Nothing Special   »   [go: up one dir, main page]

JP2017135022A - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
JP2017135022A
JP2017135022A JP2016014581A JP2016014581A JP2017135022A JP 2017135022 A JP2017135022 A JP 2017135022A JP 2016014581 A JP2016014581 A JP 2016014581A JP 2016014581 A JP2016014581 A JP 2016014581A JP 2017135022 A JP2017135022 A JP 2017135022A
Authority
JP
Japan
Prior art keywords
exhaust passage
electrode assembly
case
electrode
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016014581A
Other languages
Japanese (ja)
Inventor
裕介 山下
Yusuke Yamashita
裕介 山下
信司 鈴木
Shinji Suzuki
信司 鈴木
厚志 南形
Atsushi MINAGATA
厚志 南形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016014581A priority Critical patent/JP2017135022A/en
Publication of JP2017135022A publication Critical patent/JP2017135022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electricity storage device capable of suppressing a part of an electrode from scattering through a cleaved pressure release valve during a nail penetration test.SOLUTION: A secondary battery 10 including a pressure release valve 20 includes a plural sheets of thickness adjustment members 50 between an end face 44 and a long side wall 12d of an electrode assembly 14. The secondary battery 10 has an exhaust passage 60 penetrating through the plural sheets of thickness adjustment members 50 in a lamination direction and extending in a surface direction of the thickness adjustment members 50. A downstream end of the exhaust passage 60 in a gas circulation direction opens toward the pressure release valve 20.SELECTED DRAWING: Figure 1

Description

本発明は、圧力開放弁を有する蓄電装置に関する。   The present invention relates to a power storage device having a pressure release valve.

EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、原動機となる電動機への供給電力を蓄える蓄電装置としてリチウムイオン電池などの二次電池が搭載されている。二次電池は、例えば、特許文献1に記載されるように、ケースに電極組立体と電解液が収容されており、ケースの壁面にはケース内の圧力をケース外に開放させる圧力開放弁が設けられている。   A vehicle such as an EV (Electric Vehicle) or a PHV (Plug in Hybrid Vehicle) is equipped with a secondary battery such as a lithium ion battery as a power storage device that stores power supplied to an electric motor serving as a prime mover. For example, as described in Patent Document 1, the secondary battery includes an electrode assembly and an electrolytic solution housed in a case, and a pressure release valve that releases the pressure inside the case to the outside of the case on the wall surface of the case. Is provided.

特許第4881409号Japanese Patent No. 4881409

このような二次電池において、その評価試験の一つである釘刺し試験が行われると、釘によって正極電極と負極電極の間のセパレータが破断し、正極電極と負極電極とがケース内において短絡する。そして、短絡が発生すると、その短絡部の周辺では熱が発生し、短絡部の周辺で発生した熱によって電解液成分が分解され、ケース内にガスが発生する。すると、ケース内の圧力が上昇して圧力開放弁が開裂するが、圧力開放弁からケース外へガスが放出される際、高圧のガスによって電極の一部が削られ、そのままガスに乗ってケースの外部に飛び散る虞がある。   In such a secondary battery, when a nail penetration test, which is one of the evaluation tests, is performed, the separator between the positive electrode and the negative electrode is broken by the nail, and the positive electrode and the negative electrode are short-circuited in the case. To do. When a short circuit occurs, heat is generated around the short circuit part, the electrolyte component is decomposed by the heat generated around the short circuit part, and gas is generated in the case. Then, the pressure in the case rises and the pressure release valve is opened, but when the gas is released from the pressure release valve to the outside of the case, a part of the electrode is scraped off by the high pressure gas, and it gets on the gas as it is. There is a risk of splashing outside.

本発明は、釘刺し試験時、開裂した圧力開放弁から電極の一部が飛散することを抑制できる蓄電装置を提供することにある。   An object of the present invention is to provide a power storage device that can suppress a part of an electrode from being scattered from a cleaved pressure release valve during a nail penetration test.

上記問題点を解決するための蓄電装置は、異なる極性の電極がセパレータによって絶縁された状態で層状に構成された電極組立体と、電解液と、前記電極組立体及び電解液を収容するケースと、前記電極組立体の積層方向に積層された複数枚のシート部材と、前記ケースの壁部に存在し、前記ケース内の圧力が開放圧に達した場合に開裂し、ケース内の圧力をケース外に開放させる圧力開放弁と、を有する蓄電装置であって、複数枚の前記シート部材を積層方向に貫通し、かつ前記シート部材の面方向に延在する排気通路を有し、前記排気通路におけるガス流通方向の下流端は、前記圧力開放弁に向けて開口していることを要旨とする。   A power storage device for solving the above problems includes an electrode assembly configured in layers with electrodes having different polarities insulated by a separator, an electrolytic solution, and a case for housing the electrode assembly and the electrolytic solution. A plurality of sheet members stacked in the stacking direction of the electrode assembly, and present in the wall portion of the case, and cleaved when the pressure in the case reaches the open pressure, And a pressure release valve that opens to the outside, the power storage device having an exhaust passage that penetrates the plurality of sheet members in the stacking direction and extends in a surface direction of the sheet members, and the exhaust passage The gist of the present invention is that the downstream end in the gas flow direction is opened toward the pressure release valve.

これによれば、蓄電装置の評価試験の一つである釘刺し試験が行われると、ケースから電極組立体の積層方向に沿って刺さった釘によって、異なる極性の電極同士の間のセパレータが破断し、異なる極性の電極同士がケース内において短絡する。そして、短絡が発生すると、その短絡部の周辺では熱が発生し、短絡部の周辺で発生した熱によって電解液成分が分解され、ケース内にガスが発生する。すると、ケース内の圧力が上昇して圧力開放弁が開裂する。また、短絡部で発生したガスは、広い空間となっている排気通路に向かって積層方向に沿って流れる。そして、ガスは排気通路に沿って上昇し、排気通路の下流端から圧力開放弁に向けて流れ、開裂した圧力開放弁を介してケース外へ放出される。すなわち、短絡部付近で発生した高圧のガスを排気通路で集約させ、纏めて排気通路で上昇させることができる。このため、短絡部付近で発生したガスが、纏まらず、そのまま短絡部の至るところから電極組立体内を上昇する場合と比べると、高圧のガスに曝される電極が減ることになる。その結果、釘刺し試験時に、発生した高圧のガスによって削られる電極が減り、電極の一部がケースの外部に飛び散ることを抑制できる。   According to this, when a nail penetration test which is one of the evaluation tests of the power storage device is performed, the separator between the electrodes of different polarities is broken by the nail stuck along the stacking direction of the electrode assembly from the case. However, the electrodes having different polarities are short-circuited in the case. When a short circuit occurs, heat is generated around the short circuit part, the electrolyte component is decomposed by the heat generated around the short circuit part, and gas is generated in the case. Then, the pressure in the case rises and the pressure relief valve is opened. Further, the gas generated in the short-circuit portion flows along the stacking direction toward the exhaust passage that is a large space. Then, the gas rises along the exhaust passage, flows from the downstream end of the exhaust passage toward the pressure release valve, and is released out of the case through the cleaved pressure release valve. That is, the high-pressure gas generated in the vicinity of the short-circuit portion can be concentrated in the exhaust passage and collectively raised in the exhaust passage. For this reason, the gas which generate | occur | produced in the short circuit part vicinity is not collected, but the electrode exposed to a high voltage | pressure gas reduces compared with the case where it raises in the electrode assembly from the short circuit part as it is. As a result, during the nail penetration test, the number of electrodes scraped by the generated high-pressure gas is reduced, and it is possible to suppress the part of the electrodes from being scattered outside the case.

また、蓄電装置について、前記排気通路におけるガス流通方向の上流端が、前記電極の中央部に開口していてもよい。
これによれば、釘刺し試験では、釘は電極の中央部付近に刺さり、短絡部は電極の中央部で発生する。排気通路におけるガス流通方向の上流端を短絡部付近で開口させることで、発生したガスが排気通路に速やかに流れ込む。このため、短絡部で発生したガスを、排気通路を介して速やかに圧力開放弁へ流すことができる。
In the power storage device, an upstream end of the exhaust passage in the gas flow direction may open at a central portion of the electrode.
According to this, in the nail penetration test, the nail is stuck near the central portion of the electrode, and the short-circuit portion is generated at the central portion of the electrode. By opening the upstream end in the gas flow direction in the exhaust passage in the vicinity of the short-circuit portion, the generated gas quickly flows into the exhaust passage. For this reason, the gas generated in the short-circuit portion can be quickly flowed to the pressure release valve via the exhaust passage.

また、蓄電装置について、前記排気通路は、前記電極組立体の積層方向の少なくとも一端に位置する端面と該端面に対向した前記ケースの側壁との間に存在していてもよい。
これによれば、釘は、最初に電極組立体の積層方向の端に刺さる。このため、ガスは、電極組立体の積層方向の端で最初に発生する。そして、積層方向の端に排気通路が存在するため、発生したガスを排気通路へ速やかに流すことができる。
In the power storage device, the exhaust passage may exist between an end face located at least one end in the stacking direction of the electrode assembly and a side wall of the case facing the end face.
According to this, the nail is first stuck at the end of the electrode assembly in the stacking direction. For this reason, the gas is first generated at the end of the electrode assembly in the stacking direction. Since the exhaust passage is present at the end in the stacking direction, the generated gas can be quickly flowed into the exhaust passage.

蓄電装置は二次電池である。   The power storage device is a secondary battery.

本発明によれば、釘刺し試験時、開裂した圧力開放弁から電極の一部が飛散することを抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, it can suppress that a part of electrode scatters from the pressure release valve which broke at the time of a nail penetration test.

実施形態の二次電池を示す分解斜視図。The disassembled perspective view which shows the secondary battery of embodiment. 実施形態の二次電池の外観を示す斜視図。The perspective view which shows the external appearance of the secondary battery of embodiment. 電極組立体及び厚み調整部材を示す分解斜視図。The disassembled perspective view which shows an electrode assembly and a thickness adjustment member. 厚み調整部材と一体化された電極組立体を示す斜視図。The perspective view which shows the electrode assembly integrated with the thickness adjustment member. 二次電池内を示す断面図。Sectional drawing which shows the inside of a secondary battery. 釘刺し試験を示す部分断面図。The fragmentary sectional view which shows a nail penetration test.

以下、蓄電装置を二次電池に具体化した一実施形態を図1〜図6にしたがって説明する。
図1及び図2に示すように、二次電池10はリチウムイオン二次電池であり、その外郭を構成する金属製のケース11を有する。ケース11は、一面に開口部12aを備える有底直方体状の容器12と、開口部12aを塞ぐ蓋13とを有する。容器12は、長方形状の底板12bと、底板12bの対向する一対の短側縁から立設された短側壁12cと、底板12bの対向する一対の長側縁から立設された長側壁12dとを有する。ケース11には、電極組立体14及び電解液(図示略)が収容されている。電極組立体14は、容器12の内部空間が直方体形状であることに対応させて、全体として直方体形状である。なお、容器12の内面には絶縁フィルム15が設けられている。
Hereinafter, an embodiment in which the power storage device is embodied as a secondary battery will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the secondary battery 10 is a lithium ion secondary battery, and has a metal case 11 that forms the outline thereof. The case 11 includes a bottomed rectangular parallelepiped container 12 having an opening 12a on one surface and a lid 13 that closes the opening 12a. The container 12 has a rectangular bottom plate 12b, a short side wall 12c erected from a pair of opposed short side edges of the bottom plate 12b, and a long side wall 12d erected from a pair of opposed long side edges of the bottom plate 12b. Have The case 11 contains an electrode assembly 14 and an electrolytic solution (not shown). The electrode assembly 14 has a rectangular parallelepiped shape as a whole, corresponding to the internal space of the container 12 having a rectangular parallelepiped shape. An insulating film 15 is provided on the inner surface of the container 12.

二次電池10は、ケース11の壁部としての蓋13に圧力開放弁20を備える。圧力開放弁20は、ケース11内の圧力が上昇し過ぎないように、ケース11内の圧力が所定の圧力である開放圧に達した場合に開裂し、ケース11内の圧力をケース11外に開放させる。圧力開放弁20の開放圧は、ケース11自体や容器12と蓋13との接合部に亀裂や破断などが生じる前に開裂し得る圧力に設定されている。そして、圧力開放弁20は、蓋13の板厚よりも薄い薄板状の弁体20aを有する。弁体20aは、蓋13の表面に凹設された凹部13bの底に位置しており、蓋13と一体的に成形されている。圧力開放弁20は、弁体20a上の表面がケース11の蓋13の表面の一部となっている。また、圧力開放弁20は、弁体20aの表面に開裂溝20bを有する。弁体20aは、蓋13の中央部に位置している。   The secondary battery 10 includes a pressure release valve 20 on a lid 13 as a wall portion of the case 11. The pressure release valve 20 is cleaved when the pressure in the case 11 reaches an open pressure that is a predetermined pressure so that the pressure in the case 11 does not increase excessively, and the pressure in the case 11 is moved out of the case 11. Open. The release pressure of the pressure release valve 20 is set to a pressure at which the case 11 itself and the joint between the container 12 and the lid 13 can be broken before a crack or breakage occurs. The pressure release valve 20 has a thin plate-like valve body 20 a that is thinner than the plate thickness of the lid 13. The valve body 20 a is located at the bottom of a recess 13 b that is recessed on the surface of the lid 13, and is molded integrally with the lid 13. In the pressure release valve 20, the surface on the valve body 20 a is a part of the surface of the lid 13 of the case 11. Further, the pressure release valve 20 has a cleavage groove 20b on the surface of the valve body 20a. The valve body 20 a is located at the center of the lid 13.

図3に示すように、電極組立体14は、矩形シート状の正極電極21、及び矩形シート状の負極電極22と、樹脂製にて、電気伝導に係るイオン(リチウムイオン)が通過可能な多孔質膜で形成されたセパレータ23とを備えている。正極電極21は、矩形状の正極用金属箔(本実施形態ではアルミニウム箔)21aと、その正極用金属箔21aの両面(表面)に設けられた矩形状の正極活物質層21bと、を有する。正極電極21は、一方の長辺に第1の辺21cを備える。正極電極21は、第1の辺21cの一部から突出する形状の正極集電タブ41を備える。正極電極21は、第1の辺21cの対辺となる長辺に第2の辺21dを備える。さらに、正極電極21は、第1の辺21cの一端と第2の辺21dの一端を繋ぐ短辺に第3の辺21eを備えるとともに、第1の辺21cの他端と第2の辺21dの他端を繋ぐ短辺に第4の辺21fを備える。   As shown in FIG. 3, the electrode assembly 14 is made of a rectangular sheet-like positive electrode 21 and a rectangular sheet-like negative electrode 22, and is made of a resin and is porous so that ions (lithium ions) related to electric conduction can pass therethrough. And a separator 23 formed of a material film. The positive electrode 21 includes a rectangular positive electrode metal foil (aluminum foil in this embodiment) 21a and a rectangular positive electrode active material layer 21b provided on both surfaces (surfaces) of the positive electrode metal foil 21a. . The positive electrode 21 includes a first side 21c on one long side. The positive electrode 21 includes a positive electrode current collecting tab 41 having a shape protruding from a part of the first side 21c. The positive electrode 21 includes a second side 21d on the long side opposite to the first side 21c. Further, the positive electrode 21 includes a third side 21e on a short side connecting one end of the first side 21c and one end of the second side 21d, and the other end of the first side 21c and the second side 21d. A fourth side 21f is provided on the short side connecting the other end of the second side.

負極電極22は、矩形状の負極用金属箔(本実施形態では銅箔)22aと、その負極用金属箔22aの両面(表面)に設けられた矩形状の負極活物質層22bと、を有する。負極電極22は、一方の長辺に第1の辺22cを備える。負極電極22は、第1の辺22cの一部から突出する形状の負極集電タブ42を備える。負極電極22は、第1の辺22cの対辺となる長辺に第2の辺22dを備える。さらに、負極電極22は、第1の辺22cの一端と第2の辺22dの一端を繋ぐ短辺に第3の辺22eを備えるとともに、第1の辺22cの他端と第2の辺22dの他端を繋ぐ短辺に第4の辺22fを備える。   The negative electrode 22 has a rectangular negative electrode metal foil (copper foil in this embodiment) 22a and a rectangular negative electrode active material layer 22b provided on both surfaces (surfaces) of the negative electrode metal foil 22a. . The negative electrode 22 includes a first side 22c on one long side. The negative electrode 22 includes a negative electrode current collecting tab 42 having a shape protruding from a part of the first side 22c. The negative electrode 22 includes a second side 22d on the long side opposite to the first side 22c. Further, the negative electrode 22 includes a third side 22e on a short side connecting one end of the first side 22c and one end of the second side 22d, and the other end of the first side 22c and the second side 22d. A fourth side 22f is provided on the short side connecting the other ends of the second side 22f.

図1に示すように、電極組立体14は、積層方向の両側に、矩形状の端面44を有し、各端面44は、負極電極22によって構成されている。また、電極組立体14は、正極電極21の第1の辺21c、負極電極22の第1の辺22c、及びそれら第1の辺21c,22cに沿うセパレータ23の一辺が集まったタブ側端面36を有する。電極組立体14は、正極電極21の第2の辺21d、負極電極22の第2の辺22d、及びそれら第2の辺21d,22dに沿うセパレータ23の一辺が集まった底面37を有する。また、電極組立体14は、端面44に繋がる四つの面のうち、タブ側端面36及び底面37を除く面に側面38を有する。電極組立体14の一方の側面38は、正極電極21の第3の辺21e、負極電極22の第3の辺22e、及びそれら第3の辺21e,22eに沿うセパレータ23の一辺が集まって形成されている。電極組立体14の他方の側面38は、正極電極21の第4の辺21f、負極電極22の第4の辺22f、及びそれら第4の辺21f,22fに沿うセパレータ23の一辺が集まって形成されている。   As shown in FIG. 1, the electrode assembly 14 has rectangular end faces 44 on both sides in the stacking direction, and each end face 44 is constituted by a negative electrode 22. The electrode assembly 14 includes a first side 21c of the positive electrode 21, a first side 22c of the negative electrode 22, and a tab side end face 36 in which one side of the separator 23 along the first sides 21c and 22c is gathered. Have The electrode assembly 14 includes a second side 21d of the positive electrode 21, a second side 22d of the negative electrode 22, and a bottom surface 37 on which one side of the separator 23 along the second sides 21d and 22d gathers. The electrode assembly 14 has a side surface 38 on a surface excluding the tab side end surface 36 and the bottom surface 37 among the four surfaces connected to the end surface 44. One side surface 38 of the electrode assembly 14 is formed by gathering the third side 21e of the positive electrode 21, the third side 22e of the negative electrode 22, and one side of the separator 23 along the third sides 21e and 22e. Has been. The other side surface 38 of the electrode assembly 14 is formed by gathering the fourth side 21f of the positive electrode 21, the fourth side 22f of the negative electrode 22, and one side of the separator 23 along the fourth sides 21f and 22f. Has been.

図1及び図4に示すように、正極電極21と、負極電極22と、セパレータ23は、正極集電タブ41が積層方向に沿って列状に配置され、且つ正極集電タブ41と重ならない位置にて負極集電タブ42が積層方向に沿って列状に配置されるように積層される。そして、電極組立体14のタブ側端面36に正極集電タブ41及び負極集電タブ42が位置している。タブ側端面36では、各正極集電タブ41及び各負極集電タブ42は、電極組立体14における積層方向の一端から他端までの範囲内で集められた(束ねられた)状態で折り曲げられている。各正極集電タブ41が重なっている箇所を溶接することによって各正極集電タブ41が電気的に接続されるとともに、正極集電タブ41に正極導電部材61が接続されている。正極導電部材61には、電極組立体14から電気を取り出すための正極端子51が接続されている。   As shown in FIGS. 1 and 4, the positive electrode 21, the negative electrode 22, and the separator 23 are arranged such that the positive electrode current collecting tabs 41 are arranged in a line along the stacking direction and do not overlap the positive electrode current collecting tabs 41. The negative electrode current collecting tabs 42 are stacked at the position so as to be arranged in a line along the stacking direction. The positive electrode current collecting tab 41 and the negative electrode current collecting tab 42 are positioned on the tab side end surface 36 of the electrode assembly 14. On the tab side end surface 36, each positive electrode current collection tab 41 and each negative electrode current collection tab 42 are bent in a state of being collected (bundled) within a range from one end to the other end in the stacking direction of the electrode assembly 14. ing. Each positive current collecting tab 41 is electrically connected by welding a portion where each positive current collecting tab 41 overlaps, and a positive electrode conductive member 61 is connected to the positive current collecting tab 41. A positive electrode terminal 51 for taking out electricity from the electrode assembly 14 is connected to the positive electrode conductive member 61.

同様に、各負極集電タブ42が重なっている箇所を溶接することによって各負極集電タブ42が電気的に接続されるとともに、負極集電タブ42に負極導電部材62が接続されている。負極導電部材62には、電極組立体14から電気を取り出すための負極端子52が接続されている。正極端子51及び負極端子52は蓋13を貫通してケース11外に突出するとともに、正極端子51及び負極端子52は絶縁リング13aによって蓋13から絶縁されている。   Similarly, the negative electrode current collecting tabs 42 are electrically connected by welding the portions where the negative electrode current collecting tabs 42 are overlapped, and the negative electrode conductive member 62 is connected to the negative electrode current collecting tabs 42. A negative electrode terminal 52 for taking out electricity from the electrode assembly 14 is connected to the negative electrode conductive member 62. The positive terminal 51 and the negative terminal 52 penetrate the lid 13 and protrude out of the case 11, and the positive terminal 51 and the negative terminal 52 are insulated from the lid 13 by the insulating ring 13a.

容器12において、電極組立体14を挟んで対向する一対の長側壁12dの絶縁フィルム15間の最短距離を容器12の内寸とすると、電極組立体14の積層方向の長さは、容器12の内寸より僅かに小さい。これは、正極電極21と、負極電極22と、セパレータ23とを所定枚数積層する際に、実際の厚みが製造公差の最大値を取っても、電極組立体14がケース11内に収まるように、各々の厚みが設定されていることによる。   In the container 12, when the shortest distance between the insulating films 15 of the pair of long side walls 12d facing each other with the electrode assembly 14 interposed therebetween is the inner dimension of the container 12, the length of the electrode assembly 14 in the stacking direction is as follows. Slightly smaller than the inner dimensions. This is because when a predetermined number of positive electrodes 21, negative electrodes 22, and separators 23 are stacked, the electrode assembly 14 can be accommodated in the case 11 even if the actual thickness takes the maximum manufacturing tolerance. , Because each thickness is set.

電極組立体14の両方の端面44と、各端面44に対向する側壁としての長側壁12d(絶縁フィルム15)との間には、シート部材としての厚み調整部材50が介装されている。厚み調整部材50は、所定の厚みの樹脂製のフィルムである。厚み調整部材50は、電極組立体14の積層方向の長さに対応し、複数枚が重ねられる。   A thickness adjusting member 50 as a sheet member is interposed between both end faces 44 of the electrode assembly 14 and a long side wall 12 d (insulating film 15) as a side wall facing each end face 44. The thickness adjusting member 50 is a resin film having a predetermined thickness. The thickness adjusting member 50 corresponds to the length of the electrode assembly 14 in the stacking direction, and a plurality of the thickness adjusting members 50 are stacked.

図4に示すように、電極組立体14では、多数の正極電極21と負極電極22とセパレータ23と複数枚の厚み調整部材50とが、複数の保持テープ45により、相互に固定されている。そして、厚み調整部材50を用いることで、電極組立体14と厚み調整部材50を合わせた積層方向への長さが、予め決められた所定の値の範囲内に調整されている。   As shown in FIG. 4, in the electrode assembly 14, a large number of positive electrodes 21, negative electrodes 22, separators 23, and a plurality of thickness adjusting members 50 are fixed to each other by a plurality of holding tapes 45. By using the thickness adjusting member 50, the length in the stacking direction of the electrode assembly 14 and the thickness adjusting member 50 is adjusted within a predetermined range.

図3に示すように、各厚み調整部材50は、セパレータ23の外形に沿う形状である。厚み調整部材50は、正極電極21の第1の辺21c及び負極電極22の第1の辺22cに沿う第1の辺50aを備えるとともに、正極電極21の第2の辺21d、及び負極電極22の第2の辺22dに沿う第2の辺50bを備える。また、厚み調整部材50は、正極電極21の第3の辺21e、及び負極電極22の第3の辺22eに沿う第3の辺50cを備えるとともに、正極電極21の第4の辺21f、及び負極電極22の第4の辺22fに沿う第4の辺50dを備える。厚み調整部材50の第1の辺50aは、タブ側端面36に沿う面上に存在し、蓋13に対向している。   As shown in FIG. 3, each thickness adjusting member 50 has a shape along the outer shape of the separator 23. The thickness adjusting member 50 includes a first side 50 a along the first side 21 c of the positive electrode 21 and the first side 22 c of the negative electrode 22, and the second side 21 d of the positive electrode 21 and the negative electrode 22. The second side 50b is provided along the second side 22d. The thickness adjusting member 50 includes a third side 21e along the third side 21e of the positive electrode 21 and a third side 22e along the negative electrode 22, and a fourth side 21f of the positive electrode 21; A fourth side 50 d is provided along the fourth side 22 f of the negative electrode 22. The first side 50 a of the thickness adjusting member 50 exists on a surface along the tab side end surface 36 and faces the lid 13.

図1に示すように、厚み調整部材50は、蓋13に対向した第1の辺50aから、第2の辺50bに向けて凹む通路形成部50fを備える。通路形成部50fは、厚み調整部材50を厚み方向に貫通し、かつ厚み調整部材50の面方向に延在した形状である。また、通路形成部50fの一端は第1の辺50aの中間で開口し、他端は厚み調整部材50の中央部に位置している。通路形成部50fは、厚み調整部材50の第1の辺50aと中央部との間を一定幅で真っ直ぐに延びる形状である。   As shown in FIG. 1, the thickness adjusting member 50 includes a passage forming portion 50 f that is recessed from the first side 50 a facing the lid 13 toward the second side 50 b. The passage forming portion 50 f has a shape that penetrates the thickness adjusting member 50 in the thickness direction and extends in the surface direction of the thickness adjusting member 50. Further, one end of the passage forming portion 50 f is opened in the middle of the first side 50 a, and the other end is located at the center portion of the thickness adjusting member 50. The passage forming portion 50f has a shape that extends straight between the first side 50a of the thickness adjusting member 50 and the central portion with a constant width.

二次電池10は、通路形成部50fを積層方向に複数重ねて形成された排気通路60を備え、この排気通路60は、複数枚の厚み調整部材50を厚み方向に貫通し、かつ厚み調整部材50の面方向に延在する形状である。   The secondary battery 10 includes an exhaust passage 60 formed by stacking a plurality of passage forming portions 50f in the stacking direction. The exhaust passage 60 penetrates the plurality of thickness adjusting members 50 in the thickness direction, and the thickness adjusting member. The shape extends in the direction of 50 planes.

図5に示すように、排気通路60の一端は、電極組立体14の上端面(タブ側端面36)で開口し、排気通路60の他端は、電極組立体14の端面44の中央部に開口している。電極組立体14の端面44の中央部は、正極電極21及び負極電極22の中央部でもあるため、排気通路60の他端は、正極電極21及び負極電極22の中央部に開口していることになる。   As shown in FIG. 5, one end of the exhaust passage 60 opens at the upper end surface (tab side end surface 36) of the electrode assembly 14, and the other end of the exhaust passage 60 is at the center of the end surface 44 of the electrode assembly 14. It is open. Since the central portion of the end surface 44 of the electrode assembly 14 is also the central portion of the positive electrode 21 and the negative electrode 22, the other end of the exhaust passage 60 is open to the central portion of the positive electrode 21 and the negative electrode 22. become.

排気通路60には、電極組立体14の短絡時に発生したガスが流れ込む。ガスは上昇するため、排気通路60におけるガス流通方向Gの下流端は、電極組立体14の上端面となるタブ側端面36で開口し、そのタブ側端面36が対向する蓋13の圧力開放弁20に向けて開口している。また、排気通路60におけるガス流通方向Gの上流端は、正極電極21及び負極電極22の中央部となる電極組立体14の端面44の中央部で開口している。   Gas generated when the electrode assembly 14 is short-circuited flows into the exhaust passage 60. Since the gas rises, the downstream end of the exhaust passage 60 in the gas flow direction G opens at the tab side end surface 36 that is the upper end surface of the electrode assembly 14, and the pressure release valve of the lid 13 that faces the tab side end surface 36. It opens toward 20. Further, the upstream end of the exhaust passage 60 in the gas flow direction G is open at the center of the end surface 44 of the electrode assembly 14 which is the center of the positive electrode 21 and the negative electrode 22.

二次電池10において、厚み調整部材50が、電極組立体14の両方の端面44と、各長側壁12dとの間に介装されていることから、排気通路60は、電極組立体14の端面44と長側壁12dとの間に介在する。   In the secondary battery 10, since the thickness adjusting member 50 is interposed between both end surfaces 44 of the electrode assembly 14 and the long side walls 12 d, the exhaust passage 60 is connected to the end surface of the electrode assembly 14. 44 and the long side wall 12d.

次に、二次電池10の作用を効果とともに記載する。
さて、図6に示すように、釘刺し試験を行うため、いずれかの長側壁12dに釘Fを刺すと、その釘Fは、電極組立体14の端面44の中央部に刺さり、正極電極21、負極電極22、及びセパレータ23の中央部に刺さる。すると、釘Fを介して正極電極21と負極電極22の間のセパレータ23が破断又は溶融し、正極電極21と負極電極22とがケース11内において短絡する。このとき、釘Fは、排気通路60におけるガス流通方向の上流端付近に刺さる。
Next, the effect | action of the secondary battery 10 is described with an effect.
As shown in FIG. 6, when a nail F is inserted into any of the long side walls 12d in order to perform a nail penetration test, the nail F is inserted into the central portion of the end surface 44 of the electrode assembly 14, and the positive electrode 21 The negative electrode 22 and the central portion of the separator 23 are stuck. Then, the separator 23 between the positive electrode 21 and the negative electrode 22 is broken or melted via the nail F, and the positive electrode 21 and the negative electrode 22 are short-circuited in the case 11. At this time, the nail F is stuck near the upstream end of the exhaust passage 60 in the gas flow direction.

電極組立体14で短絡が生じると、その短絡部の周辺では熱が発生し、ガスの発生による二次電池10内の圧力上昇が生じる。そして、ケース11の内部圧力が圧力開放弁20の開放圧に達すると、圧力開放弁20の弁体20aが開裂溝20bから開裂し、ケース11内のガスがケース11外に放出される。   When a short circuit occurs in the electrode assembly 14, heat is generated in the vicinity of the short circuit part, and the pressure in the secondary battery 10 is increased due to the generation of gas. When the internal pressure of the case 11 reaches the open pressure of the pressure release valve 20, the valve body 20a of the pressure release valve 20 is cleaved from the cleavage groove 20b, and the gas in the case 11 is released to the outside of the case 11.

また、短絡部で発生した高圧のガスは、図6の矢印Yに示すように、広い空間となっている排気通路60に向かって釘Fに沿いながら積層方向に流れ、排気通路60に集中する。そして、高圧のガスは、纏まって排気通路60を上昇して、開裂した圧力開放弁20からケース11外へ放出される。   Further, the high-pressure gas generated in the short-circuit portion flows in the stacking direction along the nails F toward the exhaust passage 60 which is a large space, and is concentrated in the exhaust passage 60 as indicated by an arrow Y in FIG. . Then, the high-pressure gas collectively rises in the exhaust passage 60 and is released from the cleaved pressure release valve 20 to the outside of the case 11.

よって、短絡部付近で発生したガスが、纏まらず、そのまま電極組立体14内を上昇する場合と比べると、排気通路60を設けたことで、高圧のガスに曝される正極電極21及び負極電極22の数が減る。その結果として、正極電極21や負極電極22の一部が高圧のガスによって削られることが抑制され、ケース11の外部へのガス放出に伴い電極の一部が飛び散ることを抑制できる。   Therefore, compared with the case where the gas generated in the vicinity of the short-circuit portion is not collected and ascends in the electrode assembly 14 as it is, by providing the exhaust passage 60, the positive electrode 21 exposed to the high-pressure gas and The number of negative electrodes 22 decreases. As a result, it is possible to suppress a part of the positive electrode 21 and the negative electrode 22 from being scraped by the high-pressure gas, and it is possible to suppress a part of the electrode from being scattered as the gas is released to the outside of the case 11.

そして、排気通路60は、ガス流通方向Gの上流端が電極組立体14の端面44の中央部に開口している。このため、釘刺し試験において、電極組立体14の端面44の中央部に釘Fが刺さり、ガスが発生すると、そのガスを釘Fに沿って排気通路60へ速やかに流れ込ませることができる。よって、高圧のガスに曝される正極電極21や負極電極22を減らすことができる。   The exhaust passage 60 has an upstream end in the gas flow direction G opened at the center of the end surface 44 of the electrode assembly 14. For this reason, in the nail penetration test, when the nail F is stuck in the central portion of the end surface 44 of the electrode assembly 14 and gas is generated, the gas can be quickly flowed into the exhaust passage 60 along the nail F. Therefore, the positive electrode 21 and the negative electrode 22 that are exposed to high-pressure gas can be reduced.

加えて、排気通路60は、電極組立体14の各端面44と各長側壁12dとの間に存在する。釘刺し試験時、ガスは、釘Fが最初に刺さる端面44付近で最初に発生する。このため、ガスが最初に発生する場所の直近に排気通路60が存在することになり、発生したガスを排気通路60へ速やかに流すことができる。   In addition, the exhaust passage 60 exists between each end face 44 of the electrode assembly 14 and each long side wall 12d. During the nail penetration test, gas is first generated near the end face 44 where the nail F first penetrates. For this reason, the exhaust passage 60 exists in the immediate vicinity of the place where the gas is first generated, and the generated gas can be quickly flowed into the exhaust passage 60.

また、排気通路60は、厚み調整部材50の通路形成部50fを積層して形成されている。厚み調整部材50は、電極組立体14と厚み調整部材50を合わせた積層方向への長さが、予め決められた所定の値の範囲内に調整するための部材である。よって、厚み調整部材50は、二次電池10の性能に寄与しない部材である。したがって、二次電池10の性能を変化させずに、また、部品点数を増やすことなく、ケース11内に排気通路60を設けることができる。   The exhaust passage 60 is formed by laminating the passage forming portions 50 f of the thickness adjusting member 50. The thickness adjusting member 50 is a member for adjusting the length of the electrode assembly 14 and the thickness adjusting member 50 in the stacking direction within a predetermined range. Therefore, the thickness adjusting member 50 is a member that does not contribute to the performance of the secondary battery 10. Therefore, the exhaust passage 60 can be provided in the case 11 without changing the performance of the secondary battery 10 and without increasing the number of parts.

そして、排気通路60は、各厚み調整部材50の通路形成部50fを積層して形成されているため、厚み調整部材50の積層枚数が異なっても、排気通路60を形成することができる。   And since the exhaust passage 60 is formed by laminating the passage forming portions 50f of the thickness adjusting members 50, the exhaust passage 60 can be formed even if the number of the thickness adjusting members 50 is different.

厚み調整部材50は、保持テープ45によって電極組立体14に一体化されている。このため、厚み調整部材50によって形成された排気通路60も電極組立体14に一体に設けることができ、電極組立体14から発生したガスを排気通路60に向けて流れやすくすることができる。   The thickness adjusting member 50 is integrated with the electrode assembly 14 by the holding tape 45. Therefore, the exhaust passage 60 formed by the thickness adjusting member 50 can also be provided integrally with the electrode assembly 14, and the gas generated from the electrode assembly 14 can easily flow toward the exhaust passage 60.

厚み調整部材50は、電極組立体14の積層方向の両側に配置されており、排気通路60も電極組立体14の積層方向の両側に存在する。このため、電極組立体14の積層方向のいずれから釘Fが刺さっても、排気通路60にガスが流れ、正極電極21及び負極電極22が高圧のガスに曝されることを抑制できる。   The thickness adjusting members 50 are disposed on both sides of the electrode assembly 14 in the stacking direction, and the exhaust passages 60 are also present on both sides of the electrode assembly 14 in the stacking direction. For this reason, even if the nail F stabs from any of the lamination directions of the electrode assembly 14, it can suppress that a gas flows into the exhaust passage 60 and the positive electrode 21 and the negative electrode 22 are exposed to a high pressure gas.

なお、上記実施形態は以下のように変更してもよい。
○ 厚み調整部材50は、電極組立体14の端面44と長側壁12dとの間に介装されておらず、電極組立体14の積層方向の途中に介装され、この積層方向途中にある複数枚の厚み調整部材50の通路形成部50fを積層して排気通路60を設けてもよい。
In addition, you may change the said embodiment as follows.
The thickness adjusting member 50 is not interposed between the end face 44 of the electrode assembly 14 and the long side wall 12d, but is interposed in the middle of the stacking direction of the electrode assembly 14, and a plurality of members in the middle of the stacking direction. The exhaust passage 60 may be provided by laminating the passage forming portions 50 f of the sheet thickness adjusting members 50.

このように構成した場合、短絡部付近で発生した高圧のガスは、積層方向に沿って排気通路60に向かって流れ、排気通路60で集約し、纏まって上昇する。このため、高圧のガスに曝される正極電極21及び負極電極22が減ることになる。その結果、釘刺し試験時に、発生した高圧のガスによって削られる正極電極21及び負極電極22が減り、それらの一部がケース11の外部に飛び散ることを抑制できる。   When configured in this way, high-pressure gas generated in the vicinity of the short-circuit portion flows toward the exhaust passage 60 along the stacking direction, collects in the exhaust passage 60, and rises together. For this reason, the positive electrode 21 and the negative electrode 22 which are exposed to high-pressure gas decrease. As a result, the positive electrode 21 and the negative electrode 22 scraped by the generated high-pressure gas during the nail penetration test are reduced, and it is possible to suppress a part of them from being scattered outside the case 11.

○ 実施形態では、シート部材を電極組立体14の積層方向への寸法を調整する厚み調整部材50に具体化したが、シート部材は、電極組立体14と容器12とを絶縁する絶縁シートであってもよいし、電極組立体14と長側壁12dとの間に介在する短絡用電極であってもよい。   In the embodiment, the sheet member is embodied as the thickness adjusting member 50 that adjusts the dimension of the electrode assembly 14 in the stacking direction, but the sheet member is an insulating sheet that insulates the electrode assembly 14 from the container 12. Alternatively, it may be a short-circuiting electrode interposed between the electrode assembly 14 and the long side wall 12d.

○ 排気通路60におけるガス流通方向Gの上流端を、電極組立体14の端面44の中央部に開口させたが、排気通路60の上流端の開口する場所は、釘刺し試験で設定された釘Fの刺さる場所に合わせて変更してもよい。この場合、排気通路60におけるガス流通方向Gの下流端を、圧力開放弁20が位置する蓋13に対向した縁(第1の辺50a)に開口させ、排気通路60を、その上流端から下流端まで真っ直ぐに延びる形状とする。   ○ The upstream end of the exhaust passage 60 in the gas flow direction G was opened at the center of the end surface 44 of the electrode assembly 14, but the upstream end of the exhaust passage 60 was opened at the nail set in the nail penetration test. You may change according to the place where F sticks. In this case, the downstream end of the exhaust passage 60 in the gas flow direction G is opened to the edge (first side 50a) facing the lid 13 where the pressure release valve 20 is located, and the exhaust passage 60 is downstream from the upstream end thereof. The shape extends straight to the end.

○ 厚み調整部材50の枚数は、端面44と長側壁12dとの寸法に合わせて適宜変更してもよい。厚み調整部材50の積層枚数に合わせて、排気通路60の流路断面積が変更される。   The number of the thickness adjusting members 50 may be appropriately changed according to the dimensions of the end face 44 and the long side wall 12d. The flow passage cross-sectional area of the exhaust passage 60 is changed according to the number of stacked thickness adjusting members 50.

○ 実施形態では、通路形成部50fの一端を厚み調整部材50の第1の辺50aで開口させ、排気通路60におけるガス流通方向Gの下流端を電極組立体14の上端面(タブ側端面36)で開口させたが、これに限らない。通路形成部50fの一端を厚み調整部材50の第1の辺50aで開口させず、厚み調整部材50の面内で開口させ、排気通路60におけるガス流通方向Gの下流端を電極組立体14における端面44内で開口させてもよい。この場合、例えば、排気通路60におけるガス流通方向Gの下流端に対向した位置となる長側壁12dに圧力開放弁20を設けてもよいし、蓋13に圧力開放弁20を設けてもよい。   In the embodiment, one end of the passage forming portion 50f is opened at the first side 50a of the thickness adjusting member 50, and the downstream end of the exhaust passage 60 in the gas flow direction G is the upper end surface (tab side end surface 36 of the electrode assembly 14). ), But not limited to this. One end of the passage forming portion 50 f is not opened at the first side 50 a of the thickness adjusting member 50, but is opened within the surface of the thickness adjusting member 50, and the downstream end of the exhaust passage 60 in the gas flow direction G in the electrode assembly 14. You may open in the end surface 44. FIG. In this case, for example, the pressure release valve 20 may be provided on the long side wall 12d located at the position facing the downstream end of the gas passage direction G in the exhaust passage 60, or the pressure release valve 20 may be provided on the lid 13.

○ 実施形態では、通路形成部50fの一端を厚み調整部材50の第1の辺50aで開口させ、排気通路60におけるガス流通方向Gの下流端を電極組立体14の上端面(タブ側端面36)で開口させたが、これに限らない。通路形成部50fの一端を、厚み調整部材50の第3の辺50cや第4の辺50dで開口させ、排気通路60におけるガス流通方向Gの下流端を、電極組立体14の側面38で開口させてもよい。   In the embodiment, one end of the passage forming portion 50f is opened at the first side 50a of the thickness adjusting member 50, and the downstream end of the exhaust passage 60 in the gas flow direction G is the upper end surface (tab side end surface 36 of the electrode assembly 14). ), But not limited to this. One end of the passage forming portion 50f is opened at the third side 50c and the fourth side 50d of the thickness adjusting member 50, and the downstream end of the exhaust passage 60 in the gas flow direction G is opened at the side surface 38 of the electrode assembly 14. You may let them.

○ 電極組立体14を構成する正極電極21、及び負極電極22の枚数は適宜変更してもよい。
○ 厚み調整部材50は、電極組立体14の片方の端面44と長側壁12dとの間だけに介在し、排気通路60が電極組立体14の片方の端面44と長側壁12dとの間だけに存在していてもよい。
The number of positive electrodes 21 and negative electrodes 22 constituting the electrode assembly 14 may be changed as appropriate.
The thickness adjusting member 50 is interposed only between one end surface 44 of the electrode assembly 14 and the long side wall 12d, and the exhaust passage 60 is only between the one end surface 44 of the electrode assembly 14 and the long side wall 12d. May be present.

○ 電極組立体は、1枚の帯状の正極電極と1枚の帯状の負極電極とをセパレータで絶縁した状態で捲回軸を中心に捲回した捲回型であってもよい。
○ 蓄電装置は、電気二重層キャパシタ等の他の蓄電装置であってもよい。
The electrode assembly may be a wound type in which one belt-like positive electrode and one belt-like negative electrode are wound around a winding shaft in a state where they are insulated by a separator.
The power storage device may be another power storage device such as an electric double layer capacitor.

○ 実施形態では、二次電池10はリチウムイオン二次電池であったが、これに限られず、ニッケル水素等の他の二次電池であってもよい。要は、正極活物質層と負極活物質層との間をイオンが移動するとともに電荷の授受を行うものであればよい。   In embodiment, although the secondary battery 10 was a lithium ion secondary battery, it is not restricted to this, Other secondary batteries, such as nickel hydride, may be sufficient. In short, any ion may be used as long as ions move between the positive electrode active material layer and the negative electrode active material layer and transfer charge.

次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(1)前記シート部材は、前記電極組立体の積層方向への寸法を調整する厚み調整部材である蓄電装置。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(1) The power storage device, wherein the sheet member is a thickness adjusting member that adjusts a dimension of the electrode assembly in a stacking direction.

G…ガス流通方向、10…蓄電装置としての二次電池、11…ケース、12d…側壁としての長側壁、13…壁部としての蓋、14…電極組立体、20…圧力開放弁、21…正極電極、22…負極電極、23…セパレータ、44…端面、50…シート部材としての厚み調整部材、60…排気通路。   G ... Gas flow direction, 10 ... Secondary battery as power storage device, 11 ... Case, 12d ... Long side wall as side wall, 13 ... Lid as wall part, 14 ... Electrode assembly, 20 ... Pressure release valve, 21 ... Positive electrode, 22 ... negative electrode, 23 ... separator, 44 ... end face, 50 ... thickness adjusting member as sheet member, 60 ... exhaust passage.

Claims (4)

異なる極性の電極がセパレータによって絶縁された状態で層状に構成された電極組立体と、
電解液と、
前記電極組立体及び電解液を収容するケースと、
前記電極組立体の積層方向に積層された複数枚のシート部材と、
前記ケースの壁部に存在し、前記ケース内の圧力が開放圧に達した場合に開裂し、ケース内の圧力をケース外に開放させる圧力開放弁と、を有する蓄電装置であって、
複数枚の前記シート部材を積層方向に貫通し、かつ前記シート部材の面方向に延在する排気通路を有し、
前記排気通路におけるガス流通方向の下流端は、前記圧力開放弁に向けて開口していることを特徴とする蓄電装置。
An electrode assembly configured in layers with electrodes of different polarities insulated by separators;
An electrolyte,
A case for accommodating the electrode assembly and the electrolyte;
A plurality of sheet members stacked in the stacking direction of the electrode assembly;
A pressure release valve that is present in the wall of the case and is cleaved when the pressure in the case reaches an open pressure, and releases the pressure in the case to the outside of the case,
An exhaust passage extending through the plurality of sheet members in the stacking direction and extending in the surface direction of the sheet members;
A power storage device, wherein a downstream end of the exhaust passage in a gas flow direction opens toward the pressure release valve.
前記排気通路におけるガス流通方向の上流端が、前記電極の中央部に開口している請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein an upstream end of the exhaust passage in a gas flow direction opens at a central portion of the electrode. 前記排気通路は、前記電極組立体の積層方向の少なくとも一端に位置する端面と該端面に対向した前記ケースの側壁との間に存在する請求項1又は請求項2に記載の蓄電装置。   3. The power storage device according to claim 1, wherein the exhaust passage is present between an end face located at least one end in the stacking direction of the electrode assembly and a side wall of the case facing the end face. 前記蓄電装置は二次電池である請求項1〜請求項3のうちいずれか一項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 3, wherein the power storage device is a secondary battery.
JP2016014581A 2016-01-28 2016-01-28 Electricity storage device Pending JP2017135022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014581A JP2017135022A (en) 2016-01-28 2016-01-28 Electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014581A JP2017135022A (en) 2016-01-28 2016-01-28 Electricity storage device

Publications (1)

Publication Number Publication Date
JP2017135022A true JP2017135022A (en) 2017-08-03

Family

ID=59502749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014581A Pending JP2017135022A (en) 2016-01-28 2016-01-28 Electricity storage device

Country Status (1)

Country Link
JP (1) JP2017135022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050173A (en) * 2017-09-12 2019-03-28 トヨタ自動車株式会社 Power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050173A (en) * 2017-09-12 2019-03-28 トヨタ自動車株式会社 Power storage device

Similar Documents

Publication Publication Date Title
EP2254176B1 (en) Rechargeable battery
EP3460892B1 (en) Electricity storage device
US10026946B2 (en) Electricity storage device
WO2014171436A1 (en) Accumulator device
KR101666873B1 (en) Electrode assembly, and rechargeable battery having thereof
WO2014027606A1 (en) Electrical storage device
JP5574003B1 (en) Power storage device
JP2015032549A (en) Power storage device
JP2016139586A (en) Power storage device
JP2015072828A (en) Electricity storage device
JP2019121433A (en) Power storage device
JP2019145262A (en) Secondary cell
JP2015210922A (en) Power storage device
US9853319B2 (en) Electricity-storage device
JP6417760B2 (en) Power storage device
JP6235422B2 (en) Secondary battery
JP2017135022A (en) Electricity storage device
JP6194707B2 (en) Power storage device and method for manufacturing power storage device
JP5724956B2 (en) Power storage device
JP2018037225A (en) Power storage device
JP2018147743A (en) Electrode and nonaqueous electrolyte secondary battery
JP2019121434A (en) Power storage device
JP2019175689A (en) Power storage device
JP2016085844A (en) Power storage device
JP2018200755A (en) Power storage device and manufacturing method thereof