Nothing Special   »   [go: up one dir, main page]

JP2017221692A - Bellows-like lumen structure - Google Patents

Bellows-like lumen structure Download PDF

Info

Publication number
JP2017221692A
JP2017221692A JP2017149423A JP2017149423A JP2017221692A JP 2017221692 A JP2017221692 A JP 2017221692A JP 2017149423 A JP2017149423 A JP 2017149423A JP 2017149423 A JP2017149423 A JP 2017149423A JP 2017221692 A JP2017221692 A JP 2017221692A
Authority
JP
Japan
Prior art keywords
bellows
braid
tube
nerve regeneration
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017149423A
Other languages
Japanese (ja)
Other versions
JP6423054B2 (en
Inventor
拓也 田辺
Takuya Tanabe
拓也 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2017149423A priority Critical patent/JP6423054B2/en
Publication of JP2017221692A publication Critical patent/JP2017221692A/en
Application granted granted Critical
Publication of JP6423054B2 publication Critical patent/JP6423054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lumen structure having improved kink resistance and strength.SOLUTION: A bellows-like neurotization tube is molded from a braid 10 formed by braiding yarns 9. The height of a crest of the bellows part of the bellows-like neurotization tube is 1-40% with respect to the internal diameter of the bellows-like neurotization tube. Further, a fiber forming the yarn is formed of a biodegradable polymer. Furthermore, the bellows-like neurotization tube can be manufactured by braiding the yarns to fabricate a braid with a braiding angle of 30-85°, repetitively compressing and extending the braid in the longitudinal direction using a core material 3 with an external diameter of 2 mm or more to mold it into a bellows-like shape, and compressing the braid again in the longitudinal direction.SELECTED DRAWING: Figure 3

Description

本発明は、蛇腹状管腔構造体に関する。   The present invention relates to a bellows-like lumen structure.

事故、災害、疾患等により、ヒトの神経、腱などの組織または器官が損傷し、自己の回復力により損傷部を治癒できない場合には、知覚、感覚、運動能力等に障害が発生する。このような患者に対して、近年の顕微鏡下で損傷部位を接続する技術の発展に伴い、切断された部位を接続する外科縫合手術や、自己の神経・腱などを他の部位から採取し、移植することにより失われた機能を回復する自家神経移植などの治療等が行われている。   When tissues or organs such as human nerves and tendons are damaged due to accidents, disasters, diseases, etc., and the damaged part cannot be cured by self-recovery power, the perception, sensation, motor ability, etc. are impaired. For such patients, with the development of technology to connect the damaged site under the microscope in recent years, surgical sutures that connect the cut site, self nerves and tendons, etc. are collected from other sites, Treatment such as autologous nerve transplantation that recovers the function lost by transplantation has been performed.

しかしながら、欠損した領域が大きすぎる場合は、上記のような接続による修復は不可能であり、ある程度の障害が発生してもその損傷部分の障害よりも重要度が低いと思われる他の部分から神経を採取し、損傷部位へ移植することが必要となる。このような場合、最初に発生した部位の障害よりも重要度が低いとはいえ、損傷を受けていない健常な他の部分の神経を採取するので、その部位には知覚、感覚、運動能力などの障害を発生させることになる。そこで、他の部分に支障を来すことなく、損傷部分の修復が可能な治療方法が切望されている。   However, if the missing area is too large, repair by connection as described above is impossible, and even if a certain degree of failure occurs, it is from other parts that seem to be less important than the damaged part Nerves must be collected and transplanted to the site of injury. In such a case, although it is less important than the injury of the site where it first occurred, the nerves of other healthy parts that are not damaged are collected, so that the site has sensory, sensory, motor skills, etc. Will cause a failure. Therefore, a treatment method capable of repairing the damaged part without causing any trouble to other parts is eagerly desired.

例えば、自家神経移植の弊害を克服するために、損傷部位を人工の器具で置き換えることにより、元の機能を回復させる種々の研究がなされている。   For example, in order to overcome the adverse effects of autologous nerve transplantation, various studies have been made to restore the original function by replacing the damaged site with an artificial instrument.

特許文献1では、複数本の生分解性ポリマーからなる極細繊維で編んだ管状体の外部表面をコラーゲン溶液で複数回塗布することにより被覆し、さらに管状体の内部にコラーゲンを充填することによって製造される神経再生誘導管が開示されている。   In Patent Document 1, the outer surface of a tubular body knitted with ultrafine fibers made of a plurality of biodegradable polymers is coated by applying it multiple times with a collagen solution, and further manufactured by filling the inside of the tubular body with collagen. A nerve regeneration-inducing tube is disclosed.

特許文献2および3では、ポリグリコール酸(PGA)繊維を用い組紐作製機を使用して得たPGAの管にコラーゲン溶液を塗布し、内部にコラーゲン溶液を充填し、それを凍結乾燥、熱架橋することにより製造される、コラーゲンを内部に含む管状の組織再生用部材が開示されている。   In Patent Documents 2 and 3, a collagen solution is applied to a PGA tube obtained using a braided cord making machine using polyglycolic acid (PGA) fibers, filled with a collagen solution, and then freeze-dried and thermally crosslinked. A tubular tissue regeneration member containing collagen therein is produced.

特許文献4では、脂肪族エステル系樹脂からなり、管軸方向に沿って山部と谷部とが連続した蛇腹構造を有する管状体を備え、前記管状体の管壁には、管外面から管内面に通じる複数の貫通孔が形成されており、前記複数の貫通孔は、レーザー加工によって形成された孔である、神経再生チューブが開示されている。   In Patent Document 4, a tubular body made of an aliphatic ester resin and having a bellows structure in which peaks and valleys are continuous along the tube axis direction is provided. A nerve regeneration tube is disclosed in which a plurality of through-holes leading to a surface are formed, and the plurality of through-holes are holes formed by laser processing.

特開2010−269185号公報JP 2010-269185 A 特開2013−031730号公報JP 2013-031730 A 国際公開第08/001952号International Publication No. 08/001952 特開2011−206203号公報JP 2011-206203 A

しかしながら、特許文献1〜3に記載の神経再生誘導管および組織再生用部材は、キンク耐性が低く、強度が低いという問題があった。   However, the nerve regeneration induction tube and tissue regeneration member described in Patent Documents 1 to 3 have a problem that kink resistance is low and strength is low.

また、特許文献4では、蛇腹状構造体ではあるもののレーザー等により穴を開けなければ、神経再生に必要とされる水、電解質、成長因子等の物質透過性がないという問題があった。   Further, Patent Document 4 has a problem that although it is a bellows-like structure, it does not have substance permeability such as water, electrolytes, and growth factors required for nerve regeneration unless a hole is made with a laser or the like.

そこで、本発明は、キンク耐性および強度が向上した管腔構造体を提供することを目的とする。   Therefore, an object of the present invention is to provide a lumen structure with improved kink resistance and strength.

また、本発明は、組紐を利用することにより、穴あけ加工をせずに構造全体に物質透過性の隙間を有する、蛇腹状管腔構造体を提供することを目的とする。   Another object of the present invention is to provide a bellows-like lumen structure having a material-permeable gap in the entire structure without drilling by using braids.

本発明者らは、上記課題を解決すべく、種々の研究を行った。その結果、複数本の有機高分子繊維から形成される糸条を編組した組紐から成形される蛇腹状の管腔構造体により、上記課題が解決することを見出し、本発明を完成させるに至った。   The present inventors conducted various studies to solve the above problems. As a result, it has been found that the above problems can be solved by an accordion-like lumen structure formed from braided braided yarn formed from a plurality of organic polymer fibers, and the present invention has been completed. .

すなわち、本発明は、複数本の有機高分子繊維から成形される糸条を編組した組紐から形成されてなる蛇腹状管腔構造体である。   That is, the present invention is a bellows-like lumen structure formed of a braid formed by braiding yarns formed from a plurality of organic polymer fibers.

本発明によれば、キンク耐性および強度が向上した蛇腹状管腔構造体が提供される。また、本発明によれば、組紐を利用することにより、穴あけ加工をせずに構造全体に物質透過性の隙間を有する、蛇腹状管腔構造体が提供される。   According to the present invention, a bellows-like lumen structure with improved kink resistance and strength is provided. In addition, according to the present invention, a bellows-like lumen structure having a substance-permeable gap in the entire structure without drilling is provided by using a braid.

組角度の定義を示す模式図である。It is a schematic diagram which shows the definition of a group angle. 蛇腹の山の高さ、外径、および山5つ分の長軸方向の距離の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the distance of the major axis direction of the height of a bellows peak, an outer diameter, and five peaks. 本発明の蛇腹状管腔構造体を構成する組紐を製造するために好適に用いられる組紐機の一例を示す模式図である。It is a schematic diagram which shows an example of the braiding machine used suitably in order to manufacture the braiding which comprises the bellows-like lumen structure of this invention. 組紐機に備えられる糸条巻取ボビンおよびキャリヤーの一例を示す拡大模式図である。It is an expansion schematic diagram which shows an example of the yarn winding bobbin and carrier with which a braiding machine is equipped. 通常の組紐から作製した蛇腹状でない神経再生チューブを用いたイヌ腓骨神経埋め込み実験の結果を示す図である。It is a figure which shows the result of the canine radial nerve embedding experiment using the nerve regeneration tube which is not made from the bellows shape produced from the normal braid. 蛇腹状に成形した組紐から作製した蛇腹状神経再生チューブを用いたイヌ腓骨神経埋め込み実験の結果を示す図である。It is a figure which shows the result of the canine radial nerve embedding experiment using the bellows-like nerve regeneration tube produced from the braid formed in the bellows shape.

本発明は、糸条を編組した組紐から成形されてなる蛇腹状管腔構造体である。このような構成とすることにより、キンク耐性および強度が向上した管腔構造体となる。   The present invention is a bellows-like lumen structure formed from a braid made by braiding yarn. By setting it as such a structure, it becomes a lumen structure with improved kink resistance and strength.

以下、本発明の蛇腹状管腔構造体を詳細に説明する。   Hereinafter, the bellows-like lumen structure of the present invention will be described in detail.

〔蛇腹状管腔構造体〕
本発明において管腔構造体とは、外部に貫通する内腔を有する構造体であり、例えば、円筒状、角筒状、円錐台状、角錐台状などの形状を有するものである。このうち円筒状が好ましい。また、断面形状としては、例えば、円形、楕円形、卵形、扇形、弓形、または多角形(三角形、四角形、五角形、六角形、八角形など)などが挙げられる。これらのうち、好ましくは円形である。以下、本明細書では、管腔構造体を単に「チューブ」とも称する。
[Bellows-like lumen structure]
In the present invention, the lumen structure is a structure having a lumen penetrating to the outside, and has a shape such as a cylindrical shape, a rectangular tube shape, a truncated cone shape, and a truncated pyramid shape. Of these, a cylindrical shape is preferable. In addition, examples of the cross-sectional shape include a circle, an ellipse, an egg, a fan, a bow, or a polygon (triangle, quadrangle, pentagon, hexagon, octagon, etc.). Of these, the shape is preferably circular. Hereinafter, the lumen structure is also simply referred to as “tube” in the present specification.

また、本発明において「蛇腹状」とは、山部と谷部とが交互に連続して形成された状態であることを意味し、「組紐からなる蛇腹状管腔構造体」とは、蛇腹状管腔構造体が組紐からなることを意味する。   Further, in the present invention, “accordion-like” means a state in which peaks and valleys are alternately and continuously formed, and “an bellows-like lumen structure made of braid” This means that the luminal structure is made of braid.

さらに、本発明において、上記の「糸条」とは、繊維を束ねたものであり、繊維の本数は、特に制限されないが、通常、1〜50本である。ここでいう繊維とは、複数本の繊維が撚りを掛けられずに引きそろえられた繊維束、組紐状に編まれた糸、または撚りを掛けられた糸を意味し、本発明においては、いずれの形態であっても使用することができる。   Furthermore, in the present invention, the “yarn” is a bundle of fibers, and the number of fibers is not particularly limited, but is usually 1 to 50. The fiber here means a fiber bundle in which a plurality of fibers are arranged without being twisted, a yarn knitted in a braided shape, or a yarn that has been twisted. Even in this form, it can be used.

糸条を形成する繊維としては、有機高分子繊維が好ましい。該有機高分子繊維の例としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、液晶ポリエステル樹脂等のポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン等のポリオレフィン樹脂、ナイロン6樹脂、ナイロン66樹脂、ナイロン12樹脂、ナイロン610樹脂等のポリアミド樹脂、スチレン樹脂、ポリオキシメチレン樹脂、ポリカーボネート樹脂、ポリメチレンメタクリレート樹脂、ポリ塩化ビニル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアクリレート樹脂、ポリエーテルニトリル樹脂、フェノール樹脂、フェノキシ樹脂、フッ素樹脂等の熱可塑性樹脂、ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、もしくはフッ素系等の熱可塑性エラストマー、またはこれらの共重合体樹脂、変性体樹脂などの有機高分子から形成される繊維が挙げられる。   As the fiber forming the yarn, an organic polymer fiber is preferable. Examples of the organic polymer fiber include, for example, polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and liquid crystal polyester resin, and polyolefins such as polyethylene resin, polypropylene resin, and polybutylene. Polyamide resin such as resin, nylon 6 resin, nylon 66 resin, nylon 12 resin, nylon 610 resin, styrene resin, polyoxymethylene resin, polycarbonate resin, polymethylene methacrylate resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyphenylene ether resin , Polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyketone resin, Polyether ketone resin, polyether ether ketone resin, polyacrylate resin, polyether nitrile resin, phenol resin, phenoxy resin, thermoplastic resin such as fluororesin, polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene And fibers formed from organic polymers such as thermoplastic elastomers such as polyisoprene and fluorine, or copolymer resins and modified resins thereof.

また、有機高分子繊維として、生分解性ポリマーから形成される繊維も好ましく用いられる。生分解性ポリマーを用いることにより、後述するような神経組織の再生用部材、すなわち神経再生チューブや、皮下組織、粘膜下組織、生体膜組織、脂肪組織、筋肉組織、皮膚組織、歯肉組織等の再生、置換、または移植のための部材として好適に用いられる。   Moreover, the fiber formed from a biodegradable polymer is also preferably used as the organic polymer fiber. By using a biodegradable polymer, a nerve tissue regeneration member as described later, that is, a nerve regeneration tube, a subcutaneous tissue, a submucosa, a biological membrane tissue, a fat tissue, a muscle tissue, a skin tissue, a gingival tissue, etc. It is suitably used as a member for regeneration, replacement, or transplantation.

生分解性ポリマーの具体的な例としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(D、L、DL体)、ポリε−カプロラクトン、ポリヒドロキシ酪酸、セルロース、ポリヒドロキシブチレイト吉草酸、もしくはポリオルソエステル、またはこれらの共重合体、混合物、もしくは複合物等が挙げられる。これらの中でも、ポリグリコール酸、ポリ乳酸とポリグリコール酸の共重合体、ポリε−カプロラクトンとポリグリコール酸との共重合体が好ましい。   Specific examples of the biodegradable polymer include, for example, polyglycolic acid (PGA), polylactic acid (D, L, DL form), polyε-caprolactone, polyhydroxybutyric acid, cellulose, polyhydroxybutyrate valeric acid, Alternatively, a polyorthoester, a copolymer, a mixture, or a composite thereof can be used. Among these, polyglycolic acid, a copolymer of polylactic acid and polyglycolic acid, and a copolymer of polyε-caprolactone and polyglycolic acid are preferable.

なお、上記有機高分子繊維は単独でもまたは2種以上組み合わせて用いてもよい。また、該有機高分子繊維や該有機高分子繊維から形成される糸条は、市販品を用いてもよいし合成品を用いてもよい。さらに、本発明の蛇腹状管腔構造体を構成する組紐は、単層構造であってもよいし、2層以上の多層構造であってもよい。多層構造の場合、それぞれの層の材料(有機高分子繊維)の種類は、同じでもよいし異なっていてもよい。   In addition, you may use the said organic polymer fiber individually or in combination of 2 or more types. Commercially available products or synthetic products may be used for the organic polymer fibers and the yarns formed from the organic polymer fibers. Furthermore, the braid constituting the bellows-like lumen structure of the present invention may have a single-layer structure or a multilayer structure of two or more layers. In the case of a multilayer structure, the type of material (organic polymer fiber) of each layer may be the same or different.

本発明の蛇腹状管腔構造体を構成する組紐の蛇腹成形前の組角度は特に制限されず、如何なる組角度であってもよい。ここで、組角度とは軸方向に対する組糸(糸条)のなす鋭角を指し(図1のθ)、組角度が小さいとは、組糸(糸条)が軸方向と平行に近い角度(0°に近い)であることをいい、組角度が大きいとは、組糸(糸条)が軸方向と直交する方向に近い角度であることをいう。なお、該組角度は、後述の実施例に記載のCCDカメラを用いた方法により測定することができ、本発明の蛇腹状管腔構造体を構成する組紐の蛇腹成形前の組角度は、任意の1箇所の測定値を採用するものとする。   The braid angle before the bellows molding of the braid constituting the bellows-like lumen structure of the present invention is not particularly limited, and may be any braid angle. Here, the braiding angle refers to an acute angle formed by the braiding yarn (yarn) with respect to the axial direction (θ in FIG. 1), and the small braiding angle means that the braiding yarn (yarn) is nearly parallel to the axial direction ( It means that the braid angle is close to the direction perpendicular to the axial direction. The braid angle can be measured by a method using a CCD camera described in the examples described later, and the braid angle of the braid constituting the bellows-like lumen structure of the present invention before the bellows molding is arbitrary. Measured values at one location are adopted.

また、該組角度の制御は、組紐機(編組機)により組紐を製造する際の組紐の編み速度や引き取り速度等を制御して、編み位置(キャリヤーの糸の出口から糸条が集まり組紐が生成する位置までの高さの差、図3のh)を制御することにより行うことができる。   The braid angle is controlled by controlling the braiding speed and the take-up speed of the braid when the braid is manufactured by the braiding machine (knitting machine), and the braid is gathered from the yarn exit of the carrier. This can be done by controlling the difference in height to the position to be generated, h) in FIG.

本発明の蛇腹状管腔構造体の内径は0.5〜20mmの範囲が好ましく、全長は5〜100mmの範囲が好ましい。   The inner diameter of the bellows-like lumen structure of the present invention is preferably in the range of 0.5 to 20 mm, and the total length is preferably in the range of 5 to 100 mm.

上記内径は、最も細い神経束が0.5mm未満であること、また前立腺癌全摘除術後の神経再建術において、前立腺周囲の網目状神経の断端を束ね神経再生チューブに挿入する場合、最大で20mm程度の内径であれば十分であること等により、上記の範囲が好ましい。   The inner diameter is the maximum when the narrowest nerve bundle is less than 0.5 mm, and when the stump of the reticular nerve around the prostate is bundled and inserted into the nerve regeneration tube in the nerve reconstruction after radical prostatectomy. The above range is preferable because an inner diameter of about 20 mm is sufficient.

本発明の蛇腹状管腔構造体の外径は、1〜30mmであることが好ましい。本発明の蛇腹状管腔構造体の外径は、本発明の蛇腹状管腔構造体の内径の101〜210%であることが好ましい。   The outer diameter of the bellows-like lumen structure of the present invention is preferably 1 to 30 mm. The outer diameter of the bellows-like lumen structure of the present invention is preferably 101 to 210% of the inner diameter of the bellows-like lumen structure of the present invention.

上記外径は、蛇腹構造の好適な内径、壁厚、山の高さなどを考慮した場合、上記の範囲が好ましい。   The outer diameter is preferably in the above range in consideration of the preferred inner diameter, wall thickness, peak height, etc. of the bellows structure.

本発明の蛇腹状管腔構造体の蛇腹部の山の高さ(蛇腹高さ)は、0.1〜4mmであることが好ましい。本発明の蛇腹状管腔構造体の蛇腹部の山の高さ(蛇腹高さ)は、蛇腹状管腔構造体の内径の1〜40%であることが好ましい。   The height of the peak of the bellows portion (bellows height) of the bellows-like lumen structure of the present invention is preferably 0.1 to 4 mm. The height of the peak of the bellows portion (bellows height) of the bellows-like lumen structure of the present invention is preferably 1 to 40% of the inner diameter of the bellows-like lumen structure.

上記山の高さは、上記の範囲で構造的に最も安定な状態となる。チューブが湾曲する際は、編まれている糸それぞれがずれることでストレスを吸収するのに有利であると考えられる。   The height of the mountain is structurally most stable in the above range. When the tube is bent, it is considered that it is advantageous to absorb stress by shifting each knitted yarn.

本発明の蛇腹状管腔構造体の蛇腹部において、山5つ分の長軸方向の距離は、1〜40mmであることが好ましい。本発明の蛇腹状管腔構造体の蛇腹部において、山5つ分の長軸方向の距離は、蛇腹状管腔構造体の内径の10〜350%であることが好ましい。   In the bellows portion of the bellows-like lumen structure of the present invention, the distance in the major axis direction for five peaks is preferably 1 to 40 mm. In the bellows portion of the bellows-like lumen structure of the present invention, the distance in the major axis direction for five peaks is preferably 10 to 350% of the inner diameter of the bellows-like lumen structure.

なお、本明細書において、蛇腹状管腔構造体の山の高さは、図2のAに示すように、山の両側で測定した高さ(図2のA中のa、b)の平均値をその山の高さとし、これを管腔構造体の両端付近と中央付近との計3箇所で測定した値の平均値を、蛇腹部の山の高さ(蛇腹高さ)と定義する。   In the present specification, the height of the peak of the bellows-like lumen structure is the average of the heights (a and b in A of FIG. 2) measured on both sides of the peak as shown in A of FIG. The value is defined as the height of the peak, and the average value of the values measured at a total of three locations near both ends and the center of the lumen structure is defined as the height of the bellows portion (bellows height).

また、外径については、図2のBに示すように、蛇腹部の山の頂点を測定した値をその箇所での外径とし、これを管腔構造体の両端付近と中央付近との計3箇所で測定した値の平均値を、蛇腹状管腔構造体の外径と定義する。   As for the outer diameter, as shown in FIG. 2B, the value obtained by measuring the apex of the peak of the bellows portion is taken as the outer diameter at that location, and this is the total of the vicinity of both ends and the center of the lumen structure. The average value of the values measured at three locations is defined as the outer diameter of the bellows-like lumen structure.

内径については、組紐の製造時に用いた芯材の外径をそのまま蛇腹状管腔構造体の内径と定義する。   Regarding the inner diameter, the outer diameter of the core material used at the time of manufacturing the braid is defined as the inner diameter of the bellows-like lumen structure as it is.

さらに、蛇腹部の山5つ分の長軸方向の距離は、図2のCに示すように、管腔構造体の中央付近の山5つ分の距離を測定した値を、山5つ分の長軸方向の距離と定義する。   Further, as shown in FIG. 2C, the distance in the major axis direction for the five bellows peaks is a value obtained by measuring the distance of five peaks near the center of the lumen structure. It is defined as the distance in the major axis direction.

〔蛇腹状管腔構造体の製造方法〕
本発明の蛇腹状管腔構造体の製造方法は、特に制限されないが、ポリテトラフルオロエチレンなどから形成される芯材を用いて組紐を作製し、その後、前記組紐を蛇腹状に成形する方法が好ましい。
[Method of manufacturing bellows-like lumen structure]
The manufacturing method of the bellows-like lumen structure of the present invention is not particularly limited, but there is a method in which a braid is produced using a core material formed from polytetrafluoroethylene or the like, and then the braid is formed into a bellows shape. preferable.

組紐の作製方法は特に制限されず、例えば、4〜48本の糸条を用いて組紐機(編組機)にかけ、芯材の外周部に組み上げる方法が挙げられる。例としては、4本組紐、8本組紐、16本組紐、32本組紐、48本組紐などが挙げられ、組上方法(編組方法)としては、丸打ち、角打ち、平打ちなどが挙げられ、これらを組み合わせて製紐してもよい。また、他の組み上げ方法としては、レギュラーブレイド(1wire2over2under)、ダイヤモンドパターンフルロード(2wire2over2under)、ダイヤモンドパターンハーフロード(1wire1over1under)等が挙げられる。   The method for producing the braid is not particularly limited, and examples thereof include a method of using 4 to 48 yarns on a braiding machine (braiding machine) and assembling the outer periphery of the core material. Examples include 4 braids, 8 braids, 16 braids, 32 braids, 48 braids, etc. The assembling method (braiding method) includes round punching, square punching, flat punching, etc. These may be combined to form a string. Other assembly methods include regular blade (1 wire 2 over 2 under), diamond pattern full load (2 wire 2 over 2 under), diamond pattern half load (1 wire 1 over 1 under), and the like.

本発明においては、組紐機(編組機)の形態やその組上方法(編組方法)は何ら限定されるものではない。   In the present invention, the form of the braiding machine (braiding machine) and its assembling method (braiding method) are not limited at all.

以下、図を参照しながら、本発明に係る組紐の製造方法の一例を詳細に説明する。   Hereinafter, an example of a method for manufacturing a braid according to the present invention will be described in detail with reference to the drawings.

図3は、本発明の管腔構造体を構成する組紐を製造するために好適に用いられる組紐機の一例を示す模式図である。また、図4は、組紐機に備えられる糸条巻取ボビンおよびキャリヤーの一例を示す拡大模式図である。   FIG. 3 is a schematic diagram showing an example of a braiding machine that is preferably used to manufacture the braiding constructing the lumen structure of the present invention. FIG. 4 is an enlarged schematic view showing an example of a yarn winding bobbin and a carrier provided in the braiding machine.

図3に示す組紐機において、1は送出装置、2は芯材巻取ドラム、3は芯材、4は送出ガイドプーリー、5はギヤーボックス、6はフライヤー駆動モーター、7はフライヤー、8は糸条巻取ボビン、9は糸条、10は芯材入り組紐、11は巻取ガイドプーリー、12は芯材入り組紐巻取ドラム、13は巻取装置、14は巻取装置駆動モーター、15はキャリヤー、16はキャリヤーの糸の出口である。   In the braiding machine shown in FIG. 3, 1 is a feeding device, 2 is a core material winding drum, 3 is a core material, 4 is a delivery guide pulley, 5 is a gear box, 6 is a flyer drive motor, 7 is a flyer, and 8 is a thread. A winding bobbin, 9 is a yarn, 10 is a braid with core material, 11 is a winding guide pulley, 12 is a braid winding drum with core material, 13 is a winding device, 14 is a winding device drive motor, and 15 is The carrier 16 is an outlet for the carrier yarn.

図3に示す組紐機は、送出機構と、編組機構と、巻取機構とから成っている。   The braiding machine shown in FIG. 3 includes a feeding mechanism, a braiding mechanism, and a winding mechanism.

送出機構は、送出装置1と送出ガイドプーリー4とからなっている。そして送出装置1には芯材巻取ドラム2が装着される。すなわち、送出機構は、送出装置1に芯材巻取ドラム2を装着し、それからその芯材巻取ドラム2から送出ガイドプーリー4を介して芯材3を送り出すようになっている。   The delivery mechanism includes a delivery device 1 and a delivery guide pulley 4. A core winding drum 2 is attached to the delivery device 1. That is, the delivery mechanism is configured to attach the core material winding drum 2 to the delivery device 1 and then send the core material 3 from the core material winding drum 2 through the delivery guide pulley 4.

次に、編組機構は、フライヤー駆動モーターとそのフライヤー駆動モーターで駆動するフライヤーと、そのフライヤー上に設置された複数個のシールドワイヤ巻取ボビン送出装置(キャリヤー)とから成る。   Next, the braiding mechanism includes a fryer driving motor, a fryer driven by the fryer driving motor, and a plurality of shield wire winding bobbin delivery devices (carriers) installed on the fryer.

送出機構から送り出された芯材3は、編組機構のフライヤー7の中心部の開口部の下側より上方へ送り出されるようになっている。   The core 3 delivered from the delivery mechanism is delivered upward from below the opening at the center of the flyer 7 of the braiding mechanism.

ここにおいてフライヤー7は、フライヤー駆動モーター6により周方向に回転するようになっている。そしてこのフライヤー7の上部には複数個の糸条巻取ボビン8が送り出し装置(図示せず)に回転自在で、かつジグザクに移動できるように装着されている。そしてフライヤー7の周方向回転と、複数個の糸条巻取ボビン8の回転および移動によりそれら複数個の糸条巻取ボビン8からキャリヤー15を通り、糸の出口16からそれぞれ糸条9を送り出しながら芯材3上へ編組するようになっている(図4も参照)。   Here, the flyer 7 is rotated in the circumferential direction by the flyer drive motor 6. A plurality of yarn winding bobbins 8 are mounted on an upper portion of the fryer 7 so as to be rotatable and moved in a zigzag manner to a feeding device (not shown). Then, the circumferential rotation of the fryer 7 and the rotation and movement of the plurality of yarn winding bobbins 8 pass through the carrier 15 from the plurality of yarn winding bobbins 8 and feed the yarn 9 from the yarn outlet 16 respectively. However, it is braided onto the core material 3 (see also FIG. 4).

また、巻取機構は、巻取ガイドプーリー11、巻取装置13、その巻取装置13を駆動する巻取装置駆動モーター14とから成っている。すなわち、芯材入り組紐10は、巻取ガイドプーリー11を介して、巻取装置駆動モーター14で駆動する巻取装置13により芯材入り組紐巻取ドラム12へ巻き取られるようになっている。   The winding mechanism includes a winding guide pulley 11, a winding device 13, and a winding device drive motor 14 that drives the winding device 13. That is, the braid 10 with the core material is wound around the braid winding drum 12 with the core material by the winding device 13 driven by the winding device drive motor 14 via the winding guide pulley 11.

なお、本発明で用いられる編組機においては、センサーとして騒音センサーや温度センサー等を取り付けることもできる。   In the braiding machine used in the present invention, a noise sensor, a temperature sensor, or the like can be attached as a sensor.

組角度の制御は、組紐の編み速度、すなわちフライヤー駆動モーターの周波数や、組紐の巻き取り速度、すなわち巻き取り装置駆動モーターの周波数等を制御して、編み位置(キャリヤーの糸の出口から糸条が集まり組紐が生成する位置までの高さの差)を制御することにより行うことができる。   The braid angle is controlled by controlling the braid knitting speed, that is, the frequency of the flyer drive motor, the braid winding speed, that is, the frequency of the take-up device drive motor, and the like. Can be performed by controlling the difference in height to the position where the braids are gathered and generated.

蛇腹状に成形する前の組紐の壁厚は、0.01〜2mmであることが好ましい。   The wall thickness of the braid before being formed into a bellows shape is preferably 0.01 to 2 mm.

組紐を蛇腹状に成形する方法は、特に制限されないが、組紐を芯材が入ったままの状態で長軸方向に圧縮と伸長とを繰り返しながら、少なくとも1つの環状の山部を形成する。その後、その部位より少しずつ同じ操作を繰り返しながら、両端に向かって環状の山部を盛り上がる部位を整え山状に成形する。このとき盛り上がる部位は、一定数の編み目の間隔で自然に規則的に盛り上がる。その後、再度組紐を長軸方向にできるだけ圧縮した後、目的とする圧縮量まで戻し、蛇腹状の管腔構造体とする方法が好ましい。このとき、蛇腹状管腔構造体は長軸方向に伸びようとするため、蛇腹状管腔構造体の端部において、管腔構造体と芯材とをクリップで留めるなどして管腔構造体の伸びを防止しておくことが好ましい。   The method for forming the braid into a bellows shape is not particularly limited, but at least one annular peak is formed while the braid is repeatedly compressed and stretched in the major axis direction while the core material is still contained. Then, while repeating the same operation little by little from that part, the part that swells the annular crest toward both ends is trimmed and formed into a mountain shape. At this time, the swelled portion naturally swells regularly at a certain number of stitch intervals. After that, the braid is compressed again in the major axis direction as much as possible, and then returned to the target compression amount to obtain a bellows-like lumen structure. At this time, since the bellows-like lumen structure tends to extend in the long axis direction, the lumen structure and the core material are clipped at the end of the bellows-like lumen structure, for example. It is preferable to prevent the elongation of.

上記の圧縮量とは、圧縮前の管腔構造体の全長に対する圧縮後の全長を百分率で表したものであり、例えば圧縮前の全長が100mmで圧縮後の全長が30mmとなった場合、圧縮量は30%となる。該圧縮量は、キンク耐性および強度向上の観点から、70%未満が好ましく、50%以下がより好ましい。また、圧縮量の下限値は特に制限されないが、10%以上であることが好ましく、20%以上であることがより好ましい。   The above compression amount is the percentage of the total length after compression relative to the total length of the luminal structure before compression. For example, when the total length before compression is 100 mm and the total length after compression is 30 mm, compression is performed. The amount will be 30%. The amount of compression is preferably less than 70%, more preferably 50% or less, from the viewpoint of kink resistance and strength improvement. The lower limit of the compression amount is not particularly limited, but is preferably 10% or more, and more preferably 20% or more.

蛇腹成形後は、蛇腹形状を固定するため、50〜200℃の温度で、30分〜48時間アニーリング処理を行うことが好ましく、90〜150℃の温度で、30分〜24時間アニーリング処理を行うことがより好ましい。   After the bellows molding, in order to fix the bellows shape, it is preferable to perform an annealing treatment at a temperature of 50 to 200 ° C. for 30 minutes to 48 hours, and an annealing treatment at a temperature of 90 to 150 ° C. for 30 minutes to 24 hours. It is more preferable.

上記のような製造方法は、組紐の組角度に関わらず(例えば30〜85°)適用されうる製造方法であるが、組紐の組角度が大きい(例えば40〜85°)場合は、蛇腹を成形する前に、外径が小さい芯材に交換して組紐を一旦長軸方向に伸長し、組角度を小さくしておくことが好ましい。この操作を行うことにより、蛇腹をより成形しやすくなる。   The manufacturing method as described above is a manufacturing method that can be applied regardless of the braid angle (for example, 30 to 85 °), but when the braid angle is large (for example, 40 to 85 °), a bellows is formed. Before doing this, it is preferable to replace the core material with a small outer diameter and extend the braid once in the long axis direction to reduce the braid angle. By performing this operation, it becomes easier to form the bellows.

その後、芯材を抜き取ることにより、本発明の蛇腹状管腔構造体が得られる。   Then, the bellows-like lumen structure of the present invention is obtained by extracting the core material.

すなわち、本発明での蛇腹成形の原理は、組角度の小さい組紐を長軸方向に圧縮すると、組角度は大きくなるが、その時糸条の長さは芯材の外周よりも長くなり、その余剰分が径の外側方向に一定の間隔で押し出され山となり蛇腹を形成するというものである。   That is, the principle of bellows molding in the present invention is that when a braid with a small braid angle is compressed in the major axis direction, the braid angle becomes large, but at that time the length of the yarn becomes longer than the outer periphery of the core material, and the surplus Minutes are extruded at regular intervals in the outer direction of the diameter, forming peaks and forming bellows.

〔用途〕
本発明の蛇腹状管腔構造体の用途は、特に制限されないが、例えば、人、ラット、犬、猫、猿、馬、牛、羊等の動物の体の組織を再生、移植、または置換するための部材として用いることができる。より好ましくは、人の体の組織を再生、移植、または置換するための部材である。
[Use]
The use of the bellows-like luminal structure of the present invention is not particularly limited. For example, the tissue of an animal body such as a human, rat, dog, cat, monkey, horse, cow, or sheep is regenerated, transplanted, or replaced. It can be used as a member for More preferably, it is a member for regenerating, transplanting or replacing human body tissue.

本発明の蛇腹状管腔構造体は、組紐特有の隙間があることから、気体や液体を通すことはできるのに対して細胞を通さないため、神経再生に有利な場を提供できる。また、蛇腹構造を有することから、生体組織との接触面積が減少し、生体組織との癒着を低減することができる。さらに、蛇腹構造を有することから、本発明の蛇腹状管腔構造体の直径方向に力がかかったとしても、内腔を完全に塞ぐことはなく空間を確保でき、組織再生の足場となる。また、蛇腹構造とすることにより、経時的に直径方向に潰され内腔が完全に塞がった場合でも、蛇腹が管腔構造体の分解消失直前までカプセル化組織を内側から支え、空間を確保することができ、完全消失後には腔(トンネル)ができる。   Since the bellows-like luminal structure of the present invention has a gap unique to the braid, it can pass gas or liquid while it does not pass cells, and can provide a place advantageous for nerve regeneration. Moreover, since it has a bellows structure, a contact area with a biological tissue decreases and adhesion with a biological tissue can be reduced. Furthermore, since it has a bellows structure, even if a force is applied in the diametrical direction of the bellows-like lumen structure of the present invention, a space can be secured without completely closing the lumen, and it becomes a scaffold for tissue regeneration. In addition, by adopting a bellows structure, even when the lumen is crushed in the diameter direction over time and the lumen is completely blocked, the bellows supports the encapsulated tissue from the inside until just before the lumen structure is disassembled, thereby securing a space. It is possible to form a cavity after complete disappearance.

上記の動物の組織として、例えば、神経組織、皮下組織、粘膜下組織、生体膜組織、脂肪組織、筋肉組織、皮膚組織、歯肉組織等を例示することができるが、特に、神経組織に好適に用いることができる。さらに詳細には、組織として、下記のものを例示することができる。   Examples of the animal tissue include nerve tissue, subcutaneous tissue, submucosal tissue, biological membrane tissue, adipose tissue, muscle tissue, skin tissue, gingival tissue, and the like, particularly suitable for nerve tissue. Can be used. More specifically, the following can be exemplified as the organization.

神経組織(例えば、中枢神経、末梢神経;座骨神経、正中神経、顔面神経、脳神経、腕神経叢、尺骨神経、撓骨神経、大腿神経、坐骨神経、腓骨神経、腓腹神経、勃起神経、腋窩神経);皮下組織;粘膜下組織、口腔粘膜下組織、消化管粘膜下組織、生殖器粘膜下組織;生体膜組織(例えば、脳硬膜、腹膜、胸膜、筋膜、臓器の皮膜);脂肪組織(例えば、いわゆる脂肪);筋肉組織(例えば、いわゆる筋肉);皮膚組織(例えば、いわゆる皮膚);歯肉組織(例えば、歯周組織、歯槽骨、歯槽組織);実質臓器(例えば、肝臓、腎臓、肺臓、膵臓、甲状腺);その他(例えば、血管、腱、靭帯、軟骨、骨)等。   Nerve tissue (eg, central nerve, peripheral nerve; sciatic nerve, median nerve, facial nerve, cranial nerve, brachial plexus, ulnar nerve, radial nerve, femoral nerve, sciatic nerve, radial nerve, sural nerve, erectile nerve, axilla Nerve); subcutaneous tissue; submucosa, oral submucosa, gastrointestinal submucosa, genital submucosa; biological membrane tissue (eg, cerebral dura mater, peritoneum, pleura, fascia, organ membrane); adipose tissue (Eg, so-called fat); muscle tissue (eg, so-called muscle); skin tissue (eg, so-called skin); gingival tissue (eg, periodontal tissue, alveolar bone, alveolar tissue); parenchymal organs (eg, liver, kidney, Lungs, pancreas, thyroid); other (eg, blood vessels, tendons, ligaments, cartilage, bones) and the like.

本発明の蛇腹状管腔構造体は、神経組織の再生用部材、すなわち神経再生チューブに好適に用いられるが、本発明の蛇腹状管腔構造体を神経再生チューブや、皮下組織、粘膜下組織、生体膜組織、脂肪組織、筋肉組織、皮膚組織、歯肉組織等の再生用部材に用いる場合、蛇腹状管腔構造体の外部表面はコラーゲンで被覆されてもよく、蛇腹状管腔構造体の内部(内腔)はコラーゲンにより満たされていてもよい。前記コラーゲンとしては、従来、例えば神経再生の足場として使用されるコラーゲンを用いればよく、例えばI型コラーゲン、III型コラーゲン、IV型コラーゲンなどが挙げられ、これらを単独で用いてもよいし2種以上を混合して用いてもよい。また、コラーゲンはラミニン、ヘパラン硫酸プロテオグリカン、エンタクティン及び成長因子を含んでいてもよい。成長因子としては、EGF(上皮増殖因子)、βFGF(線維芽細胞増殖因子)、NGF(神経成長因子)、PDGF(血小板由来増殖因子)、IGF−1(インスリン様増殖因子)、TGF−β(トランスフォーミング成長因子)などが挙げられる。   The bellows-like lumen structure of the present invention is preferably used for a nerve tissue regeneration member, that is, a nerve regeneration tube. The bellows-like lumen structure of the present invention can be used as a nerve regeneration tube, a subcutaneous tissue, a submucosal tissue, or the like. When used for a regeneration member such as biological membrane tissue, adipose tissue, muscle tissue, skin tissue, gingival tissue, the outer surface of the bellows-like lumen structure may be coated with collagen, The interior (lumen) may be filled with collagen. As the collagen, collagen conventionally used as a scaffold for nerve regeneration, for example, may be used, and examples thereof include type I collagen, type III collagen, type IV collagen, and the like. You may mix and use the above. Collagen may also contain laminin, heparan sulfate proteoglycan, entactin and growth factors. As growth factors, EGF (epidermal growth factor), βFGF (fibroblast growth factor), NGF (nerve growth factor), PDGF (platelet-derived growth factor), IGF-1 (insulin-like growth factor), TGF-β ( Transforming growth factors).

コラーゲンを被覆および充填した蛇腹状管腔構造体は、凍結、凍結乾燥、架橋処理を施してコラーゲンを架橋することが好ましい。凍結は、好ましくは−196℃〜−10℃の温度で3〜48時間行うことが好ましい。凍結することによって、コラーゲン分子の間に微細な氷が形成され、コラーゲン溶液が相分離を起こし、スポンジ化する。次に、前記凍結させたコラーゲン溶液を、真空下、好ましくは−80〜30℃で、好ましくは12〜48時間凍結乾燥する。凍結乾燥することによって、コラーゲン分子間の微細な氷が気化するとともに、コラーゲンスポンジが微細化する。架橋方法としては、γ線架橋、紫外線架橋、電子線架橋、熱脱水架橋、グルタルアルデヒド架橋、エポキシ架橋、および水溶性カルボジイミド架橋が挙げられるが、架橋の程度をコントロールしやすく、架橋処理を行っても生体に影響を及ぼさない熱脱水架橋が好ましい。熱脱水架橋処理は、真空下、例えば105〜150℃、好ましくは120〜150℃の温度で、例えば6〜24時間、好ましくは10〜15時間行う。   The bellows-like luminal structure coated and filled with collagen is preferably subjected to freezing, lyophilization, and crosslinking treatment to crosslink the collagen. Freezing is preferably performed at a temperature of −196 ° C. to −10 ° C. for 3 to 48 hours. By freezing, fine ice is formed between collagen molecules, and the collagen solution undergoes phase separation and becomes sponge. Next, the frozen collagen solution is freeze-dried under vacuum, preferably at −80 to 30 ° C., preferably for 12 to 48 hours. By freeze-drying, fine ice between collagen molecules is vaporized and the collagen sponge is refined. Examples of the crosslinking method include γ-ray crosslinking, ultraviolet crosslinking, electron beam crosslinking, thermal dehydration crosslinking, glutaraldehyde crosslinking, epoxy crosslinking, and water-soluble carbodiimide crosslinking, but it is easy to control the degree of crosslinking and perform crosslinking treatment. Thermal dehydration crosslinking that does not affect the living body is preferred. The thermal dehydration crosslinking treatment is performed under a vacuum, for example, at a temperature of 105 to 150 ° C., preferably 120 to 150 ° C., for example, for 6 to 24 hours, preferably 10 to 15 hours.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

1.蛇腹状チューブの作製
(1)組紐機
株式会社コクブンリミデッド製、中型48本キャリヤーブレーダーを備えた組紐機(型番:101−K)に対して、編み用と引き取り用とに別々のモーターを設置し、それぞれ独立して速度を変更できるように改造されたものを使用した。
1. Production of bellows-shaped tube (1) Braiding machine Separated motors for knitting and take-off for braiding machine (model number: 101-K) manufactured by KOKUBUN LIMITED Co., Ltd. and equipped with a medium 48-carrier braider. It was installed and remodeled so that the speed could be changed independently.

(2)ポリグリコール酸(PGA)糸
samyang社(韓国)製の品名:Trisorb、サイズ:USP7−0を用いた。
(2) Polyglycolic acid (PGA) yarn Product name: Trisorb, size: USP7-0 manufactured by Samyang (Korea) was used.

(3)組紐作製
下記のようにして、内径が2mm、4mm、および6mmの3種類で、それぞれ組角度が大きいものと小さいものとの計6種類の組紐を作製した。
(3) Fabrication of braids As described below, a total of 6 types of braids, each having an inner diameter of 2 mm, 4 mm, and 6 mm, each having a large braid angle and a small braid, were fabricated.

(3−1)内径2mmの組紐
上記PGA糸2本を合糸して糸条としボビンに巻き取った。このボビンを48個準備し、上記組紐機に取り付け、外径2mmのポリテトラフルオロエチレンチューブを芯材として、組紐を作製した。その後、芯材を抜き取り、チューブを得た。
(3-1) Braid with an inner diameter of 2 mm The above two PGA yarns were combined to form a yarn and wound around a bobbin. Forty-eight bobbins were prepared, attached to the braiding machine, and braided with a polytetrafluoroethylene tube having an outer diameter of 2 mm as a core material. Thereafter, the core material was extracted to obtain a tube.

このとき、組紐の引き取り速度を調整することで、編み位置(キャリヤーの糸の出口から糸条が集まり組紐が生成する位置までの高さの差)を調整して組角度を変更した。   At this time, the braiding angle was changed by adjusting the take-up speed of the braid to adjust the knitting position (the difference in height from the yarn exit of the carrier to the position where the yarn gathers and the braid is generated).

実施例1の組角度の大きい組紐を作製する場合は、引き取り速度を遅くした(編み速度:モーター周波数41.99〜50.12Hz、引き取り速度:モーター周波数1.04〜1.40Hz)。   When producing a braid with a large braiding angle in Example 1, the take-up speed was slow (knitting speed: motor frequency 41.99 to 50.12 Hz, take-up speed: motor frequency 1.04 to 1.40 Hz).

実施例2の組角度の小さい組紐を作製する場合は、引き取り速度を速くした(編み速度:モーター周波数50.02〜55.00Hz、引き取り速度:モーター周波数2.30〜2.56Hz)。   When producing the braid with a small braiding angle of Example 2, the take-up speed was increased (knitting speed: motor frequency 50.02 to 55.00 Hz, take-up speed: motor frequency 2.30 to 2.56 Hz).

(3−2)内径4mmの組紐
上記PGA糸4本を合糸して糸条としボビンに巻き取った。このボビンを48個準備し、上記組紐機に取り付け、外径4mmのポリテトラフルオロエチレンチューブを芯材として、組紐を作製した。その後、芯材を抜き取り、チューブを得た。このとき、組紐の引き取り速度を調整することで、編み位置(キャリヤーの糸の出口から糸条が集まり組紐が生成する位置までの高さの差)を調整して組角度を変更した。
(3-2) Braid with an inner diameter of 4 mm The above four PGA yarns were combined to form a yarn and wound around a bobbin. Forty-eight bobbins were prepared and attached to the braiding machine, and a braid was produced using a polytetrafluoroethylene tube having an outer diameter of 4 mm as a core material. Thereafter, the core material was extracted to obtain a tube. At this time, the braiding angle was changed by adjusting the take-up speed of the braid to adjust the knitting position (the difference in height from the yarn exit of the carrier to the position where the yarn gathers and the braid is generated).

実施例3の組角度の大きい組紐を作製する場合は、引き取り速度を遅くした(編み速度:モーター周波数42.00Hz、引き取り速度:モーター周波数1.68〜1.78Hz)。   When producing a braid with a large braiding angle in Example 3, the take-up speed was slow (knitting speed: motor frequency 42.00 Hz, take-up speed: motor frequency 1.68 to 1.78 Hz).

実施例4の組角度の小さい組紐を作製する場合は、引き取り速度を速くした(編み速度:モーター周波数42.00Hz、引き取り速度:モーター周波数2.94〜3.12Hz)。   When producing a braid with a small braiding angle of Example 4, the take-up speed was increased (knitting speed: motor frequency 42.00 Hz, take-up speed: motor frequency 2.94 to 3.12 Hz).

(3−3)内径6mmの組紐
上記PGA糸6本を合糸して糸条としボビンに巻き取った。このボビンを48個準備し、上記組紐機に取り付け、外径6mmのポリテトラフルオロエチレンチューブを芯材として、組紐を作製した。その後、芯材を抜き取り、チューブを得た。
(3-3) Braid with an inner diameter of 6 mm The above 6 PGA yarns were combined to form a yarn and wound around a bobbin. Forty-eight bobbins were prepared, attached to the braiding machine, and braided with a polytetrafluoroethylene tube having an outer diameter of 6 mm as a core material. Thereafter, the core material was extracted to obtain a tube.

このとき、組紐の引き取り速度を調整することで、編み位置(キャリヤーの糸の出口から糸条が集まり組紐が生成する位置までの高さの差)を調整して組角度を変更した。   At this time, the braiding angle was changed by adjusting the take-up speed of the braid to adjust the knitting position (the difference in height from the yarn exit of the carrier to the position where the yarn gathers and the braid is generated).

実施例5の組角度の大きい組紐を作製する場合は、引き取り速度を遅くした(編み速度:モーター周波数50.00Hz、引き取り速度:モーター周波数2.57〜2.66Hz)。   When producing the braid with a large braiding angle of Example 5, the take-up speed was slow (knitting speed: motor frequency 50.00 Hz, take-up speed: motor frequency 2.57 to 2.66 Hz).

実施例6の組角度の小さい組紐を作製する場合は、引き取り速度を速くした(編み速度:モーター周波数50.00〜50.06Hz、引き取り速度:モーター周波数4.79〜4.92Hz)。   In the case of producing the braid having a small braiding angle in Example 6, the take-up speed was increased (knitting speed: motor frequency 50.00 to 50.06 Hz, take-up speed: motor frequency 4.79 to 4.92 Hz).

(3−4)内径4mmの組紐
上記PGA糸7本を合糸して糸条としボビンに巻き取った。このボビンを48個準備し、上記組紐機に取り付け、外径4mmのポリテトラフルオロエチレンチューブを芯材として、組紐を作製した。その後、芯材を抜き取り、チューブを得た。
(3-4) Braid with an inner diameter of 4 mm The above seven PGA yarns were combined to form a yarn and wound around a bobbin. Forty-eight bobbins were prepared and attached to the braiding machine, and a braid was produced using a polytetrafluoroethylene tube having an outer diameter of 4 mm as a core material. Thereafter, the core material was extracted to obtain a tube.

このとき、組紐の引き取り速度を調製することで、編み位置(キャリヤーの糸の出口から糸条が集まり組紐が生成する位置までの高さの差)を調整して組角度を変更した。   At this time, by adjusting the braid take-up speed, the braiding angle was changed by adjusting the knitting position (the difference in height from the exit of the carrier yarn to the position where the yarn gathers and the braid is generated).

実施例7の組角度の小さい組紐を作製する場合は、引き取り速度を速くした(編み速度:モーター周波数42.00Hz、引き取り速度:モーター周波数3.06〜3.29Hz)。   When producing a braid having a small braiding angle in Example 7, the take-up speed was increased (knitting speed: motor frequency 42.00 Hz, take-up speed: motor frequency 3.06 to 3.29 Hz).

2.組角度の測定
組紐を長軸方向に3.5cmの長さで輪切りにし検体とした。
2. Measurement of braid angle The braid was cut into a 3.5 cm length in the major axis direction to prepare a specimen.

糸の解れを防止するため、組紐両端をヒートカッターで溶かした。組紐の円周の1ヶ所にハサミを入れ、長軸方向に切り開き、スライドグラス2枚の間に挟んだ。チューブ内面をCCDカメラ(株式会社キーエンス製、VH−6300)で撮影し、付属のソフトウェアで組角度を測定した。1本の検体に対して任意の1ヶ所の組角度を上記のように測定し、その組紐の組角度とした。   In order to prevent the yarn from unraveling, both ends of the braid were melted with a heat cutter. Scissors were put in one place on the circumference of the braid, opened in the long axis direction, and sandwiched between two slide glasses. The inner surface of the tube was photographed with a CCD camera (manufactured by Keyence Corporation, VH-6300), and the assembly angle was measured with the attached software. An arbitrary set angle for one specimen was measured as described above and used as the set angle of the braid.

3.組紐の壁厚の測定
組紐を5cmの長さで輪切りにし検体とした。
3. Measurement of wall thickness of braid The braid was cut into 5 cm lengths and used as specimens.

検体をカミソリまたはヒートカッターで円周の1ヶ所を長軸方向に切り開き、両端付近の2ヶ所、および中央付近1ヶ所の合計3ヶ所の厚さをシックネスゲージ(株式会社テクロック製、SM−112)で測定し、その平均値を組紐の壁厚とした。   A specimen is cut with a razor or a heat cutter in one direction of the circumference in the long axis direction, and a thickness of 3 places in total, 2 places near both ends and 1 place near the center, is a thickness gauge (SM-112, manufactured by Teclock Co., Ltd.) The average value was taken as the wall thickness of the braid.

得られた組紐の構成を下記表1に示す。   The structure of the obtained braid is shown in Table 1 below.

4.山(蛇腹)の成形
山(蛇腹)の成形方法は二通りである。
4). Forming a mountain (bellows) There are two ways to form a mountain (bellows).

(4−1)組角度が小さい組紐の場合(チューブ番号2、4、6、7)
組角度が小さい組紐を用いた場合、上表のチューブを芯材(蛇腹成形時)が入ったままの状態で長軸方向に圧縮と伸長とを繰り返しながら、少なくとも1つの環状の山部を形成した。その後、その部位より少しずつ同じ操作を繰り返しながら、両端に向かって環状の山部を盛り上がる部位を手指で整え山状に成形した。このとき盛り上がる部位は、一定数の編み目の間隔で自然に規則的に盛り上がる。
(4-1) In the case of braid with a small braid angle (tube numbers 2, 4, 6, 7)
When braids with a small braid angle are used, at least one annular crest is formed while repeating compression and extension in the major axis direction with the core material (when bellows is molded) in the upper table. did. Then, while repeating the same operation little by little from that part, the part that swells the annular crest toward both ends was trimmed with fingers and formed into a mountain shape. At this time, the swelled portion naturally swells regularly at a certain number of stitch intervals.

その後、長軸方向にできるだけ圧縮した後、目標とする圧縮量まで戻し蛇腹状のチューブとした。このとき蛇腹状チューブは長軸方向に伸びようとするため、チューブ両端部分の芯材に金属製のクリップを取り付けるか、テープを巻くなどして、チューブの伸びを防止した。   Then, after compressing as much as possible in the major axis direction, it was returned to the target compression amount to obtain a bellows-like tube. At this time, since the bellows-like tube tends to extend in the major axis direction, a metal clip was attached to the core material at both ends of the tube or tape was wound to prevent the tube from extending.

上表のチューブ番号2〜7の組紐を用い、それぞれ圧縮量30%、50%、70%、および90%で圧縮をした蛇腹状チューブと、圧縮しなかった蛇腹状チューブ(圧縮量100%)とを準備した(全長70mm)。   A bellows-like tube compressed at 30%, 50%, 70%, and 90% using a braid of tube numbers 2 to 7 in the above table and a bellows-like tube not compressed (compression amount 100%), respectively. (Total length 70 mm).

(4−2)組角度の大きい組紐の場合(チューブ番号1、3、5)
組角度が大きい組紐の場合、そのままでは蛇腹状に成形できないため、まず、芯材の外径を小さいものに交換し、組紐を長軸方向に伸ばすことで、組角度を小さくした。この時、組角度が小さくなることに伴いチューブ内径は、芯材外径まで小さくなるため、チューブ内径は組紐作製時よりも小さくなる。その後、上記(4−1)と同様の方法により、蛇腹状に成形した。ただし、チューブ番号1については、内腔が保持された蛇腹構造にならなかった。
(4-2) In the case of braid having a large braid angle (tube numbers 1, 3, 5)
In the case of a braid with a large braiding angle, it cannot be formed into a bellows shape as it is, so the braid angle was reduced by first exchanging the core with a smaller outer diameter and extending the braid in the major axis direction. At this time, the inner diameter of the tube is reduced to the outer diameter of the core material as the braiding angle is reduced, so that the inner diameter of the tube is smaller than that at the time of manufacturing the braid. Then, it shape | molded by the method similar to said (4-1) to the bellows shape. However, tube No. 1 did not have a bellows structure with a lumen retained.

5.アニーリング
蛇腹状チューブの形状を固定するため、140℃の温度で、減圧下で24時間静置し、アニーリングした。
5. Annealing In order to fix the shape of the bellows-like tube, it was allowed to stand at a temperature of 140 ° C. under reduced pressure for 24 hours and annealed.

6.寸法測定
投影機(株式会社ニコン製、Nikon V−12、製造番号348155)の50倍レンズにて、蛇腹状チューブの山の高さおよび外径を測定した。
6). Dimensional measurement The height and outer diameter of the bellows tube were measured with a 50 × lens of a projector (Nikon V-12, manufactured by Nikon Corporation, production number 348155).

測定方法は、山の高さについては、図2のAに示すように、山の両側で測定した高さ(図2のA中のa、b)の平均値をその山の高さとし、これを蛇腹状チューブの両端付近と中央付近との計3箇所で測定した値の平均値を、蛇腹部の山の高さ(蛇腹高さ)とした。   As for the height of the mountain, as shown in FIG. 2A, the average value of the heights measured on both sides of the mountain (a and b in A of FIG. 2) is taken as the height of the mountain. The average value of the values measured at a total of three locations near both ends and the center of the bellows-like tube was taken as the height of the bellows portion (bellows height).

内径については、組紐の製造時に用いた芯材の外径をそのまま蛇腹状チューブの内径とした。   As for the inner diameter, the outer diameter of the core material used at the time of manufacturing the braid was directly used as the inner diameter of the bellows-like tube.

外径については、図2のBに示すように、山の頂点を測定した値をその箇所での外径とし、これを蛇腹状チューブの両端付近と中央付近との計3箇所で測定した値の平均値を、蛇腹状チューブの外径とした。   For the outer diameter, as shown in FIG. 2B, the value measured at the top of the peak is taken as the outer diameter at that location, and this is the value measured at a total of three locations near both ends and the center of the bellows-like tube. Was the outer diameter of the bellows-like tube.

さらに、蛇腹部の山5つ分の長軸方向の距離は、図2のCに示すように、管腔構造体の中央付近の山5つ分の距離を測定した値を、山5つ分の長軸方向の距離とした。   Further, as shown in FIG. 2C, the distance in the major axis direction for the five bellows peaks is a value obtained by measuring the distance of five peaks near the center of the lumen structure. The distance in the major axis direction.

測定結果を下記表2に示す。なお、表2中の「−」は、蛇腹部の山を判別できなかったため、測定ができなかったことを示す。   The measurement results are shown in Table 2 below. In addition, “-” in Table 2 indicates that measurement could not be performed because the peak of the bellows portion could not be determined.

7.キンク耐性試験
アニーリング後の蛇腹状チューブから芯材を抜き取り、長軸中央付近の山部外径1および谷部外径1を測定後、半径の異なるマンドレル(半径13、10、7、4、2mm)を準備し、蛇腹状チューブをマンドレル円周の180°以上に沿わせ、湾曲した時の蛇腹状チューブの長軸中央付近の山部外径2および谷部外径2を測定した。山部外径1に対する山部外径2の百分率を山部のキンク率(%)、および谷部外径1に対する谷部外径2の百分率を谷部のキンク率(%)とした。
7). Kink resistance test After extracting the core from the annealed bellows-shaped tube and measuring the ridge outer diameter 1 and valley outer diameter 1 near the center of the long axis, mandrels with different radii (radius 13, 10, 7, 4, 2 mm) ), The bellows-like tube was placed along 180 ° or more of the circumference of the mandrel, and the peak outer diameter 2 and the valley outer diameter 2 near the center of the major axis of the bellows-like tube when bent were measured. The percentage of the peak outer diameter 2 relative to the peak outer diameter 1 was defined as the kink ratio (%) of the peak, and the percentage of the valley outer diameter 2 relative to the valley outer diameter 1 was defined as the kink ratio (%) of the valley.

具体的には、次のような手順でキンク耐性試験を実施した。   Specifically, the kink resistance test was performed in the following procedure.

1)CCDカメラ(株式会社キーエンス製、VH−6300)に5〜40倍のレンズを取り付け、ステンレス製スケール(シンワ直尺シルバー15cm、品番13005、JIS1級)を撮影し、キャリブレーションを行った。   1) A lens of 5 to 40 times was attached to a CCD camera (manufactured by Keyence Corporation, VH-6300), and a stainless steel scale (Shinwa straight silver 15 cm, product number 13005, JIS 1 grade) was photographed and calibrated.

2)アニーリング後の蛇腹状チューブから芯材を抜き取り、長軸中央付近の山部にフェルトペンで印をつけた。   2) The core material was extracted from the bellows-shaped tube after annealing, and a peak near the center of the long axis was marked with a felt pen.

3)CCDカメラで蛇腹状チューブを撮影し、印位置の山部外径およびその右側の谷部外径を測定し、それぞれ山部外径1および谷部外径1とした。   3) The bellows-like tube was photographed with a CCD camera, and the crest outer diameter at the mark position and the trough outer diameter on the right side thereof were measured to obtain a crest outer diameter 1 and a trough outer diameter 1, respectively.

4)半径の異なる5種類のマンドレル(半径13mm、10mm、7mm、4mm、2mm)を準備し、蛇腹状チューブをマンドレル円周の180°以上に沿わせ湾曲させながらCCDカメラで撮影し、印位置の山部外径およびその右側の谷部外径を測定し、それぞれ山部外径2および谷部外径2とした。マンドレルについては、半径13mm、10mm、7mm、4mm、2mmの順に使用し、それぞれについて撮影と測定を実施し記録した。   4) Prepare 5 types of mandrels with different radii (radius 13mm, 10mm, 7mm, 4mm, 2mm) and photograph them with a CCD camera while curving the bellows-shaped tube along 180 ° or more of the circumference of the mandrel. The outer diameter of the crest and the outer diameter of the trough on the right side of the crest were measured to be the outer diameter 2 and the outer diameter 2 of the trough, respectively. The mandrels were used in the order of a radius of 13 mm, 10 mm, 7 mm, 4 mm, and 2 mm.

5)山部外径1に対する山部外径2の百分率を山部のキンク率(%)とし、谷部外径1に対する谷部外径2の百分率を谷部のキンク率(%)とした。   5) The percentage of the peak outer diameter 2 relative to the peak outer diameter 1 is defined as the kink ratio (%) of the peak, and the percentage of the valley outer diameter 2 relative to the valley outer diameter 1 is defined as the valley kink ratio (%). .

試験結果を下記表3および表4に示す。なお、表3および表4中の「−」は、谷部の判別ができなかったため、測定ができなかったことを示す。   The test results are shown in Tables 3 and 4 below. Note that “−” in Tables 3 and 4 indicates that the valleys could not be determined, and thus measurement could not be performed.

上記表3および表4から明らかなように、本発明の蛇腹状管腔構造体は、キンク耐性に優れることが分かった。特に、圧縮量が70%未満の場合、キンク耐性にさらに優れることが分かった。   As apparent from Tables 3 and 4 above, it was found that the bellows-like lumen structure of the present invention was excellent in kink resistance. In particular, it was found that when the compression amount is less than 70%, the kink resistance is further improved.

8.圧縮試験
チューブを長軸方向に3.5cmの長さで輪切りにし検体とした。
8). Compression test The tube was cut into 3.5 cm lengths in the major axis direction to prepare specimens.

レオメーターにアダプタ(直径10mm)を取り付け、検体をレオメーターのテーブルへ置き、アダプタを2mm/分の速度で下降させ、チューブ外径の75%の距離まで圧縮後、2mm/分の速度で上昇させ、下降時および上昇時の応力(単位N)を記録した。   Attach an adapter (diameter 10 mm) to the rheometer, place the specimen on the rheometer table, lower the adapter at a rate of 2 mm / min, and compress it to a distance of 75% of the tube outer diameter, then ascend at a rate of 2 mm / min The stress at the time of descending and rising (unit N) was recorded.

縦軸に応力(N)、横軸にアダプタの移動距離(mm)をとり、記録した結果をプロットし、チューブ内径表示値の50%までの圧縮時エネルギーを計算した。   The vertical axis represents stress (N), the horizontal axis represents the moving distance (mm) of the adapter, the recorded results were plotted, and the energy during compression up to 50% of the tube inner diameter display value was calculated.

例えば、芯材外径4mmのチューブの内径表示値は4mmであるので、その50%の2mmまでの圧縮時エネルギーを計算した。   For example, since the inner diameter display value of a tube having a core material outer diameter of 4 mm is 4 mm, the energy at the time of compression up to 2 mm, which is 50%, was calculated.

圧縮試験の評価結果を下記表5に示す。   The evaluation results of the compression test are shown in Table 5 below.

上記表5から明らかなように、本発明の蛇腹状管腔構造体は、圧縮時エネルギーが大きくなり、強度が高くなることが分かった。特に、圧縮量が70%未満の場合、強度がより高くなることが分かった。   As is clear from Table 5 above, it was found that the bellows-like luminal structure of the present invention has a high energy during compression and a high strength. In particular, it has been found that the strength is higher when the compression amount is less than 70%.

〔埋め込み実験〕
<イヌ腓骨神経埋め込み実験>
PGA糸を用いて作製した内径4mmの組紐を用いて、下記2種類の神経再生チューブを作製した。
[Embedding experiment]
<Canine radial nerve implantation experiment>
The following two types of nerve regeneration tubes were prepared using braids having an inner diameter of 4 mm prepared using PGA yarn.

(1)通常の組紐から作製した蛇腹状でない神経再生チューブ
(2)蛇腹状に成形した組紐から作製した蛇腹状神経再生チューブ(実施例7−2の蛇腹状チューブ、圧縮量50%)
神経再生チューブを次のようにして作製した。コラーゲンに水を投入し、攪拌しながら塩酸を添加して溶解させ、pHを3に調整し、終濃度1w/v%のコラーゲン溶液を調製した。このコラーゲン溶液を、通常の組紐及び蛇腹状に成形した組紐の外表面に筆を用いて塗布し、風乾した。この操作を20回繰り返した。塗布済の通常の組紐及び蛇腹状に成形した組紐の内腔に、上記1w/v%コラーゲン溶液を充填し、フリーザー内で凍結した(凍結条件:−80℃、3〜5時間)。フリーザー内で凍結した通常の組紐および蛇腹状に成形した組紐を凍結乾燥機容器に移し、速やかに減圧乾燥を開始し、室温で16〜20時間程度乾燥させた。その後、凍結乾燥した通常の組紐および蛇腹状に成形した組紐をオーブン内に移し、140℃、減圧下で24時間加熱し、熱脱水架橋を行った。次いで、EOG(エチレンオキシドガス)滅菌した。滅菌終了後、オーブンに移し50℃、減圧下で3日間程度乾燥し、蛇腹状でない神経再生チューブ及び蛇腹状神経再生チューブとした。
(1) Nerve regeneration tube made from a normal braided cord (2) A bellows-like nerve regeneration tube made from a braided cord (the bellows-like tube of Example 7-2, compression amount 50%)
A nerve regeneration tube was prepared as follows. Water was added to collagen, hydrochloric acid was added to dissolve it with stirring, pH was adjusted to 3, and a collagen solution with a final concentration of 1 w / v% was prepared. This collagen solution was applied to the outer surface of a normal braid and a braid formed into a bellows shape using a brush and air-dried. This operation was repeated 20 times. The lumens of the coated normal braid and the braid formed into a bellows were filled with the 1 w / v% collagen solution and frozen in a freezer (freezing conditions: −80 ° C., 3 to 5 hours). The ordinary braid frozen in the freezer and the braid formed into a bellows shape were transferred to a freeze dryer container, and the drying under reduced pressure was started immediately and dried at room temperature for about 16 to 20 hours. Thereafter, the ordinary lyophilized braid and the braid shaped into a bellows were transferred into an oven and heated at 140 ° C. under reduced pressure for 24 hours to carry out thermal dehydration crosslinking. Next, EOG (ethylene oxide gas) sterilization was performed. After completion of sterilization, it was transferred to an oven and dried at 50 ° C. under reduced pressure for about 3 days to obtain a nerve regeneration tube and a bellows-like nerve regeneration tube that were not bellows-like.

(1)については、チューブ全長を70mmに切断し、右後肢腓骨神経に60mmの欠損を作製し、神経断端に接続して埋め込んだ。(2)については、チューブ全長を45mmに切断し、右後肢腓骨神経に35mmの欠損を作製し、神経断端に接続して埋め込んだ。   For (1), the entire length of the tube was cut to 70 mm, a 60 mm defect was created in the right hind limb radial nerve, and connected to the nerve stump and embedded. For (2), the entire length of the tube was cut to 45 mm, a 35 mm defect was created in the right hind limb radial nerve, and it was connected to the nerve stump and embedded.

その後、経時的に超音波エコー検査を行いチューブの存在状態を確認した。(1)を埋め込んだ結果を図5に、および(2)を埋め込んだ結果を図6に示す。   Thereafter, ultrasonic echo inspection was performed over time to confirm the presence state of the tube. FIG. 5 shows the result of embedding (1), and FIG. 6 shows the result of embedding (2).

その結果、埋め込み後4週間において、(1)は完全に潰れ内腔が閉塞したが、(2)は少しの潰れはあるものの内腔は閉塞しておらず、さらに5週間においても内腔は閉塞せず開存していた。   As a result, 4 weeks after implantation, (1) was completely crushed and the lumen was occluded, but (2) was slightly crushed but the lumen was not occluded. It was patent without being blocked.

これらの結果から、組紐を蛇腹状に成形しキンク耐性と圧縮強度とを向上させたことで、PGAの強度が最低となる4週間時点でも内腔を開存させることができ、本発明の蛇腹状管腔構造体の優位性が示された。さらに、(2)については、6週間で内腔がほぼ閉塞した状態でも蛇腹状チューブの壁が、カプセル化組織を内側から支え、空間を確保していることから、PGAの分解吸収後には腔(トンネル)ができ、神経再生に効果的な場を提供できると考えられる。   From these results, by forming the braid into a bellows shape and improving the kink resistance and the compressive strength, the lumen can be opened even at the time of four weeks when the strength of the PGA becomes the minimum, and the bellows according to the present invention. The superiority of the tubular lumen structure was shown. Furthermore, for (2), the wall of the bellows-like tube supports the encapsulated tissue from the inside to secure a space even when the lumen is almost occluded in 6 weeks. (Tunnel) can be created and an effective place for nerve regeneration can be provided.

1 送出装置、
2 芯材巻取ドラム、
3 芯材、
4 送出ガイドプーリー、
5 ギヤーボックス、
6 フライヤー駆動モーター、
7 フライヤー、
8 糸条巻取ボビン、
9 糸条、
10 芯材入り組紐、
11 巻取ガイドプーリー、
12 芯材入り組紐巻取ドラム、
13 巻取装置、
14 巻取装置駆動モーター。
15 キャリヤー、
16 キャリヤーの糸の出口。
1 sending device,
2 core winding drum,
3 core material,
4 Delivery guide pulley,
5 Gearbox,
6 Flyer drive motor,
7 Flyer,
8 Thread winding bobbin,
9 Yarn,
10 Braid with core material,
11 Take-up guide pulley,
12 cored braid winding drum,
13 winding device,
14 Winding device drive motor.
15 carrier,
16 Carrier thread exit.

Claims (6)

糸条を編組した組紐から成形されてなる蛇腹状神経再生チューブ。   A bellows-like nerve regeneration tube formed from braided braided yarn. 前記蛇腹状神経再生チューブの蛇腹部の山の高さは、前記蛇腹状神経再生チューブの内径に対して1〜40%である、請求項1に記載の蛇腹状神経再生チューブ。   The bellows-like nerve regeneration tube according to claim 1, wherein a height of a peak of the bellows portion of the bellows-like nerve regeneration tube is 1 to 40% with respect to an inner diameter of the bellows-like nerve regeneration tube. 前記糸条を形成する繊維が生分解性ポリマーから形成される繊維である、請求項1または2に記載の蛇腹状神経再生チューブ。   The bellows-like nerve regeneration tube according to claim 1 or 2, wherein the fiber forming the yarn is a fiber formed from a biodegradable polymer. 糸条を編組して組角度が30〜85°である組紐を作製した後、外径が2mm以上の芯材を用いて前記組紐を長軸方向への圧縮と伸長とを繰り返して蛇腹状に成形し、前記組紐を長軸方向に再度圧縮することを含む、蛇腹状神経再生チューブの製造方法。   After braiding the yarn to produce a braid having a braid angle of 30 to 85 °, the braid is compressed into and stretched in the long axis direction using a core material having an outer diameter of 2 mm or more to form a bellows shape. A method for manufacturing a bellows-like nerve regeneration tube, which comprises forming and compressing the braid again in the long axis direction. 前記組紐を長軸方向に再度圧縮する際の圧縮量は、前記蛇腹状に成形する前の前記組紐の全長の70%未満である、請求項4に記載の蛇腹状神経再生チューブの製造方法。   The method of manufacturing a bellows-like nerve regeneration tube according to claim 4, wherein the amount of compression when the braid is compressed again in the long axis direction is less than 70% of the total length of the braid before the bellows is formed. 請求項4または5に記載の製造方法により蛇腹状神経再生チューブを得た後、前記蛇腹状神経再生チューブの外部表面をコラーゲンで被覆し、さらに内部にコラーゲンを充填し、それを凍結乾燥し、熱脱水架橋することを含む、コラーゲン被覆蛇腹状神経再生チューブの製造方法。   After obtaining the bellows-like nerve regeneration tube by the production method according to claim 4 or 5, the outer surface of the bellows-like nerve regeneration tube is coated with collagen, further filled with collagen, and freeze-dried, A method for producing a collagen-coated bellows-like nerve regeneration tube, comprising thermal dehydration crosslinking.
JP2017149423A 2017-08-01 2017-08-01 Bellows-like lumen structure Active JP6423054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017149423A JP6423054B2 (en) 2017-08-01 2017-08-01 Bellows-like lumen structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017149423A JP6423054B2 (en) 2017-08-01 2017-08-01 Bellows-like lumen structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013198522A Division JP6188514B2 (en) 2013-09-25 2013-09-25 Bellows-like lumen structure

Publications (2)

Publication Number Publication Date
JP2017221692A true JP2017221692A (en) 2017-12-21
JP6423054B2 JP6423054B2 (en) 2018-11-14

Family

ID=60686202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149423A Active JP6423054B2 (en) 2017-08-01 2017-08-01 Bellows-like lumen structure

Country Status (1)

Country Link
JP (1) JP6423054B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145767A (en) * 1984-08-07 1986-03-05 宇部興産株式会社 Artificial blood vessel
JPH01155860A (en) * 1987-12-15 1989-06-19 Ube Ind Ltd Artificial blood vessel
WO1992002195A1 (en) * 1990-07-31 1992-02-20 Ube Industries, Ltd. Artificial blood vessel and production thereof
WO2004087012A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Composite of support substrate and collagen, and process for producing support substrate and composite
JP2005143979A (en) * 2003-11-18 2005-06-09 Gunze Ltd Tube for neuroregeneration
JP2009279214A (en) * 2008-05-23 2009-12-03 Tokyo Univ Of Agriculture & Technology Vascular prosthesis and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145767A (en) * 1984-08-07 1986-03-05 宇部興産株式会社 Artificial blood vessel
JPH01155860A (en) * 1987-12-15 1989-06-19 Ube Ind Ltd Artificial blood vessel
WO1992002195A1 (en) * 1990-07-31 1992-02-20 Ube Industries, Ltd. Artificial blood vessel and production thereof
WO2004087012A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Composite of support substrate and collagen, and process for producing support substrate and composite
JP2005143979A (en) * 2003-11-18 2005-06-09 Gunze Ltd Tube for neuroregeneration
JP2009279214A (en) * 2008-05-23 2009-12-03 Tokyo Univ Of Agriculture & Technology Vascular prosthesis and its manufacturing method

Also Published As

Publication number Publication date
JP6423054B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US10238773B2 (en) Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches
US3562820A (en) Tubular sheet and strip form prostheses on a basis of biological tissue
JP3871525B2 (en) Biological tissue or organ regeneration device
DE69918189T2 (en) TRANSMURAL MULTILAYER IMMERSION MATRIX WITH EXACTLY DEFINED POROUSITY
US20180368966A1 (en) Artificial Graft Devices and Related Systems and Methods
JP4605985B2 (en) Nerve regeneration induction tube
US20170135796A1 (en) Methods and compositions for promoting the structural integrity of scaffolds for tissue engineering
CN104274221B (en) Surgical sutures incorporated with stem cells or other bioactive materials
US20040009600A1 (en) Engineered muscle
JP2017514666A (en) Composite lumen having reinforced fabric and matrix
JP6188514B2 (en) Bellows-like lumen structure
JP4581318B2 (en) Biodegradable cylindrical body and biological tissue or organ regeneration device using the same
US11589973B2 (en) Methods of making collagen fiber medical constructs and related medical constructs, including patches
JP2014155622A (en) Tubular body
JP6423054B2 (en) Bellows-like lumen structure
CN113329774A (en) Method and apparatus for intrabody bronchial regeneration
JP6469500B2 (en) Nerve regeneration tube and method for manufacturing nerve regeneration tube
DE102009037134A1 (en) Tubular implant for replacement of natural blood vessels
CN105748171A (en) Biological type nerve conduit
JP2014155623A (en) Tubular body
CN213250055U (en) Artificial joint peripheral patch for reconstructing joint capsule
JPWO2019054407A1 (en) Neuroprotective material
JP4620952B2 (en) Base material for urethral tissue regeneration and method for urethral tissue regeneration
WO2019151338A1 (en) Tubular artificial organ
JP2007050263A (en) Apparatus for reproducing biological tissue or organ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6423054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250