Nothing Special   »   [go: up one dir, main page]

JP2018070047A - Power distribution device - Google Patents

Power distribution device Download PDF

Info

Publication number
JP2018070047A
JP2018070047A JP2016214925A JP2016214925A JP2018070047A JP 2018070047 A JP2018070047 A JP 2018070047A JP 2016214925 A JP2016214925 A JP 2016214925A JP 2016214925 A JP2016214925 A JP 2016214925A JP 2018070047 A JP2018070047 A JP 2018070047A
Authority
JP
Japan
Prior art keywords
torque
vehicle
road surface
state
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016214925A
Other languages
Japanese (ja)
Inventor
智一 竹内
Tomokazu Takeuchi
智一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2016214925A priority Critical patent/JP2018070047A/en
Publication of JP2018070047A publication Critical patent/JP2018070047A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PROBLEM TO BE SOLVED: To suitably distribute a torque to each wheel according to an application degree of traction onto each wheel.SOLUTION: A power distribution device 11, which is equipped with control means 16 which distributes torques from a front wheel drive motor 4 and a rear wheel drive motor 8 of a vehicle 1 to a front wheel 2 and a rear wheel 3, comprises: running state determination means 12 which determines a running state of the vehicle 1; and road surface determination means 17 which determines a state of a road surface on which the vehicle 1 runs. When it is determined by the running state determination means 12 that the vehicle is in an acceleration state or a steady running state in the case that it is determined by the road surface determination means 17 that the road surface is a downhill having a prescribed slope or more, the control means 16 further reduces a difference in torque distribution to the front wheel 2 and the rear wheel 3 compared with the case that the road surface is an uphill or a flat road.SELECTED DRAWING: Figure 4

Description

この発明は、車両の駆動源からのトルクを駆動輪および従属輪に配分する動力分配装置に関する。   The present invention relates to a power distribution device that distributes torque from a drive source of a vehicle to drive wheels and subordinate wheels.

従来、車両が加減速した場合や傾斜路面(上り坂・下り坂)を走行している場合などでは、車両の各車輪にかかるトラクション(Traction)が変化しており、路面の状態によって挙動が不安定になることを防ぐために、動力分配装置が開発されている。動力分配装置は、駆動源が発生するトルクを前輪と後輪に配分することで、車両の走破性や安定性を向上している。
駆動源が発生するトルクを配分する動力分配装置としては、特許文献1に、路面の状態に基づいて算出した従属輪へ配分されるトルクの値から、駆動輪と従属輪へのトルク配分を制御するトルク配分装置が開示されている。
Conventionally, when a vehicle accelerates or decelerates or travels on an inclined road surface (uphill / downhill), the traction applied to each wheel of the vehicle changes, and the behavior does not depend on the road surface condition. In order to prevent it from becoming stable, power distribution devices have been developed. The power distribution device improves the running performance and stability of the vehicle by distributing the torque generated by the drive source to the front wheels and the rear wheels.
As a power distribution device that distributes torque generated by a drive source, Patent Document 1 controls torque distribution to drive wheels and subordinate wheels from the value of torque distributed to subordinate wheels calculated based on the road surface condition. A torque distribution device is disclosed.

特開平9−048254号公報Japanese Patent Laid-Open No. 9-048254

ところで、車両が前輪に荷重がかかるほどの前傾姿勢となるような急な下り坂を走行している場合などでは、平坦路を走行しているときほど荷重の移動がない。このため、急な下り坂を走行している場合においては、前輪と後輪のトラクションのかかり具合が違っており、前輪と後輪へのトルク配分が不十分となる問題があった。   By the way, when the vehicle is traveling on a steep downhill in which the vehicle is inclined forward so that a load is applied to the front wheels, the load does not move as much as when traveling on a flat road. For this reason, when traveling on a steep downhill, the degree of traction applied to the front wheels and the rear wheels is different, and there is a problem that torque distribution to the front wheels and the rear wheels becomes insufficient.

そこで、この発明は、各車輪へのトラクションのかかり具合に応じて、各車輪ヘ適切にトルクを配分することができる動力分配装置を提案することを目的とする。   Accordingly, an object of the present invention is to propose a power distribution device capable of appropriately distributing torque to each wheel in accordance with the degree of traction applied to each wheel.

この発明は、車両の駆動源からのトルクを駆動輪および従属輪に配分する制御手段を備えた動力分配装置において、車両の走行状態を判定する走行状態判定手段と、車両の走行する路面の状態を判定する路面判定手段と、を備え、制御手段は、路面判定手段で路面が所定勾配以上の下り坂と判定された場合に、走行状態判定手段で加速状態または定常走行状態であると判定されたときは、路面が上り坂または平坦路である場合よりも駆動輪と従属輪のトルク配分の差を小さくすることを特徴とする。   The present invention relates to a power distribution device including a control unit that distributes torque from a drive source of a vehicle to drive wheels and subordinate wheels, a travel state determination unit that determines a travel state of the vehicle, and a road surface state on which the vehicle travels Road surface determining means for determining whether the road surface is determined to be in an accelerated state or a steady traveling state by the traveling state determining means when the road surface determining means determines that the road surface is a downhill having a predetermined slope or more. When the road surface is uphill or flat, the difference in torque distribution between the driving wheel and the dependent wheel is made smaller.

この発明は、路面が所定勾配以上の下り坂で、車両が加速状態または定常走行状態であるときは、路面が上り坂または平坦路である場合よりも駆動輪と従属輪のトルク配分の差を小さくするので、下り坂を走行する車両の各車輪へのトラクションのかかり具合に応じて、駆動輪と従属輪ヘ適切にトルクを配分することができる。   In the present invention, when the road surface is a downhill of a predetermined slope or more and the vehicle is in an accelerating state or a steady running state, the difference in torque distribution between the driving wheel and the dependent wheel is smaller than when the road surface is an uphill or a flat road. Therefore, the torque can be appropriately distributed to the drive wheel and the subordinate wheel according to the degree of traction applied to each wheel of the vehicle traveling on the downhill.

図1は車両の駆動系のシステム構成図である。(実施例)FIG. 1 is a system configuration diagram of a drive system of a vehicle. (Example) 図2は動力分配装置のシステム構成図である。(実施例)FIG. 2 is a system configuration diagram of the power distribution device. (Example) 図3は路面状態判定のフローチャートである。(実施例)FIG. 3 is a flowchart of road surface condition determination. (Example) 図4は下り坂でのトルク配分決定のフローチャートである。(実施例)FIG. 4 is a flowchart for determining torque distribution on a downhill. (Example) 図5(A)は下り坂での加速時のトルク配分を示す図、図5(B)は下り坂での減速時のトルク配分を示す図、図5(C)は下り坂での定常走行時のトルク配分を示す図である。(実施例)FIG. 5A is a diagram showing torque distribution during acceleration on a downhill, FIG. 5B is a diagram showing torque distribution during deceleration on a downhill, and FIG. 5C is steady running on a downhill. It is a figure which shows the torque distribution at the time. (Example) 図6は上り坂でのトルク配分決定のフローチャートである。(実施例)FIG. 6 is a flowchart for determining torque distribution on an uphill. (Example) 図7(A)は上り坂での加速時のトルク配分を示す図、図7(B)は上り坂での減速時のトルク配分を示す図、図7(C)は上り坂での定常走行時のトルク配分を示す図である。(実施例)7A is a diagram showing torque distribution during acceleration on an uphill, FIG. 7B is a diagram showing torque distribution during deceleration on an uphill, and FIG. 7C is a steady running on an uphill. It is a figure which shows the torque distribution at the time. (Example) 図8は平坦路でのトルク配分決定のフローチャートである。(実施例)FIG. 8 is a flowchart for determining torque distribution on a flat road. (Example) 図9(A)は平坦路での加速時のトルク配分を示す図、図9(B)は平坦路での減速時のトルク配分を示す図、図9(C)は平坦路での定常走行時のトルク配分を示す図である。(実施例)9A is a diagram showing torque distribution during acceleration on a flat road, FIG. 9B is a diagram showing torque distribution during deceleration on a flat road, and FIG. 9C is steady running on a flat road. It is a figure which shows the torque distribution at the time. (Example)

この発明は、各車輪へのトラクションのかかり具合に応じて、各車輪ヘ適切にトルクを配分することができるようにする目的を、路面が所定勾配以上の下り坂で、車両が加速状態または定常走行状態であるときは、路面が上り坂または平坦路である場合よりも駆動輪と従属輪のトルク配分の差を小さくすることで実現するものである。   The object of the present invention is to make it possible to appropriately distribute torque to each wheel in accordance with the degree of traction applied to each wheel. When the vehicle is in a running state, it is realized by reducing the difference in torque distribution between the drive wheels and the dependent wheels as compared with the case where the road surface is uphill or flat.

以下、図に基づいて、この発明の実施例を説明する。図1〜図9は、この発明の実施例を示すものである。
図1に示すように、車両1は、左右の前輪2と左右の後輪3とを備える。車両1は、駆動源として前輪駆動モータ4を搭載している。前輪駆動モータ4は、バッテリ5の電力により駆動され、前輪2を駆動するトルクを発生する。前輪駆動モータ4の発生したトルクは、前輪側差動装置6により前輪側駆動車軸7を介して左右の前輪2に出力される。
また、車両1は、駆動源として後輪駆動モータ8を搭載している。後輪駆動モータ8は、バッテリ5の電力により駆動され、後輪3を駆動するトルクを発生する。後輪駆動モータ8の発生するトルクは、後輪側差動装置9により後輪側駆動車軸10を介して左右の後輪3に出力される。
前輪駆動モータ4と後輪駆動モータ8は、車両1を走行させるトルクを発生する電動機として機能する。さらに、前輪駆動モータ4と後輪駆動モータ8は、それぞれ前輪2と後輪3からの動力により駆動されて回生発電する発電機として機能する。回生発電された電力は、バッテリ5に供給され、充電する。
この車両1は、前輪駆動モータ4のトルクにより前輪2を駆動し、後輪駆動モータ8のトルクにより後輪3を駆動して走行する。これより、この車両1は、前輪駆動モータ4により駆動される前輪2を駆動輪とし、後輪駆動モータ8により駆動される後輪3を従属輪とする、四輪駆動車である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 9 show an embodiment of the present invention.
As shown in FIG. 1, the vehicle 1 includes left and right front wheels 2 and left and right rear wheels 3. The vehicle 1 is equipped with a front wheel drive motor 4 as a drive source. The front wheel drive motor 4 is driven by the power of the battery 5 and generates torque for driving the front wheel 2. The torque generated by the front wheel drive motor 4 is output to the left and right front wheels 2 via the front wheel side drive axle 7 by the front wheel side differential 6.
Further, the vehicle 1 is equipped with a rear wheel drive motor 8 as a drive source. The rear wheel drive motor 8 is driven by the electric power of the battery 5 and generates torque for driving the rear wheel 3. Torque generated by the rear wheel drive motor 8 is output to the left and right rear wheels 3 by the rear wheel side differential 9 through the rear wheel side drive axle 10.
The front wheel drive motor 4 and the rear wheel drive motor 8 function as an electric motor that generates torque that causes the vehicle 1 to travel. Further, the front wheel drive motor 4 and the rear wheel drive motor 8 function as generators that are driven by power from the front wheels 2 and the rear wheels 3 to generate regenerative power, respectively. The regenerated power is supplied to the battery 5 and charged.
The vehicle 1 travels by driving the front wheels 2 with the torque of the front wheel drive motor 4 and driving the rear wheels 3 with the torque of the rear wheel drive motor 8. Thus, the vehicle 1 is a four-wheel drive vehicle in which the front wheels 2 driven by the front wheel drive motor 4 are drive wheels and the rear wheels 3 driven by the rear wheel drive motor 8 are subordinate wheels.

車両1の前輪駆動モータ4から前輪2に伝達されるトルクおよび後輪駆動モータ8から後輪3に伝達されるトルクは、動力分配装置11によりトルク配分される。
図2に示すように、動力分配装置11は、車両1の走行状態を判定する走行状態判定手段12を備える。走行状態判定手段12には、アクセルセンサ13とブレーキセンサ14と車両姿勢センサ15とを接続している。車両姿勢センサ15は、例えば対象物に作用する重力や振動・動きを検出し、対象物の傾きや動きなどの情報を得る、加速度センサからなる。
走行状態判定手段12は、アクセルセンサ13が検出するアクセルペダル踏み込み量、ブレーキセンサ14が検出するブレーキペダル踏み込み量により車両1が加速状態か減速状態かを判断する。走行状態判定手段12は、車両姿勢センサ15が検出する路面に対する車両姿勢が前傾か後傾かを判断し、車両荷重が前輪2と後輪3のどちらに多くかかっているかを判断する。
走行状態判定手段12は、アクセルペダル踏み込み量とブレーキペダル踏み込み量と車両姿勢より、車両1の走行状態が加速状態と減速状態と定常走行状態とのいずれであるかを判定する。走行状態判定手段12は、判定結果を制御手段16に出力する。
また、動力分配装置11は、車両1の走行する路面の状態を判定する路面判定手段17を備える。路面判定手段17には、車両姿勢センサ15を接続している。路面判定手段17は、車両姿勢センサ15が検出する路面に対する車両姿勢より、車両1の走行する路面の状態が下り坂(降坂路)と上り坂(登坂路)と平坦路との何れであるかを判定する。さらに、路面判定手段17は、路面の状態が下り坂の場合、所定勾配以上の下り坂であるかを判定する。路面判定手段17は、判定結果を制御手段16に出力する。
The torque transmitted from the front wheel drive motor 4 of the vehicle 1 to the front wheel 2 and the torque transmitted from the rear wheel drive motor 8 to the rear wheel 3 are torque-distributed by the power distribution device 11.
As shown in FIG. 2, the power distribution device 11 includes travel state determination means 12 that determines the travel state of the vehicle 1. An accelerator sensor 13, a brake sensor 14, and a vehicle attitude sensor 15 are connected to the traveling state determination unit 12. The vehicle attitude sensor 15 includes an acceleration sensor that detects, for example, gravity, vibration, and movement acting on the object and obtains information such as the inclination and movement of the object.
The traveling state determination unit 12 determines whether the vehicle 1 is in an acceleration state or a deceleration state based on the accelerator pedal depression amount detected by the accelerator sensor 13 and the brake pedal depression amount detected by the brake sensor 14. The traveling state determination unit 12 determines whether the vehicle posture with respect to the road surface detected by the vehicle posture sensor 15 is forward or backward, and determines whether the vehicle load is applied to the front wheel 2 or the rear wheel 3 more.
The traveling state determination means 12 determines whether the traveling state of the vehicle 1 is an acceleration state, a deceleration state, or a steady traveling state based on the accelerator pedal depression amount, the brake pedal depression amount, and the vehicle posture. The traveling state determination unit 12 outputs the determination result to the control unit 16.
The power distribution device 11 includes road surface determination means 17 that determines the state of the road surface on which the vehicle 1 travels. A vehicle attitude sensor 15 is connected to the road surface determination means 17. Based on the vehicle attitude relative to the road surface detected by the vehicle attitude sensor 15, the road surface judging means 17 determines whether the road surface on which the vehicle 1 travels is downhill (downhill road), uphill (uphill road), or flat road. Determine. Furthermore, the road surface determination means 17 determines whether it is a downhill beyond a predetermined gradient, when the road surface state is a downhill. The road surface determination unit 17 outputs the determination result to the control unit 16.

制御手段16は、走行状態判定手段12と路面判定手段17から入力する判定結果に基づいて、前輪2に伝達される前輪駆動モータ4のトルクおよび後輪3に伝達される後輪駆動モータ8のトルクを決定し、前輪2および後輪3のトルク配分を決定する。
制御手段16は、決定されたトルク配分のトルクを発生するように、それぞれ前輪駆動モータ4と後輪駆動モータ8を駆動する。前輪駆動モータ4の発生するトルクと後輪駆動モータ8の発生するトルクは、それぞれ前輪2と後輪3に出力され、決定されたトルク配分のトルクでそれぞれ前輪2と後輪3を駆動する。
トルク配分において、制御手段16は、路面判定手段17で路面が所定勾配以上の下り坂と判定された場合に、走行状態判定手段12で加速状態または定常走行状態であると判定されたときは、路面が上り坂または平坦路である場合の前輪2に伝達されるトルクと後輪3に伝達されるトルクのトルク配分の差ΔT1よりも、前輪2に伝達されるトルクと後輪3に伝達されるトルクのトルク配分の差ΔT2を小さく配分する(ΔT1>ΔT2)。
また、制御手段16は、路面判定手段17で路面が下り坂と判定された場合に、走行状態判定手段12で加速状態であると判定されたときは、駆動輪である前輪2に出力されるトルクTfよりも従属輪である後輪3に出力されるトルクTrを、大きく配分する(Tf<Tr)。
さらに、制御手段16は、走行状態判定手段12と路面判定手段17から入力する判定結果に基づいて、前輪2からの動力により駆動されて回生発電する前輪駆動モータ4の回生トルクおよび後輪3からの動力により駆動されて回生発電する後輪駆動モータ8の回生トルクを決定し、前輪駆動モータ4および後輪駆動モータ8の回生トルク配分を決定する。
制御手段16は、決定された回生トルク配分の回生トルクで回生発電するように、前輪2と後輪3からの動力でそれぞれ前輪駆動モータ4と後輪駆動モータ8を駆動する。前輪駆動モータ4で回生発電された電力と後輪駆動モータ8で回生発電された電力は、バッテリに供給され、充電する。
Based on the determination results input from the traveling state determination unit 12 and the road surface determination unit 17, the control unit 16 transmits the torque of the front wheel drive motor 4 transmitted to the front wheels 2 and the rear wheel drive motor 8 transmitted to the rear wheels 3. Torque is determined, and torque distribution between the front wheels 2 and the rear wheels 3 is determined.
The control means 16 drives the front wheel drive motor 4 and the rear wheel drive motor 8, respectively, so as to generate torque with the determined torque distribution. The torque generated by the front wheel drive motor 4 and the torque generated by the rear wheel drive motor 8 are output to the front wheel 2 and the rear wheel 3, respectively, and drive the front wheel 2 and the rear wheel 3 respectively with the determined torque distribution torque.
In the torque distribution, when the road surface determination unit 17 determines that the road surface is a downhill with a predetermined slope or more, the control unit 16 determines that the traveling state determination unit 12 determines that the vehicle is in an acceleration state or a steady traveling state. The torque transmitted to the front wheel 2 and the rear wheel 3 are transmitted rather than the difference ΔT1 between the torque distribution of the torque transmitted to the front wheel 2 and the torque transmitted to the rear wheel 3 when the road surface is an uphill or flat road. The difference ΔT2 in the torque distribution of the torques to be distributed is reduced (ΔT1> ΔT2).
In addition, when the road surface determination unit 17 determines that the road surface is a downhill, the control unit 16 outputs to the front wheel 2 that is a drive wheel when the traveling state determination unit 12 determines that the vehicle is in an acceleration state. The torque Tr output to the rear wheel 3 which is a dependent wheel is more largely distributed than the torque Tf (Tf <Tr).
Further, based on the determination results input from the traveling state determination unit 12 and the road surface determination unit 17, the control unit 16 is driven by the regenerative torque of the front wheel drive motor 4 that is driven by the power from the front wheels 2 to generate regenerative power and the rear wheels 3. The regenerative torque of the rear wheel drive motor 8 that is driven by the power of the regenerative power to generate regenerative power is determined, and the regenerative torque distribution of the front wheel drive motor 4 and the rear wheel drive motor 8 is determined.
The control means 16 drives the front wheel drive motor 4 and the rear wheel drive motor 8 with power from the front wheels 2 and the rear wheels 3, respectively, so as to generate regenerative power with the regenerative torque of the determined regenerative torque distribution. The power regenerated by the front wheel drive motor 4 and the power regenerated by the rear wheel drive motor 8 are supplied to the battery and charged.

次に、動力分配装置11によるトルク配分を、図3〜図9のフローチャートに沿い説明する。
図3に示すように、動力分配装置11は、路面状態判定のプログラムがスタートすると、路面判定手段17で車両1の走行する路面状態の判定を行い(100)、路面判定手段17の判定結果から路面は下り坂であるかを判断する(200)。
動力分配装置11は、下り坂の判断(200)がYESの場合、制御手段16により下り坂時のトルク配分決定を行い(300)、路面状態の判定(100)にリターンする。動力分配装置11は、下り坂の判断(200)がNOの場合、路面判定手段17の判定結果から路面は上り坂であるかを判断する(400)。
動力分配装置11は、上り坂の判断(400)がYESの場合、制御手段16により上り坂時のトルク配分決定を行い(500)、路面状態の判定(100)にリターンする。動力分配装置11は、上り坂の判断(400)がNOの場合、路面判定手段17の判定結果から路面は平坦路であると判断し、制御手段16により平坦路時のトルク配分決定を行い(600)、路面状態の判定(100)にリターンする。
Next, torque distribution by the power distribution device 11 will be described with reference to the flowcharts of FIGS.
As shown in FIG. 3, when the road surface state determination program starts, the power distribution device 11 determines the road surface state in which the vehicle 1 travels by the road surface determination unit 17 (100), and from the determination result of the road surface determination unit 17. It is determined whether the road surface is a downhill (200).
When the determination (200) of the downhill is YES, the power distribution device 11 determines the torque distribution during the downhill by the control means 16 (300), and returns to the determination of the road surface state (100). The power distribution device 11 determines whether the road surface is an uphill from the determination result of the road surface determination means 17 when the determination (200) of the downhill is NO (400).
When the judgment (400) of the uphill is YES, the power distribution device 11 determines the torque distribution during the uphill by the control means 16 (500), and returns to the judgment of the road surface condition (100). The power distribution device 11 determines that the road surface is a flat road from the determination result of the road surface determination unit 17 when the determination (400) of the uphill is NO, and the control unit 16 determines torque distribution on the flat road ( 600), the process returns to road surface condition determination (100).

図4に示すように、下り坂のトルク配分決定(300)において、動力分配装置11は、プログラムがスタートすると、走行状態判定手段12により車両1の走行状態の判定を行い(301)、走行状態判定手段12の判定結果から車両1は加速状態であるかを判断する(302)。走行状態判定手段12は、アクセルペダル踏み込み量が直前より大きく、ブレーキペダル踏み込み量が「0」、車両姿勢が直前状態より後傾した場合、車両1が加速している(加速状態)と判定する。
動力分配装置11は、加速状態の判断(302)がYESの場合、図5(A)に示すように、前輪2のトラクションよりも後輪3のトラクションが大きいので、制御手段16により前輪2に出力されるトルクTfよりも後輪3に出力されるトルクTrを大きく(Tf<Tr)設定し(303)、路面判定手段17の判定結果から路面が所定勾配以上の下り坂であるかを判断する(304)。
動力分配装置11は、所定勾配以上の下り坂の判断(304)がYESの場合、制御手段16により前輪2に出力されるトルクと後輪3に出力されるトルクのトルク配分の差ΔT2を、上り坂または平坦路である場合であって加速状態であるときの前輪2に出力されるトルクと後輪3に出力されるトルクのトルク配分の差ΔT1よりも小さく(ΔT1>ΔT2)設定し(305)、走行状態の判定(301)にリターンする。
動力分配装置11は、所定勾配以上の下り坂の判断(304)がNOの場合、走行状態の判定(301)にリターンする。
なお、上り坂または平坦路の場合の前輪2と後輪3のトルク配分の差ΔT1よりも、下り坂の場合の前輪2と後輪3のトルク配分の差ΔT2を小さく(ΔT1>ΔT2)設定する(305)とは、例えば、平坦路では(前輪のトルク):(後輪のトルク)=20:80(ΔT1=60)であるのに対し、下り坂では(前輪のトルク):(後輪のトルク)=40:60(ΔT2=20)に設定することである。
As shown in FIG. 4, in the downhill torque distribution determination (300), when the program starts, the power distribution device 11 determines the traveling state of the vehicle 1 by the traveling state determination means 12 (301), and the traveling state It is determined from the determination result of the determination means 12 whether the vehicle 1 is in an acceleration state (302). The traveling state determination means 12 determines that the vehicle 1 is accelerating (acceleration state) when the accelerator pedal depression amount is larger than before, the brake pedal depression amount is “0”, and the vehicle posture is tilted backward from the immediately preceding state. .
When the determination of the acceleration state (302) is YES, the power distribution device 11 has the traction of the rear wheel 3 larger than the traction of the front wheel 2 as shown in FIG. The torque Tr output to the rear wheel 3 is set to be larger than the output torque Tf (Tf <Tr) (303), and it is determined from the determination result of the road surface determination means 17 whether the road surface is a downhill with a predetermined slope or more. (304).
When the determination (304) of the downhill above the predetermined gradient is YES, the power distribution device 11 calculates the difference ΔT2 between the torque distribution of the torque output to the front wheels 2 and the torque output to the rear wheels 3 by the control means 16. It is set to be smaller (ΔT1> ΔT2) than the difference ΔT1 in the torque distribution between the torque output to the front wheels 2 and the torque output to the rear wheels 3 when the vehicle is on an uphill or flat road and is in an acceleration state ( 305), the process returns to the determination of the running state (301).
The power distribution device 11 returns to the determination (301) of the traveling state when the determination (304) of the downhill above the predetermined gradient is NO.
Note that the torque distribution difference ΔT2 between the front wheel 2 and the rear wheel 3 in the case of a downhill is set smaller (ΔT1> ΔT2) than the torque distribution difference ΔT1 in the case of an uphill or flat road. (305) is, for example, (front wheel torque) :( rear wheel torque) = 20: 80 (ΔT1 = 60) on a flat road, but (down front wheel torque) :( rear) Wheel torque) = 40: 60 (ΔT2 = 20).

動力分配装置11は、加速状態の判断(302)がNOの場合、走行状態判定手段12の判定結果から車両1は減速状態であるかを判断する(306)。走行状態判定手段12は、アクセルペダル踏み込み量が「0」、ブレーキペダル踏み込み量が直前より大きく、車両姿勢が直前状態より前傾した場合、車両1が減速している(減速状態)と判定する。
動力分配装置11は、減速状態の判断(306)がYESの場合、図5(B)に示すように、前輪2のトラクションが後輪3のトラクションよりも大きいので、制御手段16により前輪2からの動力で駆動される前輪駆動モータ4の回生トルクRfを後輪3からの動力で駆動される後輪駆動モータ8の回生トルクRrよりも大きく(Rf>Rr)設定し(307)、走行状態の判定(301)にリターンする。動力分配装置11は、減速時に、トラクションのより多くかかる前輪2の回生量を多くすることで、回生エネルギを効率良く得ることができ、車両1の減速量を増やすことができる。
動力分配装置11は、減速状態の判断(306)がNOの場合、走行状態判定手段12の判定結果から車両1は定常走行状態であると判断する。走行状態判定手段12は、アクセルペダル踏み込み量が直前と同等、ブレーキペダル踏み込み量が「0」、車両姿勢が直前状態と同等の場合、車両1が定速走行している(定常走行状態)と判定する。
動力分配装置11は、車両1は定常走行状態と判定すると、図5(C)に示すように、前輪2のトラクションが後輪3のトラクションよりも大きいので、制御手段16により車両傾斜状態に合わせて前輪2に出力されるトルクTfと後輪3に出力されるトルクTrのトルク配分(Tf:Tr)を設定し(308)、路面判定手段17の判定結果から路面が所定勾配以上の下り坂であるかを判断する(309)。
動力分配装置11は、所定勾配以上の下り坂の判断(309)がYESの場合、(305)と同様に、制御手段16により前輪2に出力されるトルクTfと後輪3に出力されるトルクTrのトルク配分の差ΔT2を、上り坂または平坦路である場合であって定常走行状態であるときの前輪2に出力されるトルクTfと後輪3に出力されるトルクTrのトルク配分の差ΔT1よりも小さく(ΔT1>ΔT2)設定し(310)、走行状態の判定(301)にリターンする。
動力分配装置11は、所定勾配以上の判断(309)がNOの場合、走行状態の判定(301)にリターンする。
When the determination of the acceleration state (302) is NO, the power distribution device 11 determines whether the vehicle 1 is in a deceleration state from the determination result of the traveling state determination means 12 (306). The traveling state determination means 12 determines that the vehicle 1 is decelerating (decelerated state) when the accelerator pedal depression amount is “0”, the brake pedal depression amount is larger than before, and the vehicle posture is tilted forward from the immediately preceding state. .
When the determination of the deceleration state (306) is YES, the power distribution device 11 determines that the traction of the front wheel 2 is larger than the traction of the rear wheel 3 as shown in FIG. The regenerative torque Rf of the front wheel drive motor 4 driven by the power of the rear wheel is set larger than the regenerative torque Rr of the rear wheel drive motor 8 driven by the power from the rear wheel 3 (Rf> Rr) (307), and the running state Return to the determination (301). The power distribution device 11 can efficiently obtain regenerative energy and increase the deceleration amount of the vehicle 1 by increasing the regeneration amount of the front wheel 2 that requires more traction during deceleration.
When the determination (306) of the deceleration state is NO, the power distribution device 11 determines that the vehicle 1 is in a steady traveling state from the determination result of the traveling state determination unit 12. When the accelerator pedal depression amount is equal to that immediately before, the brake pedal depression amount is “0”, and the vehicle posture is equal to the immediately preceding state, the traveling state determination unit 12 determines that the vehicle 1 is traveling at a constant speed (steady traveling state). judge.
When the power distribution device 11 determines that the vehicle 1 is in a steady running state, the traction of the front wheels 2 is larger than the traction of the rear wheels 3 as shown in FIG. The torque distribution (Tf: Tr) between the torque Tf output to the front wheel 2 and the torque Tr output to the rear wheel 3 is set (308), and the road surface is a downhill having a predetermined slope or more from the determination result of the road surface determination means 17. (309).
The power distribution device 11 determines that the torque Tf output to the front wheel 2 and the torque output to the rear wheel 3 by the control means 16 in the same manner as (305) when the determination (309) of the downhill above the predetermined gradient is YES. The difference in torque distribution ΔT2 between Tr is the difference in torque distribution between the torque Tf output to the front wheels 2 and the torque Tr output to the rear wheels 3 when the vehicle is in an uphill or flat road and is in a steady running state. It is set to be smaller than ΔT1 (ΔT1> ΔT2) (310), and the process returns to the traveling state determination (301).
The power distribution apparatus 11 returns to the determination (301) of a driving state, when determination (309) more than a predetermined gradient is NO.

図6に示すように、上り坂のトルク配分決定(500)において、動力分配装置11は、プログラムがスタートすると、走行状態判定手段12により車両1の走行状態の判定を行い(501)、走行状態判定手段12の判定結果から車両1は加速状態であるかを判断する(502)。走行状態判定手段12は、アクセルペダル踏み込み量が直前より大きく、ブレーキペダル踏み込み量が「0」、車両姿勢が直前状態より後傾した場合、車両1が加速している(加速状態)と判定する。
動力分配装置11は、加速状態の判断(502)がYESの場合、図7(A)に示すように、前輪2のトラクションよりも後輪3のトラクションが大きいので、制御手段16により前輪2に出力されるトルクTfよりも後輪3に出力されるトルクTrを大きく(Tf<Tr)設定し(503)、走行状態の判定(501)にリターンする。加速状態においては、後輪3に出力されるトルクTrを大きくすることで、トラクションの小さい前輪2の空転を防止し、空転による前輪2のエネルギーロスを減らす。
As shown in FIG. 6, in the uphill torque distribution determination (500), when the program starts, the power distribution device 11 determines the traveling state of the vehicle 1 by the traveling state determination means 12 (501), and the traveling state It is determined from the determination result of the determination means 12 whether the vehicle 1 is in an accelerated state (502). The traveling state determination means 12 determines that the vehicle 1 is accelerating (acceleration state) when the accelerator pedal depression amount is larger than before, the brake pedal depression amount is “0”, and the vehicle posture is tilted backward from the immediately preceding state. .
When the acceleration state determination (502) is YES, the power distribution device 11 has the traction of the rear wheel 3 larger than the traction of the front wheel 2 as shown in FIG. The torque Tr output to the rear wheel 3 is set to be larger than the output torque Tf (Tf <Tr) (503), and the process returns to the determination of the running state (501). In the acceleration state, the torque Tr output to the rear wheel 3 is increased, so that the front wheel 2 with low traction is prevented from idling and the energy loss of the front wheel 2 due to idling is reduced.

動力分配装置11は、加速状態の判断(502)がNOの場合、走行状態判定手段12の判定結果から車両1は減速状態であるかを判断する(504)。走行状態判定手段12は、アクセルペダル踏み込み量が「0」、ブレーキペダル踏み込み量が直前より大きく、車両姿勢が直前状態より前傾した場合、車両が減速している(減速状態)と判定する。
動力分配装置11は、減速状態の判断(504)がYESの場合、図7(B)に示すように、前輪2のトラクションが後輪3のトラクションよりも大きいので、制御手段16により前輪2からの動力で駆動される前輪駆動モータ4の回生トルクRfを後輪3からの動力で駆動される後輪駆動モータ8の回生トルクRrよりも大きく(Rf>Rr)設定し(505)、走行状態の判定(501)にリターンする。動力分配装置11は、減速時に、トラクションのより多くかかる前輪2の回生量を多くすることで、回生エネルギを効率良く得ることができ、車両1の減速量を増やすことができる。
動力分配装置11は、減速状態の判断(504)がNOの場合、走行状態判定手段12の判定結果から車両1は定常走行状態であると判断する。走行状態判定手段12は、アクセルペダル踏み込み量が直前と同等、ブレーキペダル踏み込み量が「0」、車両姿勢が直前状態と同等の場合、車両1が定速走行している(定常走行状態)と判定する。
動力分配装置11は、車両1は定常走行状態と判定すると、図7(C)に示すように、前輪2のトラクションよりも後輪3のトラクションが大きいので、制御手段16により前輪2に出力されるトルクTfよりも後輪3に出力されるトルクTrを大きく(Tf<Tr)設定し(506)、走行状態の判定(501)にリターンする。定常走行状態のトルク配分の設定(506)においては、トラクションが小さくスリップする前輪2に出力されるトルクを小さくし、トラクションが大きくスリップしない後輪3に出力されるトルクを大きくする。
When the determination of the acceleration state (502) is NO, the power distribution device 11 determines whether the vehicle 1 is in a deceleration state from the determination result of the traveling state determination means 12 (504). The traveling state determination means 12 determines that the vehicle is decelerating (decelerated state) when the accelerator pedal depression amount is “0”, the brake pedal depression amount is larger than before, and the vehicle posture is tilted forward from the immediately preceding state.
When the determination of the deceleration state (504) is YES, the power distributor 11 determines that the traction of the front wheel 2 is larger than the traction of the rear wheel 3 as shown in FIG. The regenerative torque Rf of the front wheel drive motor 4 driven by the power of the rear wheel is set larger than the regenerative torque Rr of the rear wheel drive motor 8 driven by the power from the rear wheel 3 (Rf> Rr) (505), and the running state Return to the determination (501). The power distribution device 11 can efficiently obtain regenerative energy and increase the deceleration amount of the vehicle 1 by increasing the regeneration amount of the front wheel 2 that requires more traction during deceleration.
When the determination of the deceleration state (504) is NO, the power distribution device 11 determines that the vehicle 1 is in the steady traveling state from the determination result of the traveling state determination unit 12. When the accelerator pedal depression amount is equal to that immediately before, the brake pedal depression amount is “0”, and the vehicle posture is equal to the immediately preceding state, the traveling state determination unit 12 determines that the vehicle 1 is traveling at a constant speed (steady traveling state). judge.
When the power distribution device 11 determines that the vehicle 1 is in the steady running state, the traction of the rear wheel 3 is larger than the traction of the front wheel 2 as shown in FIG. The torque Tr output to the rear wheel 3 is set to be larger than the torque Tf (Tf <Tr) (506), and the process returns to the determination of the running state (501). In the setting of torque distribution in the steady running state (506), the torque output to the front wheel 2 where the traction slips small is reduced, and the torque output to the rear wheel 3 where the traction does not slip greatly increases.

図8に示すように、平坦路のトルク配分決定(600)において、動力分配装置11は、プログラムがスタートすると、走行状態判定手段12により車両1の走行状態の判定を行い(601)、走行状態判定手段12の判定結果から車両1は加速状態であるかを判断する(602)。走行状態判定手段12は、アクセルペダル踏み込み量が直前より大きく、ブレーキペダル踏み込み量が「0」、車両姿勢が直前状態より後傾した場合、車両が加速している(加速状態)と判定する。
動力分配装置11は、加速状態の判断(602)がYESの場合、図9(A)に示すように、前輪2のトラクションよりも後輪3のトラクションが大きいので、制御手段16により前輪2に出力されるトルクTfよりも後輪3に出力されるトルクTrを大きく(Tf<Tr)設定し(603)、走行状態の判定(601)にリターンする。加速状態においては、後輪3に出力されるトルクTrを大きくすることで、トラクションの小さい前輪2の空転を防止し、空転による前輪2のエネルギーロスを減らす。
As shown in FIG. 8, in the torque distribution determination (600) on the flat road, when the program starts, the power distribution device 11 determines the traveling state of the vehicle 1 by the traveling state determination means 12 (601), and the traveling state It is determined from the determination result of the determination means 12 whether the vehicle 1 is in an accelerated state (602). The traveling state determination means 12 determines that the vehicle is accelerating (acceleration state) when the accelerator pedal depression amount is larger than before, the brake pedal depression amount is “0”, and the vehicle posture is tilted backward from the immediately preceding state.
When the determination of the acceleration state (602) is YES, the power distribution device 11 has the traction of the rear wheel 3 larger than the traction of the front wheel 2 as shown in FIG. The torque Tr output to the rear wheel 3 is set to be larger than the output torque Tf (Tf <Tr) (603), and the process returns to the determination of the running state (601). In the acceleration state, the torque Tr output to the rear wheel 3 is increased, so that the front wheel 2 with low traction is prevented from idling and the energy loss of the front wheel 2 due to idling is reduced.

動力分配装置11は、加速状態の判断(602)がNOの場合、走行状態判定手段12の判定結果から車両1は減速状態であるかを判断する(604)。走行状態判定手段12は、アクセルペダル踏み込み量が「0」、ブレーキペダル踏み込み量が直前より大きく、車両姿勢が直前状態より前傾した場合、車両1が減速している(減速状態)と判定する。
動力分配装置11は、減速状態の判断(604)がYESの場合、図9(B)に示すように、前輪2のトラクションが後輪3のトラクションよりも大きいので、制御手段16により前輪2からの動力で駆動される前輪駆動モータ4の回生トルクRfを後輪3からの動力で駆動される後輪駆動モータ8の回生トルクRrよりも大きく(Rf>Rr)設定し(605)、走行状態の判定(601)にリターンする。動力分配装置11は、減速時に、トラクションのより多くかかる前輪2の回生量を多くすることで、回生エネルギを効率良く得ることができ、車両1の減速量を増やすことができる。
動力分配装置11は、減速状態の判断(604)がNOの場合、走行状態判定手段12の判定結果から車両1は定常走行状態であると判断する。走行状態判定手段12は、アクセルペダル踏み込み量が直前と同等、ブレーキペダル踏み込み量が「0」、車両姿勢が直前状態と同等の場合、車両1が定速走行している(定常走行状態)と判定する。
動力分配装置11は、車両1は定常走行状態と判定すると、図9(C)に示すように、制御手段16により路面のトラクションに合わせて前輪2に出力されるトルクTfと後輪3に出力されるトルクTrとのトルク配分(Tf:Tr)を設定し(606)、走行状態の判定(601)にリターンする。定常走行状態のトルク配分の設定(606)においては、スリップする車輪のトルクを小さく、スリップしない車輪のトルクを大きくする。
When the determination of the acceleration state (602) is NO, the power distribution device 11 determines whether the vehicle 1 is in a deceleration state from the determination result of the traveling state determination means 12 (604). The traveling state determination means 12 determines that the vehicle 1 is decelerating (decelerated state) when the accelerator pedal depression amount is “0”, the brake pedal depression amount is larger than before, and the vehicle posture is tilted forward from the immediately preceding state. .
When the determination of the deceleration state (604) is YES, the power distribution device 11 has the traction of the front wheel 2 larger than the traction of the rear wheel 3 as shown in FIG. The regenerative torque Rf of the front wheel drive motor 4 driven by the power of the rear wheel is set larger than the regenerative torque Rr of the rear wheel drive motor 8 driven by the power from the rear wheel 3 (Rf> Rr) (605), and the running state Return to the determination (601). The power distribution device 11 can efficiently obtain regenerative energy and increase the deceleration amount of the vehicle 1 by increasing the regeneration amount of the front wheel 2 that requires more traction during deceleration.
When the determination of the deceleration state (604) is NO, the power distribution device 11 determines that the vehicle 1 is in a steady traveling state from the determination result of the traveling state determination unit 12. When the accelerator pedal depression amount is equal to that immediately before, the brake pedal depression amount is “0”, and the vehicle posture is equal to the immediately preceding state, the traveling state determination unit 12 determines that the vehicle 1 is traveling at a constant speed (steady traveling state). judge.
When the power distribution device 11 determines that the vehicle 1 is in the steady running state, the control means 16 outputs the torque Tf output to the front wheel 2 and the rear wheel 3 in accordance with the road surface traction, as shown in FIG. Torque distribution (Tf: Tr) with the torque Tr to be performed is set (606), and the process returns to the determination of the running state (601). In the torque distribution setting (606) in the steady running state, the torque of the wheel that slips is reduced, and the torque of the wheel that does not slip is increased.

このように、動力分配装置11は、路面が所定勾配以上の下り坂で、車両1が加速状態または定常走行状態であるときは、上り坂または平坦路の場合の前輪2と後輪3のトルク配分の差ΔT1よりも、前輪2と後輪3のトルク配分の差ΔT2を小さく(ΔT1>ΔT2)するので、下り坂を走行する車両1の各車輪へのトラクションのかかり具合に応じて、前輪2と後輪3ヘ適切にトルクを配分することができる。
このため、動力分配装置11は、路面の状態によって挙動が不安定になることを防ぐことができ、車両1の走破性や安定性を向上することができる。
また、動力分配装置11は、路面が下り坂で、車両1が加速状態であるときは、前輪2に出力されるトルクTfよりも後輪3に出力されるトルクTrを大きく(Tf<Tr)するので、トラクションの小さい前輪2の空転を防止し、空転による前輪2のエネルギーロスを小さくすることができ、車両1の走破性や安定性を向上することができる。
さらに、動力分配装置11は、減速時にトラクションのより多くかかる前輪2の回生量を多くすることで、回生エネルギーを効率よく得ることができ、車両1の減速量を増やすことができる。
なお、上述実施例においては、アクセルセンサ13、ブレーキセンサ14、車両姿勢センサ15を設けたが、従来の車両1に既に搭載されているアクセルセンサ、ブレーキセンサ、車両姿勢センサを用いることで、部品点数を増加させることが無い。また、既に横滑り防止装置(ESP:Electronic Stability Program)が搭載されている車両1においては、横滑り防止装置のセンサを車両姿勢センサとして用いることができる。
また、上述実施例においては、左右の前輪2を駆動する1つの前輪駆動モータ4と左右の後輪3を駆動する1つの前輪駆動モータ8とを設けたが、左右の前輪、左右の後輪にそれぞれ駆動モータ(インホイールモータなど)を設けた車両においても、本発明のように加速状態、減速状態、定常走行状態におけるトルク配分を行うことができる。
さらに、左右の前輪、左右の後輪にそれぞれ駆動モータ(インホイールモータなど)を設けた車両においては、本発明のようにアクセルセンサ、ブレーキセンサ、車両姿勢センサの検出信号により車両のコーナリング状態を判断し、荷重のかからないコーナ内側の車輪よりも荷重のかかるコーナ外側の車輪に対してトルク配分を大きく行うことで、コーナリング性能を向上させることができる。
Thus, when the road surface is a downhill with a predetermined slope or more and the vehicle 1 is in an acceleration state or a steady running state, the power distribution device 11 has the torque of the front wheels 2 and the rear wheels 3 in the case of an uphill or flat road. Since the torque distribution difference ΔT2 between the front wheels 2 and the rear wheels 3 is made smaller than the distribution difference ΔT1 (ΔT1> ΔT2), depending on the degree of traction applied to each wheel of the vehicle 1 traveling on the downhill, Torque can be appropriately distributed to 2 and the rear wheel 3.
For this reason, the power distribution device 11 can prevent the behavior from becoming unstable depending on the state of the road surface, and can improve the running performance and stability of the vehicle 1.
Further, when the road surface is a downhill and the vehicle 1 is in an acceleration state, the power distribution device 11 increases the torque Tr output to the rear wheel 3 more than the torque Tf output to the front wheel 2 (Tf <Tr). Therefore, it is possible to prevent idling of the front wheel 2 with small traction, to reduce the energy loss of the front wheel 2 due to idling, and to improve the running performance and stability of the vehicle 1.
Further, the power distribution device 11 can efficiently obtain regenerative energy and increase the deceleration amount of the vehicle 1 by increasing the regeneration amount of the front wheel 2 that requires more traction during deceleration.
In the above-described embodiment, the accelerator sensor 13, the brake sensor 14, and the vehicle attitude sensor 15 are provided. However, by using the accelerator sensor, the brake sensor, and the vehicle attitude sensor that are already mounted on the conventional vehicle 1, the components There is no point increase. Further, in the vehicle 1 in which the skid prevention device (ESP: Electronic Stability Program) is already mounted, the sensor of the skid prevention device can be used as a vehicle attitude sensor.
In the above embodiment, one front wheel drive motor 4 for driving the left and right front wheels 2 and one front wheel drive motor 8 for driving the left and right rear wheels 3 are provided. Even in a vehicle provided with a drive motor (such as an in-wheel motor), torque distribution in an acceleration state, a deceleration state, and a steady running state can be performed as in the present invention.
Further, in a vehicle in which drive motors (such as in-wheel motors) are provided on the left and right front wheels and the left and right rear wheels, the vehicle cornering state is determined by the detection signals of the accelerator sensor, the brake sensor, and the vehicle attitude sensor as in the present invention. The cornering performance can be improved by determining and performing a larger torque distribution on the outer wheel that is loaded than the inner wheel that is not loaded.

この発明の動力分配装置は、各車輪へのトラクションのかかり具合に応じて、各車輪ヘ適切にトルクを配分することができるものであり、駆動源としてモータにかぎらず、内燃機関や内燃機関およびモータを搭載して駆動輪および従属輪を駆動する車両に適用可能である。   The power distribution device according to the present invention is capable of appropriately distributing torque to each wheel according to the degree of traction applied to each wheel. The present invention can be applied to a vehicle equipped with a motor to drive drive wheels and dependent wheels.

1 車両
2 前輪
3 後輪
4 前輪駆動モータ
5 バッテリ
6 前輪側差動装置
7 前輪側駆動車軸
8 後輪駆動モータ
9 後輪側差動装置
10 後輪側駆動車軸
11 動力分配装置
12 走行状態判定手段
13 アクセルセンサ
14 ブレーキセンサ
15 車両姿勢センサ
16 制御手段
17 路面判定手段
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Front wheel 3 Rear wheel 4 Front wheel drive motor 5 Battery 6 Front wheel side differential device 7 Front wheel side drive axle 8 Rear wheel drive motor 9 Rear wheel side differential device 10 Rear wheel side drive axle 11 Power distribution device 12 Running state determination Means 13 Accelerator sensor 14 Brake sensor 15 Vehicle attitude sensor 16 Control means 17 Road surface judgment means

Claims (2)

車両の駆動源からのトルクを駆動輪および従属輪に配分する制御手段を備えた動力分配装置において、前記車両の走行状態を判定する走行状態判定手段と、前記車両の走行する路面の状態を判定する路面判定手段と、を備え、前記制御手段は、前記路面判定手段で前記路面が所定勾配以上の下り坂と判定された場合に、前記走行状態判定手段で加速状態または定常走行状態であると判定されたときは、前記路面が上り坂または平坦路である場合よりも前記駆動輪と従属輪のトルク配分の差を小さくすることを特徴とする動力分配装置。   In a power distribution device including a control unit that distributes torque from a driving source of a vehicle to driving wheels and subordinate wheels, a traveling state determining unit that determines a traveling state of the vehicle and a state of a road surface on which the vehicle travels are determined. Road surface determining means, and when the road surface determining means determines that the road surface is a downhill of a predetermined slope or more, the control means is in an acceleration state or a steady driving state by the traveling state determining means. When judged, the power distribution device is characterized in that the difference in torque distribution between the drive wheel and the dependent wheel is made smaller than when the road surface is an uphill or flat road. 前記制御手段は、前記路面判定手段で前記路面が下り坂と判定された場合に、前記走行状態判定手段で加速状態であると判定されたときは、前記駆動輪のトルクよりも前記従属輪のトルクを大きく配分することを特徴とする請求項1に記載の動力分配装置。   When the road surface determining means determines that the road surface is a downhill when the road surface determining means determines that the road surface is in an accelerating state, the control means determines that the dependent wheel is more than the torque of the driving wheel. The power distribution device according to claim 1, wherein torque is largely distributed.
JP2016214925A 2016-11-02 2016-11-02 Power distribution device Pending JP2018070047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016214925A JP2018070047A (en) 2016-11-02 2016-11-02 Power distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016214925A JP2018070047A (en) 2016-11-02 2016-11-02 Power distribution device

Publications (1)

Publication Number Publication Date
JP2018070047A true JP2018070047A (en) 2018-05-10

Family

ID=62112103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016214925A Pending JP2018070047A (en) 2016-11-02 2016-11-02 Power distribution device

Country Status (1)

Country Link
JP (1) JP2018070047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600086A (en) * 2018-12-17 2019-04-09 安徽江淮汽车集团股份有限公司 The oscillation suppression method of hybrid vehicle
CN109878347A (en) * 2019-03-27 2019-06-14 清华大学 A wheel torque distribution method for a multi-axle drive distributed vehicle
CN111645536A (en) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 Method for controlling driving torque of electric four-wheel drive automobile
CN114476537A (en) * 2020-10-27 2022-05-13 细美事有限公司 Apparatus and method for controlling driving of transport vehicle in article transport system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600086A (en) * 2018-12-17 2019-04-09 安徽江淮汽车集团股份有限公司 The oscillation suppression method of hybrid vehicle
CN109878347A (en) * 2019-03-27 2019-06-14 清华大学 A wheel torque distribution method for a multi-axle drive distributed vehicle
CN109878347B (en) * 2019-03-27 2020-06-30 清华大学 Wheel torque distribution method of multi-axis driving distributed vehicle
CN111645536A (en) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 Method for controlling driving torque of electric four-wheel drive automobile
CN111645536B (en) * 2020-06-05 2021-10-01 中国第一汽车股份有限公司 Method for controlling driving torque of electric four-wheel drive automobile
CN114476537A (en) * 2020-10-27 2022-05-13 细美事有限公司 Apparatus and method for controlling driving of transport vehicle in article transport system

Similar Documents

Publication Publication Date Title
JP6818481B2 (en) Braking control method for regenerative braking coordinated control system for vehicles
CN108216240B (en) Method and apparatus for controlling front and rear wheel torque distribution for four-wheel drive vehicle
KR101655663B1 (en) Control method for front wheel and rear wheel torque distribution of electric 4 wheel drive hybrid electric vehicle
JP6042706B2 (en) Vehicle control device
KR101339231B1 (en) Torque control system for fulltime 4 wheel drive green car and method thereof
CN107054354A (en) The driving-force control apparatus of vehicle
JP2007282406A (en) Automotive braking force control system
JP2004026146A (en) Method and device for braking vehicle
KR20200129448A (en) Method of step by step regenerative brake coopertaion for a rear wheel of environment-friendly vehicle
JP6898843B2 (en) Electric vehicle controls, control methods and control systems
KR102569899B1 (en) Vehicle having electric motor and method of driving controlling for the same
JP2016028913A (en) Vehicle pitching vibration control device
JP2018093645A (en) Device for controlling electric vehicle, system for controlling electric vehicle and method for controlling electric vehicle
CN110816281B (en) Control unit, device and method for vehicle recuperation brake control
US20110130909A1 (en) System and method for controlling a four wheel drive vehicle
JP2018070047A (en) Power distribution device
WO2019053020A1 (en) System and method for a trailer towable by a vehicle
JP6443258B2 (en) Braking / driving force control device and braking / driving force control method
US11142077B2 (en) Method and device for operating a motor vehicle, and motor vehicle
JP2019155970A (en) Control device of vehicle and control method of vehicle
JP5686721B2 (en) Control device for electric vehicle
JP6329105B2 (en) Driving force control device for four-wheel drive vehicle
CN110877531A (en) Braking method and braking system for electric vehicle
JP2021093875A (en) Control device for vehicle
CN112805193B (en) Method for distributing a braking torque requested by a driver to a vehicle axle of a motor vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180130