Nothing Special   »   [go: up one dir, main page]

JP2018066403A - Passage switching valve and vehicular heat medium system - Google Patents

Passage switching valve and vehicular heat medium system Download PDF

Info

Publication number
JP2018066403A
JP2018066403A JP2016203994A JP2016203994A JP2018066403A JP 2018066403 A JP2018066403 A JP 2018066403A JP 2016203994 A JP2016203994 A JP 2016203994A JP 2016203994 A JP2016203994 A JP 2016203994A JP 2018066403 A JP2018066403 A JP 2018066403A
Authority
JP
Japan
Prior art keywords
valve body
seal member
peripheral surface
opening
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016203994A
Other languages
Japanese (ja)
Other versions
JP6715159B2 (en
Inventor
振宇 申
Zhenyu Shen
振宇 申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016203994A priority Critical patent/JP6715159B2/en
Publication of JP2018066403A publication Critical patent/JP2018066403A/en
Application granted granted Critical
Publication of JP6715159B2 publication Critical patent/JP6715159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Taps Or Cocks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new passage switching valve which can inhibit floating matters from entering into a space between an outer peripheral surface of a valve body and a tip surface of a seal member and being caught therein, and to provide a vehicular heat medium system using the passage switching valve.SOLUTION: A direction change part 15G which changes a direction of a vortex occurring downstream an opening edge 12E of an opening 14 formed at a valve body 12 so that the vortex flows toward a fluid flowing out from the opening 14 of the valve body 12 is formed at a tip portion on an inner peripheral surface 15 side of a seal member 15 which is in contact with an outer peripheral surface 12S of the valve body 12. The structure changes the direction of the vortex occurring downstream the opening edge 12E of the valve body 12 so that the vortex flows toward the fluid flowing through the opening 14 of the valve body 12, and thus floating matters are actively transported and discharged into the fluid flowing out. Therefore, the floating matters are inhibited from being caught in a space between the outer peripheral surface of the valve body and a tip surface of the seal member, and good seal performance is maintained.SELECTED DRAWING: Figure 4

Description

本発明は流路切換弁、及びこの流路切換弁を使用した自動車用熱媒体システムに係り、例えば、内燃機関やリチウム電池等の熱源を冷却する冷却水を種々の熱補機類に分配するために用いられる流路切換弁、及この流路切換弁を使用した自動車用熱媒体システムに関するものである。   The present invention relates to a flow path switching valve and an automotive heat medium system using the flow path switching valve, for example, distributing cooling water for cooling a heat source such as an internal combustion engine or a lithium battery to various heat auxiliary machines. The present invention relates to a flow path switching valve used for this purpose, and an automotive heat medium system using the flow path switching valve.

一般的な自動車においては、内燃機関を冷却する冷却水の熱を外部に放熱するために冷却水をラジエータに循環させる、或いは車室内を暖房するために温度の高い冷却水を暖房装置に循環させるといった目的のために、流路切換弁を使用して各種熱補機類に冷却水を分配することが行われている。   In general automobiles, the cooling water is circulated to the radiator to dissipate the heat of the cooling water for cooling the internal combustion engine to the outside, or the high-temperature cooling water is circulated to the heating device to heat the vehicle interior. For this purpose, cooling water is distributed to various heat auxiliary machines using a flow path switching valve.

このような自動車の内燃機関を冷却する冷却水を各種熱補機類に分配する流路切換弁としては、例えば特開2015−218775号公報(特許文献1)に記載されている。この特許文献1に記載された流路切換弁は、ハウジング内に、筒状の弁体である弁本体を回転可能に収容し、その弁本体の回転位置に応じて流路を切り換えるロータリー式バルブあって、ハウジングの連通路と弁本体の開口部との重なり合いにより開弁し、流入口から流入した冷却水を弁本体の開口部、及びハウジングの連通路を介して自動車の各種熱補機類に分配する構成となっている。   Such a flow path switching valve that distributes cooling water for cooling an internal combustion engine of an automobile to various heat auxiliaries is described in, for example, JP-A-2015-218775 (Patent Document 1). The flow path switching valve described in Patent Document 1 is a rotary valve that houses a valve body that is a cylindrical valve body in a housing in a rotatable manner, and switches the flow path according to the rotational position of the valve body. The valve is opened by overlapping the communication passage of the housing and the opening of the valve body, and the cooling water flowing in from the inlet is supplied to the various heat accessories of the automobile through the opening of the valve body and the communication passage of the housing. It is the composition which distributes to.

特開2015−218775号公報JP2015-218775A

ところでこの流路切換弁は、中空円筒状の弁本体と、この弁本体を外側から囲み各熱補機類に繋がる連通路を備えるハウジング本体とから構成されている。そして、連通路内に配置される筒状のシール部材の先端面と弁本体の外周面との間には、弁本体が摺動可能なように微小な隙間が形成されており、その隙間に冷却水内に含まれるアルミニウムや鉄からなる金属粉等の浮遊物が侵入する現象を生じる。   By the way, this flow-path switching valve is comprised from the hollow cylindrical valve main body and the housing main body provided with the communicating path which encloses this valve main body from the outer side, and is connected with each heat auxiliary machinery. A minute gap is formed between the distal end surface of the cylindrical seal member disposed in the communication passage and the outer peripheral surface of the valve body so that the valve body can slide. Phenomenon in which floating substances such as metal powder made of aluminum or iron contained in the cooling water intrude occurs.

侵入した浮遊物は、弁本体が回転した際に弁本体の外周面とシール部材の先端面の間に挟まり、その浮遊物によって弁本体やシール部材の接触面を損傷させる恐れがある。このため、弁本体やシール部材の接触面が損傷すると、結果的にシール性能を劣化させるという課題を生じるようになる。   The floating substance that has entered may be sandwiched between the outer peripheral surface of the valve body and the front end surface of the seal member when the valve body rotates, and the contact surface of the valve body or the seal member may be damaged by the floating substance. For this reason, when the contact surface of a valve main body or a sealing member is damaged, the subject that a sealing performance deteriorates will arise as a result.

次に、この課題について図面を用いて簡単に説明するが、以下の説明では熱媒体として内燃機関の冷却水を使用する場合を例示的に示している。そして、図10は流路切換弁の連通路付近を横方向に断面したものであり、図11は弁本体とシール部材の接触領域付近を拡大したものである。   Next, this problem will be briefly described with reference to the drawings. In the following description, a case where cooling water of an internal combustion engine is used as a heat medium is shown as an example. FIG. 10 is a cross-sectional view of the vicinity of the communication path of the flow path switching valve, and FIG. 11 is an enlarged view of the vicinity of the contact area between the valve body and the seal member.

図10において、参照番号10は流路切換弁を示しており、ハウジング本体11に形成した弁収納部27に弁本体12が回転自在に取り付けられている。弁本体12は紙面に垂直に延びる軸線を中心にして回動することが可能であり、弁本体12の外周面12Sの接線に直交する方向に連通路13が開口している。   In FIG. 10, reference numeral 10 indicates a flow path switching valve, and the valve main body 12 is rotatably attached to a valve storage portion 27 formed in the housing main body 11. The valve main body 12 can be rotated around an axis extending perpendicular to the paper surface, and the communication passage 13 is opened in a direction perpendicular to the tangent to the outer peripheral surface 12S of the valve main body 12.

冷却水ポンプから圧送されてくる内燃機関からの冷却水は、紙面に垂直な方向から流入して弁本体12に形成した開口14を介して連通路13に流出するものである。連通路13と弁本体12の外周面12Sの間には筒状のシール部材15が配置されており、シール部材15は、ハウジング本体11に嵌入される接続パイプ16Dの端面に配置された圧縮ばね17によって、弁本体12の外周面12Sに押圧されて液密的に接触されている。尚、図10については実施形態の説明の中で更に補足的な説明を行うようにする。   Cooling water from the internal combustion engine pumped from the cooling water pump flows from the direction perpendicular to the paper surface and flows out to the communication passage 13 through the opening 14 formed in the valve body 12. A cylindrical seal member 15 is disposed between the communication path 13 and the outer peripheral surface 12S of the valve body 12, and the seal member 15 is a compression spring disposed on the end surface of the connection pipe 16D fitted into the housing body 11. 17 is pressed against the outer peripheral surface 12S of the valve main body 12 to be in fluid-tight contact. Note that FIG. 10 will be further described in the description of the embodiment.

ここで、図11に示しているように、従来のシール部材15の内周面15Sの軸方向の形状は、弁本体12の外周面12Sに接触する先端面15Cまで直線状の内周面15Sに形成されている。そして、開口14と連通路13が連通し、且つ弁本体12の外周面12Sに形成した開口14の開口縁12Eが、シール部材15の内部に形成した内部通路15Pの領域に位置している状態で、冷却水が開口14から連通路13に流れ出る場合において、冷却水は流線Sで示すように流れ出る。   Here, as shown in FIG. 11, the axial shape of the inner peripheral surface 15S of the conventional sealing member 15 is linear inner peripheral surface 15S up to the distal end surface 15C contacting the outer peripheral surface 12S of the valve body 12. Is formed. The opening 14 and the communication passage 13 communicate with each other, and the opening edge 12E of the opening 14 formed on the outer peripheral surface 12S of the valve body 12 is located in the region of the internal passage 15P formed inside the seal member 15. Thus, when the cooling water flows out from the opening 14 to the communication path 13, the cooling water flows out as indicated by the streamline S.

このため、弁本体12に形成した開口14の開口縁12Eの下流で、シール部材15の内周面15Sの先端付近に形成される空間領域に渦Vrが発生する。しかも、この渦Vrは上述の開口縁12Eの下流の空間領域に留まる傾向が強く、冷却水に混入している浮遊物Dstも、この渦Vrの動きにしたがって開口縁12Eの下流の空間領域に留まることになる。   For this reason, a vortex Vr is generated in a space region formed near the tip of the inner peripheral surface 15S of the seal member 15 downstream of the opening edge 12E of the opening 14 formed in the valve body 12. Moreover, the vortex Vr tends to stay in the space region downstream of the opening edge 12E, and the suspended matter Dst mixed in the cooling water also moves in the space region downstream of the opening edge 12E according to the movement of the vortex Vr. Will stay.

このため、弁本体12が矢印R方向に回転する時に、弁本体12の外周面12Sとシール部材15の先端面15Cの隙間に浮遊物Dstが噛み込まれる現象が発生する。尚、この現象は冷却水ポンプの吐出側が弁収納室27に接続されて、冷却水が弁収納部27からハウジング本体11の連通路13に流出する場合を説明している。   For this reason, when the valve body 12 rotates in the arrow R direction, a phenomenon occurs in which the floating substance Dst is caught in the gap between the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15. This phenomenon is explained when the discharge side of the cooling water pump is connected to the valve storage chamber 27 and the cooling water flows out from the valve storage portion 27 to the communication passage 13 of the housing body 11.

一方、これとは逆に、冷却水ポンプの吸入側が弁収納室27に接続されて、冷却水がハウジング本体11の連通路13から弁収納部27に流入する形態もある。この場合、図11に示す流線Sが逆方向になり、冷却水に混在している浮遊物が、流体の流線Sに沿って流れて、シール部材15と弁本体12の外周面12Sの接触面付近に直接的に衝突して留まることになる。そして、弁本体12が矢印R方向に回転する時に、弁本体12の外周面12Sとシール部材15の先端面15Cの隙間に、浮遊物Dstが噛み込まれる現象が発生する。   On the other hand, there is a mode in which the suction side of the cooling water pump is connected to the valve storage chamber 27 and the cooling water flows into the valve storage portion 27 from the communication passage 13 of the housing body 11. In this case, the streamline S shown in FIG. 11 is in the reverse direction, and the floating substance mixed in the cooling water flows along the fluid streamline S, and the seal member 15 and the outer peripheral surface 12S of the valve body 12 It will collide directly near the contact surface and stay. Then, when the valve body 12 rotates in the direction of arrow R, a phenomenon occurs in which the suspended matter Dst is caught in the gap between the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15.

このように、いずれにしても冷却水に混在する浮遊物Dstが、弁本体12とシール部材15の間に挟まり、その浮遊物Dstによって弁本体12の外周面12Sやシール部材15の先端面15Cが損傷され、結果的にシール性能を劣化させるという課題を生じることになる。   Thus, in any case, the floating substance Dst mixed in the cooling water is sandwiched between the valve body 12 and the seal member 15, and the floating substance Dst causes the outer peripheral surface 12S of the valve body 12 and the distal end face 15C of the seal member 15 to be present. Will be damaged, resulting in a problem that the sealing performance is deteriorated.

本発明の目的は、浮遊物が弁本体の外周面とシール部材の先端面との間に噛み込まれて挟まることを抑制することができる新規な流路切換弁、及びこの流路切換弁を使用した自動車用熱媒体システムを提供することにある。   An object of the present invention is to provide a novel flow path switching valve capable of suppressing the floating material from being caught between the outer peripheral surface of the valve body and the front end surface of the seal member, and the flow path switching valve. The object is to provide a used automobile heat medium system.

ここで、本発明は内燃機関の冷却水に限定されず、例えばリチウム電池のような熱源を冷却する冷却水にも適用可能なものである。よって、冷却水は熱媒体であり、内燃機関やリチウム電池は熱源と言い換えることができる。   Here, the present invention is not limited to cooling water for an internal combustion engine, but can be applied to cooling water for cooling a heat source such as a lithium battery. Therefore, the cooling water is a heat medium, and the internal combustion engine and the lithium battery can be rephrased as a heat source.

本発明の第1の特徴は、弁本体の外周面と接触するシール部材の内周面側の先端部分に、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れ出る流体に向けて流れるように方向転換させる方向転換部が形成されている、ところにある。   The first feature of the present invention is that the vortex generated downstream of the opening edge of the opening formed in the valve body is formed at the tip of the inner peripheral surface side of the seal member that contacts the outer peripheral surface of the valve body. A direction changing portion is formed in which the direction changing portion is formed so as to flow toward the flowing fluid.

本発明の第2の特徴は、弁本体の外周面と接触するシール部材の内周面側の先端部分に、弁本体に形成した開口の開口縁付近に衝突する流体の流れを弁本体の開口に向けて流れるように方向転換させる方向転換部が形成されている、ところにある。   The second feature of the present invention is that the flow of the fluid that collides with the vicinity of the opening edge of the opening formed in the valve body at the distal end portion on the inner circumferential surface side of the seal member that contacts the outer circumferential surface of the valve body is opened. The direction change part which changes direction so that it may flow toward is formed.

本発明の第1の特徴によれば、方向転換部によって弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れる流体に向けて流れるように方向転換させるので、浮遊物が開口から流れ出る流体に積極的に搬送、排出されるようになる。このため、浮遊物が弁本体の外周面とシール部材の先端面の間に挟まることを抑制でき、良好なシール性能を維持することができるようになる。   According to the first aspect of the present invention, the vortex generated downstream of the opening edge of the opening formed in the valve body by the direction changing portion is changed in direction so as to flow toward the fluid flowing through the opening of the valve body. Objects are positively conveyed and discharged by the fluid flowing out of the opening. For this reason, it can suppress that a suspended | floating matter is pinched | interposed between the outer peripheral surface of a valve main body, and the front end surface of a sealing member, and can come to maintain favorable sealing performance.

また、本発明の第2の特徴によれば、方向転換部によって流体の流線の方向が弁本体に形成した開口側に曲げられ、これによって、浮遊物も開口側に流れるようになる。このため、浮遊物が弁本体の外周面とシール部材の先端面の間に噛み込む恐れが少なくなり、良好なシール性能を維持することができるようになる。   Further, according to the second feature of the present invention, the direction of the fluid stream line is bent to the opening side formed in the valve main body by the direction changing portion, whereby the suspended matter also flows to the opening side. For this reason, there is less possibility that the suspended matter bites between the outer peripheral surface of the valve body and the front end surface of the seal member, and good sealing performance can be maintained.

本発明の流路切換弁が適用される一例としての内燃燃関の冷却システムの構成図である。It is a block diagram of the cooling system of the internal combustion combustion as an example to which the flow path switching valve of the present invention is applied. 本発明が適用される流路切換弁の全体斜視図である。1 is an overall perspective view of a flow path switching valve to which the present invention is applied. 図2に示す流路切換弁の分解斜視図である。It is a disassembled perspective view of the flow-path switching valve shown in FIG. 本発明の第1の実施形態になる弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area of the valve main body and seal member which become the 1st Embodiment of this invention. 第1の実施形態の変形例になる弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area | region of the valve main body and seal member which become a modification of 1st Embodiment. 本発明の第2の実施形態になる弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area of the valve main body and seal member which become the 2nd Embodiment of this invention. 第2の実施形態の第1の変形例になる弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area of the valve main body and seal member which become the 1st modification of 2nd Embodiment. 第2の実施形態の第2の変形例になる弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area of the valve main body and seal member which become the 2nd modification of 2nd Embodiment. 本発明の第3の実施形態になる弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area of the valve main body and seal member which become the 3rd Embodiment of this invention. 図2に示す流路切換弁の連通路付近を横方向に断面した断面図である。FIG. 3 is a cross-sectional view in which the vicinity of a communication path of the flow path switching valve shown in FIG. 従来の流路切換弁の弁本体とシール部材の接触領域の部分拡大図である。It is the elements on larger scale of the contact area of the valve main body of the conventional flow-path switching valve, and a sealing member.

以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is also included in the range.

本発明の実施形態を説明する前に、本発明が適用される流路切換弁の構成について簡単に説明するが、上述した様に以下の説明では熱媒体として内燃機関の冷却水を使用する場合を例示的に示している。しかしながら、本発明は内燃機関の冷却水に限定されず、リチウム電池のような熱源を冷却する熱媒体にも適用可能なものである。   Before describing the embodiment of the present invention, the configuration of the flow path switching valve to which the present invention is applied will be briefly described. As described above, in the following description, the cooling water of the internal combustion engine is used as the heat medium. Is shown as an example. However, the present invention is not limited to cooling water for an internal combustion engine, and can be applied to a heat medium that cools a heat source such as a lithium battery.

図1において、内燃機関01のシリンダジャケットには冷却水ポンプ02から冷却水が供給されており、シリンダジャケットを冷却した冷却水は流路切換弁10に送られ、一部はサーモスタットを介して常時循環用として再び冷却水ポンプ02の吸入側に戻されている。また、残りの冷却水は暖房装置03やラジエータ04、及びオイルクーラ05等の熱補機類に送られている。尚、これらの熱補機類は例示的に示しているものであり、これ以外の熱補機類を使用しても差し支えないものである。   In FIG. 1, cooling water is supplied from a cooling water pump 02 to a cylinder jacket of the internal combustion engine 01, and the cooling water that has cooled the cylinder jacket is sent to a flow path switching valve 10, and a part of the cooling water is always supplied via a thermostat. It is returned again to the suction side of the cooling water pump 02 for circulation. Further, the remaining cooling water is sent to the heating auxiliary equipment such as the heating device 03, the radiator 04, and the oil cooler 05. These heat auxiliaries are shown as examples, and other heat auxiliaries may be used.

そして、これらの熱補機類への冷却水の分配は、電子流路切換手段06によって制御されている。例えば、この電子流路切換手段06には、流路切換弁10に設けた水温センサ07からの水温情報、内燃機関01の運転状態情報、車室内の各種操作機器の操作状態情報が入力されており、電子流路切換手段06によって演算された制御信号に応じて各熱補機類への流路を切り換えるものである。   The distribution of the cooling water to these heat auxiliaries is controlled by the electronic channel switching means 06. For example, water temperature information from a water temperature sensor 07 provided on the flow path switching valve 10, operation state information of the internal combustion engine 01, and operation state information of various operating devices in the passenger compartment are input to the electronic flow path switching unit 06. Thus, the flow path to each heat auxiliary machine is switched in accordance with the control signal calculated by the electronic flow path switching means 06.

流路切換弁10には後述するように電動モータが内蔵されており、この電動モータは電子流路切換手段06からの制御信号によって、その回転が制御されるものである。電動モータには弁本体が固定されており、弁本体を回転させることで流路切換弁10に形成した各熱補機類に接続される連通路に冷却水を流し、内燃機関からの冷却水を各熱補機類に分配するものである。   As will be described later, an electric motor is built in the flow path switching valve 10, and the rotation of the electric motor is controlled by a control signal from the electronic flow path switching means 06. A valve body is fixed to the electric motor, and by rotating the valve body, cooling water is caused to flow through the communication passages connected to the respective heat auxiliary machines formed in the flow path switching valve 10, thereby cooling water from the internal combustion engine. Is distributed to each heat auxiliary machine.

図2は流路切換弁10の外観を示しており、ハウジング本体11には、シリンダジャケットに繋がる接続パイプ16A、暖房装置03に繋がる接続パイプ16B、ラジエータ04に繋がる接続パイプ16C、オイルクーラ05に繋がる接続パイプ16Dが設けられている。また、流路切換弁10には内燃機関01から矢印CAで示す冷却水が流入しており、ハウジング本体11の内部に設けられた弁本体によって、接続パイプ16A〜16Dに冷却水が分配されている。   FIG. 2 shows the appearance of the flow path switching valve 10. The housing main body 11 includes a connection pipe 16 </ b> A connected to the cylinder jacket, a connection pipe 16 </ b> B connected to the heating device 03, a connection pipe 16 </ b> C connected to the radiator 04, and an oil cooler 05. A connecting pipe 16D to be connected is provided. In addition, cooling water indicated by an arrow CA flows from the internal combustion engine 01 into the flow path switching valve 10, and the cooling water is distributed to the connection pipes 16 </ b> A to 16 </ b> D by the valve body provided inside the housing body 11. Yes.

流路切換弁10にはワックスが封入されたサーモスタット18が設けられており、接続パイプ16Aに流れる冷却水を温度によって制御している。また、流路切換弁10のハウジング本体11の頂部には電子流路切換手段06が固定されており、ハウジング本体11の内部に収納された電動モータを制御している。   The flow path switching valve 10 is provided with a thermostat 18 filled with wax, and the cooling water flowing through the connection pipe 16A is controlled by temperature. An electronic channel switching means 06 is fixed to the top of the housing body 11 of the channel switching valve 10 to control the electric motor housed inside the housing body 11.

図3は、図2に示す流路切換弁10を分解して斜め方向から眺めた構成を示している。ハウジング本体11には中空円筒状の弁本体12を収納する弁収納部(図10参照)と、電動モータ19が収納されるモータ収納部20が形成されている。また、ハウジング本体11には、外側から電子流路切換手段06が固定ボルトによって固定され、いわゆる機電一体型に構成されている。   FIG. 3 shows a configuration in which the flow path switching valve 10 shown in FIG. 2 is disassembled and viewed from an oblique direction. The housing body 11 is formed with a valve housing part (see FIG. 10) for housing the hollow cylindrical valve body 12 and a motor housing part 20 for housing the electric motor 19. In addition, an electronic flow path switching unit 06 is fixed to the housing body 11 from the outside by a fixing bolt, and is configured as a so-called electromechanical integrated type.

更に、ハウジング本体11の周囲には、シリンダジャケットに繋がる接続パイプ16A、暖房装置03に繋がる接続パイプ16B、ラジエータ04に繋がる接続パイプ16C、オイルクーラ05に繋がる接続パイプ16Dが取り付けられている。尚、接続パイプ16Cにはサーモスタット18を覆うカバー部21が一体的に形成されている。ここで、ハウジング本体11と各接続パイプ16B〜16Dの間には、シール部材15と圧縮ばね17が配置されている。シール部材15は、両端が開口した円形筒状に形成されており、圧縮ばね17によって、その先端面15C(図4参照)は弁本体12の外周面12ASに押圧、接触されている。   Further, around the housing body 11, a connection pipe 16A connected to the cylinder jacket, a connection pipe 16B connected to the heating device 03, a connection pipe 16C connected to the radiator 04, and a connection pipe 16D connected to the oil cooler 05 are attached. A cover portion 21 that covers the thermostat 18 is integrally formed with the connection pipe 16C. Here, a seal member 15 and a compression spring 17 are disposed between the housing body 11 and the connection pipes 16B to 16D. The seal member 15 is formed in a circular cylindrical shape having both ends opened, and the distal end surface 15C (see FIG. 4) is pressed and brought into contact with the outer peripheral surface 12AS of the valve body 12 by the compression spring 17.

弁本体12は有底円筒状に形成されており、その外周面12Sに上述した各接続パイプ16A〜16Dに接続される開口14が形成されている。したがって、冷却水ポンプ02から圧送されて内燃機関から流れてきた冷却水CAは、開口14を介して各接続パイプ16A〜16Bに流れ出るものである。   The valve body 12 is formed in a bottomed cylindrical shape, and an opening 14 connected to each of the connection pipes 16A to 16D described above is formed on the outer peripheral surface 12S. Accordingly, the cooling water CA fed from the cooling water pump 02 and flowing from the internal combustion engine flows out to the connection pipes 16A to 16B through the opening 14.

弁本体12は回転軸22に固定されており、回転軸22の回転に同期してハウジング本体11の弁収納部内で回転されるものであり、この回転に同期して弁本体12は、各接続パイプ16A〜16Dとの接続関係を選択(流路の切り換え)するものである。尚、弁本体12の回転状態によって開口14はシール部材15との重なり度合いを制御できるので、流量を制御するように動作される場合もある。   The valve main body 12 is fixed to the rotary shaft 22 and is rotated in the valve housing portion of the housing main body 11 in synchronization with the rotation of the rotary shaft 22. The valve main body 12 is connected to each connection in synchronization with the rotation. The connection relationship with the pipes 16A to 16D is selected (flow path switching). In addition, since the opening 14 can control the degree of overlap with the seal member 15 depending on the rotation state of the valve body 12, it may be operated to control the flow rate.

電動モータ19と弁本体12とはウォームギア機構で連結されている。すなわち、弁本体12が固定された回転軸22の反対側の端部には、ウォームホイール23が固定されており、このウォームホイール23はウォーム軸の一方に形成されたウォームホイール24と噛み合わされている。また、ウォーム軸の他方に形成されたウォーム25は電動モータ19に固定されたウォーム26と噛み合わされている。したがって、電動モータ19が回転すると、この回転はウォーム26⇒ウォームホイール25⇒ウォーム24⇒ウォームホイール23を経て回転軸23に伝えられ、最終的に弁本体12を回転させるものである。   The electric motor 19 and the valve body 12 are connected by a worm gear mechanism. That is, a worm wheel 23 is fixed to the opposite end of the rotary shaft 22 to which the valve body 12 is fixed, and this worm wheel 23 is meshed with a worm wheel 24 formed on one side of the worm shaft. Yes. A worm 25 formed on the other side of the worm shaft is engaged with a worm 26 fixed to the electric motor 19. Therefore, when the electric motor 19 rotates, this rotation is transmitted to the rotary shaft 23 via the worm 26 ⇒ worm wheel 25 ⇒ worm 24 ⇒ worm wheel 23, and finally rotates the valve body 12.

また、電動モータ19やウォームギア機構を覆うようにして、電子流路切換手段06がハウジング本体11に固定されている。電子流路切換手段06からの制御信号は、電動モータ19に与えられて所定の回転動作を行うように動作される。   Further, the electronic flow path switching means 06 is fixed to the housing body 11 so as to cover the electric motor 19 and the worm gear mechanism. A control signal from the electronic flow path switching unit 06 is supplied to the electric motor 19 and operated so as to perform a predetermined rotation operation.

このような構成の流路切換弁10の構成、及び動作は基本的に良く知られているので、これ以上の説明は省略する。そして、このような構成の流路切換弁10においては、上述したように、弁本体12が回転した際に、冷却水に混在する浮遊物が弁本体12の外周面12Sとシール部材15の先端面の間に挟まり、その浮遊物によって弁本体やシール部材の接触面を損傷させる恐れがある。   Since the configuration and operation of the flow path switching valve 10 having such a configuration are basically well known, further description will be omitted. In the flow path switching valve 10 having such a configuration, as described above, when the valve body 12 rotates, floating substances mixed in the cooling water are mixed with the outer peripheral surface 12S of the valve body 12 and the tip of the seal member 15. There is a risk that the contact surface of the valve main body or the seal member may be damaged by the suspended matter between the surfaces.

この理由は図11に示している通りである。すなわち、開口14と連通路13が連通し、且つ弁本体12の外周面12Sの開口14の開口縁12Eが、シール部材15の内部に形成した内部通路15Pに位置している状態で、冷却水が開口14から連通路13に流れ出ると、弁本体12に形成した開口14の開口縁12Eの下流で、シール部材15の内周面15Sの先端付近に形成される空間領域に渦Vrが発生する。しかも、この渦Vrは開口縁12Eの下流の空間領域に留まる傾向が強く、冷却水に混入している浮遊物Dstも、この渦Vrの動きにしたがって開口縁12Eの下流の空間領域に留まり、弁本体12が回転する時に、弁本体12の外周面12Sとシール部材15の先端面15Cの隙間に浮遊物Dstが噛み込まれるからである。   The reason for this is as shown in FIG. That is, in a state where the opening 14 communicates with the communication passage 13 and the opening edge 12E of the opening 14 of the outer peripheral surface 12S of the valve body 12 is positioned in the internal passage 15P formed inside the seal member 15, the cooling water Flows out from the opening 14 to the communication passage 13, and a vortex Vr is generated in a space region formed near the tip of the inner peripheral surface 15 </ b> S of the seal member 15 downstream of the opening edge 12 </ b> E of the opening 14 formed in the valve body 12. . Moreover, the vortex Vr tends to stay in the space region downstream of the opening edge 12E, and the suspended matter Dst mixed in the cooling water also remains in the space region downstream of the opening edge 12E according to the movement of the vortex Vr. This is because when the valve body 12 rotates, the suspended matter Dst is caught in the gap between the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15.

このような課題を解決するため、本発明の第1の実施形態では、弁本体の外周面と接触するシール部材の内周面側の先端部分に、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れ出る冷却水に向けて流れるように方向転換させる方向転換部を形成する、構成としたものである。   In order to solve such a problem, in the first embodiment of the present invention, the downstream end of the opening edge of the opening formed in the valve body at the distal end portion on the inner circumferential surface side of the seal member that contacts the outer circumferential surface of the valve body. The direction change part which changes the direction so that the vortex generated in the flow direction toward the cooling water flowing out from the opening of the valve body is formed.

これによれば、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れる冷却水に向けて流れるように方向転換させるので、浮遊物が開口から流れ出る冷却水に積極的に搬送、排出されるようになる。このため、浮遊物が弁本体の外周面とシール部材の先端面の間に挟まることを抑制でき、良好なシール性能を維持することができるようになる。   According to this, since the vortex generated downstream of the opening edge of the opening formed in the valve body is diverted so as to flow toward the cooling water flowing through the opening of the valve body, the floating substance positively affects the cooling water flowing out from the opening. Are transported and discharged. For this reason, it can suppress that a suspended | floating matter is pinched | interposed between the outer peripheral surface of a valve main body, and the front end surface of a sealing member, and can come to maintain favorable sealing performance.

ここで、本発明の第1の実施形態の具体的な構成についての説明を行う前に、流路切換弁10の連通路付近を横方向に断面した図10を補足説明する。   Here, before explaining the specific configuration of the first embodiment of the present invention, a supplementary explanation will be given for FIG.

図10において、ハウジング本体11には、弁本体12を収納する弁収納部27と、電動モータ19が収納されるモータ収納部20が一体的に形成されている。弁本体12は弁収納部27の内部で回転可能に収納されており、上述した回転軸22によって回転されるものである。弁本体12の外周面12Sの接線に直交する方向に、ハウジング本体11に連通路13が形成されており、この連通路13に嵌入されるようにしてオイルクーラ05に接続される接続パイプ16Dが取り付けられている。また、これのほぼ反対側には、サーモスタット18が取り付けられ、続いて接続パイプ16Aに接続されている。   In FIG. 10, the housing main body 11 is integrally formed with a valve storage portion 27 for storing the valve main body 12 and a motor storage portion 20 for storing the electric motor 19. The valve main body 12 is accommodated in the valve accommodating portion 27 so as to be rotatable, and is rotated by the rotary shaft 22 described above. A communication path 13 is formed in the housing body 11 in a direction perpendicular to the tangent to the outer peripheral surface 12S of the valve body 12, and a connection pipe 16D connected to the oil cooler 05 so as to be fitted into the communication path 13 is provided. It is attached. Further, a thermostat 18 is attached to substantially the opposite side, and subsequently connected to the connection pipe 16A.

連通路13と弁本体12の外周面12Sの間には、両端が開口した筒状のシール部材15が配置されており、シール部材15は、ハウジング本体11に嵌入される接続パイプ16Dの端面に配置された圧縮ばね17によって、弁本体12の外周面12Sに押圧、接触されている。シール部材15は滑りが円滑で形状安定性に優れた合成樹脂で作られ、本実施形態では、フッ素系樹脂(ポリテトラフルオロエチレン:PTFE)が用いられている。   Between the communication path 13 and the outer peripheral surface 12S of the valve body 12, a cylindrical seal member 15 having both ends opened is disposed. The seal member 15 is provided on the end surface of the connection pipe 16D fitted into the housing body 11. The compression spring 17 arranged is pressed and brought into contact with the outer peripheral surface 12S of the valve body 12. The seal member 15 is made of a synthetic resin that is smoothly slid and has excellent shape stability. In the present embodiment, a fluororesin (polytetrafluoroethylene: PTFE) is used.

弁本体12に形成された開口14は、弁本体12が回転することによってシール部材15と摺動しながら、シール部材15に形成した内部通路15Pと重なり合い、弁本体12の内部と連通路13とを接続するものである。そして、内燃機関からの冷却水は、紙面に垂直な方向から弁本体12の内部に流入し、弁本体12に形成した開口14を介してシール部材15の内部通路15P、連通路13、及び接続パイプ16Dに流出するものである。   The opening 14 formed in the valve body 12 overlaps with the internal passage 15P formed in the seal member 15 while sliding with the seal member 15 as the valve body 12 rotates, Are connected. Then, the cooling water from the internal combustion engine flows into the valve body 12 from a direction perpendicular to the paper surface, and through the opening 14 formed in the valve body 12, the internal passage 15P of the seal member 15, the communication passage 13, and the connection. It flows out into the pipe 16D.

次に本発明の第1の実施形態の具体的な構成について、図4を用いて詳細に説明する。尚、図4は弁本体とシール部材の接触領域を拡大したものである。   Next, a specific configuration of the first exemplary embodiment of the present invention will be described in detail with reference to FIG. FIG. 4 is an enlarged view of the contact area between the valve body and the seal member.

本実施形態の特徴は、弁本体12の外周面12Sと接触するシール部材15の内周面15S側の先端部分に、弁本体12に形成した開口14の開口縁12Eの下流に発生する渦の流れを、弁本体12の開口14を流れ出る冷却水に向けて流れるように方向転換させる方向転換部15Gを形成したものである。   A feature of the present embodiment is that a vortex generated downstream of the opening edge 12E of the opening 14 formed in the valve body 12 at the distal end portion on the inner circumferential surface 15S side of the seal member 15 that contacts the outer circumferential surface 12S of the valve body 12. The direction change part 15G which changes a direction so that a flow may flow toward the cooling water which flows out the opening 14 of the valve main body 12 is formed.

図4に示す通り、シール部材15の先端面15Cの内周面15S側には、内周面15Sの周方向形状に沿って、内側に向けて傾斜する環状の方向転換部15Gが形成されている。この方向転換部15Gは、シール部材15の軸方向に直線状に延びる内周面15Sから内側に、しかも弁本体12の外周面12Sに向かって連続的に内径が縮小するように傾斜されており、更にこの方向転換部15Gの傾斜面は、軸方向の断面が直線状に形成されている。尚、この方向転換部15Gの傾斜面の反対側は、シール部材15の先端面15Cと同平面(いわゆる面一となっている)に形成されている。   As shown in FIG. 4, an annular direction changing portion 15 </ b> G that is inclined inward along the circumferential shape of the inner peripheral surface 15 </ b> S is formed on the inner peripheral surface 15 </ b> S side of the distal end surface 15 </ b> C of the seal member 15. Yes. The direction changing portion 15G is inclined so that the inner diameter continuously decreases from the inner peripheral surface 15S linearly extending in the axial direction of the seal member 15 toward the outer peripheral surface 12S of the valve body 12. Further, the inclined surface of the direction changing portion 15G is formed such that the axial cross section is linear. Note that the opposite side of the inclined surface of the direction changing portion 15G is formed in the same plane as the tip surface 15C of the seal member 15 (so-called flush).

そして、開口14と連通路13が連通し、且つ弁本体12の外周面12Sに形成した開口14の開口縁12Eが、シール部材15の内部に形成した内部通路15Pの領域に位置している状態で、冷却水が開口14から連通路13に流れ出る場合において、冷却水は流線Sで示すように流れ出る。   The opening 14 and the communication passage 13 communicate with each other, and the opening edge 12E of the opening 14 formed on the outer peripheral surface 12S of the valve body 12 is located in the region of the internal passage 15P formed inside the seal member 15. Thus, when the cooling water flows out from the opening 14 to the communication path 13, the cooling water flows out as indicated by the streamline S.

この時、弁本体12の開口縁12Eの下流で、シール部材15の内周面15Sの先端付近に形成される空間領域に渦Vrが発生する。この渦Vrは、弁本体12の開口14を形成する外周面12S側に移動してくるが、図11に示す従来のシール部材15の場合は、外周面12S側で渦Vrが留まる挙動を行うようになる。   At this time, a vortex Vr is generated in a space region formed near the tip of the inner peripheral surface 15S of the seal member 15 downstream of the opening edge 12E of the valve body 12. This vortex Vr moves toward the outer peripheral surface 12S forming the opening 14 of the valve body 12, but in the case of the conventional seal member 15 shown in FIG. 11, the vortex Vr stays on the outer peripheral surface 12S side. It becomes like this.

これに対して、本実施形態では方向転換部15Gが形成されているので、外周面12S側に移動してきた渦Vrは、方向転換部15Gによってシール部材15の内部通路15Pの内側方向に向かって流れるように方向転換され、開口14を流れ出る冷却水に合流するように案内される。したがって、渦Vrに含まれている金属粉のような浮遊物Dstも、渦Vrの動きにしたがって開口14を流れる冷却水に合流するように案内される。   On the other hand, since the direction change part 15G is formed in this embodiment, the vortex Vr which has moved to the outer peripheral surface 12S side is directed toward the inner side of the internal passage 15P of the seal member 15 by the direction change part 15G. It is redirected to flow and guided to join the cooling water flowing out of the opening 14. Accordingly, the suspended matter Dst such as metal powder contained in the vortex Vr is also guided to join the cooling water flowing through the opening 14 according to the movement of the vortex Vr.

これによって、冷却水に混在している浮遊物Dstは、開口縁12Eの下流の空間領域に留まることが抑制される。したがって、開口縁12Eの下流の空間領域に浮遊物が存在する割合が少なくなるので、弁本体12が矢印R方向に回転しても、弁本体12の外周面12Sとシール部材15の先端面15Cの間に浮遊物Dstが挟まる現象が低減される。このため、弁本体12の外周面12Sやシール部材15の先端面15Cが損傷されることが抑制されるので、シール性能を長期に亘って維持することができるようになる。   As a result, the suspended matter Dst mixed in the cooling water is suppressed from remaining in the space region downstream of the opening edge 12E. Accordingly, since the ratio of floating substances existing in the space region downstream of the opening edge 12E decreases, even if the valve body 12 rotates in the direction of arrow R, the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15 The phenomenon that the suspended matter Dst is caught between the two is reduced. For this reason, damage to the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15 is suppressed, so that the sealing performance can be maintained over a long period of time.

ここで、方向転換部15Gの軸方向の長さLsや径方向の長さDsは適切な値に決められていれば良く、要は開口縁12Eの下流に発生する渦Vrを、開口14から流れ出る冷却水の流れに向けて搬送、排出させる機能を有すれば良いものである。また、シール部材15に形成した方向転換部15Gは、シール部材15と一体的に形成されているので、製造が容易となると共に、製造コストの上昇も低く抑えることができるものである。   Here, the length Ls in the axial direction and the length Ds in the radial direction of the direction changing portion 15G are only required to be set to appropriate values. In short, the vortex Vr generated downstream of the opening edge 12E is generated from the opening 14. What is necessary is just to have the function to convey and discharge | emit toward the flow of the cooling water which flows out. Moreover, since the direction change part 15G formed in the seal member 15 is formed integrally with the seal member 15, the manufacture becomes easy and the increase in the manufacturing cost can be suppressed to a low level.

以上述べた通り、本実施形態によれば、弁本体の外周面と接触するシール部材の内周面側の先端部分に、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れ出る冷却水に向けて流れるように方向転換させる方向転換部を形成する、構成とした。これによれば、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れる冷却水に向けて流れるように方向転換させるので、浮遊物が開口から流れ出る冷却水に積極的に搬送、排出されるので、浮遊物が弁本体の外周面とシール部材の先端面の間に挟まることを抑制でき、良好なシール性能を維持することができるようになる。   As described above, according to the present embodiment, a vortex generated downstream of the opening edge of the opening formed in the valve body is formed at the distal end portion on the inner circumferential surface side of the seal member that contacts the outer circumferential surface of the valve body. The direction change part which changes direction so that it may flow toward the cooling water which flows out from the opening of was formed. According to this, since the vortex generated downstream of the opening edge of the opening formed in the valve body is diverted so as to flow toward the cooling water flowing through the opening of the valve body, the floating substance positively affects the cooling water flowing out from the opening. Therefore, the suspended matter can be prevented from being caught between the outer peripheral surface of the valve main body and the front end surface of the seal member, and good sealing performance can be maintained.

次に、第1の実施形態の変形例について図5を用いて説明する。第1の実施形態では、方向転換部15Gの断面が、シール部材15の内周面15Sから外周面12Sに向けて内側斜め方向に直線状に延びる傾斜面とされているが、本変形例では、外周面12Sに向けて内側斜め方向に弧状に延びる傾斜面とされている点で異なっている。これ以外の構成は同じ構成なので、その説明は省略する。   Next, a modification of the first embodiment will be described with reference to FIG. In the first embodiment, the cross section of the direction changing portion 15G is an inclined surface extending linearly inwardly from the inner peripheral surface 15S to the outer peripheral surface 12S of the seal member 15, but in this modification example, This is different in that it is an inclined surface extending in an arc in the inner oblique direction toward the outer peripheral surface 12S. Since other configurations are the same, description thereof is omitted.

図5において、シール部材15の先端面15Cの内周面15S側には、内周面15Sの周方向形状に沿って、内側に傾斜する環状の方向転換部15Hが形成されている。この方向転換部15Hは、シール部材15の軸方向に直線状に延びる内周面15Sから内側に、しかも弁本体12の外周面12Sに向かって連続的に内径が縮小するように傾斜されており、更にこの方向転換部15Hの傾斜面は、軸方向の断面が弧状に形成されている。尚、この方向転換部15Hの傾斜面の反対側は、第1の実施形態と同様にシール部材15の先端面15Cと同平面(いわゆる面一となっている)に形成されている。   In FIG. 5, an annular direction changing portion 15 </ b> H that is inclined inward along the circumferential shape of the inner peripheral surface 15 </ b> S is formed on the inner peripheral surface 15 </ b> S side of the distal end surface 15 </ b> C of the seal member 15. The direction changing portion 15H is inclined so that the inner diameter continuously decreases from the inner peripheral surface 15S linearly extending in the axial direction of the seal member 15 toward the outer peripheral surface 12S of the valve body 12. Further, the inclined surface of the direction changing portion 15H has an axial cross section formed in an arc shape. Note that the opposite side of the inclined surface of the direction changing portion 15H is formed in the same plane (so-called flush) as the distal end surface 15C of the seal member 15 as in the first embodiment.

本変形例でも方向転換部15Hが形成されているので、外周面12S側に移動してきた渦Vrは、方向転換部15Hによってシール部材15の内部通路15Pの内側方向に向かって流れるように方向転換され、開口14を流れる冷却水に合流するように案内される。したがって、渦Vrに含まれている金属粉のような浮遊物Dstも渦Vrの動きにしたがって開口14を流れる冷却水に合流するように案内される。   Since the direction change part 15H is formed also in this modification, the direction change is such that the vortex Vr that has moved to the outer peripheral surface 12S flows toward the inner side of the internal passage 15P of the seal member 15 by the direction change part 15H. And is guided so as to join the cooling water flowing through the opening 14. Accordingly, the floating substance Dst such as metal powder contained in the vortex Vr is also guided so as to join the cooling water flowing through the opening 14 according to the movement of the vortex Vr.

これによって、冷却水に混入している浮遊物Dstは開口縁12Eの下流の空間領域に留まることが抑制される。したがって、開口縁12Eの下流の空間領域に浮遊物が存在する割合が少なくなるので、弁本体12が矢印R方向に回転しても、弁本体12の外周面12Sとシール部材15の先端面15Cの間に浮遊物Dstが挟まる現象が低減される。このため、弁本体12の外周面12Sやシール部材15の先端面15Cが損傷されることが抑制されるので、シール性能を長期に亘って維持することができるようになる。   As a result, the suspended matter Dst mixed in the cooling water is prevented from remaining in the space region downstream of the opening edge 12E. Accordingly, since the ratio of floating substances existing in the space region downstream of the opening edge 12E decreases, even if the valve body 12 rotates in the direction of arrow R, the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15 The phenomenon that the suspended matter Dst is caught between the two is reduced. For this reason, damage to the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15 is suppressed, so that the sealing performance can be maintained over a long period of time.

更に、本変形例では方向転換部5Hの形状が弧状に形成されているので、第1の実施形態に比べて、渦Vrをシール部材15の内部通路15Pの内側に円滑に誘導、案内することが可能となる。また、第1の実施形態と同様に、方向転換部15Hがシール部材15と一体的に形成されているので、製造が容易となると共に、製造コストの上昇も低く抑えることができるものである。   Furthermore, since the shape of the direction changing portion 5H is formed in an arc shape in this modification, the vortex Vr can be smoothly guided and guided to the inside of the internal passage 15P of the seal member 15 as compared with the first embodiment. Is possible. Moreover, since the direction change part 15H is integrally formed with the sealing member 15 similarly to 1st Embodiment, while being easy to manufacture, the raise of manufacturing cost can also be suppressed low.

次に、本発明の第2の実施形態について図6を用いて説明する。第1の実施形態では、シール部材と一体的に方向転換部を形成しているが、本実施形態では方向転換部を別体に形成してシール部材に一体化している点で異なっている。これ以外の構成は同じ構成なので、その説明は省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, the direction changing portion is formed integrally with the seal member. However, the present embodiment is different in that the direction changing portion is formed separately and integrated with the seal member. Since other configurations are the same, description thereof is omitted.

図6において、シール部材15の内周面15S側には、シール部材15とは別に作られた方向転換部材28が一体的に固定されている。ここで、シール部材15は形状安定性の良いポリテトラフルオロエチレン(PTFE)で作られており、方向転換部材28は、耐熱性に優れ、しかも柔らかく変形可能な軟質性の合成樹脂、例えば軟質シリコン樹脂で作られている。そして、方向転換部材28は自身の弾性、或いは接着剤によってシール部材15と一体化されている。   In FIG. 6, a direction changing member 28 made separately from the seal member 15 is integrally fixed to the inner peripheral surface 15 </ b> S side of the seal member 15. Here, the seal member 15 is made of polytetrafluoroethylene (PTFE) having good shape stability, and the direction changing member 28 is a soft synthetic resin, such as soft silicon, which has excellent heat resistance and is soft and deformable. Made of resin. The direction changing member 28 is integrated with the seal member 15 by its own elasticity or adhesive.

方向転換部材28は、圧縮ばね17と接触する平面部28F、シール部材15の内周面15Sと接触する内周面部28S、弁本体12の外周面12Sと接触し、開口縁12Eの下流に発生する渦をシール部材15の内部通路15Pの内側方向に向けて流れるように方向転換させる方向転換部28Gとから形成されている。尚、方向転換部28Gの先端は、シール部材15の先端面15Cを越えて延びる長さに決められており、この先端面15Cを越えた分が変形して外周面12Sと接触するようになっている。   The direction changing member 28 is in contact with the flat surface portion 28F that contacts the compression spring 17, the inner peripheral surface portion 28S that contacts the inner peripheral surface 15S of the seal member 15, and the outer peripheral surface 12S of the valve body 12, and is generated downstream of the opening edge 12E. The direction change part 28G which changes direction so that the vortex to flow may flow toward the inner side of the internal passage 15P of the seal member 15 is formed. The tip of the direction changing portion 28G is determined to have a length that extends beyond the tip surface 15C of the seal member 15, and the portion beyond the tip surface 15C is deformed to come into contact with the outer peripheral surface 12S. ing.

上述したように、軟質シリコン樹脂から作られた方向転換部材28は柔らかく変形し易いので、方向転換部28Gは、直線状の内周面部28Sから内側に、しかも弁本体12の外周面12Sに向かって連続的に内径が縮小する弧状の傾斜面が得られるようになる。この方向転換部28Gも、渦Vrの排出機能については第2の実施形態と同様の作用、効果を奏するものであるので、その説明は省略する。   As described above, since the direction changing member 28 made of soft silicone resin is soft and easily deformed, the direction changing portion 28G is directed inward from the linear inner peripheral surface portion 28S and further toward the outer peripheral surface 12S of the valve body 12. Thus, an arcuate inclined surface whose inner diameter is continuously reduced can be obtained. Since the direction changing portion 28G also has the same function and effect as the second embodiment with respect to the function of discharging the vortex Vr, the description thereof is omitted.

本実施形態では、既存のシール部材15に方向転換部材28を装着するだけなので、製造が容易となり、また、方向転換部28Gが柔らかいので弁本体12の外周面12Sと密着しやすくなり、シール性能を向上することが可能となるものである。   In the present embodiment, since the direction changing member 28 is simply attached to the existing seal member 15, the manufacturing becomes easy, and the direction changing portion 28G is soft, so that it is easy to be in close contact with the outer peripheral surface 12S of the valve body 12, and the sealing performance. It becomes possible to improve.

次に第3の実施形態の第1の変形例について図7を用いて説明する。図7において、方向転換部材28の平面部28Fを取り除いた方向転換部材28とした点が特徴である。図6に示す方向転換部材28は、柔らかい性質を持つ平面部28Fがあるため、圧縮ばね17の圧縮力を適正に管理するのが難しく、これによってシール部材15の接触圧を一定に管理することができないという課題がある。   Next, a first modification of the third embodiment will be described with reference to FIG. In FIG. 7, the feature is that the direction changing member 28 is obtained by removing the plane portion 28F of the direction changing member 28. Since the direction changing member 28 shown in FIG. 6 has a flat portion 28F having a soft property, it is difficult to appropriately manage the compression force of the compression spring 17, and thereby the contact pressure of the seal member 15 can be managed to be constant. There is a problem that cannot be done.

これに対して、図7に示す第1の変形例では平面部28Fを取り除いているため、圧縮ばね17は、形状安定性の良いポリテトラフルオロエチレンから作られたシール部材15の端面を押圧する。このため、圧縮ばね17の圧縮力をほぼ一定に管理することができ、結果的にシール部材15が弁本体12の外周面12Sに接触する接触圧をほぼ一定に管理することができるようになる。   On the other hand, in the first modification shown in FIG. 7, since the flat portion 28F is removed, the compression spring 17 presses the end face of the seal member 15 made of polytetrafluoroethylene having good shape stability. . For this reason, the compression force of the compression spring 17 can be managed to be substantially constant, and as a result, the contact pressure at which the seal member 15 contacts the outer peripheral surface 12S of the valve body 12 can be managed to be substantially constant. .

次に第3の実施形態の第2の変形例について図8を用いて説明する。図7に示す第1の変形例は、方向転換部材28が自身の弾性、或いは接着剤によってシール部材15と一体化されているが、図8に示す第2の変形例では、方向転換部材28はシール部材15に一体的にインサートモールドによって成形されており、シール部材15と方向転換部材28は強固に一体化されることになる。   Next, a second modification of the third embodiment will be described with reference to FIG. In the first modification shown in FIG. 7, the direction changing member 28 is integrated with the seal member 15 by its own elasticity or adhesive, but in the second modification shown in FIG. Is integrally formed with the seal member 15 by insert molding, and the seal member 15 and the direction changing member 28 are firmly integrated.

これによって、方向転換部材28がシール部材15から脱落する恐れが少なくなる。仮に、方向転換部材28が脱落して冷却水中を浮遊して流れると、冷却水ポンプの故障を引き起こすことがあるが、方向転換部材28をシール部材15に一体的にインサートモールド成形することによってこれを防ぐことが可能となるものである。   As a result, the risk of the direction changing member 28 falling off from the seal member 15 is reduced. If the direction changing member 28 drops off and floats and flows in the cooling water, it may cause a failure of the cooling water pump. However, the direction changing member 28 is integrally formed by insert molding with the seal member 15. Can be prevented.

尚、方向転換部28Gはシール部材15の先端面15Cを越えて延びているが、第1及び第2の実施形態のように先端面15Cと面一になる形状であっても良いものである。この場合においては、変形する方向転換部28Gが存在しないので、方向転換部材28には予め第1及び第2の実施形態にある方向転換部15G、15Hが形成されている。   The direction changing portion 28G extends beyond the distal end surface 15C of the seal member 15, but may have a shape that is flush with the distal end surface 15C as in the first and second embodiments. . In this case, since there is no direction changing portion 28G to be deformed, the direction changing portions 15G and 15H in the first and second embodiments are formed in the direction changing member 28 in advance.

上述した実施形態(変形例も含む)では、シール部材と、これとは別体に形成される方向転換部材を組み合わせるものであるが、方向転換部材を組み合わせたシール部材は、上述した第1及び第2の実施形態に示すシール部材と等価として見做すことができる。つまり、弁本体の外周面と接触するシール部材の内周面側の先端に方向転換部が形成され、弁本体に形成した開口の開口縁の下流に発生する渦を、方向転換部によって本体の開口を流れ出る流体に向けて流れるように方向転換することができるからである。   In the above-described embodiment (including the modified example), the seal member and the direction changing member formed separately from this are combined. However, the seal member combined with the direction changing member is the first and the above-described seal members. This can be regarded as equivalent to the seal member shown in the second embodiment. That is, the direction changing portion is formed at the tip on the inner peripheral surface side of the seal member that contacts the outer peripheral surface of the valve body, and the vortex generated downstream of the opening edge of the opening formed in the valve body is This is because the direction can be changed to flow toward the fluid flowing out of the opening.

次に、本発明の第3の実施形態について図9を用いて説明する。第1の実施形態では、シール部材15の軸方向に直線状に延びる内周面15Sの途中から方向転換部15Gを形成しているが、本実施形態ではシール部材29の軸方向の内周面29Sの全体をテーパ形状に傾斜させた点で異なっている。これ以外の構成は同じ構成なので、その説明は省略する。   Next, a third embodiment of the present invention will be described with reference to FIG. In the first embodiment, the direction changing portion 15G is formed from the middle of the inner circumferential surface 15S extending linearly in the axial direction of the seal member 15, but in this embodiment, the inner circumferential surface of the seal member 29 in the axial direction. The difference is that the entire 29S is inclined in a tapered shape. Since other configurations are the same, description thereof is omitted.

図9において、シール部材29の内部通路15Pを形成するテーパ状内周面29Sは、弁本体12の外周面12Sに近づくにつれて内径が小さくなるテーパ形状に形成されている。したがって、テーパ状内周面29Sが形成されているので、外周面12S側に移動してきた渦Vrは、テーパ状内周面29Sによってシール部材15の内部通路15Pの内側方向に向かって流れるように方向転換され、開口14を流れる冷却水に合流するように案内される。このため、渦Vrに含まれている金属粉のような浮遊物Dstも、渦Vrの動きにしたがって開口14を流れる冷却水に合流するように案内される。   In FIG. 9, the tapered inner peripheral surface 29 </ b> S that forms the internal passage 15 </ b> P of the seal member 29 is formed in a tapered shape whose inner diameter decreases as the outer peripheral surface 12 </ b> S of the valve body 12 is approached. Accordingly, since the tapered inner peripheral surface 29S is formed, the vortex Vr that has moved to the outer peripheral surface 12S side flows toward the inner side of the internal passage 15P of the seal member 15 by the tapered inner peripheral surface 29S. The direction is changed and guided to join the cooling water flowing through the opening 14. For this reason, the floating substance Dst such as metal powder contained in the vortex Vr is also guided so as to join the cooling water flowing through the opening 14 according to the movement of the vortex Vr.

これによって、冷却水に混入している浮遊物Dstは開口縁12Eの下流の空間領域に留まることが抑制される。したがって、開口縁12Eの下流の空間領域に浮遊物が存在する割合が少なくなるので、弁本体12が矢印R方向に回転しても、弁本体12の外周面12Sとシール部材15の先端面15Cの間に、浮遊物Dstが挟まる現象が低減される。このため、弁本体12の外周面12Sやシール部材15の先端面15Cが損傷されることが抑制されるので、シール性能を長期に亘って維持することができるようになる。   As a result, the suspended matter Dst mixed in the cooling water is prevented from remaining in the space region downstream of the opening edge 12E. Accordingly, since the ratio of floating substances existing in the space region downstream of the opening edge 12E decreases, even if the valve body 12 rotates in the direction of arrow R, the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15 The phenomenon that the suspended matter Dst is caught between the two is reduced. For this reason, damage to the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15 is suppressed, so that the sealing performance can be maintained over a long period of time.

本実施形態においても第1の実施形態と同様に、シール部材15に形成したテーパ状内周面29Sは、シール部材15と一体的に形成されているので、製造が容易となると共に、製造コストの上昇も低く抑えることができるものである。   Also in the present embodiment, as in the first embodiment, the tapered inner peripheral surface 29S formed on the seal member 15 is formed integrally with the seal member 15, so that the manufacturing is facilitated and the manufacturing cost is increased. The rise of can be suppressed low.

尚、上述の説明では冷却水ポンプ02の吐出側が弁収納室27に接続されて、冷却水が弁収納部27からハウジング本体11の連通路13に流出する場合を説明しているが、冷却水ポンプ02の吸入側が弁収納室27に接続されて、冷却水がハウジング本体11の連通路13から弁収納部27に流入する形態もある。   In the above description, the case where the discharge side of the cooling water pump 02 is connected to the valve storage chamber 27 and the cooling water flows out from the valve storage portion 27 to the communication passage 13 of the housing body 11 is described. There is also a form in which the suction side of the pump 02 is connected to the valve storage chamber 27 and the cooling water flows into the valve storage portion 27 from the communication passage 13 of the housing body 11.

この場合、図11に示す流線Sが逆方向になり、冷却水に混在している浮遊物がシール部材15と弁本体12の外周面12Sの接触面付近に直接的に衝突し、衝突分離作用によって、浮遊物Dstがシール部材15と弁本体12の開口14の開口縁12E付近の領域に留まるようになる。そして、弁本体14が矢印方向に回転すると、弁本体12の外周面12Sとシール部材15の先端面15Cの隙間に噛み込まれる恐れが高くなる。   In this case, the streamline S shown in FIG. 11 is in the reverse direction, and the floating substance mixed in the cooling water directly collides with the vicinity of the contact surface between the seal member 15 and the outer peripheral surface 12S of the valve body 12, and the collision separation occurs. Due to the action, the suspended matter Dst remains in the region near the opening edge 12E of the opening 14 of the seal member 15 and the valve body 12. Then, when the valve body 14 rotates in the direction of the arrow, there is a high possibility that the valve body 14 will be caught in the gap between the outer peripheral surface 12S of the valve body 12 and the distal end surface 15C of the seal member 15.

これに対して、図4に示している方向転換部15Gによって冷却水の流線の方向が開口14側に曲げられ、これによって、浮遊物も開口14側に流れるようになる。このため、浮遊物がシール部材15と弁部材12の外周面12Sの接触面に噛み込まれる恐れが少なくなるものである。この場合は、渦の流れを方向転換する方向転換部15Gとして機能するものではなく、冷却水の流線の流れの方向を転換する方向転換部15Gとして機能するものである。   On the other hand, the direction of the flow line of the cooling water is bent toward the opening 14 by the direction changing portion 15G shown in FIG. 4, whereby the suspended matter also flows toward the opening 14. For this reason, there is less possibility that the suspended matter is caught in the contact surface between the seal member 15 and the outer peripheral surface 12S of the valve member 12. In this case, it does not function as the direction change part 15G which changes the direction of the flow of the vortex, but functions as the direction change part 15G which changes the direction of the flow line of the cooling water.

上述した各実施形態においては、内燃機関の冷却水を熱補機類に分配する流路切換弁について説明したが、本発明はこれに限定されることなく、流体を分配する一般的な流路切換弁にも適用できるものである。   In each of the above-described embodiments, the flow path switching valve that distributes the cooling water of the internal combustion engine to the heat auxiliaries has been described, but the present invention is not limited to this, and a general flow path that distributes the fluid It can also be applied to a switching valve.

以上述べた通り、本発明によれば、弁本体の外周面と接触するシール部材の内周面側の先端部分に、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れ出る流体に向けて流れるように方向転換させる方向転換部を形成する構成とした。   As described above, according to the present invention, the vortex generated downstream of the opening edge of the opening formed in the valve body is formed at the distal end portion on the inner circumferential surface side of the seal member that contacts the outer circumferential surface of the valve body. The direction changing part is formed to change the direction so as to flow toward the fluid flowing out of the opening.

これによれば、弁本体に形成した開口の開口縁の下流に発生する渦を弁本体の開口を流れる流体に向けて流れるように方向転換させるので、浮遊物が開口から流れ出る流体に積極的に搬送、排出されるので、浮遊物が弁本体の外周面とシール部材の先端面の間に挟まることを抑制でき、良好なシール性能を維持することができるようになる。   According to this, the vortex generated downstream of the opening edge of the opening formed in the valve body is redirected so as to flow toward the fluid flowing through the opening of the valve body. Since it is conveyed and discharged, it is possible to suppress the floating material from being sandwiched between the outer peripheral surface of the valve main body and the front end surface of the seal member, and good sealing performance can be maintained.

また、本発明によれば、弁本体の外周面と接触するシール部材の内周面側の先端部分に、弁本体に形成した開口の開口縁付近に衝突する流体の流れを弁本体の開口に向けて流れるように方向転換させる方向転換部が形成する構成とした。   Further, according to the present invention, the flow of the fluid that collides with the vicinity of the opening edge of the opening formed in the valve body at the distal end portion on the inner peripheral surface side of the seal member that is in contact with the outer peripheral surface of the valve main body It was set as the structure which the direction change part which changes direction so that it may flow toward may form.

これによれば、方向転換部によって流体の流線の方向が弁本体に形成した開口側に曲げられ、これによって、浮遊物も開口側に流れるようになる。このため、浮遊物が弁本体の外周面とシール部材の先端面の間に噛み込む恐れが少なくなり、良好なシール性能を維持することができるようになる。   According to this, the direction of the fluid stream line is bent to the opening side formed in the valve body by the direction changing portion, and thereby the suspended matter also flows to the opening side. For this reason, there is less possibility that the suspended matter bites between the outer peripheral surface of the valve body and the front end surface of the seal member, and good sealing performance can be maintained.

尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10…流路切換弁、11…ハウジング本体、12…弁本体、12S…外周面、12E…開口縁、13…連通路、14…開口、15…シール部材、15C…先端面、15P…内部通路、15S…内周面、15G…方向転換部、16A、16B、16C、16D…接続パイプ、17…圧縮ばね、18…サーモスタット、19…電動モータ、20…モータ収納部、21…カバー部、22…回転軸、23…ウォームホール、24…ウォーム、25…ウォーム、26…ウォームホイール、27…弁収納部、28…方向転換部材、29…シール部材、29S…テーパ状内周面。   DESCRIPTION OF SYMBOLS 10 ... Flow path switching valve, 11 ... Housing main body, 12 ... Valve main body, 12S ... Outer peripheral surface, 12E ... Opening edge, 13 ... Communication path, 14 ... Opening, 15 ... Seal member, 15C ... End face, 15P ... Internal passage , 15S ... inner peripheral surface, 15G ... direction changing part, 16A, 16B, 16C, 16D ... connection pipe, 17 ... compression spring, 18 ... thermostat, 19 ... electric motor, 20 ... motor housing part, 21 ... cover part, 22 DESCRIPTION OF SYMBOLS ... Rotary shaft, 23 ... Worm hole, 24 ... Worm, 25 ... Worm, 26 ... Worm wheel, 27 ... Valve storage part, 28 ... Direction change member, 29 ... Seal member, 29S ... Tapered inner peripheral surface.

Claims (10)

軸線が延びる方向に円筒状に形成され、その外周面に流体が流出する開口が形成された弁本体と、
前記弁本体の前記軸線を中心にして前記弁本体が回転可能に収納される弁収納部、及び前記弁収納部に開口され外部の補機類と接続される連通路を備えたハウジング本体と、
前記連通路に設けられると共に、前記弁本体の前記外周面と接触する両端に開口を有する内部通路が形成され、前記弁本体の前記開口と前記内部通路の前記開口が重なると、前記弁本体に流入している流体を、前記内部通路を介して前記連通路に流出させるシール部材と、を備え、
更に、前記シール部材の前記弁本体の前記外周面と接触する側の前記内部通路の内周面の先端部分に、前記弁本体に形成した前記開口の開口縁の下流に発生する渦を前記弁本体の前記開口から流れ出る流体に向けて流れるように方向転換させる方向転換部が形成されている
ことを特徴とする流路切換弁。
A valve body formed in a cylindrical shape in the direction in which the axis extends, and an opening through which fluid flows out on the outer peripheral surface thereof;
A housing body having a valve housing portion in which the valve body is rotatably housed about the axis of the valve body, and a communication path that is opened in the valve housing portion and connected to external auxiliary equipment;
An internal passage that is provided in the communication passage and has openings at both ends that come into contact with the outer peripheral surface of the valve body is formed. When the opening of the valve body and the opening of the internal passage overlap, the valve body A seal member that causes the inflowing fluid to flow out to the communication path via the internal path,
Furthermore, a vortex generated downstream of the opening edge of the opening formed in the valve body is formed at the tip of the inner circumferential surface of the internal passage on the side of the seal member that contacts the outer circumferential surface of the valve body. A flow path switching valve characterized in that a direction changing portion is formed to change the direction so as to flow toward the fluid flowing out from the opening of the main body.
軸線が延びる方向に円筒状に形成され、その外周面に流体が流入する開口が形成された弁本体と、
前記弁本体の前記軸線を中心にして前記弁本体が回転可能に収納される弁収納部、及び前記弁収納部に開口され外部の補機類と接続される連通路を備えたハウジング本体と、
前記連通路に設けられると共に、前記弁本体の前記外周面と接触する両端に開口を有する内部通路が形成され、前記弁本体の前記開口と前記内部通路の前記開口が重なると、前記連通路に流入している流体を、前記内部通路を介して前記弁本体の前記開口から前記弁本体内に流出させるシール部材と、を備え、
更に、前記シール部材の前記弁本体の前記外周面と接触する側の前記内部通路の内周面の先端部分に、前記弁本体に形成した前記開口の開口縁付近に向けて流れる流体を前記弁本体の前記開口に向けて流れるように方向転換させる方向転換部が形成されている
ことを特徴とする流路切換弁。
A valve body formed in a cylindrical shape in the direction in which the axis extends, and an opening into which fluid flows into the outer peripheral surface thereof;
A housing body having a valve housing portion in which the valve body is rotatably housed about the axis of the valve body, and a communication path that is opened in the valve housing portion and connected to external auxiliary equipment;
An internal passage that is provided in the communication passage and has openings at both ends that contact the outer peripheral surface of the valve body is formed, and when the opening of the valve body and the opening of the internal passage overlap, A seal member that causes an inflowing fluid to flow into the valve body from the opening of the valve body through the internal passage;
Furthermore, fluid that flows toward the vicinity of the opening edge of the opening formed in the valve body at the distal end portion of the inner circumferential surface of the internal passage on the side of the seal member that contacts the outer circumferential surface of the valve body. A flow path switching valve, characterized in that a direction changing portion for changing the direction so as to flow toward the opening of the main body is formed.
請求項1或いは請求項2に記載の流路切換弁において、
前記シール部材の前記方向転換部は、前記内部通路の前記内周面の周方向形状に沿って、前記内部通路の内側に向けて傾斜する環状方向転換部とされており、前記環状方向転換部は、前記弁本体の前記外周面に向かって連続的に内径が縮小するように傾斜されていることを特徴とする流路切換弁。
In the flow path switching valve according to claim 1 or claim 2,
The direction changing portion of the seal member is an annular direction changing portion that is inclined toward the inside of the internal passage along the circumferential shape of the inner peripheral surface of the internal passage, and the annular direction changing portion Are inclined so that the inner diameter continuously decreases toward the outer peripheral surface of the valve body.
請求項3に記載の流路切換弁において、
前記シール部材の前記環状方向転換部は、前記シール部材の軸方向に直線状に延びる前記内周面の途中から内側に、しかも前記弁本体の前記外周面に向かって連続的に内径が縮小して軸方向断面が直線状に形成されていることを特徴とする流路切換弁。
In the flow path switching valve according to claim 3,
The annular direction changing portion of the seal member has an inner diameter that continuously decreases from the middle of the inner peripheral surface extending linearly in the axial direction of the seal member and further toward the outer peripheral surface of the valve body. A flow path switching valve characterized in that the axial cross section is formed in a straight line.
請求項3に記載の流路切換弁において、
前記シール部材の前記方向転換部は、前記シール部材の軸方向に直線状に延びる前記内周面からの途中から内側に、しかも前記弁本体の前記外周面に向かって連続的に内径が縮小して軸方向断面が弧状に形成されていることを特徴とする流路切換弁。
In the flow path switching valve according to claim 3,
The direction changing portion of the seal member has an inner diameter continuously reduced from the middle to the inner side from the inner peripheral surface extending linearly in the axial direction of the seal member and further toward the outer peripheral surface of the valve body. A flow path switching valve characterized in that the axial cross section is formed in an arc shape.
請求項3に記載の流路切換弁において、
前記シール部材の前記環状方向転換部は、前記内部通路の両方の前記開口の間に亘って形成され、前記内周面が前記弁本体の前記外周面に向かって連続的に内径が縮小するテーパ形状に形成されていることを特徴とする流路切換弁。
In the flow path switching valve according to claim 3,
The annular direction changing portion of the seal member is formed between the openings of both of the internal passages, and the inner peripheral surface continuously tapers toward the outer peripheral surface of the valve body. A flow path switching valve having a shape.
請求項1或いは請求項2に記載の流路切換弁において、
前記シール部材の前記方向転換部は、前記シール部材とは別体に作られた軟質性の方向転換部材を前記シール部材に一体化して形成されていることを特徴とする流路切換弁。
In the flow path switching valve according to claim 1 or claim 2,
The flow path switching valve, wherein the direction changing portion of the seal member is formed by integrating a soft direction changing member made separately from the seal member into the seal member.
請求項7に記載の流路切換弁において、
前記方向転換部材は、前記シール部材に前記方向転換部材自身の弾性、或いは接着剤を介して一体化されている、或いは前記方向転換部材を前記シール部材にインサートモールドされて一体化されていることを特徴とする流路切換弁。
The flow path switching valve according to claim 7,
The direction change member is integrated with the seal member via the elasticity of the direction change member itself or an adhesive, or the direction change member is integrated with the seal member by insert molding. A flow path switching valve.
熱源を冷却する熱媒体となる流体を加圧して圧送する流体ポンプと、前記流体ポンプからの前記流体を複数の補機類に送る流路切換弁、或いは前記複数の補機類からの流体を前記流体ポンプに送る流路切換弁を備える自動車用熱媒体システムであって、
前記流路切換弁として、請求項1乃至請求項7のいずれか1項に記載の流路切換弁を使用したことを特徴とする自動車用熱媒体システム。
A fluid pump that pressurizes and pressurizes a fluid serving as a heat medium for cooling the heat source, a flow path switching valve that sends the fluid from the fluid pump to a plurality of accessories, or a fluid from the plurality of accessories. An automotive heat medium system comprising a flow path switching valve for sending to the fluid pump,
An automobile heat medium system, wherein the flow path switching valve according to any one of claims 1 to 7 is used as the flow path switching valve.
請求項9に記載の自動車用熱媒体システムにおいて、
前記熱源は内燃機関であり、また前記補機類は少なくともラジエータ、暖房装置、及びオイルクーラであり、
前記流路切換弁は、前記内燃機関の冷却水を前記ラジエータ、暖房装置、及びオイルクーラに選択的に分配する
ことを特徴とする自動車用熱媒体システム。
The automobile heat medium system according to claim 9,
The heat source is an internal combustion engine, and the accessories are at least a radiator, a heating device, and an oil cooler,
The automotive flow medium system, wherein the flow path switching valve selectively distributes cooling water of the internal combustion engine to the radiator, a heating device, and an oil cooler.
JP2016203994A 2016-10-18 2016-10-18 Flow path switching valve and heat medium system for automobiles Active JP6715159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203994A JP6715159B2 (en) 2016-10-18 2016-10-18 Flow path switching valve and heat medium system for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203994A JP6715159B2 (en) 2016-10-18 2016-10-18 Flow path switching valve and heat medium system for automobiles

Publications (2)

Publication Number Publication Date
JP2018066403A true JP2018066403A (en) 2018-04-26
JP6715159B2 JP6715159B2 (en) 2020-07-01

Family

ID=62085840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203994A Active JP6715159B2 (en) 2016-10-18 2016-10-18 Flow path switching valve and heat medium system for automobiles

Country Status (1)

Country Link
JP (1) JP6715159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833199A (en) * 2020-12-18 2021-05-25 太原理工大学 An Electromagnetically Controlled Reversing Electric Drive Valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086674U (en) * 1983-11-21 1985-06-14 積水化学工業株式会社 ball valve
JPH0432369U (en) * 1990-07-13 1992-03-16
JP2013245737A (en) * 2012-05-24 2013-12-09 Mikuni Corp Rotary valve
JP2017133616A (en) * 2016-01-28 2017-08-03 株式会社デンソー Valve device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086674U (en) * 1983-11-21 1985-06-14 積水化学工業株式会社 ball valve
JPH0432369U (en) * 1990-07-13 1992-03-16
JP2013245737A (en) * 2012-05-24 2013-12-09 Mikuni Corp Rotary valve
JP2017133616A (en) * 2016-01-28 2017-08-03 株式会社デンソー Valve device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833199A (en) * 2020-12-18 2021-05-25 太原理工大学 An Electromagnetically Controlled Reversing Electric Drive Valve
CN112833199B (en) * 2020-12-18 2023-02-21 太原理工大学 An Electromagnetically Controlled Reversing Electric Drive Valve

Also Published As

Publication number Publication date
JP6715159B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP7284771B2 (en) valve
US20180051815A1 (en) Flow rate control valve
JP5918440B2 (en) Flow control valve
JP6501641B2 (en) Flow control valve
CN108779865B (en) Flow control valve and cooling system
JP6864529B2 (en) Rotary control valve
US20160109031A1 (en) Low-drag sealing method for thermal management valve
US11105430B2 (en) Control valve
JP6312520B2 (en) Flow control valve
CN105379069A (en) Cooling system for an electric motor
JP2020204358A (en) Valve device
JP2011010525A (en) Motor case
KR20220145900A (en) Variable cylinder wall for sealing of plug valves
JP2016160872A (en) Flow control valve
JP2015218852A (en) Control valve
JP2018066403A (en) Passage switching valve and vehicular heat medium system
JP6775377B2 (en) Flow path switching valve and heat medium system for automobiles
JP2015218853A (en) Control valve
JP6838779B2 (en) Fluid control valve, fluid system, and fixing device
CN114207331A (en) Fluid valve
WO2024142749A1 (en) Fluid control valve
WO2024142750A1 (en) Fluid control valve
JP2023039253A (en) Valve element, flow path switching valve and heat medium system for automobile
CN118339397A (en) Control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6715159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250