moved to the thickness measuring device 8. The thickness measuring device 8 is operated as described above to obtain a spectral interference waveform corresponding to each part of the entire surface of the wafer 10 and analyze the waveform to measure the thickness of the wafer 10. The table shown in FIG. 7 shows an example in which the thickness (T) of the wafer 10 is measured at a predetermined position along the Y-axis direction where the measurement terminal 87 passes through the center of the wafer 10. Such measurement is performed at predetermined intervals in the X-axis direction of the wafer 10, the thickness (T) of the surface of the wafer 10 is stored, and the thickness of the entire surface of the wafer 10 after grinding is confirmed, so that the quality of the grinding process is good. And regrinding can be performed as necessary.

なお、本実施形態では、分光器によって分光された各波長の光を時間経過で分配方向を変更する分配手段としてポリゴンミラー83を採用したが、本発明はこれに限定されず、時間経過と共に反射面の方向を制御することが可能な、例えば、ガルバノスキャナーを採用することができる。さらに、本実施形態では、反射光の光の強度を検出するための受光素子として、ラインイメージセンサー90を用いたが、これに限定されず、光ファイバー(1)〜(18)毎に対応させて配設するホトデテクタであってもよい。   In this embodiment, the polygon mirror 83 is used as a distribution unit that changes the distribution direction of light of each wavelength separated by the spectroscope with time. However, the present invention is not limited to this, and the light is reflected with time. For example, a galvano scanner that can control the direction of the surface can be employed. Furthermore, in this embodiment, the line image sensor 90 is used as the light receiving element for detecting the intensity of the reflected light. However, the present invention is not limited to this, and it is made to correspond to each of the optical fibers (1) to (18). The photo detector to arrange | position may be sufficient.

また、上述した実施形態では、該厚み計測装置8による計測を、研削工程を終えたウエーハの全面に対して行うように説明したが、これに限定されるものではなく、例えば、該厚み計測装置8の計測ハウジング80の設置位置を図1に示す研削域70bの近傍に設定すると共に、その計測ハウジング80の設置位置を移動可能に設置することもできる。そのように構成することで、研削装置1のチャックテーブル機構7に保持されたウエーハ10が研削ホイール5の作用を受けて研削されている際に、露出したウエーハ10に対面して測定端子87を研削時に供給される研削水に水没させて位置付け、研削中のウエーハ10の厚みを計測することも可能であり、研削中のウエーハ10の厚みを制御手段20にフィードバックすることで所望の厚みに研削することが可能である。また、本発明に基づき構成される厚み計測装置8は、本実施形態のように研削装置1に配設される必要はなく、研削装置1とは独立した一つの装置として構成したり、あるいは研削装置1とは異なる他の加工装置に併設したりしてもよい。   In the above-described embodiment, the measurement by the thickness measuring device 8 has been described as being performed on the entire surface of the wafer after the grinding process. However, the present invention is not limited to this, and for example, the thickness measuring device. The installation position of the eight measurement housings 80 can be set in the vicinity of the grinding area 70b shown in FIG. With such a configuration, when the wafer 10 held by the chuck table mechanism 7 of the grinding apparatus 1 is ground by the action of the grinding wheel 5, the measurement terminal 87 faces the exposed wafer 10. It is also possible to measure the thickness of the wafer 10 being ground by immersing it in the grinding water supplied during grinding, and to feed back the thickness of the wafer 10 being ground to the control means 20 to achieve a desired thickness. Is possible. Further, the thickness measuring device 8 configured based on the present invention does not need to be disposed in the grinding device 1 as in the present embodiment, and may be configured as one device independent of the grinding device 1 or may be ground. It may be provided in another processing apparatus different from the apparatus 1.

1:研削装置
2:装置ハウジング
3:研削ユニット
4:スピンドルユニット
5:研削ホイール
7:チャックテーブル機構
8:厚み計測装置
8d:第1の経路
8e:第2の経路
8f:第3の経路
80:計測ハウジング
81:発光源
82:分光器
83:ポリゴンミラー(分配手段)
86:光分岐手段
87:測定端子
88:対物レンズ
89:ミラー
90:ラインイメージセンサー
1: Grinding device 2: Device housing 3: Grinding unit 4: Spindle unit 5: Grinding wheel 7: Chuck table mechanism 8: Thickness measuring device 8d: First route 8e: Second route 8f: Third route 80: Measuring housing 81: Light emission source 82: Spectrometer 83: Polygon mirror (distribution means)
86: Optical branching means 87: Measurement terminal 88: Objective lens 89: Mirror 90: Line image sensor

Claims (2)

板状物の厚みを計測する厚み計測装置であって、
板状物に対して透過性を有する波長域の光を発するブロードバンド光源と、
該ブロードバンド光源が発した光を波長域に分光する分光器と、
該分光器によって分光された各波長の光を時間経過で分配方向を変更する分配手段と、
該分配手段によって分配された各波長の光を集光する集光レンズと、
該集光レンズと対面し、複数の光ファイバーの一方の端面が列をなして配設され該集光レンズによって集光された各波長の光を伝達する光伝達手段と、
該光伝達手段を構成する複数の光ファイバーの他方の端面が該板状物に対面して列をなし各端面に対応して該板状物との間に配設される複数の対物レンズを備えた測定端子と、
該板状物の上面で反射した光と板状物を透過して下面で反射した光とが干渉し各光ファイバーを逆行した戻り光を、該光伝達手段の光の伝達経路上に配設されて各光ファイバーから分岐する光分岐手段と、
該光分岐手段で分岐した各光ファイバーに対応した該戻り光の波長を該分配手段によって各光ファイバーに対して分配した時間から求め各波長の光強度を検出して各光ファイバーに対応して分光干渉波形を生成する分光干渉波形生成手段と、
該分光干渉波形生成手段が生成した各光ファイバーに対応した分光干渉波形を波形解析して、各光ファイバーに対応した板状物の厚みを算出する厚み算出手段と、
から少なくとも構成される厚み計測装置。
A thickness measuring device for measuring the thickness of a plate-like object,
A broadband light source that emits light in a wavelength region that is transparent to the plate-like object;
A spectroscope that splits the light emitted by the broadband light source into a wavelength region;
Distribution means for changing the distribution direction of the light of each wavelength dispersed by the spectrometer over time;
A condensing lens that condenses light of each wavelength distributed by the distribution means;
A light transmission means that faces the condenser lens, one end face of a plurality of optical fibers is arranged in a row, and transmits light of each wavelength collected by the condenser lens;
The other end surfaces of the plurality of optical fibers constituting the light transmission means face the plate-like object, form a row, and include a plurality of objective lenses disposed between the plate-like objects corresponding to the end surfaces. Measuring terminals,
The light reflected on the upper surface of the plate-like object and the light transmitted through the plate-like object and reflected on the lower surface interfere with each other, and return light that travels backward through each optical fiber is disposed on the light transmission path of the light transmission means. Optical branching means branching from each optical fiber,
The wavelength of the return light corresponding to each optical fiber branched by the optical branching means is obtained from the time when the distributing means is distributed to each optical fiber, the light intensity of each wavelength is detected, and the spectral interference waveform corresponding to each optical fiber. Spectral interference waveform generating means for generating
Waveform analysis of the spectral interference waveform corresponding to each optical fiber generated by the spectral interference waveform generating means, and a thickness calculating means for calculating the thickness of the plate corresponding to each optical fiber;
A thickness measuring device composed of at least.
該板状物を保持する保持手段を備え、
該測定端子と該保持手段とはX軸方向に相対的に移動可能に構成され、
該測定端子を構成する各光ファイバーの端面に対応して配設された対物レンズの列は、X軸方向と直交するY軸方向に位置付けられ、
該測定端子と該保持手段との相対的なX軸方向の移動と、Y軸方向に位置付けられた対物レンズとで特定されるX座標、Y座標において、該厚み算出手段で算出された板状物の厚みを記憶する記録手段を備える請求項1に記載の厚み計測装置。
A holding means for holding the plate-like object;
The measurement terminal and the holding means are configured to be relatively movable in the X-axis direction,
A row of objective lenses arranged corresponding to the end face of each optical fiber constituting the measurement terminal is positioned in the Y-axis direction orthogonal to the X-axis direction,
A plate shape calculated by the thickness calculation means at the X and Y coordinates specified by the relative movement of the measurement terminal and the holding means in the X-axis direction and the objective lens positioned in the Y-axis direction. The thickness measuring apparatus according to claim 1, further comprising recording means for storing the thickness of the object.
JP2016151158A 2016-08-01 2016-08-01 Thickness measuring device Active JP6730124B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016151158A JP6730124B2 (en) 2016-08-01 2016-08-01 Thickness measuring device
TW106121251A TWI731992B (en) 2016-08-01 2017-06-26 Thickness measuring device
CN201710623484.9A CN107677211B (en) 2016-08-01 2017-07-27 Thickness measuring device
KR1020170096003A KR102305384B1 (en) 2016-08-01 2017-07-28 Thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151158A JP6730124B2 (en) 2016-08-01 2016-08-01 Thickness measuring device

Publications (2)

Publication Number Publication Date
JP2018021760A true JP2018021760A (en) 2018-02-08
JP6730124B2 JP6730124B2 (en) 2020-07-29

Family

ID=61133776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151158A Active JP6730124B2 (en) 2016-08-01 2016-08-01 Thickness measuring device

Country Status (4)

Country Link
JP (1) JP6730124B2 (en)
KR (1) KR102305384B1 (en)
CN (1) CN107677211B (en)
TW (1) TWI731992B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11845158B2 (en) 2019-10-15 2023-12-19 Disco Corporation Thickness measuring apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7210200B2 (en) * 2018-09-21 2023-01-23 株式会社ディスコ Thickness measuring device and grinding device equipped with thickness measuring device
JP7210367B2 (en) * 2019-04-23 2023-01-23 株式会社ディスコ Thickness measuring device and processing device equipped with thickness measuring device
CN110779448B (en) * 2019-09-19 2021-10-26 中北大学 Double-interference type high-frame-frequency sampling micro-displacement measurement method based on vortex rotation
KR102479896B1 (en) 2020-11-17 2022-12-26 대한민국 Closed conduit burying machine attached to tractor and the construction method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005823A (en) * 2000-06-19 2002-01-09 Dainippon Screen Mfg Co Ltd Thin-film measuring apparatus
JP2003075120A (en) * 2001-09-07 2003-03-12 Fuji Photo Film Co Ltd Size measuring device and roll winding device
JP2004138614A (en) * 2002-10-15 2004-05-13 Xerox Corp Imaging apparatus and method using large linear aperture
JP2005221401A (en) * 2004-02-06 2005-08-18 Dainippon Printing Co Ltd Film thickness measurement method and device
JP2011215164A (en) * 2003-10-27 2011-10-27 General Hospital Corp System and method for executing optical imaging using frequency domain interference measurement, and memory medium
US20110304854A1 (en) * 2010-06-14 2011-12-15 Si Li Instantaneous, phase measuring interferometer apparatus and method
JP2012189507A (en) * 2011-03-11 2012-10-04 Disco Abrasive Syst Ltd Measuring instrument
JP2015163863A (en) * 2014-01-29 2015-09-10 株式会社東京精密 Multipoint distance measuring device and method, and shape measuring device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137575A (en) * 1997-10-24 2000-10-24 Canon Kabushiki Kaisha Film thickness measuring method and apparatus
US6891627B1 (en) * 2000-09-20 2005-05-10 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
JP2005308394A (en) * 2003-04-09 2005-11-04 Mitsubishi Chemical Engineering Corp Method and apparatus for measuring thicknesses of multilayer thin film
CN2648401Y (en) * 2003-10-15 2004-10-13 浙江工程学院 Height measuring and correcting device with magnetic-suspension micro-moving platform
DE602006008896D1 (en) * 2005-01-20 2009-10-15 Zygo Corp INTERFEROMETER FOR DETERMINING PROPERTIES OF AN OBJECT SURFACE
JP5649286B2 (en) * 2008-12-26 2015-01-07 キヤノン株式会社 Optical tomographic imaging apparatus, imaging apparatus for taking image of inspection object, control method of optical tomographic imaging apparatus, and computer program therefor
JP5443180B2 (en) * 2010-01-13 2014-03-19 株式会社ディスコ Thickness detection device and grinding machine
CN101825434B (en) * 2010-04-28 2011-09-14 东北大学 Blazed fiber bragg grating demodulation-based micro-displacement sensor and detection method
JP5980476B2 (en) 2010-12-27 2016-08-31 株式会社荏原製作所 Polishing apparatus and polishing method
CN102589692A (en) * 2011-01-12 2012-07-18 北京智朗芯光科技有限公司 Vertical incidence broadband polarization spectrometer for splitting optical fiber bundle and optical measurement system
TWI458960B (en) * 2012-03-20 2014-11-01 Univ Minghsin Sci & Tech White-light interference measuring device and interfere measuring method thereof
TWI499756B (en) * 2013-05-10 2015-09-11 Ind Tech Res Inst Thickness measuring system and method for a bonding layer
KR101566383B1 (en) * 2014-04-07 2015-11-05 한국표준과학연구원 Reflection-type Interference Apparatus using Optical Fibers for Measuring Geometrical Thickness and Refractive index
CN103940352B (en) * 2014-04-25 2017-01-04 广州飞拓优视光电科技有限公司 A kind of superhigh precision ice detection and real-time detection icing thickness approach thereof
JP6328513B2 (en) * 2014-07-28 2018-05-23 株式会社ディスコ Wafer processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005823A (en) * 2000-06-19 2002-01-09 Dainippon Screen Mfg Co Ltd Thin-film measuring apparatus
JP2003075120A (en) * 2001-09-07 2003-03-12 Fuji Photo Film Co Ltd Size measuring device and roll winding device
JP2004138614A (en) * 2002-10-15 2004-05-13 Xerox Corp Imaging apparatus and method using large linear aperture
JP2011215164A (en) * 2003-10-27 2011-10-27 General Hospital Corp System and method for executing optical imaging using frequency domain interference measurement, and memory medium
JP2005221401A (en) * 2004-02-06 2005-08-18 Dainippon Printing Co Ltd Film thickness measurement method and device
US20110304854A1 (en) * 2010-06-14 2011-12-15 Si Li Instantaneous, phase measuring interferometer apparatus and method
JP2012189507A (en) * 2011-03-11 2012-10-04 Disco Abrasive Syst Ltd Measuring instrument
JP2015163863A (en) * 2014-01-29 2015-09-10 株式会社東京精密 Multipoint distance measuring device and method, and shape measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11845158B2 (en) 2019-10-15 2023-12-19 Disco Corporation Thickness measuring apparatus

Also Published As

Publication number Publication date
CN107677211B (en) 2021-01-12
JP6730124B2 (en) 2020-07-29
KR20180014667A (en) 2018-02-09
TWI731992B (en) 2021-07-01
CN107677211A (en) 2018-02-09
TW201816358A (en) 2018-05-01
KR102305384B1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
CN107796313B (en) Thickness measuring device
CN107796314B (en) Measuring device
JP2018021760A (en) Thickness measurement device
CN111380472B (en) Thickness measuring device
KR102718546B1 (en) Thickness measuring apparatus, and grinding apparatus having thickness measuring apparatus
JP6762834B2 (en) Measuring device
JP7481090B2 (en) Thickness measuring device, and processing device equipped with thickness measuring device
JP7210367B2 (en) Thickness measuring device and processing device equipped with thickness measuring device
CN111380471B (en) Thickness measuring device
KR102309389B1 (en) Measuring apparatus
TW202117830A (en) Thickness measuring apparatus
JP2012132776A (en) Measuring device
JP2020112373A (en) Thickness measuring device, and processing device equipped with thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6730124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250