JP2017200683A - Start-up method of ultra-pure water manufacturing apparatus - Google Patents
Start-up method of ultra-pure water manufacturing apparatus Download PDFInfo
- Publication number
- JP2017200683A JP2017200683A JP2016093121A JP2016093121A JP2017200683A JP 2017200683 A JP2017200683 A JP 2017200683A JP 2016093121 A JP2016093121 A JP 2016093121A JP 2016093121 A JP2016093121 A JP 2016093121A JP 2017200683 A JP2017200683 A JP 2017200683A
- Authority
- JP
- Japan
- Prior art keywords
- ultrapure water
- pure water
- production apparatus
- water production
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021642 ultra pure water Inorganic materials 0.000 title claims abstract description 162
- 239000012498 ultrapure water Substances 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims abstract description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 171
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000010419 fine particle Substances 0.000 claims description 59
- 239000007789 gas Substances 0.000 claims description 55
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 230000000717 retained effect Effects 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 description 26
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 14
- 239000003456 ion exchange resin Substances 0.000 description 13
- 229920003303 ion-exchange polymer Polymers 0.000 description 13
- 238000000108 ultra-filtration Methods 0.000 description 12
- 238000011010 flushing procedure Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 230000001172 regenerating effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000007872 degassing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000009287 sand filtration Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/08—Cleaning involving contact with liquid the liquid having chemical or dissolving effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/02—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/032—Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/34—Treatment of water, waste water, or sewage with mechanical oscillations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
Description
本発明は、超純水製造装置の立ち上げ方法に関する。 The present invention relates to a method for starting up an ultrapure water production apparatus.
従来から、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造工程においては、イオン性物質、微粒子、有機物、溶存ガス及び生菌等の不純物含有量が極めて少ない超純水が使用されている。近年、半導体デバイスの集積度の向上にともなって、超純水の純度に対する要求は益々厳しくなってきている。例えば、最先端の半導体製造用超純水の仕様は、抵抗率18.2MΩ・cm以上、0.05μm以上の微粒子数は1個/mL以下、全有機炭素(TOC)濃度は1μgC/L以下と要求水質はより厳しくなる傾向にある。 Conventionally, in the manufacturing process of electronic parts such as semiconductor devices, liquid crystal displays, silicon wafers, printed boards, etc., ultrapure water with extremely low content of impurities such as ionic substances, fine particles, organic substances, dissolved gases and viable bacteria has been used. ing. In recent years, as the degree of integration of semiconductor devices has improved, the demand for the purity of ultrapure water has become increasingly severe. For example, the specifications of the state-of-the-art ultrapure water for semiconductor manufacturing are: resistivity 18.2 MΩ · cm or more, number of fine particles of 0.05 μm or more is 1 / mL or less, and total organic carbon (TOC) concentration is 1 μgC / L or less And the required water quality tends to become more severe.
このような超純水は、一般的には前処理装置、一次純水システム、二次純水システム(サブシステム)で構成される超純水製造システムで、工業用水、市水、井水等の原水を処理して製造される。製造された超純水は、使用場所としてのユースポイントに供給される。 Such ultrapure water is generally an ultrapure water production system composed of a pretreatment device, a primary pure water system, and a secondary pure water system (subsystem), such as industrial water, city water, and well water. It is manufactured by processing raw water. The manufactured ultrapure water is supplied to a use point as a place of use.
前処理装置は、凝集沈澱装置や砂ろ過装置等を用いて原水を除濁して前処理水を得るものである。一次純水システムは、活性炭装置、逆浸透膜装置、2床3塔式イオン交換樹脂装置、真空脱気装置、紫外線酸化装置、混床式イオン交換樹脂装置、精密フィルター等を適宜選択して用い、前処理水中の不純物を除去し、一次純水を得るものである。二次純水システム(サブシステム)は、一次純水を一時的に貯留する(一次)純水タンクの下流側に、例えば、熱交換器、紫外線酸化装置、非再生型の混床式イオン交換樹脂装置(Polisher)、脱気膜装置、限外ろ過装置等を備えて構成される。 The pretreatment device is to obtain pretreatment water by turbidizing raw water using a coagulating sedimentation device, a sand filtration device or the like. For the primary pure water system, an activated carbon device, a reverse osmosis membrane device, a two-bed / three-column ion exchange resin device, a vacuum deaeration device, an ultraviolet oxidation device, a mixed bed ion exchange resin device, a precision filter, etc. are appropriately selected and used. The primary pure water is obtained by removing impurities in the pretreatment water. The secondary pure water system (subsystem) temporarily stores primary pure water (primary) on the downstream side of the pure water tank, for example, a heat exchanger, an ultraviolet oxidizer, a non-regenerative mixed bed type ion exchange It comprises a resin device (Polisher), a degassing membrane device, an ultrafiltration device and the like.
超純水製造装置の新規設置後の立ち上げ時あるいは定期検査等による休止後の再立ち上げ時には、系内に混入あるいは発生する、上記のような不純物を除去してユースポイントにおける超純水が所望の水質に至るまで超純水製造装置を洗浄する立ち上げ運転を行う。そのため、超純水製造装置の起動時から所望の水質の超純水をユースポイントで使用できるまでには立ち上げ期間が必要であるが、近年、工場の稼働効率の向上を目的として、装置の立ち上げ期間の短縮が強く求められている。 When starting up after a new installation of ultrapure water production equipment or at the time of restarting after an outage due to periodic inspections, etc., the impurities described above that are mixed or generated in the system are removed to remove ultrapure water at the point of use. A start-up operation is performed to clean the ultrapure water production apparatus until the desired water quality is achieved. For this reason, a startup period is required from the start of the ultrapure water production system until the ultrapure water of the desired water quality can be used at the point of use, but in recent years, for the purpose of improving the operating efficiency of the factory, There is a strong demand for shortening the startup period.
超純水製造装置の立ち上げ運転時の洗浄方法としては、超純水によるフラッシング・ブロー、超純水の循環、温水洗浄、過酸化水素水洗浄、アルカリ洗浄(塩基性水溶液洗浄)などが行われていた。また、オゾンや水素等の機能性ガスを溶解させた超純水(機能水)や界面活性剤を使った洗浄方法なども提案されていた。 Cleaning methods during the startup operation of the ultrapure water production system include flushing and blowing with ultrapure water, circulation of ultrapure water, warm water cleaning, hydrogen peroxide cleaning, and alkaline cleaning (basic aqueous solution cleaning). It was broken. In addition, ultrapure water (functional water) in which functional gases such as ozone and hydrogen are dissolved, and a cleaning method using a surfactant have been proposed.
例えば、特許文献1には、超純水製造装置内の超純水との接触面に付着した微粒子の表面電位を変化させることにより、微粒子を除去する方法が開示されている。また、特許文献2には、塩基性洗浄液による循環洗浄を行う工程、純水による塩基性洗浄液の押し出しとリンスとを行う工程、過酸化水素洗浄液による循環及び/又は浸漬洗浄を行う工程、及び、純水による過酸化水素洗浄液の押し出しとリンスとを行う工程を順に行う超純水製造供給装置の洗浄方法が開示されている。
For example,
しかしながら、上記した従来の洗浄方法では、0.05μm以上の微粒子数をおおよそ1pcs./mL(1000pcs./L)以下程度まで低減できるものの、1pcs./mL以下で、所定の時間微粒子数が断続的に上昇するハンチング現象が生じており、立ち上げ運転後に製造される超純水中の微粒子数が安定的に低下されていないことが見出された。すなわち、上記従来の洗浄方法等による立ち上げ運転後に、微粒子数の測定を続けたところ、微粒子数が一時的に急上昇するハンチング現象が数時間から数日に1回程度あらわれ続けることが分かった。この場合、ハンチング現象を消失させるために超純水製造装置系内に純水を通流させることが行われるが、ハンチング現象の消失には、約1か月から数か月程度かかることが分かった。 However, in the conventional cleaning method described above, the number of fine particles of 0.05 μm or more is approximately 1 pc. / ML (1000 pcs./L) or less, but 1 pcs. / ML or less, the hunting phenomenon that the number of fine particles rises intermittently for a predetermined time has occurred, and it has been found that the number of fine particles in ultrapure water produced after start-up operation has not been stably reduced. It was. That is, when the number of fine particles was continuously measured after the start-up operation by the conventional cleaning method or the like, it was found that the hunting phenomenon in which the number of fine particles temporarily rises appears about once every several hours to several days. In this case, in order to eliminate the hunting phenomenon, pure water is passed through the ultrapure water production system, but it is understood that the disappearance of the hunting phenomenon takes about one month to several months. It was.
また、近年、超純水の水質として、0.02μm以上の微粒子数1pcs./mL以下が要求されてきている。上記した水質を得るためには、従来の洗浄方法による超純水製造装置の立ち上げ運転後のハンチング現象が完全になくなるまで、早くても数か月〜半年程度、場合によっては半年〜1年程度の長期間かかることが明らかになってきた。そのため、より立ち上げ期間を短縮できる立ち上げの方法が必要となってきた。 Further, in recent years, the quality of ultrapure water is 1 pcs. / ML or less has been required. In order to obtain the above-mentioned water quality, several months to half a year at the earliest until the hunting phenomenon after the start-up operation of the ultrapure water production apparatus by the conventional cleaning method is completely eliminated, and in some cases half a year to one year. It has become clear that it takes about a long time. Therefore, a startup method that can further shorten the startup period has become necessary.
本発明は上記した課題を解決するためになされたのものであって、超純水製造開始後の微粒子数のハンチング現象を抑制し、微粒子濃度の極めて低い超純水を安定して得ることのできる超純水製造装置の立ち上げ方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and it is possible to suppress the hunting phenomenon of the number of fine particles after the start of production of ultra pure water and to stably obtain ultra pure water having a very low concentration of fine particles. It aims at providing the starting method of a pure water manufacturing apparatus.
本発明の超純水製造装置の立ち上げ方法は、一次純水を処理して超純水を製造し、使用場所へ供給する超純水製造装置において、前記超純水を前記使用場所へ供給するに先立ち、前記超純水製造装置系内を洗浄する超純水製造装置の立ち上げ方法であって、前記超純水製造装置の流路に、過酸化水素又は気体を含有する純水を滞留ないし通流させて、前記流路の少なくとも一部に、外部から振動を与え、前記流路の内表面に付着した微粒子を除去することを特徴とする。 The method for starting up the ultrapure water production apparatus of the present invention is to supply the ultrapure water to the place of use in the ultrapure water production apparatus that processes primary pure water to produce ultrapure water and supplies it to the place of use. Prior to the above, a method for starting up an ultrapure water production apparatus for cleaning the inside of the ultrapure water production apparatus system, wherein pure water containing hydrogen peroxide or gas is added to a flow path of the ultrapure water production apparatus. It is characterized in that the particles are retained or flowed, and at least a part of the flow path is vibrated from the outside to remove fine particles adhering to the inner surface of the flow path.
本発明の超純水製造装置の立ち上げ方法において、前記振動は600ガル以上であることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, the vibration is preferably 600 gal or more.
本発明の超純水製造装置の立ち上げ方法において、前記気体は、窒素、二酸化炭素及び水素から選ばれる1種以上であることが好ましい。また、前記流路に通流される純水の水圧は、前記超純水製造装置において超純水を製造する際の水圧以上、かつ超純水を製造する際の水圧の2倍以下であることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, the gas is preferably at least one selected from nitrogen, carbon dioxide and hydrogen. Further, the water pressure of the pure water flowing through the flow path is not less than the water pressure when producing the ultrapure water in the ultrapure water production apparatus and not more than twice the water pressure when producing the ultrapure water. Is preferred.
本発明の超純水製造装置の立ち上げ方法において、前記流路に通流される前記過酸化水素又は気体を含有する純水の温度は10℃〜45℃であることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, it is preferable that the temperature of the pure water containing hydrogen peroxide or gas passed through the flow path is 10 ° C to 45 ° C.
本発明の超純水製造装置の立ち上げ方法において、前記超純水製造装置は、微粒子除去手段を備え、前記微粒子除去手段の流路に前記振動を与えることが好ましい。 In the start-up method of the ultrapure water production apparatus according to the present invention, it is preferable that the ultrapure water production apparatus includes a fine particle removing unit and applies the vibration to the flow path of the fine particle removing unit.
本発明の超純水製造装置の立ち上げ方法において、前記超純水製造装置の流路を構成する継手、バルブ、曲管部及び分岐部から選ばれる1種以上に前記振動を与えることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, it is preferable that the vibration is applied to at least one selected from a joint, a valve, a curved pipe part, and a branch part constituting the flow path of the ultrapure water production apparatus. .
本発明の超純水製造装置の立ち上げ方法において、前記過酸化水素から発生する酸素又は前記気体が前記一次純水中に過飽和で溶解されることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, it is preferable that oxygen or the gas generated from the hydrogen peroxide is dissolved in the primary pure water with supersaturation.
本発明の超純水製造装置の立ち上げ方法において、前記過酸化水素又気体を含有する純水中に、気泡が含有されることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, it is preferable that bubbles are contained in the pure water containing hydrogen peroxide or gas.
本発明の超純水製造装置の立ち上げ方法において、前記微粒子を除去した後、前記流路に純水を通水して前記過酸化水素又は気体を含有する純水を前記超純水製造装置系外に排出させることが好ましい。 In the start-up method of the ultrapure water production apparatus of the present invention, after removing the fine particles, the pure water containing hydrogen peroxide or gas is passed through the flow path by passing pure water through the ultrapure water production apparatus. It is preferable to discharge out of the system.
本発明の超純水製造装置の立ち上げ方法によれば、超純水製造開始後の微粒子数のハンチング現象を抑制し、微粒子濃度の極めて低い超純水を安定して得ることができる。 According to the start-up method of the ultrapure water production apparatus of the present invention, the hunting phenomenon of the number of fine particles after the start of production of ultrapure water can be suppressed, and ultrapure water having a very low concentration of fine particles can be obtained stably.
以下、図面を参照して、本発明の実施形態を詳細に説明する。
(第1の実施形態)
図1に示すように、本発明の立ち上げ洗浄対象である超純水製造装置1は、一次純水を一時的に貯留する一次純水タンク(TK)10の下流側に、水処理の単位装置として、水温調節のための熱交換器(HEX)11、有機物を分解する紫外線酸化装置(TOC−UV)12、膜式脱気装置(MDG)13、非再生型混床式イオン交換樹脂装置(Polisher)14、微粒子を除去する微粒子除去手段としての、限外ろ過装置15を備えて構成される。超純水製造装置1は、超純水の使用場所としてのユースポイント(POU)16に接続されて、製造された超純水をユースポイント16に供給する。また、超純水製造装置1は、ユースポイント16で使用されない超純水を一純水タンク10に循環させる循環配管19を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
As shown in FIG. 1, an ultrapure
また、超純水製造装置1は、上記水処理の各単位装置を接続し、被処理水を通流させる処理水配管17と、処理水配管17に介挿され、一次純水タンク10内の一次純水を下流側に送液するポンプP1と、処理水配管17のポンプP1の下流側に介挿され、超純水製造装置1への一次純水の供給及び停止を切り替えるためのバルブV1を備えている。処理水配管17の、限外ろ過装置15の後段には、水中の微粒子数を測定する微粒子計25が接続されている。また、循環配管19には、系外に水を排出するドレン配管18が、三方バルブV2を介して、接続されている。
In addition, the ultrapure
超純水製造装置1内の流路は、配管やチューブから構成されるが、本実施形態では、流路の途中に適宜タンク、ポンプ、継手、バルブ及びその他の設備が配置されたものも含めて流路と称する。このような被処理水の流路を構成する材料としては、超純水中への成分の溶出の少ない材料であればよく、例えば、ポリ塩化ビニル(PVC)、ポリフェニレンサルファイド(PPS)、ポリフッ化ビニリデン(PVDF)、繊維強化プラスチック(FRP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ステンレス鋼等を用いることができる。
Although the flow path in the ultrapure
本実施形態の超純水製造装置の立ち上げ方法は、超純水製造装置1の上記流路の内表面に付着した微粒子を除去する目的で、上記超純水の製造に先立ち、次のように、洗浄工程、脱薬工程、フラッシング工程を経て行われる。
Prior to the production of the ultrapure water, the method for starting up the ultrapure water production apparatus according to the present embodiment is as follows in order to remove fine particles adhering to the inner surface of the flow path of the ultrapure
まず、三方バルブV2を、ドレン配管18側から一次純水タンク10側に切り替え、バルブV1を開いて、ポンプP1を稼働させる。これにより、一次純水タンク10内に貯留された一次純水(純水)を超純水製造装置1内へ通流させ、さらに、循環配管19を介して循環させる。
First, the three-way valve V2 is switched from the
そして、超純水製造装置1に通流させる一次純水に、過酸化水素又は気体を溶解させる。また、上記過酸化水素又は気体を溶解させた一次純水(以下「気体溶解水」ともいう。)を滞留ないし流通させている状態で、超純水製造装置1の流路の少なくとも一部に外部から振動を与える(洗浄工程)。
Then, hydrogen peroxide or gas is dissolved in the primary pure water that is passed through the ultrapure
超純水製造装置1の流路に上記振動を印加することで、流路の内表面に付着した微粒子に振動エネルギーを与え、これにより微粒子を流路の内表面から剥離させ、気体溶解水中に分散させて除去することができる。また、上記気体溶解水中の気体が気泡となって、流路の内表面からの微粒子の剥離を促進させることができる。
By applying the above vibration to the flow path of the ultrapure
また、一次純水中の気体は、振動による微粒子の除去効果を向上させる効果がある。すなわち、本発明者らの種々の検討の結果、一次純水中の気体が過飽和、もしくは過飽和に近い状態であると、その状態で振動が加わることにより、微粒子の除去効果を向上させると考えられることが分かった。なお、過酸化水素は、水中で分解して酸素となり、同様の状況を作り出しているものと考えられる。 Moreover, the gas in primary pure water has an effect of improving the effect of removing fine particles by vibration. That is, as a result of various studies by the present inventors, if the gas in the primary pure water is in a supersaturated state or near supersaturated state, it is thought that the effect of removing fine particles is improved by adding vibration in that state. I understood that. Hydrogen peroxide decomposes in water to become oxygen, which is thought to create a similar situation.
上記一次純水に溶解させる気体としては、窒素、水素、二酸化炭素が挙げられる。なかでも、窒素であることが好ましい。 Examples of the gas dissolved in the primary pure water include nitrogen, hydrogen, and carbon dioxide. Of these, nitrogen is preferable.
一次純水に過酸化水素又は気体を溶解させる方法としては特に限定されない。例えば、気体を溶解させる方法としては、膜式脱気装置13を、気体溶解装置として使用し、脱気膜を溶解膜として気体を溶解させる方法がある。また、一次純水タンク10の上部は、気密に封止され、窒素パージされているのが通常であるので、一次純水タンク10内の一次純水には窒素が溶解されている。膜式脱気装置13を停止した状態で、一次純水タンク10から一次純水を供給すれば、窒素溶解水を供給することができる。
A method for dissolving hydrogen peroxide or gas in primary pure water is not particularly limited. For example, as a method for dissolving the gas, there is a method in which the
また、酸化水素又は気体の溶解させる方法としては、超純水製造装置1に供給する一次純水又は超純水製造装置1系内を循環する一次純水に、過酸化水素又は気体を溶解させる方法でもよい。この場合、例えば洗浄対象とする単位装置あるいは単位装置群の直前の処理水配管17に、薬注ポンプ等によって、過酸化水素又は気体の溶解された純水を注入する方法等を採用することができる。また、あらかじめ過酸化水素又は気体を溶解させた一次純水を超純水製造装置1に供給し、系内を循環させてもよい。
As a method for dissolving hydrogen oxide or gas, hydrogen peroxide or gas is dissolved in primary pure water supplied to the ultrapure
過酸化水素又は気体の濃度は、気泡を発生させることのできる量であれば特に限定されないが、過酸化水素又は気体の当該温度での溶解度に対して、1〜3倍の気体が溶解した状態となればよい。過酸化水素又は気体の濃度は、通流させる一次純水に対して、窒素の場合、24mg/L〜60mg/Lであることが好ましい。水素の場合、1.2mg/L〜3mg/Lであることが好ましい。過酸化水素の場合は、1質量%〜5質量%の濃度で添加することが好ましい。これにより、過酸化水素の分解によって生じた酸素が、8mg/L〜25mg/L溶解した状態になる。なお、気泡とは、数ミクロンから数百ミクロンの気泡であり、上記酸素又は気体が過飽和で溶解した一次純水に、振動を加えることによって生じさせることができる。 The concentration of hydrogen peroxide or gas is not particularly limited as long as it is an amount capable of generating bubbles, but a state in which 1 to 3 times the gas is dissolved with respect to the solubility of hydrogen peroxide or gas at the temperature. If it becomes. The concentration of hydrogen peroxide or gas is preferably 24 mg / L to 60 mg / L in the case of nitrogen with respect to the primary pure water to be passed. In the case of hydrogen, it is preferably 1.2 mg / L to 3 mg / L. In the case of hydrogen peroxide, it is preferably added at a concentration of 1% by mass to 5% by mass. As a result, oxygen generated by the decomposition of hydrogen peroxide is in a dissolved state of 8 mg / L to 25 mg / L. The bubble is a bubble of several microns to several hundred microns, and can be generated by applying vibration to primary pure water in which the oxygen or gas is dissolved with supersaturation.
ポンプP1による気体溶解水の供給時の圧力は、特に限定されないが、超純水製造時における超純水製造装置1への一次純水の供給圧の、3〜4割小さい圧力から2倍以下の圧力程度であることが好ましい。また、気体溶解水の供給時の圧力は、循環配管19内の、限外ろ過装置15の透過側の圧力が、超純水製造時における同箇所の圧力の3〜4割小さい圧力から2倍以下の圧力程度であることが好ましい。気体溶解水の供給圧が小さすぎると、溶解水の濃度が十分でなくなり、流路からの微粒子の剥離促進効果が低下することがある。また、大きすぎると、振動を与える際に、気泡量が多すぎるため、巨大気泡が発生し、微粒子の剥離促進効果が低下することがある。具体的には、立ち上げ運転時のポンプP1による気体溶解水の供給圧は例えば、0.2MPa〜0.5MPaである。
Although the pressure at the time of supply of the gas dissolved water by the pump P1 is not particularly limited, the pressure of primary pure water supplied to the ultrapure
また、気体溶解水中の気体を過飽和、又は過飽和に近い状態とするために、超純水製造装置1内に循環される気体溶解水の水温を上昇させることが好ましい。熱交換器によって、循環系内の水を冷却している場合には、これを停止することで、水温を上昇させることができる。また、熱交換器に熱源を供給して水温を上昇させてもよい。
Moreover, in order to make the gas in the gas-dissolved water supersaturated or close to supersaturation, it is preferable to raise the temperature of the gas-dissolved water circulated in the ultrapure
通流される気体溶解水の温度は、10℃〜45℃であることが好ましく、10℃〜40℃であることがより好ましく、25℃〜40℃であることがさらに好ましい。これにより、気体の溶解度が低下されることで、上記気体からの気泡の発生を促進して、流路からの微粒子の剥離促進効果を向上させることができる。 The temperature of the gas dissolved water to be passed is preferably 10 ° C to 45 ° C, more preferably 10 ° C to 40 ° C, and further preferably 25 ° C to 40 ° C. Thereby, since the solubility of gas is reduced, generation | occurrence | production of the bubble from the said gas can be accelerated | stimulated and the peeling promotion effect of the microparticles | fine-particles from a flow path can be improved.
また、気体溶解水中の気体を過飽和、又は過飽和に近い状態とするために、上記振動を与える際、又は振動を与える直前に、バルブV1、三方バルブV2又は超純水循環系内に設置されたその他のバルブの開度を調整することや、ポンプの出力を調整することなどによって、循環系内の圧力を下げることが好ましい。 Moreover, in order to make the gas in the gas dissolved water supersaturated or close to supersaturated, it was installed in the valve V1, the three-way valve V2 or the ultrapure water circulation system when giving the vibration or immediately before giving the vibration. It is preferable to reduce the pressure in the circulatory system by adjusting the opening of other valves or adjusting the output of the pump.
気体溶解水の通流時間は、超純水製造装置1を構成する流路の長さや内径にもよるが、例えば、5分〜60分であればよい。また、気体溶解水の流速についても特に限定されず、例えば、好ましくは0.001m/s〜3.0m/s、より好ましくは、0.5m/s〜2.0m/sであればよい。
The flow time of the gas-dissolved water may be, for example, 5 minutes to 60 minutes, although it depends on the length and the inner diameter of the flow path constituting the ultrapure
このようにして、上記過酸化水素又は気体が所定の濃度で過飽和の状態に達したら過酸化水素又は窒素の供給を停止する。そして、上記気体溶解水を超純水製造装置1系内に循環させている状態で、超純水製造装置1の流路の少なくとも一部に外部から振動を与える。
In this way, when the hydrogen peroxide or gas reaches a supersaturated state at a predetermined concentration, the supply of hydrogen peroxide or nitrogen is stopped. Then, in a state where the gas-dissolved water is circulated in the ultrapure
振動を与える際には、ポンプP1の吐出圧を、例えば、気体溶解水の供給時の圧力以下、好ましくは、気体溶解水の供給時の圧力の25〜75%で運転して、気体溶解水を超純水製造装置1系内に循環させてもよい。これは、振動を与える際の気体溶解水の供給圧が高すぎると、気泡の発生が十分でなくなり、流路からの微粒子の剥離促進効果が低下することがあるからである。また、振動を与える際には、気体溶解水は、超純水製造装置1の流路内に滞留させてもよく、この場合は、ポンプP1を停止すればよい。
When applying vibration, the discharge pressure of the pump P1 is operated at a pressure equal to or lower than the pressure at the time of supplying the gas dissolved water, for example, preferably 25 to 75% of the pressure at the time of supplying the gas dissolved water. May be circulated in the ultrapure
流路に与える振動としては、600Gal以上であることが好ましく、700Gal以上であることがより好ましい。また、流路に与える振動は、100000Gal以下であることが好ましい。流路に与えられる振動は大きい方が、微粒子を流路の内表面から剥離させる効果は大きいが、振動が大きすぎると配管の劣化や破損が生じるおそれがあるためである。 The vibration applied to the flow path is preferably 600 Gal or more, and more preferably 700 Gal or more. Moreover, it is preferable that the vibration given to a flow path is 100,000 Gal or less. This is because the greater the vibration applied to the flow path, the greater the effect of separating the fine particles from the inner surface of the flow path, but if the vibration is too large, the piping may be deteriorated or broken.
振動を与える時間は、振動を与える場所や振動の大きさにもよるが、おおよそ、1分〜5分程度である。 The time for applying the vibration is approximately 1 to 5 minutes although it depends on the place where the vibration is applied and the magnitude of the vibration.
振動を与える方法としては、特に限定されず、素手又は木槌やハンマー等の工具で流路を叩く方法、超音波振動を与える方法等が挙げられる。ここで、例えば、素手で叩いた場合に流路に与える振動は800Gal以上、木槌では、1400Gal以上、超音波では5000Gal以上程度である。流路に与えられる振動は、例えば、振動分析計によって測定することができる。 The method of applying vibration is not particularly limited, and examples thereof include a method of hitting the flow path with a bare hand or a tool such as a wooden hammer or a hammer, a method of applying ultrasonic vibration, and the like. Here, for example, the vibration applied to the flow path when struck with a bare hand is 800 Gal or more, 1400 Gal or more for a wooden mallet, and 5000 Gal or more for an ultrasonic wave. The vibration given to the flow path can be measured by, for example, a vibration analyzer.
振動を与える場所としては特に限定されないが、例えば、ポンプP1の入り口側から、ユースポイント16までの処理水配管17、循環配管16及び各単位装置において被処理水の通流される流路の、上記バルブや継ぎ手などの接続部分や、曲管部又は分岐部であることが好ましい。このような接続部分や、曲管部又は分岐部の流路内表面には、微粒子が滞留して付着し易い。本実施形態の立ち上げ方法によれば、このような微粒子に対しても優れた剥離、除去効果を得ることができる。
Although it does not specifically limit as a place which gives a vibration, For example, the above-mentioned of the flow path through which to-be-processed water flows in the treated water piping 17, the circulation piping 16, and each unit apparatus from the entrance side of the pump P1 to the
また、振動を与える場所としては、超純水製造装置1に備えられる微粒子除去手段、例えば限外ろ過装置15の流路であることが好ましい。微粒子除去手段としては、限外ろ過装置15以外にも、マイクロフィルター(MF)や、ナノフィルター(NF)が備えられることがあるが、この場合、これらのマイクロフィルター(MF)や、ナノフィルター(NF)の流路に振動を与えてもよい。限外ろ過装置15や、上記マイクロフィルター、ナノフィルターなどの微粒子除去手段の流路の内表面には、超純水製造装置1の上流側から流れてきた微粒子が滞留し付着することがあるためである。さらに、限外ろ過装置15の流路を構成するバルブや継ぎ手などの接続部分や、曲管部又は分岐部には、特に微粒子が滞留し易い。この、滞留した微粒子により超純水製造開始時にハンチング現象を起こしやすいため、このような接続部分や曲管部に上記振動を与えることが好ましい。
Further, the place where vibration is applied is preferably a particulate removing means provided in the ultrapure
振動を与える場所として、具体的に、微粒子除去手段を構成する装置内の流路と、当該装置内の流路の前後(上流側及び下流側)のそれぞれ1m以内の流路に振動を加えると、超純水製造装置1の立ち上げ期間の短縮に対して、より効果的である。
Specifically, when vibration is applied to the flow path in the apparatus constituting the particulate removing means and the flow path within 1 m before and after (upstream side and downstream side) of the flow path in the apparatus, the vibration is applied. This is more effective for shortening the startup period of the ultrapure
なお、上記超純水製造装置1の立ち上げ運転時には、非再生型混床式イオン交換樹脂装置14をバイパスするバイパス管(図示せず)により、非再生型混床式イオン交換樹脂装置14をバイパスして、気体溶解水を通流させることが好ましい。
During the start-up operation of the ultrapure
このようにして、洗浄工程を行った後、振動を停止し、その後、超純水製造装置1内の気体溶解水を排出する脱薬工程を行う。例えば、超純水製造装置1内に過酸化水素も気体も含まない一次純水を供給し、かつ、循環配管19に介挿された三方バルブV2を一次純水タンク10側から、ドレン配管18側に切り替えて、ドレン配管18を介して気体溶解水を系外に排出して脱薬工程が行われる。
Thus, after performing a washing | cleaning process, a vibration is stopped and the desorption process which discharges | emits the gas dissolved water in the ultrapure
脱薬工程は、超純水製造装置1の大きさや、超純水の流量にもよるが、30〜300分程度行う。脱薬工程によって、気体溶解水を系内から十分排出させた後、続いて、フラッシング工程を行う。フラッシング工程では、上記非再生型混床式イオン交換樹脂装置14をバイバスさせた場合には、上記バイパス管から、非再生型混床式イオン交換樹脂装置14に流路が切り替えられる。循環配管19に介挿された三方バルブV2をドレン配管18側から一次純水タンク10側に切り替えて、超純水を循環させる。フラッシング工程において系内を循環される超純水の一部は、例えば、限外ろ過装置15の濃縮水として、超純水製造装置1系外に排出されることが好ましい。
Although it depends on the size of the ultrapure
フラッシング工程時に、微粒子計25によって、超純水中の微粒子を継続的に測定することが好ましい。超純水製造装置1内が十分に洗浄されている場合には、微粒子の測定値は、次第に減少し、最終的に微粒子数は0pcs./Lとなる。この場合には、続いて、超純水の製造を開始することができる。微粒子計としては、オンラインで微粒子数を測定できるものが好ましく、例えば、Particle Measuring Systems製の、UDI−20等を使用することができる。
During the flushing process, it is preferable to continuously measure the fine particles in the ultrapure water with the
一方、洗浄工程における微粒子洗浄が十分に行われなかった場合には、微粒子数は0pcs./Lに達しないばかりか、一時的に微粒子数が急増する現象(ハンチング現象)が断続的に生じる。これは、流路内に洗浄不十分な箇所が存在し、この部分から微粒子が排出されるためと推測される。この場合には、超純水水質が劣化するので、超純水の製造を開始せず、ハンチング現象が減少するまで、フラッシングを継続する必要が生じることがある。 On the other hand, when the fine particle cleaning in the cleaning process is not sufficiently performed, the number of fine particles is 0 pcs. In addition to not reaching / L, a phenomenon (hunting phenomenon) in which the number of fine particles temporarily increases intermittently occurs. This is presumed to be because there is an insufficiently cleaned portion in the flow path, and fine particles are discharged from this portion. In this case, since the quality of ultrapure water deteriorates, it may be necessary to continue flushing until the hunting phenomenon is reduced without starting production of ultrapure water.
このようにして、超純水製造装置1の立ち上げ運転を行った後に、超純水の製造が開始される。
In this way, after the startup operation of the ultrapure
図2は、図1に示す超純水製造装置1を二次純水システムとして備える超純水製造システム2を概略的に表わすブロック図である。超純水製造システム2は、前処理装置20と、一次純水システム30を備えている。一次純水システム30の後段には、一次純水タンク10が接続され、この一次純水タンク10を介して超純水製造装置(二次純水システム)1が接続されている。
FIG. 2 is a block diagram schematically showing an ultrapure
超純水製造システム2による超純水の製造は次のように行われる。例えば、市水、井水、工業用水等の原水が、前処理装置20及び一次純水システム30で順に処理されて一次純水が製造される。
The production of ultrapure water by the ultrapure
前処理装置20は、原水を除濁して前処理水を製造するものであり、例えば、凝集沈澱装置や砂ろ過装置等を備えている。一次純水システム30は、前処理水を処理して一次純水を製造するものであり、活性炭装置、逆浸透膜装置、陽イオン交換樹脂装置、陰イオン交換樹脂装置、2床3塔式イオン交換樹脂装置、真空脱気装置、紫外線酸化装置、混床式イオン交換樹脂装置、精密フィルター等を適宜選択して構成される。一次純水は例えば、比抵抗値が17MΩ・cm以上、TOC濃度が3μgC/L以下であり、0.02μm以上の微粒子数が1pcs./mL以下である。
The
次いで、この一次純水は、一次純水タンク10に一旦貯留された後、二次純水システム1(図1に示す超純水製造装置1)に供給され、超純水が製造される。製造された超純水はユースポイント16に供給される。
Next, the primary pure water is temporarily stored in the primary
このとき、上記実施形態の立ち上げ方法によって、二次純水システム1(超純水製造装置1)の流路の内表面に付着した微粒子が除去されているため、超純水製造開始後にも、比抵抗値が18.2MΩ・cm以上、TOC濃度が1μgC/L以下であり、微粒子数が1pcs./mL以下の水質が安定的に維持された超純水をユースポイント16に供給することができる。
At this time, since the fine particles adhering to the inner surface of the flow path of the secondary pure water system 1 (ultra pure water production apparatus 1) are removed by the startup method of the above embodiment, even after the production of ultra pure water is started. The specific resistance value is 18.2 MΩ · cm or more, the TOC concentration is 1 μg C / L or less, and the number of fine particles is 1 pcs. Ultrapure water in which water quality of / mL or less is stably maintained can be supplied to the
なお、上記では、一般的な超純水製造システムに備えられる循環配管系、すなわち、POU(使用場所)へ超純水を供給する、循環配管を有した超純水製造装置の流路の洗浄方法について説明したが、これに限定されない。例えば、通常、超純水製造システムにおいて、一次純水タンク10の上流側に備えられる一次純水製造装置や、上記で説明した超純水製造装置の下流側に必要に応じて備えられる三次純水製造装置の立ち上げに対しても、同様に適用することができる。
In the above, a circulation piping system provided in a general ultrapure water production system, that is, a cleaning of a flow path of an ultrapure water production apparatus having a circulation piping for supplying ultrapure water to a POU (use place). Although the method has been described, the present invention is not limited to this. For example, usually, in an ultrapure water production system, a primary pure water production apparatus provided on the upstream side of the primary
次に、本発明の実施例について説明する。本発明は以下の実施例に限定されない。 Next, examples of the present invention will be described. The present invention is not limited to the following examples.
(実施例1)
図1に示す超純水製造装置と同様の二次純水システムを用い、立ち上げ運転を次のように行った。
Example 1
A start-up operation was performed as follows using a secondary pure water system similar to the ultrapure water production apparatus shown in FIG.
実施例及び比較例で用いた装置の仕様は次のとおりである。
熱交換器(HEX)
プレート式熱交換器、チタン製、(株)日阪製作所社製
紫外線酸化装置(TOC−UV)
商品名:SUV−ST、日本フォトサイエンス(株)社製
非再生型混床式イオン交換樹脂装置(Polisher)
ポリテトラフルオロエチレンでライニングした内径φ400mmの容器に、カチオン樹脂とアニオン樹脂を混合して210L充填、野村マイクロ・サイエンス(株)社製
脱気膜装置(MDG)
商品名:G284、ポリポア製
限外ろ過装置(UF)
商品名:OLT−6036HA、旭化成ケミカルズ(株)社製
オンライン微粒子計
商品名:UDI−20、Particle Measuring Systems製
The specifications of the apparatus used in the examples and comparative examples are as follows.
Heat exchanger (HEX)
Plate heat exchanger, made of titanium, manufactured by Nisaka Manufacturing Co., Ltd. Ultraviolet oxidation equipment (TOC-UV)
Product name: SUV-ST, manufactured by Nippon Photo Science Co., Ltd. Non-regenerative mixed-bed ion exchange resin device (Polisher)
A container with an inner diameter of 400 mm lined with polytetrafluoroethylene is mixed with a cation resin and an anion resin and filled with 210 L. Deaeration membrane device (MDG) manufactured by Nomura Micro Science Co., Ltd.
Product name: G284, polypore ultrafiltration device (UF)
Product name: OLT-6036HA, manufactured by Asahi Kasei Chemicals Co., Ltd. Online particle meter Product name: UDI-20, manufactured by Particle Measuring Systems
先ず、非再生型混床式イオン交換樹脂装置をバイパスするバイパス配管を設けて、非再生型混床式イオン交換樹脂装置をバイパスさせた。一次純水タンクの後段に設置されたバルブを開いて、一次純水タンク下流側のポンプを稼働させ、一次純水タンク内に貯留された一次純水を二次純水システム内へ通流させた。この際、ユースポイントから一次純水タンクを接続する循環配管を設け、一次純水を一次純水タンクに循環させた。ポンプの吐出圧は、0.3MPaとした。 First, a bypass pipe that bypasses the non-regenerative mixed bed ion exchange resin apparatus was provided to bypass the non-regenerative mixed bed ion exchange resin apparatus. Open the valve installed downstream of the primary pure water tank and operate the pump on the downstream side of the primary pure water tank to flow the primary pure water stored in the primary pure water tank into the secondary pure water system. It was. At this time, a circulation pipe for connecting the primary pure water tank from the use point was provided, and the primary pure water was circulated to the primary pure water tank. The discharge pressure of the pump was 0.3 MPa.
また、熱交換器の入り口側の配管に分岐配管を設け、これに薬注ポンプを接続して、この薬注ポンプによって過酸化水素を溶解させた超純水(過酸化水素水)を、一次純水タンクから供給される一次純水に供給した。過酸化水素濃度は、超純水製造装置1内に通流させる一次純水に対して1質量%となるように供給した。過酸化水素水を供給する際の、上記ポンプの吐出圧は、0.3MPaとした。その後、過酸化水素の供給を停止した。一次純水の循環運転は継続した。
In addition, a branch pipe is provided at the inlet side of the heat exchanger, and a chemical injection pump is connected to this, and the ultrapure water (hydrogen peroxide solution) in which hydrogen peroxide is dissolved by this chemical injection pump is used as the primary. It supplied to the primary pure water supplied from a pure water tank. Hydrogen peroxide concentration was supplied so that it might become 1 mass% with respect to the primary pure water made to flow through the ultrapure
また、同時に、二次純水システムの、限外ろ過装置に備えられた流路の供給水側、透過水側の配管、バルブ、及び分岐部分を木槌で叩いて振動を与えた。振動を与えた時間は、5分、木槌による振動は、デジタル振動計OH−580A(株式会社テストー製)による測定で、1400Galであった。振動を加える際に、ポンプの吐出圧は変更せず、0.3MPaとした。 At the same time, the supply water side, permeate side piping, valves, and branches of the flow path provided in the ultrafiltration device of the secondary pure water system were struck with a mallet to give vibration. The vibration was applied for 5 minutes, and the vibration by the wooden mallet was 1400 Gal as measured by a digital vibrometer OH-580A (manufactured by Testo Co., Ltd.). When applying the vibration, the discharge pressure of the pump was not changed and was set to 0.3 MPa.
次いで、振動を停止した後、循環配管の三方バルブを一次純水タンク側からドレン配管側に切替えて、過酸化水素を含む超純水を系外に排水し、同時に、一次純水タンクから二次純水システム系内に一次純水の供給を行い、二次純水システムをリンスして脱薬工程を行った。その後、上記バイパス管から、非再生型混床式イオン交換樹脂装置への通水に切り替え、三方バルブをドレン配管側から一次純水タンク側に切り替えて、フラッシング工程を60時間行った後、超純水の製造を開始した。超純水の製造時の、ポンプの吐出圧は0.3MPaとした。 Next, after stopping the vibration, the three-way valve of the circulation pipe is switched from the primary pure water tank side to the drain pipe side, and ultrapure water containing hydrogen peroxide is drained out of the system. The primary pure water was supplied into the secondary pure water system, and the secondary pure water system was rinsed to carry out the de-drug process. Thereafter, the bypass pipe is switched to water flow to a non-regenerative mixed bed ion exchange resin apparatus, the three-way valve is switched from the drain pipe side to the primary pure water tank side, and the flushing process is performed for 60 hours. Started production of pure water. The pump discharge pressure during the production of ultrapure water was 0.3 MPa.
フラッシング工程の開始後の超純水中の0.02μm以上の微粒子数を測定し、2日目、4日目及び7日目のハンチング現象の生じた回数を計測した。結果を、立ち上げ運転条件とあわせて表1に示す。なお、0.02μm以上の微粒子数が、前後の期間に比べて、増加したものをハンチング現象としてその回数を計測した。ハンチング現象時の微粒子数は、例えば10pcs./L以上である。 The number of fine particles of 0.02 μm or more in the ultrapure water after the start of the flushing process was measured, and the number of occurrences of the hunting phenomenon on the second day, the fourth day, and the seventh day was measured. The results are shown in Table 1 together with the startup operation conditions. The number of fine particles of 0.02 μm or more increased compared to the previous and subsequent periods, and the number of times was counted as a hunting phenomenon. The number of fine particles during the hunting phenomenon is, for example, 10 pcs. / L or more.
(実施例2)
本例では、流路に振動を与える方法を、木槌で叩く方法から、素手で叩く方法に変更した他は実施例1と同様の方法で立ち上げ運転を行った。振動を与えた時間は、5分、素手で叩いた際の振動は、上記のデジタル振動計による測定で、800Galであった。
(Example 2)
In this example, the start-up operation was performed in the same manner as in Example 1 except that the method of applying vibration to the flow path was changed from the method of hitting with a mallet to the method of hitting with a bare hand. The vibration was applied for 5 minutes, and the vibration when struck with a bare hand was 800 Gal as measured by the above-mentioned digital vibrometer.
(実施例3)
本例では、流路に振動を与える方法を、ウルトラソニックジェネレーターET−30S−7(島田理化工業社製)によって超音波を印加する方法に変更した他は実施例1と同様の方法で立ち上げ運転を行った。振動を与えた時間は、5分、超音波による振動は、上記のデジタル振動計による測定で、5000Galであった。
(Example 3)
In this example, the method of applying vibration to the flow path was changed to a method of applying ultrasonic waves with an ultrasonic generator ET-30S-7 (manufactured by Shimada Rika Kogyo Co., Ltd.), and started up in the same manner as in Example 1. Drove. The vibration was applied for 5 minutes, and the ultrasonic vibration was 5000 Gal as measured by the digital vibration meter.
(実施例4〜11、比較例1〜8)
立ち上げ運転条件を表1のように変更した他は、実施例1と同様に立ち上げ運転を行った。これらの例では、必要に応じて、熱交換器を作動させて、一次純水を表1に示す温度に加温した。また、過酸化水素及び気体のいずれも使用しない例では、脱気膜装置を運転しながら立ち上げ運転を行った。
また、窒素を用いた例では、一次純水タンクの上部に封入されている窒素を利用して窒素を溶解させるとともに、膜式脱気装置の運転を停止することによって、窒素を溶解させた一次純水を流路内に通流させた。
(Examples 4-11, Comparative Examples 1-8)
The startup operation was performed in the same manner as in Example 1 except that the startup operation conditions were changed as shown in Table 1. In these examples, the heat exchanger was operated as necessary to heat the primary pure water to the temperature shown in Table 1. In an example in which neither hydrogen peroxide nor gas was used, the startup operation was performed while operating the deaeration membrane device.
Moreover, in the example using nitrogen, while dissolving nitrogen using the nitrogen enclosed by the upper part of the primary pure water tank, and stopping the operation | movement of a membrane type deaerator, the primary which dissolved nitrogen Pure water was passed through the channel.
立ち上げ運転後、実施例1と同様に超純水の製造を開始し、フラッシング工程の開始後2日目、4日目及び7日目の、製造された超純水中の0.02μm以上の微粒子数を測定し、ハンチング現象の生じた回数を計測した結果を、実施例1とあわせて表1に示す。 After the start-up operation, production of ultrapure water was started in the same manner as in Example 1, and 0.02 μm or more in the produced ultrapure water on the second, fourth and seventh days after the start of the flushing process. Table 1 together with Example 1 shows the results of measuring the number of fine particles and measuring the number of occurrences of the hunting phenomenon.
また、実施例1及び比較例1における、洗浄工程からフラッシング工程までの、経過時間と微粒子数の関係をそれぞれ図3、4のグラフに示す。 The relationship between the elapsed time and the number of fine particles from the cleaning process to the flushing process in Example 1 and Comparative Example 1 is shown in the graphs of FIGS.
表1及び図3に示されるように、本発明の実施例の超純水製造装置の立ち上げ方法では、ハンチング現象を抑制し、微粒子数が1pcs./mL以下で安定的に維持された超純水を得られたことが分かる。これに対して、比較例1〜8では、ハンチング現象が抑制されないことが分かる。 As shown in Table 1 and FIG. 3, in the method for starting the ultrapure water production apparatus of the embodiment of the present invention, the hunting phenomenon is suppressed and the number of fine particles is 1 pc. It can be seen that ultrapure water stably maintained at / mL or less was obtained. On the other hand, in Comparative Examples 1-8, it turns out that a hunting phenomenon is not suppressed.
1…超純水製造装置(二次純水システム)、2…超純水製造システム、10…一次純水タンク(TK)、11…熱交換器(HEX)、12…紫外線酸化装置(TOC−UV)、13…膜式脱気装置(MDG)、14…非再生型混床式イオン交換樹脂装置(Polisher)、15…限外ろ過装置(UF)、16…ユースポイント(POU)、17…処理水配管、18…ブロー配管、19…循環配管、20…前処理装置、30…一次純水システム、25…微粒子計、P1…ポンプ、V1…バルブ、V2…三方バルブ。
DESCRIPTION OF
Claims (10)
前記超純水製造装置の流路に、過酸化水素又は気体を含有する純水を滞留ないし通流させて、
前記流路の少なくとも一部に、外部から振動を与え、
前記流路の内表面に付着した微粒子を除去することを特徴とする超純水製造装置の立ち上げ方法。 In the ultrapure water production apparatus that processes primary pure water to produce ultrapure water and supplies it to the place of use, the inside of the ultrapure water production apparatus system is cleaned prior to supplying the ultrapure water to the place of use. A method for starting up an ultrapure water production apparatus,
In the flow path of the ultrapure water production apparatus, pure water containing hydrogen peroxide or gas is retained or passed,
Apply vibration from outside to at least a part of the flow path,
A method for starting up an ultrapure water production apparatus, wherein fine particles adhering to the inner surface of the flow path are removed.
前記微粒子除去手段の流路に前記振動を与えることを特徴とする請求項1乃至5のいずれか1項記載の超純水製造装置の立ち上げ方法。 The ultrapure water production apparatus includes a fine particle removing unit,
6. The method for starting up an ultrapure water production apparatus according to any one of claims 1 to 5, wherein the vibration is applied to a flow path of the particulate removing means.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016093121A JP2017200683A (en) | 2016-05-06 | 2016-05-06 | Start-up method of ultra-pure water manufacturing apparatus |
KR1020187031072A KR20190005843A (en) | 2016-05-06 | 2017-05-01 | Starting method of ultrapure water producing device |
CN201780027457.3A CN109153047A (en) | 2016-05-06 | 2017-05-01 | The starting method of Ultrapure Water Purifiers |
PCT/JP2017/017139 WO2017191829A1 (en) | 2016-05-06 | 2017-05-01 | Method for starting ultrapure water production apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016093121A JP2017200683A (en) | 2016-05-06 | 2016-05-06 | Start-up method of ultra-pure water manufacturing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017200683A true JP2017200683A (en) | 2017-11-09 |
Family
ID=60203670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016093121A Pending JP2017200683A (en) | 2016-05-06 | 2016-05-06 | Start-up method of ultra-pure water manufacturing apparatus |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2017200683A (en) |
KR (1) | KR20190005843A (en) |
CN (1) | CN109153047A (en) |
WO (1) | WO2017191829A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022509482A (en) * | 2018-10-24 | 2022-01-20 | ナノサイズド、スウェーデン、アクチボラグ | Methods and configurations for semiconductor manufacturing |
JP7033691B1 (en) | 2021-10-29 | 2022-03-10 | 野村マイクロ・サイエンス株式会社 | How to start up the warm ultra-pure water production system, start-up program, and warm ultra-pure water production system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7143595B2 (en) * | 2018-02-07 | 2022-09-29 | 栗田工業株式会社 | Particle control method for ultrapure water production system |
JP7387320B2 (en) * | 2019-07-29 | 2023-11-28 | オルガノ株式会社 | Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system |
CN112796143B (en) * | 2021-02-03 | 2022-10-04 | 远通纸业(山东)有限公司 | System and method for toning fine fibers by using hydrogen peroxide |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62244483A (en) * | 1986-04-16 | 1987-10-24 | 川崎重工業株式会社 | Method of washing piping |
JPH03288583A (en) * | 1990-04-03 | 1991-12-18 | Nomura Micro Sci Kk | Method for washing piping in pure water making apparatus |
JP2002151459A (en) * | 2000-11-10 | 2002-05-24 | Kurita Water Ind Ltd | Cleaning method |
JP2004122020A (en) * | 2002-10-03 | 2004-04-22 | Japan Organo Co Ltd | Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus |
JP2008253373A (en) * | 2007-04-02 | 2008-10-23 | Matsushita Electric Ind Co Ltd | Ultrasonic washer, dishwasher using the same, and ultrasonic washing method |
JP2011088979A (en) * | 2009-10-21 | 2011-05-06 | Panasonic Electric Works Co Ltd | Cleaning liquid, cleaning method, and cleaning liquid production device |
JP2014000548A (en) * | 2012-06-20 | 2014-01-09 | Nomura Micro Sci Co Ltd | Cleaning method when uplifting ultrapure water production system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002052322A (en) | 2000-08-10 | 2002-02-19 | Kurita Water Ind Ltd | Washing method |
JP4449080B2 (en) | 2005-04-15 | 2010-04-14 | オルガノ株式会社 | Cleaning method for ultrapure water production and supply equipment |
WO2008123351A1 (en) * | 2007-03-30 | 2008-10-16 | Kurita Water Industries Ltd. | Method of washing and sterilizing ultrapure water production system |
-
2016
- 2016-05-06 JP JP2016093121A patent/JP2017200683A/en active Pending
-
2017
- 2017-05-01 CN CN201780027457.3A patent/CN109153047A/en not_active Withdrawn
- 2017-05-01 WO PCT/JP2017/017139 patent/WO2017191829A1/en active Application Filing
- 2017-05-01 KR KR1020187031072A patent/KR20190005843A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62244483A (en) * | 1986-04-16 | 1987-10-24 | 川崎重工業株式会社 | Method of washing piping |
JPH03288583A (en) * | 1990-04-03 | 1991-12-18 | Nomura Micro Sci Kk | Method for washing piping in pure water making apparatus |
JP2002151459A (en) * | 2000-11-10 | 2002-05-24 | Kurita Water Ind Ltd | Cleaning method |
JP2004122020A (en) * | 2002-10-03 | 2004-04-22 | Japan Organo Co Ltd | Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus |
JP2008253373A (en) * | 2007-04-02 | 2008-10-23 | Matsushita Electric Ind Co Ltd | Ultrasonic washer, dishwasher using the same, and ultrasonic washing method |
JP2011088979A (en) * | 2009-10-21 | 2011-05-06 | Panasonic Electric Works Co Ltd | Cleaning liquid, cleaning method, and cleaning liquid production device |
JP2014000548A (en) * | 2012-06-20 | 2014-01-09 | Nomura Micro Sci Co Ltd | Cleaning method when uplifting ultrapure water production system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022509482A (en) * | 2018-10-24 | 2022-01-20 | ナノサイズド、スウェーデン、アクチボラグ | Methods and configurations for semiconductor manufacturing |
JP7033691B1 (en) | 2021-10-29 | 2022-03-10 | 野村マイクロ・サイエンス株式会社 | How to start up the warm ultra-pure water production system, start-up program, and warm ultra-pure water production system |
TWI793049B (en) * | 2021-10-29 | 2023-02-11 | 日商野村微科學工程股份有限公司 | Method for starting up hot ultrapure water production system, starting up program, and hot ultrapure water production system |
JP2023066522A (en) * | 2021-10-29 | 2023-05-16 | 野村マイクロ・サイエンス株式会社 | Hot ultrapure water production system startup method, startup program, and hot ultrapure water production system |
US11926536B2 (en) | 2021-10-29 | 2024-03-12 | Nomura Micro Science Co., Ltd. | Method for starting up hot ultrapure water production system, and hot ultrapure water production system |
Also Published As
Publication number | Publication date |
---|---|
CN109153047A (en) | 2019-01-04 |
WO2017191829A1 (en) | 2017-11-09 |
KR20190005843A (en) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017191829A1 (en) | Method for starting ultrapure water production apparatus | |
TWI491566B (en) | Wash sterilization method of ultra pure water manufacturing system | |
TWI774733B (en) | Method of cleaning hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device, and device for cleaning hollow fiber membrane device | |
WO2009128327A1 (en) | Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases | |
JP4867180B2 (en) | Immersion membrane separator and chemical cleaning method therefor | |
JP2014000548A (en) | Cleaning method when uplifting ultrapure water production system | |
JP2016185520A (en) | Chemical cleaning method and chemical cleaning apparatus for reverse osmosis membrane device | |
JP5320665B2 (en) | Ultrapure water production apparatus and method | |
JP2017113729A (en) | Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane | |
JP5381781B2 (en) | Cleaning method of ultrapure water production system | |
WO2018146847A1 (en) | Cleaning apparatus for semiconductor substrates and cleaning method for semiconductor substrates | |
JP2002151459A (en) | Cleaning method | |
TWI699245B (en) | Cleaning method of ultrapure water production system | |
US10865130B2 (en) | Apparatus and method for producing alkaline water for cleaning electronic device | |
JP4747659B2 (en) | Cleaning method for ultrapure water production and supply equipment | |
JP3620577B2 (en) | Cleaning method for ultrapure water production system | |
JP3473465B2 (en) | Cleaning method of membrane | |
JP7387320B2 (en) | Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system | |
JP2007260211A (en) | Method for antiseptically cleaning ultrapure water producing system | |
JP2004026987A (en) | Washing method for ultra-pure water making system | |
JP5353562B2 (en) | Cleaning method for UF membrane module | |
JP2022187148A (en) | Method for starting up water treatment device and washing method | |
TW202313485A (en) | Ion exchange device for ultrapure water production, ultrapure water production system, and ultrapure water production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200326 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200811 |