Nothing Special   »   [go: up one dir, main page]

JP2017225979A - Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE - Google Patents

Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE Download PDF

Info

Publication number
JP2017225979A
JP2017225979A JP2016121677A JP2016121677A JP2017225979A JP 2017225979 A JP2017225979 A JP 2017225979A JP 2016121677 A JP2016121677 A JP 2016121677A JP 2016121677 A JP2016121677 A JP 2016121677A JP 2017225979 A JP2017225979 A JP 2017225979A
Authority
JP
Japan
Prior art keywords
mass
solder alloy
less
solder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016121677A
Other languages
Japanese (ja)
Inventor
井関 隆士
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016121677A priority Critical patent/JP2017225979A/en
Publication of JP2017225979A publication Critical patent/JP2017225979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Pb-free Zn-based solder alloy for high temperature which has a melting point of approximately 300-400°C suitable for assembly of a semiconductor element, can greatly improve and enhance workability and stress relaxation, and is also excellent in wettability and reliability.SOLUTION: A first Pb-free Zn-based solder alloy contains 4.0 mass% or more and 10.0 mass% or less of Al, contains more than 3.5 mass% and 5.0 mass% or less of Cu, and the balance Zn with inevitable impurities. A second Pb-free Zn-based solder alloy contains 4.0 mass% or more and 10.0 mass% or less of Al, contains more than 3.0 mass% and 7.0 mass% or less of Cu, contains one or more Ge and P, which contains 0.01 mass% or more and 1.00 mass% or less of Ge in the case of Ge and 0.005 mass% or more and 0.500 mass% or less of Ge in the case of P, and the balance Zn with inevitable impurities.SELECTED DRAWING: None

Description

本発明は、Pbフリーはんだ合金に関し、特に高温用として好適なZnを主成分とするPbフリーZn系はんだ合金に関する。   The present invention relates to a Pb-free solder alloy, and more particularly, to a Pb-free Zn-based solder alloy mainly composed of Zn suitable for high temperature use.

パワートランジスタのダイボンディングを始めとする各種半導体素子などの電子部品の組立工程においては、300〜400℃程度の比較的高温の融点を有する高温用はんだ合金が用いられている。従来、かかる高温用はんだ合金として、Pb−5質量%Sn合金に代表されるPb系はんだ合金が主に用いられていた。しかし、近年、環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えばRoHS指令ではPbは規制対象物質になっている。こうした動きに対応して、半導体素子などの組み立ての分野においても、Pbを含まないはんだ合金、即ちPbフリーはんだ合金が求められ始めている。   In an assembly process of electronic parts such as various semiconductor elements including die bonding of power transistors, a high temperature solder alloy having a relatively high melting point of about 300 to 400 ° C. is used. Conventionally, Pb-based solder alloys represented by Pb-5 mass% Sn alloys have been mainly used as such high temperature solder alloys. However, in recent years, there has been a strong movement to limit the use of Pb due to consideration for environmental pollution. For example, Pb is a regulated substance in the RoHS directive. Corresponding to such a movement, a solder alloy containing no Pb, that is, a Pb-free solder alloy has been demanded also in the field of assembling semiconductor elements and the like.

かかる状況の下、中低温用(約140〜230℃)のはんだ合金に関しては、Snを主成分とすることで既にPbフリーはんだ合金が実用化されている。例えば特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを1.0質量%以下、Pを0.2質量%以下含有するPbフリーはんだ合金などが記載されている。   Under such circumstances, with regard to solder alloys for medium and low temperatures (about 140 to 230 ° C.), Pb-free solder alloys have already been put into practical use by using Sn as a main component. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 1.0 mass% or less, and P is 0.2 mass%. Pb-free solder alloys and the like contained below are described.

一方、高温用のはんだ合金に関しては、Bi系はんだ合金やZn系はんだ合金などがPbフリーはんだ合金として提案されている。例えばBi系はんだ合金では、特許文献2に、Biを30〜80質量%含有し、溶融温度が350〜500℃であるBi/Ag系のろう材が記載されている。一方、Zn系はんだ合金では、例えば特許文献3に、Alを3.5〜18質量%含有し、残部がZn及び不可避不純物からなるZn合金が開示されている。この特許文献3には、Cuを1〜3.5質量%含有するZn合金や、Siを添加し、CuとSiを合計1.8〜4.3質量%含有するZn合金も開示されている。   On the other hand, regarding solder alloys for high temperatures, Bi solder alloys and Zn solder alloys have been proposed as Pb-free solder alloys. For example, for a Bi-based solder alloy, Patent Document 2 describes a Bi / Ag-based brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. On the other hand, for a Zn-based solder alloy, for example, Patent Document 3 discloses a Zn alloy containing 3.5 to 18% by mass of Al, with the balance being Zn and inevitable impurities. This Patent Document 3 also discloses a Zn alloy containing 1 to 3.5% by mass of Cu, and a Zn alloy containing Si and adding Cu and Si in a total of 1.8 to 4.3% by mass. .

また、特許文献4には、Alを1.0質量%以上9.0質量%以下含有し、Cuを0.001質量%以上3.000質量%以下含有し、残部がZn及び不可避不純物からなるPbフリーZn系はんだ合金が開示されている。この特許文献4には、更に、Agを4.0質量%以下及び/又はPを0.500質量%以下含有するPbフリーZn系はんだ合金も開示されている。   In Patent Document 4, Al is contained in an amount of 1.0% to 9.0% by mass, Cu is contained in an amount of 0.001% to 3.000% by mass, and the balance is made of Zn and inevitable impurities. A Pb-free Zn solder alloy is disclosed. Patent Document 4 further discloses a Pb-free Zn-based solder alloy containing Ag of 4.0% by mass or less and / or P of 0.50% by mass or less.

特開平11−077366号公報Japanese Patent Application Laid-Open No. 11-077366 特開2002−160089号公報JP 2002-160089 A 特開2012−180557号公報JP 2012-180557 A 特開2013−052433号公報JP2013-052433A

近年、上記した各種半導体素子を含む電子部品は、薄型化や小型化が進んできており、これによりその接合材として使用されるはんだ合金には微細化が求められている。そのため、はんだ合金には従来よりも高い接合強度が求められている。また、はんだ合金の微細化によって接合に使用されるはんだ合金の体積や接合面積が減少する傾向にあり、今までは問題にならなかった低レベルのボイドや異物などが接合界面に存在した場合でも接合性が低下するなどの問題が発生する場合があり、ボイドや異物がより少なく接合性の高いはんだ合金が求められている。   In recent years, electronic parts including the above-described various semiconductor elements have been made thinner and smaller, and accordingly, miniaturization is required for solder alloys used as bonding materials. Therefore, solder alloys are required to have higher joint strength than before. In addition, the volume and area of solder alloys used for joining tend to decrease due to the miniaturization of solder alloys, and even when low-level voids and foreign matter that have not been a problem until now exist at the joint interface. There are cases where problems such as deterioration of the bondability may occur, and a solder alloy having less voids and foreign matters and high bondability is required.

しかしながら、従来のPb系はんだ合金を代替できる、上記した微細な接合に適した高温用のPbフリーはんだ合金は未だ実用化されていないのが実状である。すなわち、特許文献2に開示されているBi/Ag系のろう材は、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になり、特許文献2に記載されているような気密端子の用途には適用可能であるが、半導体素子や基板等の電子部品に適用するには溶融温度が高過ぎると考えられる。   However, the actual situation is that a high-temperature Pb-free solder alloy suitable for fine bonding as described above, which can replace the conventional Pb-based solder alloy, has not yet been put into practical use. That is, the Bi / Ag brazing material disclosed in Patent Document 2 has a liquidus temperature as high as 400 to 700 ° C., so that the working temperature at the time of joining is also 400 to 700 ° C. or higher. Although it is applicable to the use of the hermetic terminal as described, it is considered that the melting temperature is too high for application to electronic components such as semiconductor elements and substrates.

特許文献3に開示されているZn合金は、接合材としても用いることができると記載されているが、共晶組織を制御することで加工性に優れたZn合金を提供することを目的とするものであり、電子部品などの微細なはんだ接合の用途では十分な接合性を発揮させるのが困難な場合がある。また、特許文献4に開示されているPbフリーZnはんだ合金は、シート状に比較的大きく加工したはんだ合金による評価では十分な接合性能が得られているが、微細加工したはんだ合金の接合においては十分な接合性を発揮させることができない場合がある。   Although it is described that the Zn alloy disclosed in Patent Document 3 can also be used as a bonding material, the object is to provide a Zn alloy having excellent workability by controlling the eutectic structure. In some applications, such as electronic parts, it may be difficult to exhibit sufficient bondability for use in fine solder bonding. In addition, the Pb-free Zn solder alloy disclosed in Patent Document 4 has a sufficient joining performance obtained by evaluation with a solder alloy processed relatively large in a sheet shape, but in the joining of a micromachined solder alloy, In some cases, sufficient bondability cannot be exhibited.

本発明は、上記した従来の高温用Pbフリーはんだ合金が抱える問題点に鑑みてなされたものであり、半導体素子の組み立てなどで用いる微細なはんだ合金において、300〜400℃程度の好適な融点を有し、良好な加工性及び応力緩和性を有し、濡れ性や信頼性などの接合性に優れた高温用のPbフリーZn系はんだ合金を提供することを目的とする。   The present invention has been made in view of the problems of the above-described conventional high-temperature Pb-free solder alloys. In a fine solder alloy used for assembling semiconductor elements, etc., a suitable melting point of about 300 to 400 ° C. An object of the present invention is to provide a high-temperature Pb-free Zn-based solder alloy having good workability and stress relaxation properties, and excellent bondability such as wettability and reliability.

上記目的を達成するため、本発明に係る第1のPbフリーZn系はんだ合金は、Alを4.0質量%以上10.0質量%以下含有し、Cuを3.5質量%より多く5.0質量%以下含有し、残部がZn及び不可避不純物からなることを特徴としている。また、本発明に係る第2のPbフリーZn系はんだ合金は、Alを4.0質量%以上10.0質量%以下含有し、Cuを3.0質量%より多く7.0質量%以下含有し、更にGe及びPのうち1種以上を、Geの場合は0.01質量%以上1.00質量%以下、Pの場合は0.005質量%以上0.500質量%以下含有し、残部がZn及び不可避不純物からなることを特徴としている。   In order to achieve the above object, the first Pb-free Zn-based solder alloy according to the present invention contains 4.0% by mass or more and 10.0% by mass or less of Al, and contains more than 3.5% by mass of Cu. The content is 0% by mass or less, and the balance is made of Zn and inevitable impurities. The second Pb-free Zn-based solder alloy according to the present invention contains Al in an amount of 4.0% by mass to 10.0% by mass and Cu in an amount of 3.0% by mass to 7.0% by mass. Further, it contains at least one of Ge and P, in the case of Ge, 0.01 mass% or more and 1.00 mass% or less, and in the case of P, 0.005 mass% or more and 0.500 mass% or less. Consists of Zn and inevitable impurities.

本発明によれば、加工性、機械的特性、接合性及び信頼性に優れると共に、300℃程度のリフロー温度に十分耐えることができ、例えばパワートランジスタ用素子のダイボンディングなどの電子部品の組立工程におけるはんだ付に好適な、高温用のPbフリーZn系はんだ合金を提供することができる。   According to the present invention, it is excellent in workability, mechanical properties, bondability and reliability, and can sufficiently withstand a reflow temperature of about 300 ° C., for example, an assembly process of electronic components such as die bonding of power transistor elements. It is possible to provide a high-temperature Pb-free Zn-based solder alloy suitable for soldering.

Niめっき層を有するCu基板とSiチップとを各はんだ合金試料ではんだ付けした状態を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the state which soldered Cu board | substrate which has Ni plating layer, and Si chip with each solder alloy sample.

本発明に係る第1のPbフリーZn系はんだ合金は、添加元素としてAl及びCuを含有し、残部がZn及び製造上不可避的に含まれる不純物元素からなる。主成分であるZnは融点が419℃であり、半導体素子の接合温度である300〜400℃よりも高温である。本発明の第1のZn系はんだ合金では、Al及びCuをそれぞれ所定の範囲内で含有させることにより、はんだ合金の融点を400℃以下に下げており、これにより高温用はんだ合金として好適な融点としている。この本発明の第1のZn系はんだ合金の融点は、ZnとAlの共晶合金の融点よりも低いため、Zn、Al及びCuの3元素で共晶合金化することにより更に融点が下がっているものと考えられる。   The first Pb-free Zn-based solder alloy according to the present invention contains Al and Cu as additive elements, and the balance consists of Zn and an impurity element that is unavoidably included in production. Zn as the main component has a melting point of 419 ° C., which is higher than 300 to 400 ° C., which is the junction temperature of the semiconductor element. In the first Zn-based solder alloy of the present invention, the melting point of the solder alloy is lowered to 400 ° C. or less by containing Al and Cu within predetermined ranges, respectively, which makes it suitable as a high-temperature solder alloy. It is said. Since the melting point of the first Zn-based solder alloy of the present invention is lower than the melting point of the eutectic alloy of Zn and Al, the melting point is further lowered by eutectic alloying with the three elements of Zn, Al and Cu. It is thought that there is.

また、本発明の第1のZn系はんだ合金は、結晶が微細化しているのが確認されており、この結晶の微細化がはんだ合金の加工性の向上に寄与する要因の一つと考えられる。また、本発明の第1のZn系はんだ合金はCuを含有しているため、半導体素子が接合される一般的なCu基板と反応しやすく、これにより優れた濡れ性、接合性が得られる。   Further, it has been confirmed that the first Zn-based solder alloy of the present invention is miniaturized in crystals, and it is considered that the refinement of the crystals contributes to the improvement of the workability of the solder alloy. Moreover, since the 1st Zn type solder alloy of this invention contains Cu, it is easy to react with the general Cu board | substrate with which a semiconductor element is joined, and, thereby, the outstanding wettability and bondability are obtained.

一方、本発明に係る第2のPbフリーZn系はんだ合金は、上記した第1のZn系はんだ合金と同様に主成分としてのZnにAl及びCuを含有しており、更にGe及びPのうちの1種以上を含有している。この合金組成では、上記の融点を下げる効果と結晶の微細化により加工性を向上させる効果だけでなく、はんだ合金の酸化を抑制する効果が得られ、濡れ性や接合性をより一層向上させることが可能になる。ただし、この第2のZn系はんだ合金は、上記の第1のZn系はんだ合金より加工性に劣る場合があるので、接合対象の諸特性や用途を考慮した上で目的に合わせて適宜調整しながらGeやPの含有量を定めるのが好ましい。   On the other hand, the second Pb-free Zn-based solder alloy according to the present invention contains Al and Cu in Zn as a main component in the same manner as the first Zn-based solder alloy described above. 1 or more of these are contained. In this alloy composition, not only the effect of lowering the melting point and the effect of improving the workability by refining the crystal, but also the effect of suppressing the oxidation of the solder alloy is obtained, and the wettability and bondability are further improved. Is possible. However, since the second Zn-based solder alloy may be inferior in workability to the first Zn-based solder alloy, the second Zn-based solder alloy may be appropriately adjusted according to the purpose in consideration of various characteristics and applications of the objects to be joined. However, it is preferable to determine the content of Ge or P.

上記した本発明の第1及び第2のZn系はんだ合金は、所定の形状を有するペレット品や打抜き品に加工して用いてもよいし、ワイヤ状やボール状に成形して用いてもよい。また、ボール状等に加工したはんだ合金をフラックスと混合して、はんだペーストとして用いることもできる。次に、上記した本発明の第1のZn系はんだ合金や第2のZn系はんだ合金に含まれる各元素について詳しく説明する。   The first and second Zn-based solder alloys of the present invention described above may be used after being processed into pellets or punched products having a predetermined shape, or may be used after being formed into a wire shape or a ball shape. . Also, a solder alloy processed into a ball shape or the like can be mixed with a flux and used as a solder paste. Next, each element contained in the first Zn-based solder alloy and the second Zn-based solder alloy of the present invention will be described in detail.

<Al>
Alは、本発明の第1及び第2のZn系はんだ合金を構成する必須の元素である。Alを含有させることにより、380℃程度まで融点を下げることができる。本発明の第1及び第2のZn系はんだ合金中のAlの含有量は、Zn−Alの共晶合金組成に近いため、本発明の第1及び第2のZn系はんだ合金も共晶合金を形成することにより融点が下がっていると考えられる。また、形成される結晶が微細であり、はんだ合金が比較的柔らかくなるため、加工性や応力緩和性が向上する。ただし、高温用はんだ合金としてこのように融点を低下させ、加工性を向上させ高い応力緩和性を得るためには、後述するCuも含有させる必要がある。
<Al>
Al is an essential element constituting the first and second Zn-based solder alloys of the present invention. By containing Al, the melting point can be lowered to about 380 ° C. Since the Al content in the first and second Zn solder alloys of the present invention is close to the Zn—Al eutectic alloy composition, the first and second Zn solder alloys of the present invention are also eutectic alloys. It is considered that the melting point is lowered by forming. Moreover, since the formed crystal is fine and the solder alloy becomes relatively soft, workability and stress relaxation properties are improved. However, in order to reduce the melting point, improve workability and obtain high stress relaxation properties as a high temperature solder alloy, it is necessary to contain Cu described later.

本発明の第1及び第2のZn系はんだ合金は、Alの含有量が4.0質量%以上10.0質量%以下である。Alの含有量が4.0質量%未満では、後述する他の元素を添加しても融点が十分に低下せず、接合性が低下してしまう。すなわち、融点が十分に低下しないと、電子部品等の組み立て時において、所定の接合温度ではんだ合金を溶融させる際に、はんだ合金が十分に溶融せずに一部未溶融の部分が発生する溶け別れ現象が生じ、その未溶融の部分に気泡が巻き込まれてボイドの発生率が高くなったり、未溶融の部分が接合部の合金化を妨げることになる。また、溶け別れ現象が生じると、未溶解の部分と一旦溶解した後に再凝固した部分とは組成が異なる場合が多く、均一な組成の合金が生成されなくなり、十分な接合強度が得られないおそれがある。   In the first and second Zn-based solder alloys of the present invention, the Al content is 4.0% by mass or more and 10.0% by mass or less. When the Al content is less than 4.0% by mass, the melting point does not sufficiently decrease even when other elements described later are added, and the bondability decreases. In other words, if the melting point is not sufficiently lowered, when the solder alloy is melted at a predetermined joining temperature when assembling an electronic component or the like, the solder alloy is not sufficiently melted and a partially unmelted portion is generated. A separation phenomenon occurs, and bubbles are entrained in the unmelted portion to increase the void generation rate, or the unmelted portion prevents alloying of the joint. In addition, when the separation phenomenon occurs, the composition of the undissolved part and the part that has been once melted and re-solidified is often different, and an alloy having a uniform composition cannot be produced, and sufficient bonding strength may not be obtained. There is.

逆に、Alの含有量を10.0質量%よりも多く添加すると、この場合も上記と同様に融点の低下が不十分となり、上記と同様の不具合を生じてしまう。Alの含有量が5.5質量%以上8.5質量%以下であれば、融点を380℃程度に容易に下げることができる上、結晶がより微細化して加工性が向上し、より一層使い易いはんだ合金とすることができるので好ましい。   On the other hand, when the Al content is more than 10.0% by mass, the melting point is not sufficiently lowered in the same manner as above, and the same problem as described above is caused. If the Al content is 5.5% by mass or more and 8.5% by mass or less, the melting point can be easily lowered to about 380 ° C., the crystal becomes finer, the workability is improved, and the use is further improved. Since it can be set as an easy solder alloy, it is preferable.

<Cu>
Cuは、本発明の第1及び第2のZn系はんだ合金において、Alと共に必須の元素である。Cuは、濡れ性、応力緩和性や加工性等を向上させ、かつ融点を下げる働きがある。共晶合金であるZn−Al合金は、そのままでは加工性が十分とは言えず、例えば圧延でリボン材に加工しようとするとバリが発生したり、撓みを生じたりする場合がある。これに対して、Alに加えてCuを含有させることにより結晶がより微細化し、加工性が向上するので上記のような問題を解消することができる。
<Cu>
Cu is an essential element together with Al in the first and second Zn-based solder alloys of the present invention. Cu functions to improve wettability, stress relaxation, workability, etc., and lower the melting point. A Zn—Al alloy, which is a eutectic alloy, cannot be said to have sufficient workability as it is, and for example, when it is processed into a ribbon material by rolling, burrs may be generated or bending may occur. On the other hand, the inclusion of Cu in addition to Al makes the crystals finer and improves the workability, so that the above problems can be solved.

また、主成分としてのZnにAlとCuとを含有させた3元合金とすることにより、融点をZn−Alの共晶点温度よりも低くすることができる。このように融点を下げることにより、高温用Pb系はんだ合金の融点に一層近づき、Pb系はんだ代替材として使いやすい材料となる。また、半導体素子を接合する基板は一般的にCu基板を用いる場合が多いため、この基板と同じ組成のCuを含有していることにより、基板とはんだ合金とが合金化しやすく、優れた濡れ性と高い接合強度を得ることができる。このように、本発明の第1及び第2のZn系はんだ合金はAlに加えてCuを含有することにより、加工性の良い細かな金属組織を有し、かつ均一で強固な接合界面を生成することができるため、非常に高い接合信頼性が得られる。   Further, by using a ternary alloy in which Al and Cu are contained in Zn as a main component, the melting point can be made lower than the eutectic point temperature of Zn—Al. By lowering the melting point in this manner, the melting point of the high-temperature Pb solder alloy is further approached, and the material becomes easy to use as a Pb solder substitute. In addition, since a substrate to which a semiconductor element is bonded generally uses a Cu substrate, the substrate and the solder alloy are easily alloyed and excellent wettability by containing Cu having the same composition as this substrate. High bonding strength can be obtained. As described above, the first and second Zn-based solder alloys of the present invention contain Cu in addition to Al, thereby having a fine metal structure with good workability and generating a uniform and strong joint interface. Therefore, very high bonding reliability can be obtained.

本発明の第1のZn系はんだ合金は、Cuの含有量が3.5質量%より多く5.0質量%以下である。Cu含有量をこの範囲内にすることで、結晶が微細化し、熱応力等が加わってもクラックの発生や進展を生じにくく、かつ融点を下げることができる。Cu含有量が3.5質量%以下でははんだ合金を微細に加工する際の強度が十分に得られない場合がある。逆にCu含有量が5.0質量%以上では、結晶粒が粗大化してしまったり、溶け別れ現象を生じてしまったりして、良好な接合ができなくなってしまう。   In the first Zn-based solder alloy of the present invention, the Cu content is more than 3.5 mass% and not more than 5.0 mass%. By setting the Cu content within this range, the crystal becomes finer, and even when thermal stress or the like is applied, cracks are not easily generated or propagated, and the melting point can be lowered. If the Cu content is 3.5% by mass or less, the strength at the time of finely processing the solder alloy may not be sufficiently obtained. On the other hand, when the Cu content is 5.0% by mass or more, the crystal grains are coarsened or the phenomenon of melting and separating occurs, and good bonding cannot be performed.

一方、本発明の第2のZn系はんだ合金は、後述するようにGe及びPのうちの1種類以上を含有しているため、Cuの含有量を3.0質量%より多く7.0質量%以下とすることができる。ただし、この第2のZn系はんだ合金においても、Cu含有量が3.5質量%を超え5.0質量%以下であれば融点をより容易に380℃程度にすることができ、応力緩和性、加工性、及び接合性の向上の効果が一層顕著に現れるため好ましい。   On the other hand, since the second Zn-based solder alloy of the present invention contains one or more of Ge and P as described later, the Cu content is more than 3.0% by mass and 7.0% by mass. % Or less. However, even in the second Zn-based solder alloy, if the Cu content exceeds 3.5 mass% and is equal to or less than 5.0 mass%, the melting point can be easily increased to about 380 ° C., and the stress relaxation property In addition, it is preferable because the effect of improving the workability and bondability appears more remarkably.

<Ge>
Geは、本発明の第2のZn系はんだ合金において、耐候性や耐酸化性を向上させる効果を奏する元素である。GeをZn系はんだ合金に含有させると、GeはZnはんだ合金の表面付近に偏析し、主成分のZnの酸化を抑制する効果を奏する。この効果は温度や湿度が高い環境下では特に顕著に現れ、非常に優れた耐候性を有するはんだ合金とすることができる。
<Ge>
Ge is an element having an effect of improving weather resistance and oxidation resistance in the second Zn-based solder alloy of the present invention. When Ge is contained in a Zn-based solder alloy, Ge is segregated near the surface of the Zn solder alloy and has an effect of suppressing oxidation of Zn as a main component. This effect is particularly prominent in an environment where the temperature and humidity are high, and a solder alloy having very excellent weather resistance can be obtained.

本発明の第2のZn系はんだ合金は、Geの含有量が0.01質量%以上1.00質量%以下である。このGe含有量が0.01質量%未満では、含有量が少なすぎて含有させた効果が十分に現れず、逆に1.00質量%を超えると含有量が多すぎてはんだ合金が硬くて脆くなってしまうため好ましくない。   In the second Zn-based solder alloy of the present invention, the Ge content is 0.01 mass% or more and 1.00 mass% or less. If the Ge content is less than 0.01% by mass, the content is too small and the effect of inclusion is not sufficiently exhibited. Conversely, if the Ge content exceeds 1.00% by mass, the content is too large and the solder alloy is hard. Since it becomes weak, it is not preferable.

<P>
Pは、本発明の第2のZn系はんだ合金において、濡れ性を向上させる元素である。即ち、Pは還元性が強く、自ら酸化することによりはんだ合金表面の酸化を抑制する。本発明の第2のZn系はんだ合金は酸化されやすいZnが主成分であり、更にZnより酸化され易いAlを含有しているため、濡れ性が特に必要な箇所の接合をする場合、Pを含有させることにより濡れ性を向上させることができる。
<P>
P is an element that improves wettability in the second Zn-based solder alloy of the present invention. That is, P is highly reducing and suppresses oxidation of the solder alloy surface by oxidizing itself. The second Zn-based solder alloy of the present invention contains Zn that is easily oxidized and further contains Al that is more easily oxidized than Zn. Inclusion of wettability can be improved.

また、Pの含有により、接合時にボイドの発生を低減させる効果も得られる。即ち、既に述べたようにPは自らが酸化しやすいため、接合時にはんだ合金の主成分であるZnやAlよりも優先的に酸化が進む。その結果、はんだ母相の酸化を防ぎ、半導体素子や基板の接合面を還元して濡れ性を確保することができる。この接合の際には、ボイド発生の原因となるはんだ表面や半導体素子等の接合面表面部の酸化物膜がなくなるため、隙間(ボイド)が発生しにくくなり、これにより接合性や信頼性等を向上させることができる。尚、Pは、はんだ合金や基板などの接合面を還元して酸化物になるとほとんど気化するので、はんだや基板表面等に実質的に残留しない点においても優れている。   In addition, the inclusion of P also has the effect of reducing the generation of voids during bonding. That is, as already described, since P easily oxidizes itself, oxidation proceeds preferentially over Zn and Al, which are the main components of the solder alloy, at the time of bonding. As a result, it is possible to prevent the solder mother phase from being oxidized and reduce the bonding surface of the semiconductor element or the substrate to ensure wettability. At the time of this joining, since there is no oxide film on the solder surface and the surface of the joining surface of the semiconductor element, etc., which cause voids, voids are less likely to occur, thereby making it possible to bond and improve reliability. Can be improved. Note that P is excellent in that it does not substantially remain on the surface of the solder, the substrate or the like because it is almost vaporized when it is reduced to the oxide by reducing the joint surface of the solder alloy or the substrate.

本発明の第2のZn系はんだ合金は、Pの含有量が0.005質量%以上0.500質量%以下である。上記したようにPは非常に還元性が強いため、微量を含有させれば濡れ性向上の効果が得られるが、0.500質量%を超えて含有しても濡れ性向上の効果はそれ以上ほとんど向上せず、逆に過剰な含有によって発生する多量のPやP酸化物の気体が、はんだ合金内に巻き込まれることによりボイドの発生率を上げてしまったり、残留したPが偏析して脆弱な相を形成したりしてはんだ接合部が脆化してしまい、信頼性を低下させたりするおそれがあるので好ましくない。特にワイヤなどの細長形状に加工する場合、断線の原因になりやすいことが確認されている。Pの含有量を0.300重量%以下とすれば、還元効果を発揮すると共に脆いP化合物を生成する可能性が低くなるためより好ましい。尚、Pの含有量が0.005質量%未満では、含有量が少なすぎて含有させた効果が実質的に現れない。   In the second Zn-based solder alloy of the present invention, the P content is 0.005 mass% or more and 0.500 mass% or less. As described above, since P is very reducible, the effect of improving the wettability can be obtained if a trace amount is contained, but the effect of improving the wettability is more than that even if contained exceeding 0.5% by mass. On the contrary, a large amount of P or P oxide gas generated by excessive inclusion is entrained in the solder alloy, increasing the void generation rate, or remaining P segregates and becomes brittle It is not preferable because a solder phase may be embrittled due to the formation of a short phase and the reliability may be lowered. In particular, it has been confirmed that wire breakage is likely to be caused when processing into an elongated shape such as a wire. If the content of P is 0.300% by weight or less, the reduction effect is exhibited and the possibility of generating a brittle P compound is reduced, which is more preferable. When the P content is less than 0.005% by mass, the content is too small and the effect of inclusion is not substantially exhibited.

原料として、それぞれ純度99.99重量%以上のZn、Al、Cu、Ge及びPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら、切断及び粉砕などにより3mm以下の大きさに細かくした。次に、これらの原料からそれぞれ所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   As raw materials, Zn, Al, Cu, Ge and P having a purity of 99.99% by weight or more were prepared. Large flakes and bulk-shaped raw materials were finely cut to a size of 3 mm or less by cutting and pulverizing while paying attention to the uniformity of the composition of the alloy after melting without variation in the sampling location. Next, a predetermined amount of each of these raw materials was weighed and placed in a graphite crucible for a high-frequency melting furnace.

上記原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融し始めたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混合した。全ての原料が十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出して、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型には、幅50mm×長さ200mm×厚さ5mmのはんだ母合金が得られるものを使用した。   The crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 liter / min or more per kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming that all the raw materials were sufficiently melted, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy. The mold used was a solder mother alloy having a width of 50 mm, a length of 200 mm, and a thickness of 5 mm.

このようにして、上記原料の混合比率を変えることにより、組成の異なる試料1〜30のPbフリーのZn系はんだ母合金を作製した。これら試料1〜30のはんだ母合金の各々の組成を、ICP発光分光分析器(SHIMADZU S−8100)を用いて分析した。その分析結果を下記表1示す。   In this way, Pb-free Zn-based solder mother alloys of Samples 1 to 30 having different compositions were produced by changing the mixing ratio of the raw materials. The composition of each of the solder mother alloys of Samples 1 to 30 was analyzed using an ICP emission spectroscopic analyzer (SHIMADZU S-8100). The analysis results are shown in Table 1 below.

Figure 2017225979
Figure 2017225979

次に、上記試料1〜30のZn系はんだ母合金の各々を、圧延機でリボン状に加工することで加工性を評価した。また、得られたリボン状のはんだ合金の引張強度及び伸び率を測定することで機械的特性を評価した。更に、リボン状のはんだ合金をプレス機で2.0mm×2.0mmの四角形状に打抜いて打抜き品を作製し、得られた打抜き品を用いて、接合性(濡れ性)の評価及びヒートサイクル試験による信頼性の評価を行った。以下、各評価について詳細に説明する。   Next, workability was evaluated by processing each of the Zn-based solder mother alloys of Samples 1 to 30 into a ribbon shape with a rolling mill. Further, the mechanical properties were evaluated by measuring the tensile strength and elongation of the obtained ribbon-shaped solder alloy. Further, a ribbon-shaped solder alloy is punched out into a square shape of 2.0 mm × 2.0 mm with a press machine to produce a punched product, and the obtained punched product is used to evaluate the bondability (wetting property) and heat. Reliability was evaluated by a cycle test. Hereinafter, each evaluation will be described in detail.

<加工性の評価(リボン状はんだ合金の外観)>
圧延油を供給し、インゴットの送り速度を調整しながら、圧延機を用いて試料1〜30のはんだ母合金(厚さ5mmの板状インゴット)の各々を厚さ0.05mmまで圧延し、シート状のはんだ合金を得た。その後、スリッター加工により25mmの幅に裁断し、加工性の評価用のリボン状Zn系はんだ合金とした。このようにしてリボン状に加工したはんだ合金を下記の基準で目視にて検査し、加工性の評価を行った。すなわち、はんだ合金に傷やクラックが全くなかった場合を「○」、長さ10m当たりに割れやクラックが1〜3箇所ある場合を「△」、4箇所以上ある場合を「×」として評価した。
<Evaluation of workability (appearance of ribbon-like solder alloy)>
While supplying rolling oil and adjusting the feed speed of the ingot, each of the solder mother alloys (plate ingots of 5 mm thickness) of Samples 1 to 30 is rolled to a thickness of 0.05 mm by using a rolling mill. A solder alloy was obtained. Then, it cut | judged to the width of 25 mm by slitter process, and was set as the ribbon-shaped Zn type solder alloy for workability evaluation. The solder alloy thus processed into a ribbon shape was visually inspected according to the following criteria to evaluate the workability. That is, the case where there was no scratch or crack in the solder alloy was evaluated as “◯”, the case where there were 1 to 3 cracks or cracks per 10 m length was evaluated as “Δ”, and the case where there were 4 or more points was evaluated as “X”. .

<機械的特性の評価(引張強度、伸び率)>
上記した加工性の評価用の際と同様の方法で、厚さ0.05mmまで圧延した試料1〜30のシート状のZn系はんだ合金の各々を、スリッターで3mmの幅に加工し、長さを約15cmに切断し、機械的特性の評価用のリボン状Zn系はんだ合金を得た。このようにして作製した評価用試料を用いて、引張試験機(テンシロン万能試験機)により引張強度及び伸び率を測定した。機械的特性は、試料1の測定値を100%とした際の各試料の引張強度及び伸び率の相対値で評価した。
<Evaluation of mechanical properties (tensile strength, elongation)>
Each of the sheet-like Zn-based solder alloys of Samples 1 to 30 rolled to a thickness of 0.05 mm was processed into a width of 3 mm with a slitter in the same manner as described above for evaluation of workability, and the length Was cut to about 15 cm to obtain a ribbon-like Zn-based solder alloy for evaluation of mechanical properties. The tensile strength and the elongation rate were measured with a tensile tester (Tensilon universal tester) using the evaluation sample thus prepared. The mechanical properties were evaluated by the relative values of the tensile strength and elongation of each sample when the measured value of Sample 1 was 100%.

<接合性の評価(濡れ性)>
上記シート状に加工した各試料を、プレス機を用いて2.0mm×2.0mmの四角形状に打抜いて、打ち抜き品(以下、□2mm品)を作製した。このようにして作製した□2mm品を用いて、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)により各はんだ合金試料の濡れ性を評価した。具体的には、先ず濡れ性試験機のヒーター部に2重のカバーをして、ヒーター部の周囲4箇所から窒素を12リットル/分の流量で流しながら、ヒーター設定温度を各試料の融点より約10℃高い温度に設定して加熱した。濡れ性試験機内が窒素雰囲気に置換され、ヒーター温度が設定値で安定した後、Cu基板(板厚:約0.70mm)をヒーター部にセッティングして窒素雰囲気内で25秒間加熱した。
<Evaluation of bondability (wetting)>
Each sample processed into the sheet shape was punched into a square shape of 2.0 mm × 2.0 mm by using a press machine to produce a punched product (hereinafter, □ 2 mm product). The wettability of each solder alloy sample was evaluated with a wettability tester (device name: atmosphere control type wettability tester) using the □ 2 mm product thus produced. Specifically, the heater part of the wettability tester is first covered with a double cover, and the heater set temperature is determined from the melting point of each sample while flowing nitrogen at a flow rate of 12 liters / minute from four locations around the heater part. About 10 ° C. was set at a high temperature and heated. After the inside of the wettability tester was replaced with a nitrogen atmosphere and the heater temperature was stabilized at a set value, a Cu substrate (plate thickness: about 0.70 mm) was set in the heater part and heated in a nitrogen atmosphere for 25 seconds.

次に、各はんだ合金試料の□2mm品を該Cu基板の上に載せ、25秒間加熱した。その後、溶融はんだ合金に影響しないようにCu基板をヒーター部から静かに取り上げ、その横の窒素雰囲気が保たれている保持台に置いて冷却した。はんだ合金が固化し十分に冷却した後、大気中に取り出してはんだ合金とCu基板との接合部分を下記の基準で検査した。すなわち、ほとんど接合されておらず容易に剥がれる場合は「×」、接合されているが濡れ広がりが悪い場合(はんだが濡れ広がらなかった場合)は「△」、接合されており且つ濡れ広がりが良い場合(はんだが薄く濡れ広がった状態)は「○」と評価した。   Next, a 2 mm product of each solder alloy sample was placed on the Cu substrate and heated for 25 seconds. Thereafter, the Cu substrate was gently picked up from the heater part so as not to affect the molten solder alloy, and was placed on a holding table in which the nitrogen atmosphere was maintained and cooled. After the solder alloy was solidified and sufficiently cooled, it was taken out into the atmosphere and the joint portion between the solder alloy and the Cu substrate was inspected according to the following criteria. That is, it is “x” when it is hardly joined and easily peeled off, and “△” when it is joined but the wetting spread is poor (when the solder does not spread), it is joined and the wetting spread is good. In the case (a state where the solder was thin and spread), it was evaluated as “◯”.

<信頼性の評価(ヒートサイクル試験)>
信頼性の評価は上記の□2mm品を用いた接合体を作製して行った。この信頼性の評価用の接合体作製のため、先ず、ダイボンダー(ウェストボンド社製、MODEL:7327C)を起動し、ヒーター部分にカバーをして窒素を流し(窒素流量:合計8L/分)、ヒーター部を窒素雰囲気とした。その後、ヒーター設定温度を各はんだ試料の融点より50℃高い温度に加熱した。
<Reliability evaluation (heat cycle test)>
Reliability evaluation was performed by producing a joined body using the above-mentioned □ 2 mm product. In order to produce a bonded body for evaluation of reliability, first, a die bonder (manufactured by Westbond, MODEL: 7327C) is started, a heater is covered and nitrogen is flown (nitrogen flow rate: 8 L / min in total), The heater part was a nitrogen atmosphere. Thereafter, the heater set temperature was heated to 50 ° C. higher than the melting point of each solder sample.

ヒーター温度が設定値で安定した後、板厚0.3mmのCu基材上に膜厚3.0μmのNiめっき層が成膜されたCu基板をヒーター部にセッティングし、25秒加熱した。次に、各はんだ合金試料の□2mm品を該Cu基板の上に載せて25秒加熱し、25秒経過後にSiチップを載せて3秒間スクラブした。スクラブが終了した後、Cu基板をSiチップと共にヒーター部から静かに取り上げて、その横の窒素雰囲気が保たれている保持台に置いて冷却し、十分に冷却した後、大気中に取り出した。これにより、図1に示すようなCu基材1の表面にNiめっき層2が成膜されたCu基板が各はんだ合金試料3を介してSiチップ4に接合されてなる評価用の接合体を得た。   After the heater temperature was stabilized at the set value, a Cu substrate in which a Ni plating layer having a thickness of 3.0 μm was formed on a Cu base material having a thickness of 0.3 mm was set in the heater portion and heated for 25 seconds. Next, a □ 2 mm product of each solder alloy sample was placed on the Cu substrate and heated for 25 seconds, and after 25 seconds, a Si chip was placed and scrubbed for 3 seconds. After scrubbing was completed, the Cu substrate was gently picked up from the heater part together with the Si chip, placed on a holding table maintaining a nitrogen atmosphere next to the Cu substrate, cooled sufficiently, and taken out into the atmosphere. As a result, the evaluation bonded body in which the Cu substrate having the Ni plating layer 2 formed on the surface of the Cu base 1 as shown in FIG. 1 is bonded to the Si chip 4 via each solder alloy sample 3 is obtained. Obtained.

このようにして作製した各はんだ合金試料の接合体に対して、ヒートサイクル試験を行って接合信頼性を評価した。尚、このヒートサイクル試験は、各はんだ合金試料に対して上記の接合体を2個ずつ用いて行った。すなわち、2個の接合体のうちの一方に対して−40℃までの冷却と+150℃までの加熱を1サイクルとするヒートサイクルを300サイクル繰り返し、もう一方に対してはこのヒートサイクルを500サイクル繰り返した。   A heat cycle test was performed on the joined bodies of the solder alloy samples thus produced to evaluate the joining reliability. In addition, this heat cycle test was performed using two said joined bodies with respect to each solder alloy sample. That is, 300 cycles of a heat cycle in which one of the two joined bodies is cooled to −40 ° C. and heated to + 150 ° C. for one cycle, and this heat cycle is repeated for 500 cycles. Repeated.

その後、このヒートサイクルを300サイクル及び500サイクル繰り返した両接合体を各々樹脂に埋め込み固化させた後、断面研磨を行った。SEM(装置名:HITACHI S−4800)を用いてこの接合部断面を観察し、下記の基準で信頼性の評価を行った。すなわち、接合面に剥がれが生じているか又ははんだ部にクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合状態を保っていた場合を「○」と評価した。この評価結果を上記の加工性の評価、機械的特性の評価、及び接合性の評価と共に下記表2に示す。   Thereafter, both bonded bodies obtained by repeating this heat cycle for 300 cycles and 500 cycles were embedded in resin and solidified, and then cross-section polishing was performed. This joint section was observed using SEM (device name: HITACHI S-4800), and reliability was evaluated according to the following criteria. That is, the case where peeling occurs on the joint surface or the solder part has cracks is evaluated as “X”, and the case where there is no such defect and the joint state similar to the initial state is evaluated as “◯”. did. The evaluation results are shown in Table 2 below together with the evaluation of the workability, the evaluation of mechanical properties, and the evaluation of bondability.

Figure 2017225979
Figure 2017225979

上記の表2から分かるように、本発明の実施例である試料1〜20のZn系はんだ合金は、いずれも全ての評価項目において良好な特性を示した。即ち、引張強度及び伸び率は比較対象とした試料1よりも高い値を示しており、加工性に優れるため、リボン状に加工しても傷やクラックの発生がなく、濡れ性にも優れ、ヒートサイクル試験でも500回まで剥がれやクラックなどの不良は全く発生しなかった。   As can be seen from Table 2 above, the Zn-based solder alloys of Samples 1 to 20 as examples of the present invention all showed good characteristics in all evaluation items. That is, the tensile strength and elongation rate are higher than those of the sample 1 as a comparative object, and because of excellent workability, there is no generation of scratches or cracks even when processed into a ribbon shape, and excellent wettability. Even in the heat cycle test, defects such as peeling and cracking did not occur at all up to 500 times.

一方、比較例である試料21〜30の各Zn系はんだ合金は、Al、Cu、Ge及びPのうちのいずれかの含有量が適切でなかったため、好ましくない評価結果となった。具体的には、加工性の評価では、傷やクラックの数が試料23、24及び27は比較的少ないものの、全ての試料で傷やクラックの発生が確認された。また、機械的特性の評価においては、引張強度及び伸び率の両方とも本発明の実施例の試料1〜20には及ばなかった。最も引張強度の高い試料24は試料1の引張強度の97%を示したが、その際の伸び率は試料1の72%であり、加工性に劣り十分な接合性や信頼性も得られなかった。   On the other hand, each of the Zn-based solder alloys of Samples 21 to 30 as the comparative example had an undesirable evaluation result because the content of any one of Al, Cu, Ge, and P was not appropriate. Specifically, in the evaluation of workability, the number of scratches and cracks was relatively small in the samples 23, 24 and 27, but the occurrence of scratches and cracks was confirmed in all the samples. Further, in the evaluation of mechanical properties, both the tensile strength and the elongation rate did not reach the samples 1 to 20 of the examples of the present invention. The sample 24 with the highest tensile strength showed 97% of the tensile strength of the sample 1, but the elongation at that time was 72% of that of the sample 1, and it was inferior in workability, so that sufficient bondability and reliability were not obtained. It was.

接合性の評価においては、試料21〜27、及び29〜30は接合したものの濡れ広がり性に劣り、試料28は接合できず、よって全ての試料において試料1〜20よりも濡れ性が劣っていた。信頼性の評価においては、試料23と27は300サイクルまでは不良の発生がなかったが、他の試料は300サイクルの時点で不良の発生が確認され、500サイクルのヒートサイクル試験では試料23と27を含む全てにおいて不良の発生が確認された。   In the evaluation of bondability, samples 21 to 27 and 29 to 30 were inferior in wettability and spreadability, but sample 28 could not be bonded. Therefore, in all samples, wettability was inferior to samples 1 to 20. . In the reliability evaluation, the samples 23 and 27 were not defective until 300 cycles, but the other samples were confirmed to be defective at 300 cycles. In the 500 cycle heat cycle test, the samples 23 and 27 were not defective. The occurrence of defects was confirmed in all of the samples including 27.

1 Cu基材
2 Niめっき層
3 各はんだ合金試料
4 Siチップ


1 Cu base material 2 Ni plating layer 3 Each solder alloy sample 4 Si chip


Claims (3)

Alを4.0質量%以上10.0質量%以下含有し、Cuを3.5質量%より多く5.0質量%以下含有し、残部がZn及び不可避不純物からなることを特徴とするPbフリーZn系はんだ合金。   Pb-free, characterized by containing Al 4.0% to 10.0% by weight, Cu containing more than 3.5% by weight and 5.0% by weight with the balance being Zn and inevitable impurities Zn solder alloy. Alを4.0質量%以上10.0質量%以下含有し、Cuを3.0質量%より多く7.0質量%以下含有し、更にGe及びPのうちの1種以上を、Geの場合は0.01質量%以上1.00質量%以下、Pの場合は0.005質量%以上0.500質量%以下含有し、残部がZn及び不可避不純物からなることを特徴とするPbフリーZn系はんだ合金。   In the case where Al is contained in an amount of 4.0% by mass or more and 10.0% by mass or less, Cu is contained in an amount of more than 3.0% by mass and 7.0% by mass or less, and at least one of Ge and P is Ge. Is Pb-free Zn-based, characterized by containing 0.01 mass% or more and 1.00 mass% or less, and in the case of P, 0.005 mass% or more and 0.500 mass% or less, with the balance being Zn and inevitable impurities Solder alloy. Alを5.5質量%以上8.5質量%以下含有し、Cuを3.5質量%より多く5.0質量%以下含有することを特徴とする、請求項1又は2に記載のPbフリーZn系はんだ合金。   3. The Pb-free material according to claim 1, comprising Al in an amount of 5.5% by mass to 8.5% by mass and Cu in an amount of more than 3.5% by mass and 5.0% by mass or less. Zn solder alloy.
JP2016121677A 2016-06-20 2016-06-20 Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE Pending JP2017225979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121677A JP2017225979A (en) 2016-06-20 2016-06-20 Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121677A JP2017225979A (en) 2016-06-20 2016-06-20 Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE

Publications (1)

Publication Number Publication Date
JP2017225979A true JP2017225979A (en) 2017-12-28

Family

ID=60890717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121677A Pending JP2017225979A (en) 2016-06-20 2016-06-20 Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE

Country Status (1)

Country Link
JP (1) JP2017225979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787277A (en) * 2021-08-26 2021-12-14 河钢股份有限公司 Zinc-based brazing filler metal powder for galvanized plate brazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787277A (en) * 2021-08-26 2021-12-14 河钢股份有限公司 Zinc-based brazing filler metal powder for galvanized plate brazing

Similar Documents

Publication Publication Date Title
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP2014024082A (en) Solder alloy
US20160234945A1 (en) Bi-BASED SOLDER ALLOY, METHOD OF BONDING ELECTRONIC COMPONENT USING THE SAME, AND ELECTRONIC COMPONENT-MOUNTED BOARD
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP2016026884A (en) Bi-Sn-Al BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP5699897B2 (en) Pb-free solder alloy based on Zn
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP2016093831A (en) Pb-FREE Mg-Cu-BASED SOLDER ALLOY
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP2013052433A (en) SOLDER ALLOY OF Pb-FREE Zn SYSTEM
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2016026883A (en) Bi-Sn-Zn BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP5699898B2 (en) Pb-free solder alloy based on Zn
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP5861526B2 (en) Ge-Al solder alloy not containing Pb
JP2011235314A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP2018065170A (en) Pb-FREE Zn-Al-Ag TYPE SOLDER ALLOY FOR HIGH TEMPERATURE AND ELECTRONIC COMPONENT USING THE SAME
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP2016097444A (en) Pb-FREE Sb-In-BASED SOLDER ALLOY