JP2018061440A - Fertilization determination system - Google Patents
Fertilization determination system Download PDFInfo
- Publication number
- JP2018061440A JP2018061440A JP2016199618A JP2016199618A JP2018061440A JP 2018061440 A JP2018061440 A JP 2018061440A JP 2016199618 A JP2016199618 A JP 2016199618A JP 2016199618 A JP2016199618 A JP 2016199618A JP 2018061440 A JP2018061440 A JP 2018061440A
- Authority
- JP
- Japan
- Prior art keywords
- egg
- determination
- image
- fertilized
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、受精判定システムに関する。 The present invention relates to a fertilization determination system.
不妊治療分野において、受胎率の向上および患者のQOLの観点から、培養中の胚を評価することによって、胚を選別することが行われている。胚を非侵襲的に評価する方法として、顕微鏡による形態観察から胚の発育状況を評価する方法がある。 In the field of fertility treatment, selection of embryos is performed by evaluating embryos in culture from the viewpoint of improvement in conception rate and QOL of patients. As a method for non-invasively evaluating an embryo, there is a method for evaluating the developmental state of an embryo through morphological observation with a microscope.
特許文献1の胚選別システムでは、胚の形態および酸素消費量などを指標として、胚を選別している。しかし、胚形成の前提となる受精を確認するシステムについては、これまでに十分に考慮されていなかった。また、媒精等の受精処理をされた卵が正常に受精しているかを、これまでは検体である卵を人間がひとつひとつ目で確認していたことから、確認できる検体の数には限界があった。このような課題を解決するために、受精処理をされた卵が受精しているか確認するシステムの構築および人間が確認するよりも多くの検体における受精の確認を可能とする技術が望まれていた。 In the embryo selection system of Patent Document 1, embryos are selected using the morphology and oxygen consumption of the embryo as indices. However, a system for confirming fertilization, which is a premise of embryogenesis, has not been sufficiently considered so far. In addition, the number of specimens that can be confirmed is limited because humans have confirmed each egg, which has been a specimen, at a glance, to see if eggs that have been fertilized by fertilization have been fertilized normally. there were. In order to solve such problems, there has been a demand for a technique for confirming whether a fertilized egg is fertilized and a technology that enables confirmation of fertilization in more specimens than human confirmation. .
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。 SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.
(1)本発明の一形態によれば、受精判定システムが提供される。この受精判定システムは、受精処理された卵を培養する培養部と、前記培養部によって培養されている前記卵の状態を、設定された時間間隔で撮影して複数の画像を取得する画像取得部と、前記画像に写った前記卵の状態を解析することによって前記卵が受精しているか判定する判定部と、を備える。このような態様とすれば、受精処理された卵の状態が撮影された画像の解析に基づいて、卵が受精しているか判定部が判定できる。このため、受精処理をされた卵が受精しているか確認できるシステムが提供される。また、検体である卵が機械的に解析されることから、人間が確認するよりも多くの検体を確認できる。また、判定部によって受精しているかが判定されるため、人間が目で確認することに比べて、判定の煩雑さを低減できる。 (1) According to one aspect of the present invention, a fertilization determination system is provided. The fertilization determination system includes a culture unit that cultures a fertilized egg, and an image acquisition unit that captures a state of the egg cultured by the culture unit at set time intervals and acquires a plurality of images. And a determination unit that determines whether the egg is fertilized by analyzing the state of the egg reflected in the image. If it is set as such an aspect, the determination part can determine whether the egg is fertilizing based on the analysis of the image by which the state of the fertilized egg was image | photographed. For this reason, the system which can confirm whether the fertilized egg is fertilized is provided. In addition, since the specimen egg is mechanically analyzed, more specimens can be confirmed than humans can confirm. Moreover, since it is determined whether the fertilization is performed by the determination unit, it is possible to reduce the complexity of the determination as compared with human eyes.
(2)上記形態における受精判定システムにおいて、前記判定部は、異なる時間に取得された少なくとも2枚の前記画像における前記卵の経時的な変化を解析することによって前記卵が受精しているか判定してもよい。このような態様とすれば、少なくとも2枚の画像を解析することによって、卵の経時的な変化を解析できる。このため、卵の経時的な変化に基づいて卵が受精しているか判定できる。 (2) In the fertilization determination system according to the above aspect, the determination unit determines whether the egg is fertilized by analyzing changes over time of the egg in at least two images acquired at different times. May be. If it is set as such an aspect, the time-dependent change of an egg can be analyzed by analyzing at least 2 image. For this reason, it can be determined whether the egg is fertilized based on the change of the egg over time.
(3)上記形態における受精判定システムにおいて、前記判定部は、教師あり学習によって前記画像に写った前記卵の特徴について学習し、前記学習に基づいて前記卵が受精しているか判定してもよい。このような態様とすれば、判定部が教師あり学習によって学習した基準に基づいて、卵が受精しているか判定できる。 (3) In the fertilization determination system according to the above aspect, the determination unit may learn about the characteristics of the egg shown in the image by supervised learning and determine whether the egg is fertilized based on the learning. . With such an aspect, it can be determined whether the egg is fertilized based on the criterion learned by the determination unit through supervised learning.
(4)上記形態における受精判定システムにおいて、前記判定部は、多層のニューラルネットワークを用いたディープラーニングによって前記画像に写った前記卵の特徴について学習し、前記学習に基づいて前記卵が受精しているか判定してもよい。このような態様とすれば、判定部がディープラーニングによって学習した基準に基づいて、卵が受精しているか判定できる。 (4) In the fertilization determination system according to the above aspect, the determination unit learns about the characteristics of the egg shown in the image by deep learning using a multilayer neural network, and the egg is fertilized based on the learning. It may be determined. If it is set as such an aspect, it can be determined whether the egg is fertilizing based on the reference | standard which the determination part learned by deep learning.
(5)上記形態における受精判定システムにおいて、前記判定部は、前記画像のうち判定に用いられた判定画像を報知する報知部を有してもよい。このような態様とすれば、受精判定システムを使用するユーザーが、判定部がどの画像を用いて受精を判定したかを知ることができる。 (5) In the fertilization determination system according to the above aspect, the determination unit may include a notification unit that notifies a determination image used for determination among the images. If it is set as such an aspect, the user who uses a fertilization determination system can know which image the determination part determined fertilization.
(6)上記形態における受精判定システムにおいて、前記報知部は、前記判定画像を報知するとともに前記判定画像において前記判定部が判定の根拠とした情報を報知してもよい。このような態様とすれば、受精判定システムを使用するユーザーが、判定部がどの画像を用いて受精を判定したかを知ることができるとともに、判定部が判定の根拠とした情報を知ることができる。 (6) In the fertilization determination system according to the above aspect, the notification unit may notify the determination image and notify the determination image in the determination image based on the determination unit. With this aspect, the user using the fertilization determination system can know which image the determination unit uses to determine fertilization, and the determination unit can know the information on which the determination is based. it can.
(7)本発明の一形態によれば、非受精卵を選抜する方法が提供される。この非受精卵を選抜する方法は、受精処理された卵のうち正常に受精していない非受精卵を選抜する方法であって、前記卵を培養する培養工程と、前記培養工程において培養されている前記卵の状態を、設定された時間間隔で撮影して複数の画像を取得する画像取得工程と、前記画像に写った前記卵の状態を解析することによって前記非受精卵を選抜する選抜工程と、を備える。このような態様とすれば、受精処理された卵の状態が撮影された画像の解析に基づいて、非受精卵を選抜できる。このため、受精処理をされた卵のうち正常に受精していない非受精卵を選抜する方法が提供される。 (7) According to one aspect of the present invention, a method for selecting a non-fertilized egg is provided. This method of selecting non-fertilized eggs is a method of selecting non-fertilized eggs that have not been normally fertilized among fertilized eggs, a culture step of culturing the eggs, and a culture in the culture step. An image acquisition step of acquiring a plurality of images by photographing the state of the eggs being set at a set time interval, and a selection step of selecting the non-fertilized eggs by analyzing the state of the eggs reflected in the images And comprising. According to such an aspect, a non-fertilized egg can be selected based on an analysis of an image in which a fertilized egg is photographed. For this reason, the method of selecting the non-fertilized egg which is not normally fertilized among the eggs which have been fertilized is provided.
本発明は、受精判定システム以外の種々の形態で実現することも可能である。例えば、本発明は、受精判定装置の形態で実現することができる。また、本発明は、前述の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において様々な形態で実施し得ることは勿論である。 The present invention can also be realized in various forms other than the fertilization determination system. For example, the present invention can be realized in the form of a fertilization determination device. Further, the present invention is not limited to the above-described embodiments, and it is needless to say that the present invention can be implemented in various forms without departing from the spirit of the present invention.
A.第1実施形態:
図1は、第1実施形態における受精判定システム10の構成を示す説明図である。受精判定システム10は、受精処理されたヒトの卵が受精しているかを判定するシステムである。受精処理された卵とは、精子と卵子とを共培養したコンベンショナル法もしくは顕微授精法等の受精のための処置がなされた卵のことである。受精判定システム10は、培養部110と、画像取得部130と、制御部140と、ユーザインタフェース150と、報知部160とを備える。
A. First embodiment:
FIG. 1 is an explanatory diagram illustrating a configuration of a fertilization determination system 10 according to the first embodiment. The fertilization determination system 10 is a system that determines whether a fertilized human egg is fertilized. The fertilized egg is an egg that has been subjected to fertilization treatment such as a conventional method in which sperm and an egg are co-cultured or a microinsemination method. The fertilization determination system 10 includes a culture unit 110, an image acquisition unit 130, a control unit 140, a user interface 150, and a notification unit 160.
培養部110は、受精処理された卵を培養するいわゆるインキュベータである。培養部110内における温度、湿度、酸素濃度、二酸化炭素濃度および培養時間等の培養条件は、予めユーザインタフェース150を介してユーザーより入力された内容に基づいて、制御部140によって制御されている。培養部110は、受精処理された卵を培養するための容器である培養容器200が培養部110内に固定された状態で、卵を培養する。 The culture unit 110 is a so-called incubator that cultures fertilized eggs. The culture conditions such as temperature, humidity, oxygen concentration, carbon dioxide concentration, and culture time in the culture unit 110 are controlled by the control unit 140 based on the contents previously input by the user via the user interface 150. The culture unit 110 cultures the eggs in a state where the culture container 200 that is a container for culturing the fertilized egg is fixed in the culture unit 110.
培養容器200は、3行4列の12個のウェルを備えたウェルプレートである。培養容器200の各ウェルの底にはウェル番号である1から12の番号が付されている。培養容器200は、各ウェルに1つの卵を入れて培養するための容器である。 The culture vessel 200 is a well plate having 12 wells in 3 rows and 4 columns. Numbers 1 to 12, which are well numbers, are attached to the bottom of each well of the culture vessel 200. The culture container 200 is a container for putting one egg in each well and culturing.
培養部110は、容器搬送部115を有する。容器搬送部115は、水平方向に伸びた形状を有するとともに、培養部110における底面部分を構成している。容器搬送部115は、重力方向上側を向いた面上に、培養容器200を固定するための固定部(図示しない)を有する。培養部110は、培養容器200が固定部に固定された状態で、卵を培養する。 The culture unit 110 includes a container transport unit 115. The container transport unit 115 has a shape extending in the horizontal direction and constitutes a bottom surface portion of the culture unit 110. The container transport part 115 has a fixing part (not shown) for fixing the culture container 200 on the surface facing the upper side in the gravity direction. The culture unit 110 cultivates eggs in a state where the culture container 200 is fixed to the fixed unit.
容器搬送部115は、固定部に固定された培養容器200を、培養部110の内側に一部が突出した画像取得部130の重力方向下側の位置に、固定部を移動させることによって搬送する。容器搬送部115は、画像取得部130による画像の取得が終了すると、培養容器200を初期位置に搬送する。図1において、培養容器200が図示されている位置が初期位置である。 The container transport unit 115 transports the culture container 200 fixed to the fixed unit by moving the fixed unit to a position below the gravitational direction of the image acquisition unit 130 that partially protrudes inside the culture unit 110. . When the image acquisition by the image acquisition unit 130 is completed, the container transport unit 115 transports the culture container 200 to the initial position. In FIG. 1, the position where the culture vessel 200 is shown is the initial position.
容器搬送部115が培養容器200を搬送する頻度(時間間隔)は、予めユーザインタフェース150を介してユーザーより設定された内容に基づいて、制御部140によって制御されている。本実施形態では、容器搬送部115は、画像取得部130の重力方向下側の位置へ培養容器200を15分毎に搬送するよう制御されている。容器搬送部115は、画像取得部130の重力方向下側の位置へ培養容器200が搬送されてから、画像取得部130から見て培養容器200の位置を縦横の2次元的に調整することによって、画像取得部130が画像を取得できる位置に各ウェルを配置できる。容器搬送部115は、画像取得部130による画像の取得が終了すると、培養容器200を初期位置に搬送する。画像取得部130が培養容器200における各ウェルの画像を取得する工程については、後述する。 The frequency (time interval) at which the container transport unit 115 transports the culture container 200 is controlled by the control unit 140 based on the contents set in advance by the user via the user interface 150. In the present embodiment, the container transport unit 115 is controlled to transport the culture container 200 to the position below the image acquisition unit 130 in the gravity direction every 15 minutes. The container transport unit 115 adjusts the position of the culture container 200 two-dimensionally in the vertical and horizontal directions as viewed from the image acquisition unit 130 after the culture container 200 is transported to a position below the gravity direction of the image acquisition unit 130. Each well can be arranged at a position where the image acquisition unit 130 can acquire an image. When the image acquisition by the image acquisition unit 130 is completed, the container transport unit 115 transports the culture container 200 to the initial position. The process of acquiring an image of each well in the culture vessel 200 by the image acquisition unit 130 will be described later.
画像取得部130は、培養部110によって培養されている卵の状態を設定された時間間隔で撮影して画像を取得する。本実施形態では、画像取得部130は、容器搬送部115が培養容器200を搬送してくる度に卵の状態を撮影することによって、培養容器200における各ウェル毎の複数の画像を時系列的に取得する。他の実施形態では、画像取得部130は、制御部140から直接指示された時間間隔で撮影して画像を取得してもよい。培養容器200が有する12個のウェルのうち画像取得部130が画像を取得するウェルの位置は、予めユーザインタフェース150を介してユーザーより指定される。以下の説明では、ユーザーより指定されたウェルの位置を「指定位置」と呼ぶ。本実施形態では、画像取得部130は、CCDカメラである。 The image acquisition unit 130 acquires images by photographing the state of the eggs cultured by the culture unit 110 at set time intervals. In the present embodiment, the image acquisition unit 130 captures a plurality of images for each well in the culture container 200 in a time-series manner by photographing the state of the egg each time the container transport unit 115 transports the culture container 200. To get to. In another embodiment, the image acquisition unit 130 may acquire images by capturing images at time intervals directly instructed by the control unit 140. The position of the well from which the image acquisition unit 130 acquires images among the 12 wells of the culture vessel 200 is designated by the user via the user interface 150 in advance. In the following description, a well position designated by the user is referred to as a “designated position”. In the present embodiment, the image acquisition unit 130 is a CCD camera.
制御部140は、中央処理装置と主記憶装置とを備えるマイクロコンピュータによって構成されている。制御部140は、受精判定システム10の各部を制御する。また、制御部140は、予めユーザインタフェース150を介してユーザーより入力された内容に基づいて、培養部110、容器搬送部115、画像取得部130を制御する。 The control unit 140 is configured by a microcomputer including a central processing unit and a main storage device. The control unit 140 controls each unit of the fertilization determination system 10. In addition, the control unit 140 controls the culture unit 110, the container transport unit 115, and the image acquisition unit 130 based on the contents previously input by the user via the user interface 150.
制御部140は、画像格納部142と、判定部144とを備える。 The control unit 140 includes an image storage unit 142 and a determination unit 144.
画像格納部142は、画像取得部130によって取得された画像を格納する。画像格納部142は、取得された各ウェルの画像を判定部144に送る。 The image storage unit 142 stores the image acquired by the image acquisition unit 130. The image storage unit 142 sends the acquired image of each well to the determination unit 144.
判定部144は、画像格納部142より送られてきた画像に写った卵の状態を解析することによって卵が受精しているか判定する。本実施形態では、判定部144は、培養部110が卵の培養を開始してから24時間の間に15分の時間間隔で画像取得部130によって取得された各ウェルの画像を用いて、卵が受精しているか判定する。 The determination unit 144 determines whether the egg is fertilized by analyzing the state of the egg shown in the image sent from the image storage unit 142. In the present embodiment, the determination unit 144 uses the images of each well acquired by the image acquisition unit 130 at a time interval of 15 minutes for 24 hours after the culture unit 110 starts culturing eggs. Determine if is fertilized.
本実施形態では、判定部144は、卵における前核の数を確認することによって、卵が受精しているか判定する。正常に受精した卵では、一般に受精後22時間以内に2つの前核が現れる。 In the present embodiment, the determination unit 144 determines whether the egg is fertilized by checking the number of pronuclei in the egg. In a normally fertilized egg, two pronuclei generally appear within 22 hours after fertilization.
本実施形態では、判定部144は、異なる時間に取得された2枚の画像を解析することによって卵が受精しているか判定する。本実施形態では、画像取得部130によって取得された画像のうち、異なる時間に取得された2枚の画像として、卵における前核の数の差を最も顕著に認識できる2枚の画像を、判定部144が選択する。2枚の画像が、卵における前核の数が確認されなかった画像1枚と卵における前核が2つ確認された画像1枚との2枚であった場合にのみ、判定部144は、卵が受精していると判定する。このように、2枚の画像における卵の経時的な変化を解析できることから、卵の経時的な変化に基づいて卵が受精しているか判定できる。また、2枚の画像における前核の数の差を比較することによって、1枚の画像を用いて判定するより精度良く受精を判定できる。 In the present embodiment, the determination unit 144 determines whether an egg is fertilized by analyzing two images acquired at different times. In the present embodiment, among the images acquired by the image acquisition unit 130, two images acquired at different times are determined as two images that can most significantly recognize the difference in the number of pronuclei in the egg. The unit 144 selects. Only when the two images are two images, one image in which the number of pronuclei in the egg is not confirmed and one image in which two pronuclei in the egg are confirmed, the determination unit 144 Determine that the egg is fertilized. As described above, since the temporal change of the eggs in the two images can be analyzed, it can be determined whether the egg is fertilized based on the temporal change of the eggs. Further, by comparing the difference in the number of pronuclei in two images, fertilization can be determined with higher accuracy than determination using one image.
判定部144は、教師あり学習によって画像に写った卵の特徴について学習し、その学習に基づいて卵が受精しているか判定する。本実施形態では、判定部144は、画像に写った卵における前核の数の判定について学習し、その学習に基づいて卵が受精しているか判定する。このため、判定部144は、教師あり学習によって学習した前核の数の判定基準に基づいて、卵が受精しているか判定できる。 The determination unit 144 learns about the characteristics of the egg shown in the image by supervised learning, and determines whether the egg is fertilized based on the learning. In the present embodiment, the determination unit 144 learns about the determination of the number of pronuclei in the egg shown in the image, and determines whether the egg is fertilized based on the learning. For this reason, the determination unit 144 can determine whether the egg is fertilized based on the determination criterion for the number of pronuclei learned by supervised learning.
図2、図3、図4および図5は、判定部144が教師あり学習において使用される画像の例を示した説明図である。図2は、受精処理された卵において、前核が確認されなかった卵であるとラベルされた画像の例である。図3は、受精処理された卵において、前核が1つ確認された卵であるとラベルされた画像の例である。図4は、受精処理された卵において、前核が2つ確認された卵であるとラベルされた画像の例である。図5は、受精処理された卵において、前核が3つ確認された卵であるとラベルされた画像の例である。受精処理された卵において、前核が確認されなかった場合、一般に不受精卵と判断される。また、受精処理された卵において、前核が1つもしくは3つ以上確認された場合、一般に異常受精卵であると判断される。 2, FIG. 3, FIG. 4 and FIG. 5 are explanatory diagrams showing examples of images used by the determination unit 144 in supervised learning. FIG. 2 is an example of an image labeled as an egg in which a pronucleus has not been confirmed in the fertilized egg. FIG. 3 is an example of an image labeled as an egg in which one pronucleus has been confirmed in the fertilized egg. FIG. 4 is an example of an image labeled as an egg in which two pronuclei have been confirmed in the fertilized egg. FIG. 5 is an example of an image that is labeled as an egg in which three pronuclei have been confirmed in a fertilized egg. In a fertilized egg, when a pronucleus is not confirmed, it is generally determined to be a non-fertilized egg. In addition, in the fertilized egg, when one or three or more pronuclei are confirmed, it is generally determined that the egg is abnormally fertilized.
ユーザインタフェース150は、受精判定システム10のユーザーとの間で情報をやり取りする。本実施形態では、ユーザインタフェース150は、画像を表示するとともに、その画像上で利用者から指示の入力を受け付けるタッチパネルである。他の実施形態では、ユーザインタフェース150は、利用者から指示の入力を受け付ける押しボタンを備えてもよい。 The user interface 150 exchanges information with the user of the fertilization determination system 10. In the present embodiment, the user interface 150 is a touch panel that displays an image and receives an instruction input from the user on the image. In another embodiment, the user interface 150 may include a push button that receives an instruction input from the user.
報知部160は、画像のうち判定に用いられた判定画像を報知する。報知部160は、ユーザインタフェース150であるタッチパネルの画面上において、ユーザーが判定部144による判定結果を閲覧している際に、判定画像を報知する。このため、受精判定システム10を使用するユーザーが、判定部144がどの画像を用いて受精を判定したかを知ることができる。本実施形態では、取得された各画像について取得された時間が画像に付されていることから、ユーザーは判定画像に付された時間を確認することによって、卵がいつ受精したかを知ることができる。 The alerting | reporting part 160 alert | reports the determination image used for determination among images. The notification unit 160 notifies the determination image when the user is viewing the determination result by the determination unit 144 on the touch panel screen as the user interface 150. For this reason, the user who uses the fertilization determination system 10 can know which image the determination unit 144 has determined fertilization. In this embodiment, since the time acquired for each acquired image is attached to the image, the user can know when the egg is fertilized by checking the time attached to the determination image. it can.
また、報知部160は、判定画像において判定部144が判定の根拠とした情報を報知する。報知部160は、ユーザインタフェース150であるタッチパネルの画面上において、報知された判定画像をユーザーが閲覧している際に、判定部144が判定の根拠とした情報を報知する。本実施形態では、報知部160は、判定画像において判定部144が前核であると認識した部分についての位置情報を報知する。 In addition, the notification unit 160 notifies the determination image 144 of information used as a basis for determination in the determination image. When the user is browsing the notified determination image on the screen of the touch panel that is the user interface 150, the notification unit 160 notifies the determination unit 144 of information that is the basis for the determination. In this embodiment, the alerting | reporting part 160 alert | reports the positional information about the part which the determination part 144 recognized as a pronucleus in the determination image.
図6は、制御部140が実行する画像取得処理を示すフローである。制御部140は、画像取得部130の重力方向下側の位置に培養容器200が搬送された際に、画像取得処理を実行する。 FIG. 6 is a flowchart showing image acquisition processing executed by the control unit 140. The control unit 140 executes an image acquisition process when the culture vessel 200 is transported to a position below the image acquisition unit 130 in the direction of gravity.
画像取得処理が開始されると、制御部140は、ユーザーより指定されたウェルの数を表す変数Aを算出する(ステップS100)。指定されたウェルの数を表す変数Aを算出したのち(ステップS100)、制御部140は、指定されたウェルであって撮影を終えていないウェルのうち、最も番号が小さいウェルの画像を、画像取得部130に撮影させる(ステップS110)。番号とは、各ウェルの底に付された1から12のウェル番号のことである。 When the image acquisition process is started, the control unit 140 calculates a variable A representing the number of wells designated by the user (step S100). After calculating the variable A indicating the number of designated wells (step S100), the control unit 140 obtains an image of the well with the smallest number among wells that have been designated and have not been photographed. The acquisition unit 130 is caused to photograph (step S110). The numbers are 1 to 12 well numbers given to the bottom of each well.
ステップS110において、画像取得部130は、以下の(1)(2)の工程で、ウェルの画像を取得する。(1)制御部140は、容器搬送部115に培養容器200の位置を2次元的に調整させて、ウェルの位置を画像取得部130が撮影を行うことができる位置に移動させる。(2)制御部140は、画像取得部130が撮影を行うことができる位置にウェルを移動させてから、画像取得部130に撮影を行わせる。 In step S110, the image acquisition unit 130 acquires an image of a well in the following steps (1) and (2). (1) The control unit 140 causes the container transport unit 115 to adjust the position of the culture vessel 200 two-dimensionally, and moves the position of the well to a position where the image acquisition unit 130 can perform imaging. (2) The control unit 140 moves the well to a position where the image acquisition unit 130 can perform imaging, and then causes the image acquisition unit 130 to perform imaging.
指定されたウェルであって撮影を終えていないウェルのうち、最も番号が小さいウェルの画像が撮影されたのち(ステップS110)、制御部140は、撮影を終えたウェルの番号を記憶する(ステップS120)。撮影を終えたウェルの番号を記憶したのち(ステップS120)、制御部140は、変数Aをデクリメントする。(ステップS130)。 After an image of the well with the smallest number among the designated wells that have not been shot, the control unit 140 stores the number of the well that has been shot (step S110). S120). After storing the number of the well for which imaging has been completed (step S120), the control unit 140 decrements the variable A. (Step S130).
変数Aがデクリメントされたあと(ステップS130)、制御部140は、変数Aが0になったか判定する(ステップS140)。変数Aが0になった場合(ステップS140:YES)、制御部140は、図6の画像取得処理を終了する。 After the variable A is decremented (step S130), the control unit 140 determines whether the variable A has become 0 (step S140). When the variable A becomes 0 (step S140: YES), the control unit 140 ends the image acquisition process of FIG.
変数Aが0でない場合(ステップS140:NO)、制御部140は、ステップS110に戻って、ステップS110〜ステップS140の処理を変数Aが0になるまで繰り返す。変数Aが0になった場合(ステップS140:YES)、制御部140は、図6の画像取得処理を終了する。 When the variable A is not 0 (step S140: NO), the control unit 140 returns to step S110 and repeats the processes of steps S110 to S140 until the variable A becomes 0. When the variable A becomes 0 (step S140: YES), the control unit 140 ends the image acquisition process of FIG.
図7は、制御部140が実行する受精判定処理を示すフローである。制御部140は、卵の培養が開始されてから7時間を経過したとき、受精判定処理を実行する。また、制御部140は、卵の培養が開始されてから7時間後から24時間後までの間に、1時間毎に受精判定処理を繰り返し実行する。 FIG. 7 is a flowchart showing fertilization determination processing executed by the control unit 140. The control unit 140 executes fertilization determination processing when 7 hours have elapsed since the start of egg culture. In addition, the control unit 140 repeatedly executes the fertilization determination process every hour from 7 hours to 24 hours after the start of egg culture.
受精判定処理が開始されると、制御部140は、ユーザーより指定されたウェルの数を表す変数Aを算出する(ステップS200)。指定されたウェルの数を表す変数Aを算出したのち(ステップS200)、制御部140は、指定されたウェルであって判定を終えていないウェルのうち、最も番号が小さいウェルの画像を抽出する(ステップS210)。本実施形態では、例えば、卵の培養が開始されてから7時間を経過したときに実行される受精判定処理では、指定されたウェルの画像は、培養部110が卵の培養を開始してから7時間の間に、15分の時間間隔で画像取得部130によって取得されていることから、指定されたウェルごとに28枚ある。すなわち、卵の培養が開始されてから7時間を経過したときに実行される受精判定処理においては、ステップS210において、制御部140は、指定されたウェルのうちの1つのウェルについて、28枚の画像を抽出する。卵の培養が開始されてから24時間を経過したときに実行される受精判定処理では、制御部140は、指定されたウェルのうちの1つのウェルについて、96枚の画像を抽出する。 When the fertilization determination process is started, the control unit 140 calculates a variable A representing the number of wells designated by the user (step S200). After calculating the variable A representing the number of designated wells (step S200), the control unit 140 extracts an image of the well with the smallest number among the designated wells that have not been determined. (Step S210). In the present embodiment, for example, in the fertilization determination process that is executed when 7 hours have elapsed since the start of the egg culture, the image of the designated well is displayed after the culture unit 110 starts the egg culture. Since it is acquired by the image acquisition unit 130 at a time interval of 15 minutes during 7 hours, there are 28 images for each designated well. That is, in the fertilization determination process that is executed when 7 hours have passed since the start of the egg culture, in step S210, the control unit 140 controls 28 pieces of one of the designated wells. Extract images. In the fertilization determination process executed when 24 hours have elapsed since the start of egg culture, the control unit 140 extracts 96 images for one of the designated wells.
指定されたウェルであって判定を終えていないウェルのうち、最も番号が小さいウェルの画像を抽出したのち(ステップS210)、制御部140は、抽出された画像の中で、卵における前核の数の差を最も顕著に認識できる2枚の画像を選択する(ステップS220)。 After extracting the image of the well with the smallest number among the designated wells that have not been determined (step S210), the control unit 140 determines the pronucleus in the egg in the extracted image. Two images that can recognize the difference in number most remarkably are selected (step S220).
抽出された画像の中で、卵における前核の数の差を最も顕著に認識できる2枚を選択したのち(ステップS220)、制御部140における判定部144は、2枚の画像を比較して受精しているか判定する(ステップS230)。 After selecting the two images that can recognize the difference in the number of pronuclei in the egg most remarkably from the extracted images (step S220), the determination unit 144 in the control unit 140 compares the two images. It is determined whether fertilization is performed (step S230).
2枚の画像を比較して受精しているか判定したのち(ステップS230)、制御部140は、判定を終えたウェルの番号を記憶する(ステップS240)。判定を終えたウェルを記憶したのち(ステップS240)、制御部140は、変数Aをデクリメントする。(ステップS250)。 After determining whether or not fertilization is performed by comparing two images (step S230), the control unit 140 stores the number of the well for which the determination has been completed (step S240). After storing the well for which the determination has been completed (step S240), the control unit 140 decrements the variable A. (Step S250).
変数Aがデクリメントされたあと(ステップS250)、制御部140は、変数Aが0になったか判定する(ステップS260)。変数Aが0になった場合(ステップS260:YES)、制御部140は、図7の受精判定処理を終了する。 After the variable A is decremented (step S250), the control unit 140 determines whether the variable A has become 0 (step S260). When the variable A becomes 0 (step S260: YES), the control unit 140 ends the fertilization determination process of FIG.
変数Aが0でない場合(ステップS260:NO)、制御部140は、ステップS210に戻って、ステップS210〜ステップS260の処理を変数Aが0になるまで繰り返す。変数Aが0になった場合(ステップS260:YES)、制御部140は、図7の受精判定処理を終了する。 When the variable A is not 0 (step S260: NO), the control unit 140 returns to step S210 and repeats the processing of steps S210 to S260 until the variable A becomes 0. When the variable A becomes 0 (step S260: YES), the control unit 140 ends the fertilization determination process of FIG.
以上説明した実施形態によれば、受精処理された卵の状態が撮影された画像の解析に基づいて、卵が受精しているか判定部144が判定できる。このため、受精処理された卵の受精を確認できるシステムが提供される。また、検体である受精処理された卵が機械的に解析されることから、人間が確認するよりも多くの検体を確認できる。また、判定部144によって受精しているかが判定されるため、人間が目で確認することに比べて、判定の煩雑さを低減できる。 According to the embodiment described above, the determination unit 144 can determine whether or not the egg is fertilized based on the analysis of the image obtained by photographing the state of the fertilized egg. For this reason, the system which can confirm fertilization of the fertilized egg is provided. In addition, since the fertilized eggs as specimens are mechanically analyzed, more specimens can be confirmed than humans can confirm. Moreover, since it is determined by the determination part 144 whether it is fertilizing, the complexity of determination can be reduced compared with human checking with eyes.
B.第2実施形態:
第2実施形態における受精判定システムの構成は、第1実施形態における判定部144とは異なる学習を行う判定部を備える点を除き、第1実施形態における受精判定システム10の構成と同様である。
B. Second embodiment:
The configuration of the fertilization determination system in the second embodiment is the same as the configuration of the fertilization determination system 10 in the first embodiment, except that a determination unit that performs learning different from the determination unit 144 in the first embodiment is provided.
第2実施形態における判定部は、多層のニューラルネットワークであるディープニューラルネットワーク400を用いたディープラーニングによって画像に写った卵の特徴(前核の数)について学習し、その学習に基づいて卵が受精しているか判定する。このため、判定部がディープラーニングによって学習した基準に基づいて、卵が受精しているか判定できる。ディープラーニングにより抽出された正常に受精した卵の特徴量が、人間が認識できていない特徴量であった場合には、卵の受精確認を、人間が行うよりも高い精度で行うことができる。 The determination unit in the second embodiment learns about the characteristics (number of pronuclei) of an egg shown in the image by deep learning using the deep neural network 400 that is a multilayer neural network, and the egg is fertilized based on the learning. Judge whether you are doing. For this reason, it can be determined whether the egg is fertilized based on the criterion learned by the determination unit through deep learning. When the feature amount of a normally fertilized egg extracted by deep learning is a feature amount that cannot be recognized by a human, fertilization confirmation of the egg can be performed with higher accuracy than that performed by a human.
図8は、ディープラーニングによる画像の学習について説明した説明図である。ディープニューラルネットワーク400は、人間の脳神経系における学習機構をモデルにしたネットワークである。ディープニューラルネットワーク400は、入力層410と、複数の中間層420と、出力層430とを備える。第2実施形態におけるディープニューラルネットワーク400は、4つの中間層420を備える。 FIG. 8 is an explanatory diagram illustrating learning of an image by deep learning. The deep neural network 400 is a network that models a learning mechanism in the human brain nervous system. The deep neural network 400 includes an input layer 410, a plurality of intermediate layers 420, and an output layer 430. The deep neural network 400 according to the second embodiment includes four intermediate layers 420.
入力層410は、情報を入力される層である。中間層420は、入力層410から伝達される情報に基づいて特徴量の算出を行う層である。出力層430は、中間層420から伝達される情報に基づいて結果を出力する層である。 The input layer 410 is a layer to which information is input. The intermediate layer 420 is a layer that calculates a feature amount based on information transmitted from the input layer 410. The output layer 430 is a layer that outputs a result based on information transmitted from the intermediate layer 420.
図8における画像300は、受精処理された卵の写った画像である。画像300の中には、前核が確認されなかった卵であるとラベルされた画像、前核が1つ確認された卵であるとラベルされた画像、前核が2つ確認された卵であるとラベルされた画像、前核が3つ確認された卵であるとラベルされた画像等が含まれる。 An image 300 in FIG. 8 is an image showing an egg that has been fertilized. In the image 300, an image labeled as an egg in which no pronuclei have been confirmed, an image labeled as an egg in which one pronucleus has been confirmed, and an egg in which two pronuclei have been confirmed. An image labeled as being, an image labeled as being an egg in which three pronuclei have been confirmed, and the like are included.
ディープニューラルネットワーク400による学習法について、説明する。入力層410は、前核の数についてラベルされた画像300が入力されると、その情報を中間層420に伝達する。中間層420は、入力層410から伝達された情報に基づいて、前核の特徴量の算出を行う。出力層430は、中間層から伝達される情報に基づいて算出された前核の特徴量を出力する。第2実施形態における判定部は、出力された特徴量を基準として、卵が受精しているか判定する。 A learning method using the deep neural network 400 will be described. When the image 300 labeled with the number of pronuclei is input, the input layer 410 transmits the information to the intermediate layer 420. The intermediate layer 420 calculates the feature value of the pronucleus based on the information transmitted from the input layer 410. The output layer 430 outputs the feature amount of the pronuclei calculated based on information transmitted from the intermediate layer. The determination part in 2nd Embodiment determines whether the egg is fertilized on the basis of the output feature-value.
C.第3実施形態:
第3実施形態では、受精処理された卵のうち正常に受精していない非受精卵を選抜する方法について説明する。この非受精卵を選抜する方法は、培養工程と、画像取得工程と、選抜工程とを備える。ここでいう「非受精卵」には、前核が確認されなかった卵である不受精卵と、前核が1つもしくは3つ以上確認された卵である異常受精卵とを含む。
C. Third embodiment:
In the third embodiment, a method for selecting non-fertilized eggs that have not been normally fertilized among the fertilized eggs will be described. This method of selecting a non-fertilized egg includes a culture process, an image acquisition process, and a selection process. The term “non-fertilized egg” as used herein includes a non-fertilized egg that is an egg whose pronucleus have not been confirmed, and an abnormally fertilized egg that is an egg whose one or more pronuclei have been confirmed.
培養工程は、受精処理された卵を培養する工程である。画像取得工程は、培養工程において培養されている卵の状態を、設定された時間間隔で撮影して複数の画像を取得する工程である。選抜工程は、画像に写った卵の状態を解析することによって非受精卵を選抜する工程である。 The culture process is a process of culturing the fertilized egg. The image acquisition process is a process of acquiring a plurality of images by photographing the state of the eggs cultured in the culture process at set time intervals. The selection step is a step of selecting a non-fertilized egg by analyzing the state of the egg shown in the image.
以上説明した第3実施形態によれば、受精処理された卵の状態が撮影された画像の解析に基づいて、非受精卵を選抜できる。このため、受精処理をされた卵のうち正常に受精していない非受精卵を選抜する方法が提供される。 According to 3rd Embodiment described above, a non-fertilized egg can be selected based on the analysis of the image by which the state of the fertilized egg was image | photographed. For this reason, the method of selecting the non-fertilized egg which is not normally fertilized among the eggs which have been fertilized is provided.
D.変形例:
第1実施形態では、受精判定システム10は、容器搬送部115を備えていたが、本発明はこれに限られない。例えば、他の実施形態における受精判定システムは、容器搬送部115を備えていない形態であってもよい。この場合、画像取得部130は、固定部に固定された培養容器200の重力方向上側に備えられていてもよいし、画像取得部130が培養容器200の重力方向上側に移動可能に構成されていればよい。
D. Variations:
In 1st Embodiment, the fertilization determination system 10 was provided with the container conveyance part 115, However, This invention is not limited to this. For example, the fertilization determination system in another embodiment may not include the container transport unit 115. In this case, the image acquisition unit 130 may be provided on the upper side in the gravity direction of the culture vessel 200 fixed to the fixing unit, or the image acquisition unit 130 is configured to be movable on the upper side in the gravity direction of the culture vessel 200. Just do it.
第1実施形態では、画像取得部130によって取得された画像は、画像格納部142に格納されていたが、本発明はこれに限られない。例えば、画像取得部130によって取得された画像は、いわゆるクラウド上に格納されていてもよい。この場合、判定部144は、クラウドより画像を取得して判定を行う。 In the first embodiment, the image acquired by the image acquisition unit 130 is stored in the image storage unit 142, but the present invention is not limited to this. For example, the image acquired by the image acquisition unit 130 may be stored on a so-called cloud. In this case, the determination unit 144 acquires an image from the cloud and performs determination.
第1実施形態では、判定部144は、異なる時間に取得された2枚の画像を解析することによって卵が受精しているか判定していたが、本発明はこれに限られない。例えば、判定部144は、(制御部140により選択された)卵における前核の数が最も多く認識できた1枚の画像を解析して卵が受精しているか判定してもよい。この場合、判定部144は、例えば、制御部140により選択された1枚の画像が、前核が2つ確認された画像であった場合、卵が受精していると判定する。 In the first embodiment, the determination unit 144 determines whether an egg is fertilized by analyzing two images acquired at different times, but the present invention is not limited to this. For example, the determination unit 144 may determine whether the egg is fertilized by analyzing one image in which the number of pronuclei in the egg (selected by the control unit 140) can be recognized most frequently. In this case, for example, the determination unit 144 determines that the egg is fertilized when one image selected by the control unit 140 is an image in which two pronuclei are confirmed.
また、判定部144は、(制御部140により選択された)異なる時間に取得された3枚の画像を解析することによって卵が受精しているか判定してもよい。この場合、判定部144は、例えば、卵における前核の数が確認されなかった画像1枚と卵における前核が1つ確認された画像1枚と卵における前核が2つ確認された画像1枚との3枚が確認された場合にのみ、卵が受精していると判定する。また、判定部144は、(制御部140により選択された)異なる時間に取得された4枚以上の画像を解析することによって卵が受精しているか判定してもよい。この場合、判定部144は、例えば、4枚以上の画像を時系列的に並べて、前核の数が0、1、2、0の順に増減する変化を確認できた場合にのみ、卵が受精していると判定する。 The determination unit 144 may determine whether the egg is fertilized by analyzing three images acquired at different times (selected by the control unit 140). In this case, the determination unit 144, for example, one image in which the number of pronuclei in the egg is not confirmed, one image in which one pronucleus in the egg is confirmed, and an image in which two pronuclei in the egg are confirmed. It is determined that the egg is fertilized only when three of them are confirmed. The determination unit 144 may determine whether the egg is fertilized by analyzing four or more images acquired at different times (selected by the control unit 140). In this case, for example, the determination unit 144 arranges four or more images in time series, and the egg is fertilized only when the number of pronuclei increases or decreases in the order of 0, 1, 2, and 0. It is determined that
第3実施形態では、入力される画像300は、前核の数についてラベルされた画像であったが、本発明はこれに限られない。例えば、入力される画像は、受精しているとラベルされた画像および受精していないとラベルされた画像であってもよい。 In the third embodiment, the input image 300 is an image labeled with respect to the number of pronuclei, but the present invention is not limited to this. For example, the input image may be an image labeled as fertilized and an image labeled as not fertilized.
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiments, examples, and modifications, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the above-described effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.
10…受精判定システム
110…培養部
115…容器搬送部
130…画像取得部
140…制御部
142…画像格納部
144…判定部
150…ユーザインタフェース
160…報知部
200…培養容器
300…画像
400…ディープニューラルネットワーク
410…入力層
420…中間層
430…出力層
DESCRIPTION OF SYMBOLS 10 ... Fertilization determination system 110 ... Culture | cultivation part 115 ... Container conveyance part 130 ... Image acquisition part 140 ... Control part 142 ... Image storage part 144 ... Determination part 150 ... User interface 160 ... Notification part 200 ... Culture container 300 ... Image 400 ... Deep Neural network 410 ... input layer 420 ... intermediate layer 430 ... output layer
Claims (7)
受精処理された卵を培養する培養部と、
前記培養部によって培養されている前記卵の状態を、設定された時間間隔で撮影して複数の画像を取得する画像取得部と、
前記画像に写った前記卵の状態を解析することによって前記卵が受精しているか判定する判定部と、
を備える、受精判定システム。 A fertilization determination system,
A culture unit for culturing the fertilized egg;
An image acquisition unit that captures the state of the egg being cultured by the culture unit at a set time interval and acquires a plurality of images;
A determination unit for determining whether the egg is fertilized by analyzing the state of the egg in the image;
A fertilization determination system.
前記判定部は、異なる時間に取得された少なくとも2枚の前記画像における前記卵の経時的な変化を解析することによって前記卵が受精しているか判定する、受精判定システム。 The fertilization determination system according to claim 1,
The fertilization determination system, wherein the determination unit determines whether the egg is fertilized by analyzing a change with time of the egg in at least two images acquired at different times.
前記判定部は、教師あり学習によって前記画像に写った前記卵の特徴について学習し、前記学習に基づいて前記卵が受精しているか判定する、受精判定システム。 The fertilization determination system according to claim 1 or 2,
The fertilization determination system, wherein the determination unit learns about the characteristics of the egg reflected in the image by supervised learning and determines whether the egg is fertilized based on the learning.
前記判定部は、多層のニューラルネットワークを用いたディープラーニングによって前記画像に写った前記卵の特徴について学習し、前記学習に基づいて前記卵が受精しているか判定する、受精判定システム。 The fertilization determination system according to claim 1,
The fertilization determination system, wherein the determination unit learns about the characteristics of the egg reflected in the image by deep learning using a multilayer neural network, and determines whether the egg is fertilized based on the learning.
前記判定部は、前記画像のうち判定に用いられた判定画像を報知する報知部を有する、受精判定システム。 A fertilization determination system according to any one of claims 1 to 4,
The determination unit is a fertilization determination system including a notification unit that notifies a determination image used for determination among the images.
前記報知部は、前記判定画像を報知するとともに前記判定画像において前記判定部が判定の根拠とした情報を報知する、受精判定システム。 The fertilization determination system according to claim 5,
The fertility determination system, in which the notification unit notifies the determination image and notifies the determination image of information used as a basis for determination in the determination image.
前記卵を培養する培養工程と、
前記培養工程において培養されている前記卵の状態を、設定された時間間隔で撮影して複数の画像を取得する画像取得工程と、
前記画像に写った前記卵の状態を解析することによって前記非受精卵を選抜する選抜工程と、
を備える、非受精卵を選抜する方法。 A method of selecting non-fertilized eggs that have not been normally fertilized among fertilized eggs,
A culture step of culturing the egg;
An image acquisition step of acquiring a plurality of images by photographing the state of the eggs cultured in the culture step at set time intervals;
A selection step of selecting the non-fertilized eggs by analyzing the state of the eggs in the image;
A method for selecting a non-fertilized egg.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016199618A JP2018061440A (en) | 2016-10-11 | 2016-10-11 | Fertilization determination system |
PCT/JP2017/035857 WO2018070288A1 (en) | 2016-10-11 | 2017-10-02 | Fertilization determination system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016199618A JP2018061440A (en) | 2016-10-11 | 2016-10-11 | Fertilization determination system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019189301A Division JP2020005661A (en) | 2019-10-16 | 2019-10-16 | Fertilization determination system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018061440A true JP2018061440A (en) | 2018-04-19 |
Family
ID=61905586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016199618A Pending JP2018061440A (en) | 2016-10-11 | 2016-10-11 | Fertilization determination system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018061440A (en) |
WO (1) | WO2018070288A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019017318A (en) * | 2017-07-19 | 2019-02-07 | 大日本印刷株式会社 | Image display device, program and control method |
US11978208B2 (en) | 2019-01-31 | 2024-05-07 | Fujifilm Corporation | Trained model, learning method, learning program, medical information acquisition device, medical information acquisition method, and medical information acquisition program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112329664A (en) * | 2020-11-11 | 2021-02-05 | 赛芒(北京)信息技术有限公司 | Method for evaluating prokaryotic quantity of prokaryotic embryo |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000513465A (en) * | 1996-04-27 | 2000-10-10 | ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Automatic microscope-assisted inspection method for living tissue samples and body fluid samples |
WO2011021391A1 (en) * | 2009-08-19 | 2011-02-24 | 国立大学法人名古屋大学 | Device for evaluating cultured cells, incubator, and program |
JP2015130806A (en) * | 2014-01-09 | 2015-07-23 | 大日本印刷株式会社 | Growth information management system, and growth information management program |
JP2016509845A (en) * | 2013-02-28 | 2016-04-04 | プロジェニー, インコーポレイテッド | Apparatus, method and system for image-based human germ cell classification |
WO2016050964A1 (en) * | 2014-10-03 | 2016-04-07 | Unisense Fertilitech A/S | Embryo assessment |
JP2016118918A (en) * | 2014-12-19 | 2016-06-30 | ヤフー株式会社 | Model generation apparatus, information distribution apparatus, model generation method, information distribution method, model generation program, and information distribution program |
-
2016
- 2016-10-11 JP JP2016199618A patent/JP2018061440A/en active Pending
-
2017
- 2017-10-02 WO PCT/JP2017/035857 patent/WO2018070288A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000513465A (en) * | 1996-04-27 | 2000-10-10 | ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Automatic microscope-assisted inspection method for living tissue samples and body fluid samples |
WO2011021391A1 (en) * | 2009-08-19 | 2011-02-24 | 国立大学法人名古屋大学 | Device for evaluating cultured cells, incubator, and program |
JP2016509845A (en) * | 2013-02-28 | 2016-04-04 | プロジェニー, インコーポレイテッド | Apparatus, method and system for image-based human germ cell classification |
JP2015130806A (en) * | 2014-01-09 | 2015-07-23 | 大日本印刷株式会社 | Growth information management system, and growth information management program |
WO2016050964A1 (en) * | 2014-10-03 | 2016-04-07 | Unisense Fertilitech A/S | Embryo assessment |
JP2016118918A (en) * | 2014-12-19 | 2016-06-30 | ヤフー株式会社 | Model generation apparatus, information distribution apparatus, model generation method, information distribution method, model generation program, and information distribution program |
Non-Patent Citations (4)
Title |
---|
JOURNAL OF MAMMALIAN OVA RESEARCH, vol. 31, no. 4, JPN6018040374, 2014, pages 107 - 114, ISSN: 0004210202 * |
培養室(ラボラトリー)浅田レディースクリニック, JPN6020004858, 19 September 2012 (2012-09-19), ISSN: 0004210203 * |
日本受精着床学会雑誌, vol. 33, no. 1, JPN6018040378, 2016, pages 44 - 49, ISSN: 0003977262 * |
永遠幸レディスクリニック|BLOG|異常受精, JPN6020004860, 23 July 2011 (2011-07-23), ISSN: 0004210204 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019017318A (en) * | 2017-07-19 | 2019-02-07 | 大日本印刷株式会社 | Image display device, program and control method |
US11978208B2 (en) | 2019-01-31 | 2024-05-07 | Fujifilm Corporation | Trained model, learning method, learning program, medical information acquisition device, medical information acquisition method, and medical information acquisition program |
Also Published As
Publication number | Publication date |
---|---|
WO2018070288A1 (en) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200364869A1 (en) | Information processing apparatus, information processing method, and program | |
WO2018070288A1 (en) | Fertilization determination system | |
JPWO2018101004A1 (en) | Cell image evaluation apparatus and cell image evaluation control program | |
JP7024231B2 (en) | Information processing equipment, information processing methods, programs and observation systems | |
CN105283250A (en) | Apparatus, method and system for cultured sample development monitoring | |
US10762327B2 (en) | Image-processing device and cell observation system | |
US20210198605A1 (en) | Information processing apparatus, information processing method, program, and observation system | |
US11017527B2 (en) | Information processing device, information processing method, and information processing system | |
US10007835B2 (en) | Cell region display control device, method, and program | |
KR20090114349A (en) | Incubator, schedule management method, and program | |
JPWO2020012616A1 (en) | Information processing equipment, information processing methods, programs, and information processing systems | |
CN106104571A (en) | For analyzing the method and apparatus of embryonic development | |
WO2010117052A1 (en) | Organism sample observation device | |
JP2019088243A (en) | Image analysis device | |
JP6732722B2 (en) | Embryo selection system | |
EP3769036A1 (en) | Method and system for extraction of statistical sample of moving objects | |
JP2022547900A (en) | Automated evaluation of quality assurance metrics used in assisted reproductive procedures | |
JP7482172B2 (en) | Fertility Assessment System | |
JP7000379B2 (en) | Embryo selection system | |
US20230123767A1 (en) | System, method, and recording medium for evaluating stem cell differentiation | |
JP6946807B2 (en) | Image display device, program and control method | |
WO2021177142A1 (en) | System, information processor, server, terminal, program or method for supporting assisted reproduction | |
JPWO2019234878A1 (en) | Image processing equipment and culture evaluation system | |
JP6939170B2 (en) | Image display device, program and control method | |
JP6931418B2 (en) | Image processing methods, image processing devices, user interface devices, image processing systems, servers, and image processing programs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180830 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180830 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191016 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20191016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20191017 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20191112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191119 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20191206 |
|
C092 | Termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C092 Effective date: 20191210 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20191210 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20200207 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20200212 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200714 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20201006 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20201222 |
|
C28A | Non-patent document cited |
Free format text: JAPANESE INTERMEDIATE CODE: C2838 Effective date: 20201222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210222 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20210518 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210622 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210622 |