JP2018014246A - Electrochemical reaction unit and electrochemical reaction cell stack - Google Patents
Electrochemical reaction unit and electrochemical reaction cell stack Download PDFInfo
- Publication number
- JP2018014246A JP2018014246A JP2016143256A JP2016143256A JP2018014246A JP 2018014246 A JP2018014246 A JP 2018014246A JP 2016143256 A JP2016143256 A JP 2016143256A JP 2016143256 A JP2016143256 A JP 2016143256A JP 2018014246 A JP2018014246 A JP 2018014246A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- interconnector
- electrochemical reaction
- region
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003487 electrochemical reaction Methods 0.000 title claims abstract description 45
- 239000000446 fuel Substances 0.000 claims abstract description 202
- 239000003792 electrolyte Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 abstract description 16
- 238000010248 power generation Methods 0.000 description 83
- 239000007789 gas Substances 0.000 description 63
- 230000001590 oxidative effect Effects 0.000 description 31
- 239000002737 fuel gas Substances 0.000 description 28
- 239000007800 oxidant agent Substances 0.000 description 28
- 238000004891 communication Methods 0.000 description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 230000002093 peripheral effect Effects 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 238000005304 joining Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229910021526 gadolinium-doped ceria Inorganic materials 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 101100491995 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) aro-1 gene Proteins 0.000 description 1
- 101100216944 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) aro-2 gene Proteins 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 241000968352 Scandia <hydrozoan> Species 0.000 description 1
- WSZBCXXFBOTXDC-UHFFFAOYSA-N [Fe].[Ni].[La] Chemical compound [Fe].[Ni].[La] WSZBCXXFBOTXDC-UHFFFAOYSA-N 0.000 description 1
- RJBSIFOTJSUDHY-UHFFFAOYSA-N [O-2].[Fe+2].[Co+2].[Sr+2].[La+3] Chemical compound [O-2].[Fe+2].[Co+2].[Sr+2].[La+3] RJBSIFOTJSUDHY-UHFFFAOYSA-N 0.000 description 1
- YMVZSICZWDQCMV-UHFFFAOYSA-N [O-2].[Mn+2].[Sr+2].[La+3] Chemical compound [O-2].[Mn+2].[Sr+2].[La+3] YMVZSICZWDQCMV-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HJGMWXTVGKLUAQ-UHFFFAOYSA-N oxygen(2-);scandium(3+) Chemical compound [O-2].[O-2].[O-2].[Sc+3].[Sc+3] HJGMWXTVGKLUAQ-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Fuel Cell (AREA)
Abstract
Description
本明細書によって開示される技術は、電気化学反応単位に関する。 The technology disclosed herein relates to electrochemical reaction units.
水素と酸素との電気化学反応を利用して発電を行う燃料電池の1つとして、固体酸化物形の燃料電池(以下、「SOFC」という)が知られている。SOFCの構成単位である燃料電池発電単位(以下、単に「発電単位」という)は、燃料電池単セル(以下、単に「単セル」という)と、インターコネクタと、集電体とを備える。単セルは、固体酸化物を含む電解質層と、電解質層を挟んで所定の方向に互いに対向する空気極および燃料極とを含む。インターコネクタは、単セルの燃料極側に配置された金属製の部材である。集電体は、燃料極とインターコネクタとの間に配置された金属製の部材であって、燃料極の表面に接触する複数の凸部を有し、単セル(の燃料極)とインターコネクタとの間の導電性(電気的接続)を確保する。 A solid oxide fuel cell (hereinafter referred to as “SOFC”) is known as one type of fuel cell that generates electricity using an electrochemical reaction between hydrogen and oxygen. A fuel cell power generation unit (hereinafter simply referred to as “power generation unit”), which is a constituent unit of SOFC, includes a fuel cell single cell (hereinafter simply referred to as “single cell”), an interconnector, and a current collector. The single cell includes an electrolyte layer containing a solid oxide, and an air electrode and a fuel electrode facing each other in a predetermined direction with the electrolyte layer interposed therebetween. The interconnector is a metal member disposed on the fuel electrode side of the single cell. The current collector is a metal member disposed between the fuel electrode and the interconnector, and has a plurality of protrusions that contact the surface of the fuel electrode. The single cell (the fuel electrode) and the interconnector Ensure electrical conductivity (electrical connection) between the two.
従来、集電体の一部の領域、具体的には、燃料極およびインターコネクタに挟まれて上記所定の方向の圧縮力(接圧)を受ける領域において、レーザー溶接や抵抗溶接によって集電体をインターコネクタに接合することにより、集電体とインターコネクタとの導電性を確保する技術が知られている(例えば、特許文献1参照)。 Conventionally, in a region of a current collector, specifically, a region sandwiched between a fuel electrode and an interconnector and receiving a compressive force (contact pressure) in the predetermined direction, the current collector is obtained by laser welding or resistance welding. A technique is known in which the electrical conductivity between the current collector and the interconnector is secured by joining the connector to the interconnector (see, for example, Patent Document 1).
上記従来の技術では、集電体とインターコネクタとの間の導電性に関し、向上の余地がある。 In the above conventional technique, there is room for improvement with respect to the electrical conductivity between the current collector and the interconnector.
なお、このような課題は、空気極側においても共通の課題である。すなわち、単セルの空気極側に配置されたインターコネクタと、空気極と該インターコネクタとの間に配置された集電体との間の導電性に関し、向上の余地がある。また、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」という)の構成単位である電解セル単位にも共通の課題である。なお、本明細書では、燃料電池発電単位と電解セル単位とをまとめて電気化学反応単位と呼ぶ。また、このような課題は、SOFCやSOECに限らず、他のタイプの電気化学反応単位にも共通の課題である。 Such a problem is also a common problem on the air electrode side. That is, there is room for improvement in the electrical conductivity between the interconnector disposed on the air electrode side of the single cell and the current collector disposed between the air electrode and the interconnector. In addition, such a problem is also common to the electrolytic cell unit that is a constituent unit of a solid oxide electrolytic cell (hereinafter referred to as “SOEC”) that generates hydrogen using an electrolysis reaction of water. It is. In the present specification, the fuel cell power generation unit and the electrolysis cell unit are collectively referred to as an electrochemical reaction unit. Such a problem is not limited to SOFC and SOEC, but is common to other types of electrochemical reaction units.
本明細書では、上述した課題を解決することが可能な技術を開示する。 In this specification, the technique which can solve the subject mentioned above is disclosed.
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The technology disclosed in the present specification can be realized as, for example, the following forms.
(1)本明細書に開示される電気化学反応単位は、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む電気化学反応単セルと、前記電気化学反応単セルの前記空気極と前記燃料極との少なくとも一方である特定電極側に配置された金属製のインターコネクタと、前記特定電極と前記インターコネクタとの間に配置され、前記特定電極の表面に接触する複数の凸部を有する金属製の集電体と、を備える電気化学反応単位において、前記第1の方向視で、前記集電体の前記凸部における前記特定電極との接触面と、前記集電体における前記インターコネクタとの接触面と、の両方に重なる重複領域における少なくとも一部の領域である第1の領域と、前記重複領域以外の領域である非重複領域における少なくとも一部の領域である第2の領域と、の両方において、前記集電体と前記インターコネクタとが拡散層を介して接合されている。本電気化学反応単位によれば、重複領域のみにおいて集電体とインターコネクタとが接合されている構成と比較して、集電体とインターコネクタとの間の導電性を向上させることができ、電気化学反応単位の性能を向上させることができる。 (1) An electrochemical reaction unit disclosed in the present specification includes an electrochemical reaction unit cell including an electrolyte layer and an air electrode and a fuel electrode facing each other in a first direction with the electrolyte layer interposed therebetween; A metal interconnector disposed on the side of the specific electrode that is at least one of the air electrode and the fuel electrode of the chemical reaction unit cell, disposed between the specific electrode and the interconnector, An electrochemical reaction unit comprising: a metal current collector having a plurality of convex portions in contact with the surface; and in contact with the specific electrode in the convex portion of the current collector in the first direction view And a contact surface with the interconnector in the current collector, a first region that is at least a part of the overlapping region that overlaps both, and a small amount in a non-overlapping region that is a region other than the overlapping region In both even and a second region which is a part of a region, and the current collector and said interconnector are bonded through a diffusion layer. According to the present electrochemical reaction unit, the electrical conductivity between the current collector and the interconnector can be improved compared to the configuration in which the current collector and the interconnector are joined only in the overlapping region, The performance of the electrochemical reaction unit can be improved.
(2)上記電気化学反応単位において、前記非重複領域の一部の領域である第3の領域において、前記集電体と前記インターコネクタとが接合されていない構成としてもよい。本電気化学反応単位によれば、集電体とインターコネクタとが接合されていない第3の領域において、面方向(第1の方向に直交する方向)の熱膨張・収縮に対する遊びを確保することができるため、熱膨張差を原因とする集電体とインターコネクタとの間の剥離の発生を抑制することができる。 (2) In the electrochemical reaction unit, the current collector and the interconnector may not be joined in a third region that is a partial region of the non-overlapping region. According to the present electrochemical reaction unit, in the third region where the current collector and the interconnector are not joined, play is ensured for thermal expansion / contraction in the plane direction (direction orthogonal to the first direction). Therefore, the occurrence of peeling between the current collector and the interconnector due to the difference in thermal expansion can be suppressed.
(3)上記電気化学反応単位において、前記第1の領域と前記第2の領域とは、互いに離間している構成としてもよい。本電気化学反応単位によれば、第1の領域と第2の領域とが連続している構成と比較して、集電体とインターコネクタとの間の熱膨張差による両者の間の剥離の発生を効果的に抑制することができる。 (3) In the electrochemical reaction unit, the first region and the second region may be separated from each other. According to the present electrochemical reaction unit, the separation between the first region and the second region due to the difference in thermal expansion between the current collector and the interconnector is compared with the configuration in which the first region and the second region are continuous. Generation | occurrence | production can be suppressed effectively.
(4)上記電気化学反応単位において、前記複数の凸部は、前記第1の方向に直交すると共に互いに直交する第2の方向および第3の方向に沿った格子状に配置されており、前記第2の領域は、前記第2の方向および前記第3の方向の両方において、2つの前記第1の領域の間に挟まれていない位置に配置されている構成としてもよい。本電気化学反応単位によれば、面方向(第1の方向に直交する方向)において、集電体とインターコネクタとが接合された領域をバランス良く配置することができ、両者の間の導電性をバランス良く向上させることができると共に、両者の間の剥離の発生を効果的に抑制することができる。 (4) In the electrochemical reaction unit, the plurality of convex portions are arranged in a lattice shape along a second direction and a third direction orthogonal to the first direction and orthogonal to each other, The second region may be arranged at a position that is not sandwiched between the two first regions in both the second direction and the third direction. According to the present electrochemical reaction unit, the area where the current collector and the interconnector are joined can be arranged in a well-balanced manner in the plane direction (direction orthogonal to the first direction), and the conductivity between the two Can be improved in a balanced manner, and the occurrence of peeling between the two can be effectively suppressed.
(5)上記電気化学反応単位において、前記第2の領域は、前記第1の方向に直交すると共に互いに直交する第2の方向および第3の方向の少なくとも一方において、2つの前記第1の領域間に挟まれた中間領域の内、前記中間領域の中心点を中心とした前記中間領域の大きさの40%の範囲内に配置されている構成としてもよい。本電気化学反応単位によれば、面方向(第1の方向に直交する方向)において、集電体とインターコネクタとが接合された領域をバランス良く配置することができ、両者の間の導電性をバランス良く向上させることができると共に、両者の間の剥離の発生を効果的に抑制することができる。 (5) In the electrochemical reaction unit, the second region includes two first regions in at least one of a second direction and a third direction orthogonal to the first direction and orthogonal to each other. It is good also as a structure arrange | positioned in the range of 40% of the magnitude | size of the said intermediate area centering on the center point of the said intermediate area among the intermediate areas pinched | interposed. According to the present electrochemical reaction unit, the area where the current collector and the interconnector are joined can be arranged in a well-balanced manner in the plane direction (direction orthogonal to the first direction), and the conductivity between the two Can be improved in a balanced manner, and the occurrence of peeling between the two can be effectively suppressed.
(6)上記電気化学反応単位において、前記集電体における前記重複領域に位置する部分と、前記非重複領域に位置する部分とは、一体部材である構成としてもよい。本電気化学反応単位によれば、集電体とインターコネクタとの間の熱膨張差による両者の間の剥離が特に発生しやすい構成において、両者の間の剥離の発生を抑制することができる。 (6) In the electrochemical reaction unit, a portion of the current collector that is located in the overlapping region and a portion that is located in the non-overlapping region may be an integrated member. According to the present electrochemical reaction unit, it is possible to suppress the occurrence of peeling between the current collector and the interconnector in a configuration in which peeling between the current collector and the interconnector is particularly likely to occur.
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、電気化学反応単位(燃料電池発電単位または電解セル単位)、複数の電気化学反応単位を備える電気化学反応セルスタック(燃料電池スタックまたは電解セルスタック)、それらの製造方法等の形態で実現することが可能である。 Note that the technology disclosed in this specification can be realized in various forms, for example, an electrochemical reaction unit (a fuel cell power generation unit or an electrolysis cell unit), and an electricity provided with a plurality of electrochemical reaction units. It can be realized in the form of a chemical reaction cell stack (fuel cell stack or electrolytic cell stack), a manufacturing method thereof, and the like.
A.実施形態:
A−1.装置構成:
(燃料電池スタック100の構成)
図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、図1のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図3は、図1のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図4以降についても同様である。
A. Embodiment:
A-1. Device configuration:
(Configuration of fuel cell stack 100)
FIG. 1 is a perspective view showing an external configuration of a
燃料電池スタック100は、複数の(本実施形態では7つの)燃料電池発電単位(以下、単に「発電単位」という)102と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、7つの発電単位102から構成される集合体を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
The
燃料電池スタック100を構成する各層(発電単位102、エンドプレート104,106)のZ方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、一方のエンドプレート104から他方のエンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、連通孔108と呼ぶ場合がある。
A plurality of (eight in the present embodiment) holes penetrating in the vertical direction are formed in the peripheral portion around the Z direction of each layer (
各連通孔108には上下方向に延びるボルト22が挿通されており、ボルト22とボルト22の両側に嵌められたナット24とによって、燃料電池スタック100は締結されている。なお、図2および図3に示すように、ボルト22の一方の側(上側)に嵌められたナット24と燃料電池スタック100の上端を構成するエンドプレート104の上側表面との間、および、ボルト22の他方の側(下側)に嵌められたナット24と燃料電池スタック100の下端を構成するエンドプレート106の下側表面との間には、絶縁シート26が介在している。ただし、後述のガス通路部材27が設けられた箇所では、ナット24とエンドプレート106の表面との間に、ガス通路部材27とガス通路部材27の上側および下側のそれぞれに配置された絶縁シート26とが介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
各ボルト22の軸部の外径は各連通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各連通孔108の内周面との間には、空間が確保されている。図1および図2に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と、そのボルト22Aが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス導入マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と、そのボルト22Bが挿通された連通孔108とにより形成された空間は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出する酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
The outer diameter of the shaft portion of each
また、図1および図3に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と、そのボルト22Dが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102に供給する燃料ガス導入マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と、そのボルト22Eが挿通された連通孔108とにより形成された空間は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出する燃料ガス排出マニホールド172として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。
Further, as shown in FIGS. 1 and 3, the vicinity of the midpoint of one side (the side on the Y axis positive direction side of two sides parallel to the X axis) on the outer periphery of the
燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。また、図2に示すように、酸化剤ガス導入マニホールド161を形成するボルト22Aの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス導入マニホールド161に連通しており、酸化剤ガス排出マニホールド162を形成するボルト22Bの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。また、図3に示すように、燃料ガス導入マニホールド171を形成するボルト22Dの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス導入マニホールド171に連通しており、燃料ガス排出マニホールド172を形成するボルト22Eの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド172に連通している。
The
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。
(Configuration of
The pair of
(発電単位102の構成)
図4は、図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、図5は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。また、図6は、図4および図5のVI−VIの位置における発電単位102のXY断面構成を示す説明図であり、図7は、図4および図5のVII−VIIの位置における発電単位102のXY断面構成を示す説明図である。なお、図7には、後述する燃料極側集電体144の一部の構成が拡大して示されている。
(Configuration of power generation unit 102)
4 is an explanatory diagram showing an XZ cross-sectional configuration of two
図4および図5に示すように、発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ方向回りの周縁部には、上述したボルト22が挿通される連通孔108に対応する孔が形成されている。
As shown in FIGS. 4 and 5, the
インターコネクタ150は、略矩形の平板形状の導電性部材である。本実施形態では、インターコネクタ150はステンレス鋼材(100℃における熱膨張率:10.1×10−6(1/K))により形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(図2および図3参照)。
The
単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。なお、本実施形態の単セル110は、燃料極116で電解質層112および空気極114を支持する燃料極支持形の単セルである。
The
電解質層112は、Z方向視で略矩形の平板形状部材であり、緻密な層である。電解質層112は、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリウムドープセリア)、GDC(ガドリニウムドープセリア)、ペロブスカイト型酸化物等の固体酸化物により形成されている。空気極114は、Z方向視で電解質層112より小さい略矩形の平板形状部材であり、多孔質な層である。空気極114は、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、Z方向視で電解質層112と略同一の大きさの略矩形の平板形状部材であり、多孔質な層である。燃料極116は、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110(発電単位102)は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
The
セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。
The
図6に示すように、空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。
As shown in FIG. 6, the air
図7に示すように、燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。また、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。
As shown in FIG. 7, the fuel
図6に示すように、空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、複数の略四角柱状の集電体要素135から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電体134は、上側のエンドプレート104に接触している。空気極側集電体134は、このような構成であるため、空気極114とインターコネクタ150(またはエンドプレート104)とを電気的に接続する。なお、本実施形態では、空気極側集電体134とインターコネクタ150とは一体の部材として形成されている。すなわち、該一体の部材の内の、上下方向(Z軸方向)に直交する平板形の部分がインターコネクタ150として機能し、該平板形の部分から空気極114に向けて突出するように形成された複数の凸部である集電体要素135が空気極側集電体134として機能する。また、空気極側集電体134とインターコネクタ150との一体部材は、導電性のコートによって覆われていてもよく、空気極114と空気極側集電体134との間には、両者を接合する導電性の接合層が介在していてもよい。
As shown in FIG. 6, the air electrode side
図7に示すように、燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、複数の電極対向部145と、電極対向部145とインターコネクタ対向部146とをつなぐ複数の連接部147とを備えており、導電性材料により形成されている。複数の電極対向部145は、Z方向視で、X方向およびY方向に沿った格子状に配置されている。また、本実施形態では、燃料極側集電体144は、ニッケル箔(例えば厚さ10〜200μm、0〜100℃における熱膨張率:13.3×10−6(1/K))により形成されている。図7における部分拡大図に示すように、燃料極側集電体144は、略矩形のニッケル箔に切り込みを入れ、複数の矩形部分を曲げ起こすように加工することにより製造される。曲げ起こされた各矩形部分が電極対向部145となり、曲げ起こされた部分以外の穴OPが開いた状態の平板部分がインターコネクタ対向部146となり、電極対向部145とインターコネクタ対向部146とをつなぐ部分が連接部147となる。すなわち、インターコネクタ対向部146と電極対向部145と連接部147とから構成される燃料極側集電体144は、一体部材である。なお、図7における部分拡大図では、燃料極側集電体144の製造方法を示すため、一部の矩形部分について、曲げ起こし加工が完了する前の状態を示している。電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触している。ただし、上述したように、燃料電池スタック100において最も下に位置する発電単位102は下側のインターコネクタ150を備えていないため、当該発電単位102におけるインターコネクタ対向部146は、下側のエンドプレート106に接触している。燃料極側集電体144は、このような構成であるため、燃料極116とインターコネクタ150(またはエンドプレート106)とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150(またはエンドプレート106)との電気的接続が良好に維持される。燃料極側集電体144は、特許請求の範囲における集電体に相当し、電極対向部145は、特許請求の範囲における凸部に相当する。また、X方向およびY方向の一方は、特許請求の範囲における第2の方向および第3の方向の一方に相当し、X方向およびY方向の他方は、特許請求の範囲における第2の方向および第3の方向の他方に相当する。
As shown in FIG. 7, the fuel electrode side
A−2.燃料電池スタック100の動作:
図2、図4および図6に示すように、酸化剤ガス導入マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス導入マニホールド161に供給され、酸化剤ガス導入マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図3、図5および図7に示すように、燃料ガス導入マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス導入マニホールド171に供給され、燃料ガス導入マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
A-2. Operation of the fuel cell stack 100:
As shown in FIGS. 2, 4, and 6, the oxidant gas is connected via a gas pipe (not shown) connected to the
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGに含まれる酸素と燃料ガスFGに含まれる水素との電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
When the oxidant gas OG is supplied to the
各発電単位102の空気室166から排出された酸化剤オフガスOOGは、図2、図4および図6に示すように、酸化剤ガス排出連通孔133を介して酸化剤ガス排出マニホールド162に排出され、さらに酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、各発電単位102の燃料室176から排出された燃料オフガスFOGは、図3、図5および図7に示すように、燃料ガス排出連通孔143を介して燃料ガス排出マニホールド172に排出され、さらに燃料ガス排出マニホールド172の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
The oxidant off-gas OOG discharged from the
A−3.燃料極側集電体144およびインターコネクタ150の詳細構成:
図8および図9は、燃料極側集電体144およびインターコネクタ150の詳細構成を示すXZ断面図である。図8には、図4のX1部の拡大図であり、図11のVIII−VIIIの位置の断面図である図が示されており、図9には、図11のIX−IXの位置の断面図が示されている。また、図10は、燃料極側集電体144およびインターコネクタ150の詳細構成を示すYZ断面図である。図10には、図5のX2部の拡大図であり、図11のX−Xの位置の断面図である図が示されている。また、図11は、燃料極側集電体144およびインターコネクタ150の詳細構成を示すXY断面図である。図11には、図7のX3部の位置の断面図であり、図8から図10までのXI−XIの位置の断面図である図が示されている。
A-3. Detailed configuration of fuel electrode side
8 and 9 are XZ cross-sectional views showing detailed configurations of the fuel electrode side
図8から図11までに示すように、以下の説明では、燃料極側集電体144およびインターコネクタ150において、Z方向視で、燃料極側集電体144の各電極対向部145における燃料極116との接触面と、燃料極側集電体144のインターコネクタ対向部146におけるインターコネクタ150との接触面と、の両方に重なる領域を、重複領域ARoという。上述したように、燃料極側集電体144は複数の電極対向部(凸部)145を有するため、重複領域ARoは複数存在する。各重複領域ARoは、主として、燃料極側集電体144にZ方向の圧縮力(接圧)が作用する領域である。なお、本実施形態では、インターコネクタ対向部146におけるZ方向視で各電極対向部145と重なる部分は、必ずインターコネクタ150と接触しているため、重複領域ARoは、Z方向視で各電極対向部145における燃料極116との接触面に重なる領域であると言える。なお、本明細書において、「接触」という用語は、部材Aと部材Bとが直接的に接触している状態の他に、部材Aと部材Bとが他の部材Cを介して接触している状態も含む意味である。例えば、上述した電極対向部145と燃料極116との「接触」や、インターコネクタ対向部146とインターコネクタ150との「接触」は、両者が直接的に接触している状態であってもよいし、両者の間に導電性を有する他の部材(例えばNiのペースト)が介在した状態であってもよい。本実施形態における燃料極116は、特許請求の範囲における特定電極に相当する。
As shown in FIGS. 8 to 11, in the following description, in the fuel electrode side
また、以下の説明では、各重複領域ARo以外の領域を非重複領域ARnという。本実施形態では、非重複領域ARnは、1つの連続した領域(ただし、各重複領域ARoの部分が欠けた領域)である(図11参照)。 In the following description, an area other than each overlapping area ARo is referred to as a non-overlapping area ARn. In the present embodiment, the non-overlapping area ARn is one continuous area (however, an area where each overlapping area ARo is missing) (see FIG. 11).
本実施形態では、各重複領域ARoにおける少なくとも一部の領域(以下、「第1の領域AR1」という)において、燃料極側集電体144(のインターコネクタ対向部146)とインターコネクタ150とが拡散接合されている。すなわち、第1の領域AR1において、燃料極側集電体144とインターコネクタ150とが、燃料極側集電体144に含まれる金属原子とインターコネクタ150に含まれる金属原子とが相互に拡散して形成された拡散層158を介して接合されている。なお、本実施形態では、各重複領域ARoにおける全領域が第1の領域AR1とされている。
In the present embodiment, in at least a part of each overlapping area ARo (hereinafter referred to as “first area AR1”), the fuel electrode side current collector 144 (the
また、本実施形態では、第1の領域AR1に加えて、非重複領域ARnにおける一部の領域(以下、「第2の領域AR2」という)においても、燃料極側集電体144とインターコネクタ150とが拡散接合されている。すなわち、第2の領域AR2において、燃料極側集電体144とインターコネクタ150とが、燃料極側集電体144に含まれる金属原子とインターコネクタ150に含まれる金属原子とが相互に拡散して形成された拡散層158を介して接合されている。なお、非重複領域ARnにおける残りの一部の領域(以下、「第3の領域AR3」という)においては、燃料極側集電体144とインターコネクタ150とは接合されていない。
Further, in the present embodiment, in addition to the first area AR1, the fuel electrode side
上述したように、複数の電極対向部145は、Z方向視でX方向およびY方向に沿った格子状に配置されているため、図11に示すように、複数の第1の領域AR1も、Z方向視でX方向およびY方向に沿った格子状に配置されている。X方向およびY方向の両方において、2つの第1の領域AR1の間には、第3の領域AR3が配置されており、2つの第2の領域AR2の間にも、第3の領域AR3が配置されている。従って、第2の領域AR2は、X方向およびY方向の両方において、2つの第1の領域AR1の間に挟まれていない位置に配置されていることとなる。また、第1の領域AR1と第2の領域AR2とは互いに離間している。
As described above, since the plurality of
A−4.本実施形態の効果:
以上説明したように、本実施形態の燃料電池スタック100を構成する各発電単位102では、Z方向視で、燃料極側集電体144の電極対向部145における燃料極116との接触面と、燃料極側集電体144におけるインターコネクタ150との接触面と、の両方に重なる各重複領域ARoにおける少なくとも一部の領域である第1の領域AR1と、重複領域ARo以外の領域である非重複領域ARnにおける一部の領域である第2の領域AR2と、の両方において、燃料極側集電体144とインターコネクタ150とが拡散層158を介して接合されている。そのため、本実施形態の発電単位102によれば、重複領域ARoのみにおいて燃料極側集電体144とインターコネクタ150とが接合されている構成と比較して、燃料極側集電体144とインターコネクタ150との間の導電性を向上させることができ、発電単位102の性能を向上させることができる。
A-4. Effects of this embodiment:
As described above, in each
また、本実施形態の発電単位102では、非重複領域ARnの一部の領域である第3の領域AR3において、燃料極側集電体144とインターコネクタ150とが接合されていない。上述したように、本実施形態では、インターコネクタ150に比べて燃料極側集電体144の方が熱膨張率が高いため、両者の熱膨張差によって面方向(Z方向に直交する方向)の応力が発生する。しかし、本実施形態の発電単位102では、燃料極側集電体144とインターコネクタ150とが接合されていない第3の領域AR3において、面方向の熱膨張・収縮に対する遊びを確保することができるため、熱膨張差を原因とする燃料極側集電体144とインターコネクタ150との間の剥離の発生を抑制することができる。
Further, in the
また、本実施形態の発電単位102では、燃料極側集電体144とインターコネクタ150とが接合されている領域である第1の領域AR1および第2の領域AR2が、互いに離間している。そのため、本実施形態の発電単位102では、第1の領域AR1と第2の領域AR2とが連続している構成と比較して、燃料極側集電体144とインターコネクタ150との間の熱膨張差による両者の間の剥離の発生を効果的に抑制することができる。
Further, in the
また、本実施形態の発電単位102では、インターコネクタ対向部146と電極対向部145と連接部147とから構成される燃料極側集電体144は、一体部材である。換言すると、燃料極側集電体144における重複領域ARoに位置する部分と、非重複領域ARnに位置する部分とは、一体部材である。燃料極側集電体144がこのような一体部材の構成である場合には、燃料極側集電体144とインターコネクタ150との間の熱膨張差による両者の間の剥離が特に発生しやすいが、本実施形態の発電単位102では上述のような構成が採用されているため、両者の間の剥離の発生を抑制することができる。
Further, in the
また、本実施形態の発電単位102では、燃料極側集電体144の複数の電極対向部145は、Z方向視でX方向およびY方向に沿った格子状に配置されており、第2の領域AR2は、X方向およびY方向の両方において、2つの第1の領域AR1の間に挟まれていない位置に配置されている。そのため、本実施形態の発電単位102では、Z方向に直交する方向(面方向)において、燃料極側集電体144とインターコネクタ150とが接合された領域をバランス良く配置することができ、両者の間の導電性をバランス良く向上させることができると共に、両者の間の剥離の発生を効果的に抑制することができる。
Further, in the
A−5.燃料極側集電体144とインターコネクタ150との接合方法:
上記実施形態の燃料極側集電体144およびインターコネクタ150との間の接合は、例えば以下の方法により実現することができる。まず、非重複領域ARnにおける第2の領域AR2については、抵抗溶接を行うことによって、燃料極側集電体144とインターコネクタ150とを拡散層158を介して接合することができる。
A-5. Method of joining fuel electrode side
The joining between the fuel electrode side
また、重複領域ARoにおける第1の領域AR1については、複数の発電単位102をスタッキングしてボルト22により締結することにより重複領域ARoに接圧を作用させ、これにより、第1の領域AR1において燃料極側集電体144とインターコネクタ150とを拡散層158を介して接合することができる。
In the first area AR1 in the overlapping area ARo, a plurality of
なお、上述した接合方法は、あくまで一例であり、燃料極側集電体144とインターコネクタ150とを拡散層158を介して接合させることができれば、他の接合方法(レーザー溶接や超音波溶接など)を採用してもよい。
The above-described joining method is merely an example, and other joining methods (laser welding, ultrasonic welding, etc.) can be used as long as the fuel electrode side
A−6.評価試験:
上記実施形態の効果について検証するために、インターコネクタ150に見立てたステンレス鋼板(10cm×10cm)の載置面上に、燃料極側集電体144に見立てたNi箔を載置し、Ni箔に接圧をかけた構成の比較例(サンプル数:2)と、Ni箔の一部の領域に接圧をかけると共に、他の一部の領域においてNi箔とステンレス鋼板とを抵抗溶接により接合した構成の実施例(サンプル数:2)について、700℃での電気抵抗を測定した。図12は、評価試験結果を示す説明図である。図12に示すように、実施例では、比較例と比べて、電気抵抗が低くなる傾向となり、また、電気抵抗のばらつきが小さくなった。この結果からも、上記実施形態の発電単位102の構成を採用すれば、燃料極側集電体144とインターコネクタ150との間の導電性を向上させることができ、発電単位102の性能を向上させることができることが確認された。
A-6. Evaluation test:
In order to verify the effects of the above-described embodiment, a Ni foil that is regarded as the fuel electrode side
B.第2実施形態:
図13は、第2実施形態における燃料極側集電体144およびインターコネクタ150の詳細構成を示すYZ断面図である。図13には、図5のX2部の拡大図であり、図14のXIII−XIIIの位置の断面図が示されている。また、図14は、第2実施形態における燃料極側集電体144およびインターコネクタ150の詳細構成を示すXY断面図である。図14には、図7のX3部の位置の断面図であり、図13のXIV−XIVの位置の断面図が示されている。
B. Second embodiment:
FIG. 13 is a YZ sectional view showing a detailed configuration of the fuel electrode side
図13および図14に示すように、第2実施形態では、非重複領域ARnの内の、燃料極側集電体144とインターコネクタ150とが拡散層158を介して接合された領域である第2の領域AR2の位置が、上述した第1実施形態とは異なっている。具体的には、第2実施形態では、各第2の領域AR2は、Y方向において2つの第1の領域AR1の間の位置に配置されている。なお、第2実施形態においても、第1実施形態と同様に、第1の領域AR1と第2の領域AR2とは互いに離間している。
As shown in FIGS. 13 and 14, in the second embodiment, the non-overlapping region ARn is a region where the fuel electrode side
また、図13および図14に示すように、本実施形態では、第2の領域AR2は、Y方向において、2つの第1の領域AR1間に挟まれた長さL1の中間領域の内、中間領域の中心点を中心とした中間領域の大きさの40%の範囲R1内に配置されている。すなわち、第2の領域AR2は、Y方向において2つの第1の領域AR1間に挟まれた長さL1の中間領域の内の、比較的中心に近い位置に配置されており、該2つの第1の領域AR1からある程度の距離だけ離れている。なお、Y方向において、2つの第1の領域AR1間に挟まれた第2の領域AR2と、該2つの第1の領域AR1のそれぞれとの間は、第3の領域AR3となっている。 Further, as shown in FIGS. 13 and 14, in the present embodiment, the second area AR2 is an intermediate area in the intermediate area of the length L1 sandwiched between the two first areas AR1 in the Y direction. It is arranged within a range R1 of 40% of the size of the intermediate area centered on the center point of the area. That is, the second area AR2 is arranged at a position relatively close to the center in the intermediate area of the length L1 sandwiched between the two first areas AR1 in the Y direction. 1 away from the area AR1. Note that, in the Y direction, a region between the second region AR2 sandwiched between the two first regions AR1 and each of the two first regions AR1 is a third region AR3.
第2実施形態の発電単位102では、上述した第1実施形態と同様に、各重複領域ARoにおける少なくとも一部の領域である第1の領域AR1と、非重複領域ARnにおける一部の領域である第2の領域AR2と、の両方において、燃料極側集電体144とインターコネクタ150とが拡散層158を介して接合されているため、燃料極側集電体144とインターコネクタ150との間の導電性を向上させることができ、発電単位102の性能を向上させることができる。
In the
また、第2実施形態の発電単位102では、上述した第1実施形態と同様に、非重複領域ARnの一部の領域である第3の領域AR3において燃料極側集電体144とインターコネクタ150とが接合されていないため、燃料極側集電体144とインターコネクタ150との間の剥離の発生を抑制することができる。また、第2実施形態の発電単位102では、上述した第1実施形態と同様に、第1の領域AR1と第2の領域AR2とが互いに離間しているため、燃料極側集電体144とインターコネクタ150との間の熱膨張差による両者の間の剥離の発生を効果的に抑制することができる。なお、第2実施形態の発電単位102では、上述した第1実施形態と同様に、燃料極側集電体144における重複領域ARoに位置する部分と非重複領域ARnに位置する部分とは一体部材であり、燃料極側集電体144とインターコネクタ150との間の熱膨張差による両者の間の剥離が特に発生しやすいが、上記構成を有するため、両者の間の剥離の発生を抑制することができる。
Further, in the
また、第2実施形態の発電単位102では、第2の領域AR2が、Y方向において、2つの第1の領域AR1間に挟まれた中間領域の内、中間領域の中心点を中心とした中間領域の大きさの40%の範囲R1内に配置されているため、Z方向に直交する方向(面方向)において、燃料極側集電体144とインターコネクタ150とが接合された領域をバランス良く配置することができ、両者の間の導電性をバランス良く向上させることができると共に、両者の間の剥離の発生を効果的に抑制することができる。
Further, in the
C.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
C. Variations:
The technology disclosed in the present specification is not limited to the above-described embodiment, and can be modified into various forms without departing from the gist thereof. For example, the following modifications are possible.
上記実施形態における燃料電池スタック100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、各重複領域ARoの全領域が、燃料極側集電体144とインターコネクタ150とが拡散層158を介して接合された第1の領域AR1とされているが、各重複領域ARoにおける一部の領域のみが第1の領域AR1とされてもよい。
The configuration of the
また、上記実施形態では、非重複領域ARnの一部の領域のみが、燃料極側集電体144とインターコネクタ150とが拡散層158を介して接合された第2の領域AR2とされ、残りの一部の領域は、燃料極側集電体144とインターコネクタ150とが接合されていない第3の領域AR3とされているが、非重複領域ARnの全領域が、燃料極側集電体144とインターコネクタ150とが接合された第2の領域AR2とされてもよい。
Further, in the above embodiment, only a part of the non-overlapping area ARn is the second area AR2 in which the fuel electrode side
また、上記実施形態では、第1の領域AR1と第2の領域AR2とが互いに離間しているが、第1の領域AR1と第2の領域AR2とが連続しているとしてもよい。また、上記第2実施形態では、第2の領域AR2が、Y方向において、2つの第1の領域AR1間に挟まれた中間領域の内、中間領域の中心点を中心とした中間領域の大きさの40%の範囲R1内に配置されているが、第2の領域AR2の配置態様はこれに限られず、種々変形可能である。 In the above embodiment, the first area AR1 and the second area AR2 are separated from each other, but the first area AR1 and the second area AR2 may be continuous. In the second embodiment, the second area AR2 is the size of the intermediate area centered on the center point of the intermediate area among the intermediate areas sandwiched between the two first areas AR1 in the Y direction. However, the arrangement of the second area AR2 is not limited to this, and various modifications can be made.
また、上記実施形態の燃料極側集電体144の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、燃料極側集電体144における重複領域ARoに位置する部分と非重複領域ARnに位置する部分とが一体部材であるとしているが、両者が一体部材ではないとしてもよい。また、燃料極側集電体144が、空気極側集電体134と同様に、複数の略四角柱状の集電体要素(凸部)を備える構成であるとしてもよい。このような構成においても、上記実施形態と同様に、Z方向視で、燃料極側集電体144の各凸部における燃料極116との接触面と、燃料極側集電体144におけるインターコネクタ150との接触面と、の両方に重なる各重複領域ARoにおける少なくとも一部の領域である第1の領域AR1と、重複領域ARo以外の領域である非重複領域ARnにおける一部の領域である第2の領域AR2と、の両方において、燃料極側集電体144とインターコネクタ150とが拡散層158を介して接合されていれば、燃料極側集電体144とインターコネクタ150との間の導電性を向上させることができ、発電単位102の性能を向上させることができる。また、上記実施形態では、燃料極側集電体144がニッケル箔により形成されているが、燃料極側集電体144がNiメッシュ等の他の材料により形成されていてもよい。また、燃料極側集電体144がNiメッシュ等の他の材料により形成される場合も、該材料の厚さは例えば10〜200μmとすることができる。燃料極側集電体144をこのような構成にしても、上記実施形態と同様の効果を得ることができる。
Further, the configuration of the fuel electrode side
また、燃料極側集電体144に代えて、または、燃料極側集電体144に加えて、空気極側集電体134についても、上述した燃料極側集電体144とインターコネクタ150との接合構成と同様の構成で、空気極側集電体134とインターコネクタ150とが接合されているとしてもよい。このようにすれば、空気極側集電体134とインターコネクタ150との間の導電性を向上させることができ、発電単位102の性能を向上させることができる。
Further, instead of the fuel electrode-side
また、燃料電池スタック100に含まれるすべての発電単位102において、上述した燃料極側集電体144とインターコネクタ150との接合構成が採用される必要は無く、少なくとも1つの発電単位102において該構成が採用されれば、該発電単位102について、燃料極側集電体144とインターコネクタ150との間の導電性を向上させることができ、発電単位102の性能を向上させることができる。
Further, in all the
また、上記実施形態において、燃料電池スタック100に含まれる単セル110の個数は、あくまで一例であり、単セル110の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。また、上記実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。
In the above embodiment, the number of
本明細書において、部材(または部材のある部分、以下同様)Aを挟んで部材Bと部材Cとが互いに対向するとは、部材Aと部材Bまたは部材Cとが隣接する形態に限定されず、部材Aと部材Bまたは部材Cとの間に他の構成要素が介在する形態を含む。例えば、電解質層112と空気極114との間に他の層が設けられていてもよい。このような構成であっても、空気極114と燃料極116とは電解質層112を挟んで互いに対向すると言える。
In the present specification, the fact that the member B and the member C are opposed to each other across the member (or a part having the member, the same applies hereinafter) A is not limited to the form in which the member A and the member B or the member C are adjacent to each other. It includes a form in which another component is interposed between member A and member B or member C. For example, another layer may be provided between the
また、上記実施形態では、燃料電池スタック100は複数の平板形の発電単位102が積層された構成であるが、本発明は、他の構成、例えば国際公開第2012/165409号に記載されているように、複数の略円筒形の燃料電池単セルが直列に接続された構成にも同様に適用可能である。
Moreover, in the said embodiment, although the
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解セル単位や、複数の電解セル単位を備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2016−81813号公報に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、連通孔108を介して原料ガスとしての水蒸気が供給される。これにより、各電解セル単位において水の電気分解反応が起こり、燃料室176で水素ガスが発生し、連通孔108を介して電解セルスタックの外部に水素が取り出される。このような構成の電解セル単位においても、上述した集電体とインターコネクタとの接合構成が採用されれば、集電体とインターコネクタとの導電性を向上させることができ、電解セル単位の性能を向上させることができる。
In the above embodiment, the SOFC that generates electricity using the electrochemical reaction between hydrogen contained in the fuel gas and oxygen contained in the oxidant gas is targeted. The present invention can be similarly applied to an electrolytic cell unit that is a constituent unit of a solid oxide electrolytic cell (SOEC) that generates hydrogen by using hydrogen, and an electrolytic cell stack including a plurality of electrolytic cell units. The configuration of the electrolysis cell stack is well known as described in, for example, Japanese Patent Application Laid-Open No. 2006-81813, and therefore will not be described in detail here, but is roughly the same as the
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本発明は、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池(または電解セル)にも適用可能である。 In the above embodiment, the solid oxide fuel cell (SOFC) has been described as an example. However, the present invention is applicable to other types of fuel cells (or electrolytic cells) such as a molten carbonate fuel cell (MCFC). Applicable.
22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 100:燃料電池スタック 102:燃料電池発電単位 104:エンドプレート 106:エンドプレート 108:連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:孔 124:接合部 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 135:集電体要素 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 149:スペーサー 150:インターコネクタ 158:拡散層 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 176:燃料室 22: Bolt 24: Nut 26: Insulating sheet 27: Gas passage member 28: Body portion 29: Branch portion 100: Fuel cell stack 102: Fuel cell power generation unit 104: End plate 106: End plate 108: Communication hole 110: Single cell 112: Electrolyte layer 114: Air electrode 116: Fuel electrode 120: Separator 121: Hole 124: Joint part 130: Air electrode side frame 131: Hole 132: Oxidant gas supply communication hole 133: Oxidant gas discharge communication hole 134: Air Electrode side current collector 135: Current collector element 140: Fuel electrode side frame 141: Hole 142: Fuel gas supply communication hole 143: Fuel gas discharge communication hole 144: Fuel electrode side current collector 145: Electrode facing portion 146: Inter Connector facing portion 147: Connection portion 149: Spacer 150: Inter Connector 158: diffusion layer 161: oxidizing gas inlet manifold 162: oxidizing gas discharging manifold 166: an air chamber 171: fuel gas inlet manifold 172: fuel gas discharging manifold 176: fuel chamber
Claims (7)
前記電気化学反応単セルの前記空気極と前記燃料極との少なくとも一方である特定電極側に配置された金属製のインターコネクタと、
前記特定電極と前記インターコネクタとの間に配置され、前記特定電極の表面に接触する複数の凸部を有する金属製の集電体と、を備える電気化学反応単位において、
前記第1の方向視で、前記集電体の前記凸部における前記特定電極との接触面と、前記集電体における前記インターコネクタとの接触面と、の両方に重なる重複領域における少なくとも一部の領域である第1の領域と、前記重複領域以外の領域である非重複領域における少なくとも一部の領域である第2の領域と、の両方において、前記集電体と前記インターコネクタとが拡散層を介して接合されていることを特徴とする、電気化学反応単位。 An electrochemical reaction unit cell including an electrolyte layer and an air electrode and a fuel electrode facing each other in a first direction across the electrolyte layer;
A metal interconnector disposed on the specific electrode side which is at least one of the air electrode and the fuel electrode of the electrochemical reaction unit cell;
In an electrochemical reaction unit comprising a metal current collector disposed between the specific electrode and the interconnector and having a plurality of convex portions that contact the surface of the specific electrode,
At least a part of the overlapping region that overlaps both the contact surface with the specific electrode in the convex portion of the current collector and the contact surface with the interconnector in the current collector in the first direction view. The current collector and the interconnector are diffused both in the first area that is the first area and the second area that is at least a part of the non-overlapping area other than the overlapping area. Electrochemical reaction unit, characterized in that it is joined via layers.
前記非重複領域の一部の領域である第3の領域において、前記集電体と前記インターコネクタとが接合されていないことを特徴とする、電気化学反応単位。 The electrochemical reaction unit according to claim 1,
The electrochemical reaction unit, wherein the current collector and the interconnector are not joined in a third region which is a partial region of the non-overlapping region.
前記第1の領域と前記第2の領域とは、互いに離間していることを特徴とする、電気化学反応単位。 In the electrochemical reaction unit according to claim 1 or 2,
The electrochemical reaction unit, wherein the first region and the second region are separated from each other.
前記複数の凸部は、前記第1の方向に直交すると共に互いに直交する第2の方向および第3の方向に沿った格子状に配置されており、
前記第2の領域は、前記第2の方向および前記第3の方向の両方において、2つの前記第1の領域の間に挟まれていない位置に配置されていることを特徴とする、電気化学反応単位。 In the electrochemical reaction unit according to any one of claims 1 to 3,
The plurality of convex portions are arranged in a lattice shape along a second direction and a third direction orthogonal to the first direction and orthogonal to each other,
The second region is disposed in a position not sandwiched between two first regions in both the second direction and the third direction. Reaction unit.
前記第2の領域は、前記第1の方向に直交すると共に互いに直交する第2の方向および第3の方向の少なくとも一方において、2つの前記第1の領域間に挟まれた中間領域の内、前記中間領域の中心点を中心とした前記中間領域の大きさの40%の範囲内に配置されていることを特徴とする、電気化学反応単位。 In the electrochemical reaction unit according to any one of claims 1 to 3,
The second region is an intermediate region sandwiched between two first regions in at least one of a second direction and a third direction orthogonal to the first direction and orthogonal to each other. The electrochemical reaction unit, which is disposed within a range of 40% of the size of the intermediate region centered on the central point of the intermediate region.
前記集電体における前記重複領域に位置する部分と、前記非重複領域に位置する部分とは、一体部材であることを特徴とする、電気化学反応単位。 In the electrochemical reaction unit according to any one of claims 1 to 5,
The electrochemical reaction unit, wherein the current collector has a part located in the overlapping region and a part located in the non-overlapping region as an integral member.
前記複数の電気化学反応単位の少なくとも1つは、請求項1から請求項6までのいずれか一項に記載の電気化学反応単位であることを特徴とする、電気化学反応セルスタック。 In an electrochemical reaction cell stack comprising a plurality of electrochemical reaction units arranged side by side in the first direction,
The electrochemical reaction cell stack according to claim 1, wherein at least one of the plurality of electrochemical reaction units is the electrochemical reaction unit according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143256A JP6773470B2 (en) | 2016-07-21 | 2016-07-21 | Electrochemical reaction unit and electrochemical reaction cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143256A JP6773470B2 (en) | 2016-07-21 | 2016-07-21 | Electrochemical reaction unit and electrochemical reaction cell stack |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018014246A true JP2018014246A (en) | 2018-01-25 |
JP6773470B2 JP6773470B2 (en) | 2020-10-21 |
Family
ID=61020373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016143256A Active JP6773470B2 (en) | 2016-07-21 | 2016-07-21 | Electrochemical reaction unit and electrochemical reaction cell stack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6773470B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019200878A (en) * | 2018-05-15 | 2019-11-21 | 日本特殊陶業株式会社 | Electrochemical reaction unit and electrochemical reaction cell stack |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010027349A (en) * | 2008-07-17 | 2010-02-04 | Honda Motor Co Ltd | Electrolyte-electrode assembly and its manufacturing method |
JP2012186026A (en) * | 2011-03-07 | 2012-09-27 | Ngk Spark Plug Co Ltd | Solid oxide fuel battery |
JP2013179039A (en) * | 2012-02-02 | 2013-09-09 | Sumitomo Electric Ind Ltd | Membrane electrode assembly and method of manufacturing membrane electrode assembly |
WO2014017096A1 (en) * | 2012-07-27 | 2014-01-30 | 日本特殊陶業株式会社 | Fuel cell, and fuel cell stack |
-
2016
- 2016-07-21 JP JP2016143256A patent/JP6773470B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010027349A (en) * | 2008-07-17 | 2010-02-04 | Honda Motor Co Ltd | Electrolyte-electrode assembly and its manufacturing method |
JP2012186026A (en) * | 2011-03-07 | 2012-09-27 | Ngk Spark Plug Co Ltd | Solid oxide fuel battery |
JP2013179039A (en) * | 2012-02-02 | 2013-09-09 | Sumitomo Electric Ind Ltd | Membrane electrode assembly and method of manufacturing membrane electrode assembly |
WO2014017096A1 (en) * | 2012-07-27 | 2014-01-30 | 日本特殊陶業株式会社 | Fuel cell, and fuel cell stack |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019200878A (en) * | 2018-05-15 | 2019-11-21 | 日本特殊陶業株式会社 | Electrochemical reaction unit and electrochemical reaction cell stack |
Also Published As
Publication number | Publication date |
---|---|
JP6773470B2 (en) | 2020-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6868051B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP2020177839A (en) | Electrochemical reaction cell stack | |
JP6917416B2 (en) | Electrochemical reaction cell stack | |
JP6873944B2 (en) | Electrochemical reaction cell stack | |
JP6773472B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP6667278B2 (en) | Electrochemical reaction cell stack | |
JP6835768B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP6893126B2 (en) | Electrochemical reaction cell stack | |
JP6756549B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP7082954B2 (en) | Electrochemical reaction cell stack | |
JP2019200878A (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP7210508B2 (en) | Electrochemical reaction cell stack | |
JP7023898B2 (en) | Electrochemical reaction cell stack | |
JP6773470B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP6797150B2 (en) | Method for manufacturing electrochemical reaction unit, electrochemical reaction cell stack, and electrochemical reaction unit | |
JP6867852B2 (en) | Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack | |
JP7071422B2 (en) | Electrochemical reaction cell stack | |
JP7169333B2 (en) | Electrochemical reaction cell stack | |
JP6902511B2 (en) | Electrochemical reaction cell stack | |
JP7187382B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP7103988B2 (en) | Electrochemical reaction cell stack | |
JP6893127B2 (en) | Electrochemical reaction unit and electrochemical reaction cell stack | |
JP7194070B2 (en) | Electrochemical reaction cell stack | |
JP6734707B2 (en) | Current collecting member-electrochemical reaction single cell composite and electrochemical reaction cell stack | |
JP2023119076A (en) | Composite body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200117 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20191224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6773470 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |