Nothing Special   »   [go: up one dir, main page]

JP2018052776A - Method for production of checker brick for air heating furnace - Google Patents

Method for production of checker brick for air heating furnace Download PDF

Info

Publication number
JP2018052776A
JP2018052776A JP2016191694A JP2016191694A JP2018052776A JP 2018052776 A JP2018052776 A JP 2018052776A JP 2016191694 A JP2016191694 A JP 2016191694A JP 2016191694 A JP2016191694 A JP 2016191694A JP 2018052776 A JP2018052776 A JP 2018052776A
Authority
JP
Japan
Prior art keywords
raw material
mass
checker brick
sillimanite
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016191694A
Other languages
Japanese (ja)
Other versions
JP6754653B2 (en
Inventor
博文 酒井
Hirobumi Sakai
博文 酒井
吉隆 小出石
Yoshitaka Kodashiseki
吉隆 小出石
倫 中村
Hitoshi Nakamura
倫 中村
佳洋 田村
Yoshihiro Tamura
佳洋 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, Nippon Steel and Sumitomo Metal Corp filed Critical Krosaki Harima Corp
Priority to JP2016191694A priority Critical patent/JP6754653B2/en
Publication of JP2018052776A publication Critical patent/JP2018052776A/en
Application granted granted Critical
Publication of JP6754653B2 publication Critical patent/JP6754653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for production of checker brick for an air heating furnace, free from cracking in molding and having sufficient strength of a product.SOLUTION: The method for production of a checker brick includes steps of kneading, molding, drying, and then firing of a refractory raw material compound comprising 10-50 mass% of a mullite raw material, 20-60 mass% of a corundum-containing raw material, 10-30 mass% of one or more of a sillimanite mineral selected from andalusite, kyanite, and sillimanite, and 3-20 mass% of a clay. Among the mullite raw material, the corundum-containing raw material, andalusite, kyanite, and/or sillimanite, a raw material having a grain size of 0.2 mm or under is 5-20 mass%. By using the above-mentioned refractory raw material compound, the method for production of a checker brick of a known shape for an air heating furnace, as well as a thin wall checker brick having improved heat exchange efficiency, such as a checker brick having wall thickness T of 10 to less than 15 mm and the number of pores of approximately 7-37, is provided.SELECTED DRAWING: Figure 1

Description

本発明は、熱風炉の蓄熱室内に組み込まれる熱風炉用チェッカーれんが(以下、単に「チェッカーれんが」ともいう。)の製造方法に関する。   The present invention relates to a method for manufacturing a hot stove checker brick (hereinafter also simply referred to as “checker brick”) incorporated in a heat storage chamber of a hot stove.

製銑用の高炉への熱風供給を行うために、熱風炉が用いられている。熱風炉の蓄熱室内には、蓄熱材として、外形が六角柱形状をしたチェッカーれんが(ギッターれんがともいう。)が多数配列され、複数層に重ねて築造されている。チェッカーれんがは、耐火れんが材で形成された六角柱形状の本体を有する。本体の上面及び下面は平行とされている。本体には、断面形状が丸形又は六角形のガス流路が複数、鉛直方向に貫通形成されており、各々は本体の上下面に開口されている。   A hot blast furnace is used to supply hot blast to a blast furnace for iron making. In the heat storage chamber of the hot stove, a large number of checker bricks (also referred to as “gitter bricks”) whose outer shape is a hexagonal column shape are arranged as a heat storage material, and are built in layers. The checker brick has a hexagonal column-shaped main body formed of a refractory brick material. The upper surface and the lower surface of the main body are parallel. A plurality of gas passages having a round or hexagonal cross-sectional shape are formed in the main body so as to penetrate in the vertical direction, and each is opened on the upper and lower surfaces of the main body.

このようなチェッカーれんがでは、ガス流路に高温の燃焼ガスを通過させることで、本体のガス流路以外の耐火れんが材が詰まった部分(壁)に熱を蓄熱することができる。一方、蓄熱した状態でガス流路に冷風を通過させて熱交換させることで、高温の熱風を生成し、高炉に供給することができる。このとき、チェッカーれんがの寸法形状が、ガスと耐火れんが材との熱交換効率に大きな影響を与える。このため、近年では、ガス流路の形状及び壁の厚み等に関する最適化が行われ、孔の数を増やし壁の厚みが小さいものが開発されている。   In such a checker brick, heat can be stored in a portion (wall) clogged with a refractory brick material other than the gas flow channel of the main body by passing a high-temperature combustion gas through the gas flow channel. On the other hand, hot air can be generated and supplied to the blast furnace by allowing cold air to pass through the gas flow path and exchanging heat while the heat is stored. At this time, the size and shape of the checker brick greatly affects the heat exchange efficiency between the gas and the refractory brick. For this reason, in recent years, optimization related to the shape of the gas flow path, the thickness of the wall, and the like has been performed, and those having a larger number of holes and a smaller wall thickness have been developed.

例えば特許文献1には、19個のガス流路を有し、壁の厚みが15mmのチェッカーれんがが開示されている。しかしながら、壁の厚みを薄くすると、従来の製造方法では成形中に成形体に亀裂が生じやすい問題、及び製品の強度が不十分となる問題が生じてくる。   For example, Patent Document 1 discloses a checker brick having 19 gas flow paths and a wall thickness of 15 mm. However, when the wall thickness is reduced, the conventional manufacturing method has a problem that the molded body is likely to crack during molding and a problem that the strength of the product is insufficient.

また、特許文献2には、コークス炉の蓄熱れんがであるが、スリットタイプで壁の厚みが11mmのものが開示されている。この蓄熱れんがの製造方法として、その段落0043に「ボールミルで粉砕したムライトとコランダムを主材としてAl量75wt%のハイアルミナ質蓄熱レンガを製作した。原料配合構成は粗粒(1.5〜0.8mm)、中粒(0.8〜0.08mm)、細粒(<0.08mm)を1:2:2の比率としたもので、別にフリントクレイ3wt%、水分4wt%を添加したもので、350トンのフリクションプレスにて成形した」ことが記載されている。 Patent Document 2 discloses a heat storage brick for a coke oven, which is of a slit type and has a wall thickness of 11 mm. As a method for producing this heat storage brick, in paragraph 0043, “a high alumina-based heat storage brick having an Al 2 O 3 content of 75 wt% was manufactured using mullite and corundum crushed by a ball mill as main materials. 5 to 0.8 mm), medium grains (0.8 to 0.08 mm), and fine grains (<0.08 mm) in a ratio of 1: 2: 2, separately containing 3 wt% flint clay and 4 wt% moisture. It was added and molded with a 350-ton friction press ”.

しかしながら、特許文献2の原料配合構成で特許文献1のチェッカーれんがを製造しようとすると、成形時に成形体に亀裂が生じる問題や焼成後の強度が不十分な問題がある。すなわち、チェッカーれんがの製造方法では成形時に孔を形成するために六角柱又は円柱の芯棒を使用することになるが、壁の厚みが薄いため成形後にこれらの芯棒を成形体から抜く際に壁が崩れたり、あるいは亀裂が生じたりする問題がある。また、特許文献2の蓄熱れんがは厚み14.5〜18mmの長方形の枠を有しており、この枠によって強度が維持できるが、特許文献1のチェッカーれんがの場合には、全ての壁の厚みが15mmと薄いため、ハンドリング時の欠け等の破損が生じやすく、製品自体の強度を高める必要もある。   However, when trying to manufacture the checker brick of Patent Document 1 with the raw material composition of Patent Document 2, there are problems that the molded body is cracked during molding and the strength after firing is insufficient. That is, in the checker brick manufacturing method, a hexagonal column or a cylindrical core rod is used to form a hole during molding, but when the core rod is removed from the molded body after molding because the wall is thin. There is a problem that the wall collapses or cracks occur. Further, the heat storage brick of Patent Document 2 has a rectangular frame with a thickness of 14.5 to 18 mm, and the strength can be maintained by this frame, but in the case of the checker brick of Patent Document 1, the thickness of all the walls is Is as thin as 15 mm, it is easy to cause breakage such as chipping during handling, and it is necessary to increase the strength of the product itself.

特開2014−118614号公報JP 2014-118614 A 特開平7−172940号公報JP 7-172940 A

本発明が解決しようとする課題は、成形時の亀裂が発生することなく、しかも製品の強度が十分な熱風炉用チェッカーれんがの製造方法を提供することにある。   The problem to be solved by the present invention is to provide a method for producing a checker brick for a hot stove without causing cracks during molding and having a sufficient strength of the product.

成形時の強度を向上するためには耐火原料配合物への粘土の使用が有効であるが、その反面、焼成収縮が大きくなり亀裂が入る問題がある。本発明者らはシリマナイト族鉱物を併用することで焼成中の亀裂が防止できることを知見した。その結果、壁の厚みが薄くても成形時の亀裂の発生がなく、しかも製品の強度が十分あるチェッカーれんがの製造方法に想到した。   In order to improve the strength at the time of molding, the use of clay in the refractory raw material composition is effective, but on the other hand, there is a problem that the firing shrinkage becomes large and cracks are formed. The present inventors have found that cracks during firing can be prevented by using a sillimanite group mineral in combination. As a result, the inventors have devised a method for producing a checker brick that does not generate cracks during molding even when the wall is thin, and has sufficient product strength.

すなわち、本発明の熱風炉用チェッカーれんがの製造方法は、ムライト原料10〜50質量%、コランダム含有原料20〜60質量%、シリマナイト族鉱物としてアンダルサイト、カイアナイト、及びシリマナイトのうち1種又は2種以上10〜30質量%、及び粘土3〜20質量%からなり、ムライト原料、コランダム含有原料、アンダルサイト、カイアナイト、及び/又はシリマナイトのうち粒径0.2mm以下の原料が5〜20質量%である耐火原料配合物を混練後、成形し、乾燥、焼成するもので、特に耐火原料配合物の構成に特徴がある。以下、本発明による耐火原料配合物の構成について詳しく説明する。   That is, the method for producing a checker brick for a hot stove according to the present invention includes 10 to 50% by mass of a mullite raw material, 20 to 60% by mass of a corundum-containing raw material, and one or two kinds of andalusite, kyanite, and sillimanite as sillimanite group minerals. It is composed of 10 to 30% by mass and 3 to 20% by mass of clay, and among mullite raw material, corundum-containing raw material, andalusite, kyanite, and / or sillimanite, the raw material having a particle size of 0.2 mm or less is 5 to 20% by mass. A certain refractory raw material composition is kneaded, molded, dried and fired, and is particularly characterized by the constitution of the refractory raw material composition. Hereinafter, the structure of the refractory raw material composition according to the present invention will be described in detail.

コランダム含有原料は耐クリープ性向上及び強度発現のために20〜60質量%で使用する。コランダム含有原料が20質量%未満では耐クリープ及び強度が不十分となり、60質量%を超えると耐スポーリング性が低下する。   The corundum-containing raw material is used in an amount of 20 to 60% by mass for improving creep resistance and developing strength. When the corundum-containing raw material is less than 20% by mass, creep resistance and strength are insufficient, and when it exceeds 60% by mass, the spalling resistance is lowered.

ムライト原料は、耐クリープ性及び耐スポーリング性向上のために10〜50質量%で使用する。ムライト原料が10質量%未満では耐クリープ性及び耐スポーリング性が不十分となり、50質量%を超えると耐スポーリング性の向上効果は変わらず逆に原料費のコストアップとなる。   The mullite raw material is used in an amount of 10 to 50% by mass for improving creep resistance and spalling resistance. When the mullite raw material is less than 10% by mass, the creep resistance and spalling resistance are insufficient, and when it exceeds 50% by mass, the effect of improving the spalling resistance is not changed and the cost of the raw material is increased.

ムライト原料、コランダム含有原料、アンダルサイト、カイアナイト、及び/又はシリマナイトのうち粒径0.2mm以下の原料は成形時の充填性を高めることで組織を緻密化し焼成後のれんがのボロツキや欠けを防止するために5〜20質量%使用する。この粒径0.2mm以下の原料が5質量%未満では、焼成後に壁部のエッジ部のボロツキや欠けが発生し、20質量%を超えると組織が緻密になりすぎて耐スポーリング性が低下する。   Of mullite raw material, corundum-containing raw material, andalusite, kyanite, and / or sillimanite, the raw material with a particle size of 0.2 mm or less increases the filling property at the time of molding to make the structure denser and prevent the brick from being broken and chipped after firing. In order to do so, 5-20 mass% is used. If the raw material having a particle size of 0.2 mm or less is less than 5% by mass, the edge of the wall part will be battered or chipped after firing, and if it exceeds 20% by mass, the structure becomes too dense and the spalling resistance decreases. To do.

シリマナイト族鉱物としてアンダルサイト、カイアナイト、あるいはシリマナイトは、それ自身が焼成中に膨張することから、粘土の使用による焼成中のれんがの収縮を抑制することで焼成収縮による亀裂の発生を抑制する効果がある。シリマナイト族鉱物としてアンダルサイト、カイアナイト、及びシリマナイトのうち1種又は2種以上は10〜30質量%で使用する。これらのシリマナイト族鉱物が10質量%未満では焼成亀裂の抑制効果が不十分であり、30質量%を超えると熱膨張率が高くなり過ぎて耐スポーリング性が不十分となる。   As a silimanite group mineral, andalusite, kayanite, or silimanite itself expands during firing, and therefore, by suppressing the shrinkage of brick during firing due to the use of clay, it has the effect of suppressing cracking due to firing shrinkage. is there. As the sillimanite group mineral, one or more of andalusite, kyanite, and sillimanite are used at 10 to 30% by mass. If these sillimanite group minerals are less than 10% by mass, the effect of suppressing the firing cracks is insufficient, and if it exceeds 30% by mass, the coefficient of thermal expansion becomes too high and the spalling resistance becomes insufficient.

粘土は成形時に成形体の強度を高め亀裂を防止するためと焼成後の強度発現のために3〜20質量%使用する。粘土が3質量%未満では成形体の強度が不十分なため成形体に亀裂が発生し、20質量%を超えると焼成収縮が大きくなり焼成時に亀裂が発生する。焼成後の強度をさらに高くしたい場合、粘土は10質量%以上、すなわち10〜20質量%使用することが好ましい。   Clay is used in an amount of 3 to 20% by mass to increase the strength of the molded body at the time of molding to prevent cracking and to develop the strength after firing. If the clay is less than 3% by mass, the molded body has insufficient strength, so that cracks occur in the molded body. If the clay exceeds 20% by mass, firing shrinkage increases and cracks occur during firing. When it is desired to further increase the strength after firing, the clay is preferably used in an amount of 10% by mass or more, that is, 10 to 20% by mass.

さらに本発明においては、粘土の多量使用による過焼結を防止するために、耐火原料配合物中のFeを1.5質量%以下、及びNaOを1.0質量%以下とすることが好ましい。 Furthermore, in the present invention, in order to prevent oversintering due to the use of a large amount of clay, Fe 2 O 3 in the refractory raw material composition is 1.5 mass% or less, and Na 2 O is 1.0 mass% or less. It is preferable to do.

本発明によれば、成形時の亀裂が発生することなく、しかも製品の強度が十分な熱風炉用チェッカーれんがを製造することができる。   According to the present invention, it is possible to manufacture a checker brick for a hot stove without causing cracks during molding and having sufficient product strength.

本発明により製造するチェッカーれんがの一例を示す斜視図である。It is a perspective view which shows an example of the checker brick manufactured by this invention. 図1のチェッカーれんがから切り出すサンプルの形状を示す図である。It is a figure which shows the shape of the sample cut out from the checker brick of FIG.

本発明において耐火原料配合物に使用するコランダム含有原料としては、コランダムを50質量%以上含有する原料のうち1種以上を使用することができる。例えば電融アルミナ、焼結アルミナ、ボーキサイト、焼バンケツ、仮焼アルミナ及びれんが屑のうち1種以上を使用することができる。   In the present invention, as the corundum-containing raw material used for the refractory raw material composition, one or more of the raw materials containing 50% by mass or more of corundum can be used. For example, at least one of electrofused alumina, sintered alumina, bauxite, baked banquet, calcined alumina, and brick scraps can be used.

ムライト原料としては、通常の耐火物の原料として市販されているものを使用することができ、例えば合成ムライト、電融ムライト、あるいは焼結ムライトなどを使用することができる。ムライトは、不純物としてコランダムあるいはクリストバライトを含むことがあり、ムライト純度が85%以上のものを使用することが好ましい。   As the mullite raw material, those commercially available as ordinary refractory raw materials can be used. For example, synthetic mullite, electrofused mullite, or sintered mullite can be used. Mullite may contain corundum or cristobalite as impurities, and those having a mullite purity of 85% or more are preferably used.

粘土としては、通常の耐火物の原料として市販されているものを使用することができ、例えばSiO含有量が40〜70質量%、Al含有量が20〜30質量%のものなどを使用することができる。 The clay can be used those commercially available as a raw material for regular refractory, for example, SiO 2 content of 40 to 70 wt%, Al 2 O 3 content, such as those of 20 to 30 wt% Can be used.

シリマナイト族鉱物としては、シリマナイト、アンダルサイト及びカイアナイトのうち1種又は2種以上を使用する。これらのシリマナイト族鉱物の熱膨張率はいずれも、ムライト、シャモット、及びアルミナの熱膨張率より大きいので、粘土の使用による焼成中のれんがの収縮を抑制することで焼成収縮による亀裂の発生を抑制する効果がある。これらの原料は、天然から採掘される鉱物であり、それらを精製して使用することができる。より耐クリープ性を確保したい場合には、不純物としての酸化鉄(Fe)が約2質量%以下、好ましくは1質量%以下とすることもできる。 As the sillimanite group mineral, one or more of sillimanite, andalusite, and kyanite are used. Since the thermal expansion coefficient of these sillimanite group minerals is higher than that of mullite, chamotte, and alumina, cracking due to firing shrinkage is suppressed by suppressing the shrinkage of bricks during firing due to the use of clay. There is an effect to. These raw materials are minerals mined from nature and can be used by refining them. When it is desired to further ensure the creep resistance, iron oxide (Fe 2 O 3 ) as an impurity can be about 2 mass% or less, preferably 1 mass% or less.

なお、上記以外の原料でも悪影響を及ぼさない範囲で耐火原料配合物に使用することができ、例えばろう石、珪石、溶融シリカ、シャモット等は10質量%以下、好ましくは5質量%以下で使用可能である。   In addition, it can be used for a refractory raw material composition within a range that does not adversely affect other raw materials. For example, wax stone, silica stone, fused silica, chamotte, etc. can be used at 10% by mass or less, preferably 5% by mass or less. It is.

本発明のチェッカーれんがの製造方法では、以上の構成を有する耐火原料配合物を使用し、後は一般的なチェッカーれんがの製造方法を採用することができる。すなわち、耐火原料配合物にバインダーを添加して混練、成形、乾燥後、1300〜1600℃で焼成することができる。   In the checker brick manufacturing method of the present invention, the refractory raw material composition having the above-described configuration is used, and a general checker brick manufacturing method can be employed thereafter. That is, it can be fired at 1300 to 1600 ° C. after kneading, forming and drying by adding a binder to the refractory raw material composition.

そして本発明によれば、熱風炉で使用されている公知形状のチェッカーれんがのほか、より熱交換効率に優れる薄壁のチェッカーれんが、例えば壁の厚みが10mm以上15mm未満で、孔の数が7〜37個程度のチェッカーれんがを問題なく製造することができる。   According to the present invention, in addition to a checker brick having a known shape used in a hot stove, a thin wall checker brick having a more excellent heat exchange efficiency, for example, a wall thickness of 10 mm or more and less than 15 mm and a number of holes of 7 About 37 checker bricks can be produced without problems.

表1及び表2に示す耐火原料配合物に水系のバインダーを添加して混練し、プレス機で図1に示すチェッカーれんがを成形し、乾燥後、1400℃で焼成した。図1のチェッカーれんがは、壁の厚みTが11mm、れんがの高さHが130mm、れんがの1辺(六角形状の外形の1辺)の長さLが130mm、孔の数が19個である。   A water-based binder was added to the refractory raw material blends shown in Tables 1 and 2 and kneaded. The checker brick shown in FIG. The checker brick of FIG. 1 has a wall thickness T of 11 mm, a brick height H of 130 mm, a length L of one side of the brick (one side of the hexagonal shape) of 130 mm, and 19 holes. .

Figure 2018052776
Figure 2018052776

Figure 2018052776
Figure 2018052776

コランダム含有原料として使用した焼バンケツは、コランダムが80質量%のものを使用した。同じくコランダム含有原料として使用したれんが屑は、コランダムが50質量%、鉱物相としてのムライトが40質量%のものを使用した。ムライト原料として使用した合成ムライトは、鉱物としてのムライトが92質量%のものを使用した。シリマナイト族鉱物としてのアンダルサイトはAl含有量が60質量%、SiO含有量が37質量%のものを、カイアナイトはAl含有量が58質量%、SiO含有量が39質量%のものを、シリマナイトはAl含有量が75質量%、SiO含有量が20質量%のものを使用した。粘土は、Al含有量が25質量%、SiO含有量が55質量%のものを使用した。 The baked banquet used as the corundum-containing material was a corundum containing 80% by mass. Similarly, the brick scrap used as the corundum-containing raw material was 50% by mass of corundum and 40% by mass of mullite as a mineral phase. The synthetic mullite used as the mullite raw material was 92% by mass of mullite as a mineral. Andalusite as a sillimanite group mineral has an Al 2 O 3 content of 60% by mass and SiO 2 content of 37% by mass, and kyanite has an Al 2 O 3 content of 58% by mass and an SiO 2 content of 39%. The sillimanite having an Al 2 O 3 content of 75% by mass and an SiO 2 content of 20% by mass was used. A clay having an Al 2 O 3 content of 25% by mass and an SiO 2 content of 55% by mass was used.

上述のとおり表1及び表2に示す耐火原料配合物に水系のバインダーを添加して混練し、プレス機で図1に示すチェッカーれんがを成形し、乾燥後、1400℃で焼成したが、この際、成形時の亀裂と焼成後の外観を評価した。
成形時の亀裂は、10個成形した後の表面の状態を目視で観察し1個でも亀裂があれば×とし、亀裂がないものを○とした。
焼成後の外観は、前記の10個成形したれんがを焼成した後の表面の状態を目視で観察し1個でも亀裂又は壁部のボロツキがあれば×とし、亀裂又は壁部のボロツキがないものを○とした。
As described above, a water-based binder is added to the refractory raw material composition shown in Table 1 and Table 2 and kneaded. The checker brick shown in FIG. 1 is formed by a press machine, dried, and fired at 1400 ° C. The cracks during molding and the appearance after firing were evaluated.
As for the cracks at the time of molding, the state of the surface after molding 10 pieces was visually observed.
As for the appearance after firing, the state of the surface after firing the 10 bricks is visually observed, and if even one piece has cracks or wall roughness, it is X, and there is no crack or wall roughness. Was marked as ○.

また、焼成後の図1のチェッカーれんがから図2のサンプルを切り出し、圧縮強さを測定するとともに、クリープ試験及びスポーリング試験を行った。図2のサンプルの寸法は、A、B及びCが74mmで、高さが60mmである。
圧縮強さはJIS−R2206に従い測定した。
クリープ試験はJIS−R2658に従い1300℃で5時間、0.2MPaの条件で実施し、クリープ値が1%以下のものを○とし、1%を超えるものを×とした。
スポーリング試験はJIS−R2657に従い800℃加熱後の水冷法により、20回実施し、20回後でも剥落がないものを○、20回までに剥落のあったものを×とした。
なお、焼成後に亀裂が入った比較例では、亀裂が入っていないれんがの圧縮強さのみを測定し、スポーリング試験とクリープ試験は行っていない。
Moreover, the sample of FIG. 2 was cut out from the checker brick of FIG. 1 after firing, the compressive strength was measured, and a creep test and a spalling test were performed. The dimensions of the sample in FIG. 2 are 74 mm for A, B, and C, and 60 mm in height.
The compressive strength was measured according to JIS-R2206.
The creep test was conducted in accordance with JIS-R2658 at 1300 ° C. for 5 hours under the condition of 0.2 MPa. A creep value of 1% or less was evaluated as ◯, and a value exceeding 1% was evaluated as ×.
The spalling test was carried out 20 times by a water cooling method after heating at 800 ° C. in accordance with JIS-R2657.
In the comparative example having cracks after firing, only the compressive strength of bricks without cracks was measured, and the spalling test and creep test were not performed.

実施例1から実施例3はアンダルサイトの使用量が異なる場合であるがいずれも良好であった。これに対して比較例1はアンダルサイトの使用量が5質量%と本発明の下限値を下回っており、焼成後に10個中5個のれんがに亀裂が発生した。また、比較例2はアンダルサイトの使用量が35質量%と本発明の上限値を超えておりスポーリング試験では17回で剥落し、耐スポーリング性に問題があった。   In Examples 1 to 3, the amount of andalusite used was different, but all were good. On the other hand, in Comparative Example 1, the amount of andalusite used was 5 mass%, which was lower than the lower limit of the present invention, and cracks occurred in 5 out of 10 bricks after firing. In Comparative Example 2, the amount of andalusite used was 35% by mass, exceeding the upper limit of the present invention. In the spalling test, it peeled off 17 times, and there was a problem in spalling resistance.

実施例4から実施例7は粘土の使用量が異なる場合であるがいずれも良好であった。なお、実施例4は成形時及び焼成後の亀裂は発生しなかったが成形中に亀裂が入らないように成形中の取り扱いに注意が必要であった。また、実施例4の焼成後の強度は実用上問題ないレベルではあるがやや低くなった。これに対して、比較例3は粘土の使用量が1質量%と本発明の下限値を下回っており、成形時の強度不足のため成形後に10個中4個のれんがに亀裂が発生し、焼成後には10個中6個のれんがに亀裂が発生した。また、亀裂のないれんがの圧縮強さを測定したところ30MPaと低強度で実用上問題のあるレベルであった。一方、比較例4は粘土の使用量が25質量%と本発明の上限を超えており、焼成収縮が大きすぎるため焼成後に10個中3個のれんがに亀裂が発生した。   In Examples 4 to 7, the amount of clay used was different, but all were good. In Example 4, cracks did not occur at the time of molding and after firing, but care was required in handling during molding so as not to cause cracks during molding. Further, the strength after firing in Example 4 was slightly low although it was at a level where there was no practical problem. On the other hand, in Comparative Example 3, the amount of clay used was 1% by mass and lower than the lower limit of the present invention, and cracks occurred in 4 out of 10 bricks after molding due to insufficient strength during molding, After firing, cracks occurred in 6 out of 10 bricks. Moreover, when the compressive strength of the brick without a crack was measured, it was a low level of 30 MPa and a practically problematic level. On the other hand, in Comparative Example 4, the amount of clay used was 25% by mass, exceeding the upper limit of the present invention, and cracking occurred in 3 out of 10 bricks after firing because the firing shrinkage was too large.

実施例8から実施例10は粒径0.2mm以下のムライト原料の使用量が異なる場合であるがいずれも良好な結果となった。これに対して、比較例5は粒径0.2mm以下のムライト原料を使用しない場合であり、焼成後の圧縮強さは十分あるが、焼成後のれんがの10個中5個に壁部のエッジ部にボロツキや欠けが発生した。また、比較例6は粒径0.2mm以下のムライト原料の使用量が25質量%と本発明の上限を超えており、組織が緻密になりすぎてスポーリング試験では18回で剥落し耐スポーリン性に問題があった。   Examples 8 to 10 are cases where the amount of mullite raw material having a particle size of 0.2 mm or less is different, but all have good results. On the other hand, Comparative Example 5 is a case where a mullite raw material having a particle size of 0.2 mm or less is not used, and the compressive strength after firing is sufficient, but the wall portion of 5 out of 10 bricks after firing Boring and chipping occurred at the edge. In Comparative Example 6, the amount of the mullite raw material having a particle size of 0.2 mm or less exceeds 25% by mass, exceeding the upper limit of the present invention. There was a problem with sex.

実施例11はシリマナイト族鉱物としてカイヤナイトを、実施例12はシリマナイト族鉱物としてシリマナイトをそれぞれ使用した場合であるが、アンダルサイトを使用した場合と同様に良好な結果となった。   Example 11 is a case in which kayanite is used as the silimanite group mineral, and Example 12 is a case in which silimanite is used as the silimanite group mineral, and good results were obtained as in the case of using andalusite.

実施例13と実施例14は粒径0.2mm以下のコランダム含有原料として焼バンケツを使用した場合、実施例15は粒径0.2mm以下の原料として焼バンケツと合成ムライトとを、実施例16は粒径0.2mm以下の原料として焼バンケツと合成ムライトとアンダリュサイトを、併用した場合であるが、いずれも粒径0.2mm以下のムライト原料を単独で使用した場合と同様に、組織が緻密になり焼成後のれんがのボロツキや欠けもなく良好であった。   In Example 13 and Example 14, when a baked banquet was used as a corundum-containing raw material having a particle size of 0.2 mm or less, Example 15 used a baked banquet and synthetic mullite as a raw material having a particle size of 0.2 mm or less. Is a case where baked banquet, synthetic mullite, and andalusite are used in combination as raw materials having a particle size of 0.2 mm or less, and in any case, similarly to the case where a mullite raw material having a particle size of 0.2 mm or less is used alone, As a result, the slab became dense and was free from crushed and chipped bricks after firing.

次に、実施例4及び実施例7と同じ耐火原料配合物を使用して図1において壁の厚みが15mm及び10mmのチェッカーれんがの製造を行ったところ、成形後及び焼成後の亀裂はなく良好であった。   Next, when the same refractory raw material composition as in Example 4 and Example 7 was used to produce checker bricks having wall thicknesses of 15 mm and 10 mm in FIG. 1, there was no crack after molding and after firing. Met.

Claims (3)

ムライト原料10〜50質量%、コランダム含有原料20〜60質量%、シリマナイト族鉱物としてアンダルサイト、カイアナイト、及びシリマナイトのうち1種又は2種以上10〜30質量%、及び粘土3〜20質量%からなり、ムライト原料、コランダム含有原料、アンダルサイト、カイアナイト、及び/又はシリマナイトのうち粒径0.2mm以下の原料が5〜20質量%である耐火原料配合物を混練後、成形し、乾燥、焼成する熱風炉用チェッカーれんがの製造方法。   From 10 to 50% by weight of mullite raw material, 20 to 60% by weight of corundum-containing raw material, and from 10 and 30% by weight of one or more of andalusite, kyanite, and sillimanite as a sillimanite group mineral, and 3 to 20% by weight of clay Mullite raw material, corundum-containing raw material, andalusite, kyanite, and / or sillimanite, kneading a refractory raw material composition having a particle size of 0.2 mm or less is 5 to 20% by mass, molding, drying, firing To manufacture checker bricks for hot stove. 前記粘土が10〜20質量%である請求項1に記載の熱風炉用チェッカーれんがの製造方法。   The method for producing a hot stove checker brick according to claim 1, wherein the clay is 10 to 20% by mass. 前記耐火原料配合物中のFeが1.5質量%以下、及びNaOが1.0質量%以下である請求項1又は請求項2に記載の熱風炉用チェッカーれんがの製造方法。 The method for producing a checkered brick for a hot stove according to claim 1 or 2, wherein Fe 2 O 3 in the refractory raw material composition is 1.5% by mass or less and Na 2 O is 1.0% by mass or less. .
JP2016191694A 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens Active JP6754653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191694A JP6754653B2 (en) 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191694A JP6754653B2 (en) 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens

Publications (2)

Publication Number Publication Date
JP2018052776A true JP2018052776A (en) 2018-04-05
JP6754653B2 JP6754653B2 (en) 2020-09-16

Family

ID=61833756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191694A Active JP6754653B2 (en) 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens

Country Status (1)

Country Link
JP (1) JP6754653B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093953A (en) * 2018-12-12 2020-06-18 光洋サーモシステム株式会社 Method of manufacturing refractory
CN111689766A (en) * 2020-06-16 2020-09-22 郑州市科源耐火材料有限公司 High-strength 310 lower nozzle brick and preparation method thereof
CN111747736A (en) * 2020-07-13 2020-10-09 马鞍山钢铁股份有限公司 Preparation method of complex-phase oxidation-resistant quenching-resistant chute support brick
CN112341177A (en) * 2020-09-28 2021-02-09 山东耐材集团鲁耐窑业有限公司 Corrosion-resistant compact lattice brick for upper part of coke oven regenerator and preparation method thereof
CN113105255A (en) * 2021-03-29 2021-07-13 北京金隅通达耐火技术有限公司 Preparation method of mullite heat-insulating refractory material with low heat conductivity
CN114524677A (en) * 2022-02-11 2022-05-24 上海皕涛耐火材料有限公司 Preparation method of high-alumina lightweight brick with high fire resistance, corrosion resistance and purity
CN116924781A (en) * 2023-08-14 2023-10-24 山东淄博沈淄耐火材料有限公司 High-temperature tin bath bottom brick for float glass production and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277349A (en) * 2006-04-04 2007-10-25 Kurosaki Harima Corp Alumina-silica brick for cdq
CN102101780A (en) * 2010-12-30 2011-06-22 郑州市瑞沃耐火材料有限公司 Tough mullite bricks for warm air ducts
CN103373856A (en) * 2012-04-26 2013-10-30 郑州安耐克实业有限公司 High-stress-strain low-creepage high-thermal-shock-resistance refractory brick and manufacturing method thereof
JP2017065956A (en) * 2015-09-29 2017-04-06 黒崎播磨株式会社 Alumina-silica-based brick

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277349A (en) * 2006-04-04 2007-10-25 Kurosaki Harima Corp Alumina-silica brick for cdq
CN102101780A (en) * 2010-12-30 2011-06-22 郑州市瑞沃耐火材料有限公司 Tough mullite bricks for warm air ducts
CN103373856A (en) * 2012-04-26 2013-10-30 郑州安耐克实业有限公司 High-stress-strain low-creepage high-thermal-shock-resistance refractory brick and manufacturing method thereof
JP2017065956A (en) * 2015-09-29 2017-04-06 黒崎播磨株式会社 Alumina-silica-based brick

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093953A (en) * 2018-12-12 2020-06-18 光洋サーモシステム株式会社 Method of manufacturing refractory
JP7236073B2 (en) 2018-12-12 2023-03-09 株式会社ジェイテクトサーモシステム Refractory manufacturing method
CN111689766A (en) * 2020-06-16 2020-09-22 郑州市科源耐火材料有限公司 High-strength 310 lower nozzle brick and preparation method thereof
CN111689766B (en) * 2020-06-16 2022-04-01 郑州市科源耐火材料有限公司 High-strength 310 lower nozzle brick and preparation method thereof
CN111747736A (en) * 2020-07-13 2020-10-09 马鞍山钢铁股份有限公司 Preparation method of complex-phase oxidation-resistant quenching-resistant chute support brick
CN112341177A (en) * 2020-09-28 2021-02-09 山东耐材集团鲁耐窑业有限公司 Corrosion-resistant compact lattice brick for upper part of coke oven regenerator and preparation method thereof
CN113105255A (en) * 2021-03-29 2021-07-13 北京金隅通达耐火技术有限公司 Preparation method of mullite heat-insulating refractory material with low heat conductivity
CN114524677A (en) * 2022-02-11 2022-05-24 上海皕涛耐火材料有限公司 Preparation method of high-alumina lightweight brick with high fire resistance, corrosion resistance and purity
CN116924781A (en) * 2023-08-14 2023-10-24 山东淄博沈淄耐火材料有限公司 High-temperature tin bath bottom brick for float glass production and preparation method thereof

Also Published As

Publication number Publication date
JP6754653B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP2018052776A (en) Method for production of checker brick for air heating furnace
KR101552717B1 (en) Refractory composition for glass melting furnaces
JP2015038031A (en) Sintered refractory product exhibiting enhanced thermal shock resistance
CN106220224A (en) A kind of heat-resistant light adiabator with double-hole structure and preparation method thereof
CN100358839C (en) High-crystal structure cordierite-mullite kiln furniture, kiln refractory product and roasting process
JP2009500286A (en) Fired refractory ceramic product
JP2017065956A (en) Alumina-silica-based brick
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
CN107892581B (en) High-strength corrosion-resistant zirconia corundum honeycomb ceramic body and preparation method thereof
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP6386801B2 (en) Alumina fusion cast refractory and method for producing the same
JP5608561B2 (en) Fireproof ceramic mixture, fireproof ceramic molded body formed by the mixture and use thereof
CN103771878A (en) Preparation method of andalusite brick
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
CN102101786A (en) Raw material for lightweight foam face brick, lightweight foam face brick and manufacturing method thereof
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP3620058B2 (en) Thermal storage refractory brick for coke oven thermal storage room
CN104072160A (en) Ultralow-pore mullite brick
JP6036796B2 (en) Slide plate and manufacturing method thereof
JP6266968B2 (en) Blast furnace hearth lining structure
JP6752027B2 (en) Chamotte quality brick and its manufacturing method
JP2017206414A (en) Method for producing alumina-chromia fired brick
CN105016747B (en) A kind of anti-thermal shock fire resisting zircon corundum brick
RU2267469C1 (en) Raw mixture for refractory article production
JP7513380B2 (en) Runner bricks for steel ingot casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250