Nothing Special   »   [go: up one dir, main page]

JP2017129668A - Variable magnification optical system, optical instrument, and variable magnification optical system manufacturing method - Google Patents

Variable magnification optical system, optical instrument, and variable magnification optical system manufacturing method Download PDF

Info

Publication number
JP2017129668A
JP2017129668A JP2016007868A JP2016007868A JP2017129668A JP 2017129668 A JP2017129668 A JP 2017129668A JP 2016007868 A JP2016007868 A JP 2016007868A JP 2016007868 A JP2016007868 A JP 2016007868A JP 2017129668 A JP2017129668 A JP 2017129668A
Authority
JP
Japan
Prior art keywords
focusing
group
lens
optical system
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007868A
Other languages
Japanese (ja)
Other versions
JP6691320B2 (en
Inventor
柴田 悟
Satoru Shibata
悟 柴田
知之 幸島
Tomoyuki Kojima
知之 幸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2016007868A priority Critical patent/JP6691320B2/en
Publication of JP2017129668A publication Critical patent/JP2017129668A/en
Priority to JP2020068769A priority patent/JP6970903B2/en
Application granted granted Critical
Publication of JP6691320B2 publication Critical patent/JP6691320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable magnification optical system, an optical instrument, and a variable magnification optical system manufacturing method that include an excellent optical performance.SOLUTION: A variable magnification optical system ZL including a plurality of lens groups in which an interval among the lens groups varies upon varying magnification comprises: an aperture stop S; at least one object side focusing group GfF that is disposed on an object side further than the aperture stop S, and moves in an optical axis direction upon focusing; and at least one image side focusing group DfR that is disposed on an image side further than the aperture stop, and moves in the optical axis direction upon focusing. Upon focusing, the object side focusing group GfF is different in a movement trajectory from the image side focusing group DfR, and a prescribed condition is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、変倍光学系、光学機器及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、複数群のフォーカシングによる近距離合焦機能を有する変倍光学系が提案されている(例えば、特許文献1参照)。しかしながら、特許文献1は、さらなる光学性能の向上が要望されているという課題があった。   Conventionally, a variable magnification optical system having a short-distance focusing function by focusing on a plurality of groups has been proposed (for example, see Patent Document 1). However, Patent Document 1 has a problem that further improvement in optical performance is desired.

特開2009−271471号公報JP 2009-271471 A

本発明に係る変倍光学系は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なり、物体側合焦群の1つ及び像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
但し、
ff1:第1合焦群の焦点距離
ff2:第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A variable magnification optical system according to the present invention is a variable magnification optical system having a plurality of lens groups, and the distance between the lens groups changes at the time of zooming, and is disposed on the object side of the aperture stop and the aperture stop. And at least one object-side focusing group that moves in the optical axis direction during focusing, and at least one image-side focusing group that is disposed closer to the image side than the aperture stop and moves in the optical axis direction during focusing, At the time of focusing, the movement trajectory of the object-side focusing group and the image-side focusing group is different, and one of the object-side focusing group and one of the image-side focusing group is set as the first focusing group, When the other is the second focusing group, the following condition is satisfied.
| Ff1 / ff2 | <1.00
0.010 <| FZ2T / FZ1T | <1.00
0.050 <| FZ2W / FZ2T | <0.950
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group FZ1T: When the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state Fluctuation amount of axial focusing position [mm]
FZ2W: On-axis focal position fluctuation amount [mm] when the second focus group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focus state
FZ2T: On-axis focal position variation amount [mm] when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinitely focused state

また、本発明に係る変倍光学系は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なり、像側合焦群の1つを第1合焦群とし、物体側合焦群の1つを第2合焦群としたとき、次式の条件を満足することを特徴とする。
|ff1/ff2| < 1.000
但し、
ff1:第1合焦群の焦点距離
ff2:第2合焦群の焦点距離
Further, the variable magnification optical system according to the present invention is a variable magnification optical system having a plurality of lens groups, and the distance between the lens groups changes at the time of zooming, and is arranged on the object side from the aperture stop. And at least one object-side focusing group that moves in the optical axis direction during focusing, and at least one image-side focusing group that is disposed closer to the image side than the aperture stop and moves in the optical axis direction during focusing. However, at the time of focusing, the movement trajectory of the object-side focusing group and the image-side focusing group are different, and one of the image-side focusing groups is set as the first focusing group, and one of the object-side focusing groups is set as the first focusing group. When two focusing groups are used, the following condition is satisfied.
| Ff1 / ff2 | <1.00
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group

また、本発明に係る変倍光学系の製造方法は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系の製造方法であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を配置し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なるように配置し、物体側合焦群の1つ及び像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足するように配置することを特徴とする。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
但し、
ff1:第1合焦群の焦点距離
ff2:第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A method for manufacturing a variable magnification optical system according to the present invention is a method for manufacturing a variable magnification optical system having a plurality of lens groups, and the distance between the lens groups changes at the time of zooming. At least one object-side focusing group that is arranged closer to the object side and moves in the optical axis direction during focusing, and at least one image-side focusing group that is arranged closer to the image side than the aperture stop and moves in the optical axis direction during focusing Are arranged so that the movement trajectories of the object-side focusing group and the image-side focusing group are different during focusing, and one of the object-side focusing group and one of the image-side focusing group is arranged. Of these, when one is a first focusing group and the other is a second focusing group, they are arranged so as to satisfy the following condition.
| Ff1 / ff2 | <1.00
0.010 <| FZ2T / FZ1T | <1.00
0.050 <| FZ2W / FZ2T | <0.950
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group FZ1T: When the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state Fluctuation amount of axial focusing position [mm]
FZ2W: On-axis focal position fluctuation amount [mm] when the second focus group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focus state
FZ2T: On-axis focal position variation amount [mm] when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinitely focused state

第1実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 4 is a cross-sectional view illustrating a lens configuration in an infinitely focused state of the variable magnification optical system according to the first example, where (W) represents a wide-angle end state, (M) represents an intermediate focal length state, and (T ) Indicates the telephoto end state. 第1実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 4 is a diagram showing various aberrations of the zoom optical system according to the first embodiment in an infinitely focused state, where (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) shows telephoto. Indicates the end state. 第1実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 5A is a diagram illustrating various aberrations of the zoom optical system according to the first embodiment in a close-up focus state, where (W) represents a wide-angle end state, (M) represents an intermediate focal length state, and (T) represents a telephoto end. Indicates the state. 第2実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 6 is a cross-sectional view showing a lens configuration of an infinitely focused state of a variable magnification optical system according to a second example, where (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T ) Indicates the telephoto end state. 第2実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations of the zoom optical system according to the second embodiment in an infinitely focused state, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates telephoto. Indicates the end state. 第2実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations in the close-up focus state of the variable magnification optical system according to the second embodiment, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a telephoto end. Indicates the state. 第3実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 6 is a cross-sectional view showing a lens configuration of an infinitely focused state of a variable magnification optical system according to a third example, where (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T ) Indicates the telephoto end state. 第3実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 10 is a diagram illustrating various aberrations of the zoom optical system according to the third embodiment in an infinitely focused state, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates telephoto. Indicates the end state. 第3実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 10 is a diagram illustrating various aberrations in the close-up focus state of the variable magnification optical system according to the third embodiment, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a telephoto end. Indicates the state. 第4実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 6 is a cross-sectional view showing a lens configuration of an infinitely focused state of a variable magnification optical system according to a fourth example, where (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T ) Indicates the telephoto end state. 第4実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 11 is a diagram illustrating various aberrations of the zoom optical system according to the fourth embodiment in an infinitely focused state, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates telephoto. Indicates the end state. 第4実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 10 is a diagram illustrating various aberrations in the close-up focus state of the variable magnification optical system according to the fourth embodiment, in which (W) represents a wide-angle end state, (M) represents an intermediate focal length state, and (T) represents a telephoto end. Indicates the state. 第5実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 9 is a cross-sectional view showing a lens configuration of an infinitely focused state of a variable magnification optical system according to a fifth example, where (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T ) Indicates the telephoto end state. 第5実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 11 is a diagram illustrating various aberrations of the variable magnification optical system according to the fifth embodiment in an infinitely focused state, where (W) represents a wide-angle end state, (M) represents an intermediate focal length state, and (T) represents telephoto. Indicates the end state. 第5実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。FIG. 10 is a diagram illustrating various aberrations in the close-up focus state of the variable magnification optical system according to the fifth embodiment, where (W) represents a wide-angle end state, (M) represents an intermediate focal length state, and (T) represents a telephoto end. Indicates the state. 上記変倍光学系を搭載するカメラの断面図である。It is sectional drawing of the camera carrying the said variable magnification optical system. 上記変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said variable magnification optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る変倍光学系ZLは、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化するように構成されている。この変倍光学系ZLは、開口絞りSと、この開口絞りSより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群GfFと、開口絞りSより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群GfRと、を有している。また、この物体側合焦群GfF及び像側合焦群GfRの合焦時における移動軌跡は異なるように構成されている。このように、開口絞りSの前後に配置された複数の合焦群で合焦を行うことにより、近距離合焦時の軸外性能、特に像面湾曲を良好に補正できる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the zoom optical system ZL according to the present embodiment has a plurality of lens groups, and is configured such that the distance between the lens groups changes during zooming. The variable magnification optical system ZL includes an aperture stop S, at least one object-side focusing group GfF that is disposed on the object side of the aperture stop S and moves in the optical axis direction during focusing, and an image side of the aperture stop S. And at least one image-side focusing group GfR that moves in the optical axis direction during focusing. Further, the object-side focusing group GfF and the image-side focusing group GfR are configured to have different movement trajectories during focusing. Thus, by performing focusing with a plurality of focusing groups arranged before and after the aperture stop S, off-axis performance, particularly field curvature, at the time of short-distance focusing can be corrected well.

ここで、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFの1つ及び像側合焦群GfRの1つのうち、一方を第1合焦群Gf1とし、他方を第2合焦群Gf2としたとき、以下に示す条件式(1)を満足する。   Here, in the zoom optical system ZL according to the present embodiment, one of the object-side focusing group GfF and one of the image-side focusing group GfR is set as the first focusing group Gf1, and the other is set as the second focusing group Gf1. When the focusing group is Gf2, the following conditional expression (1) is satisfied.

|ff1/ff2| < 1.000 (1)
但し、
ff1:第1合焦群Gf1の焦点距離
ff2:第2合焦群Gf2の焦点距離
| Ff1 / ff2 | <1.000 (1)
However,
ff1: focal length of the first focusing group Gf1 ff2: focal length of the second focusing group Gf2

この条件式(1)は、物体側合焦群GfFの1つ及び像側合焦群GfRの1つのうち、屈折力の強い方を第1合焦群Gf1とし、屈折力の弱い方を第2合焦群Gf2として規定するものである。本実施形態に係る変倍光学系ZLにおいて、第1合焦群Gf1は、物体が移動したときにその像を像面に結像させる機能を有し、第2合焦群Gf2は、第1合焦群Gf1の移動による周辺部の収差(軸外収差)を補正する機能を有している。条件式(1)の上限値を上回ると、第1合焦群Gf1の屈折力が弱くなり、合焦時の移動量が増加するとともに、合焦時に発生する軸外収差、像面湾曲、コマ収差が大きく発生し過ぎてしまう。また、第2合焦群Gf2の屈折力が強くなりすぎると、像面湾曲補正を行う際に、球面収差の悪化を招いてしまう。なお、この条件式(1)の効果を確実にするために、条件式(1)の上限値を0.900とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.800とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.700とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.600とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.500とすることが望ましい。   Conditional expression (1) indicates that one of the object-side focusing group GfF and one of the image-side focusing group GfR has the stronger refractive power as the first focusing group Gf1 and the one with the lower refractive power as the first focusing group GfR. This is defined as a two-focus group Gf2. In the zoom optical system ZL according to the present embodiment, the first focusing group Gf1 has a function of forming an image on the image plane when the object moves, and the second focusing group Gf2 It has a function of correcting the peripheral aberration (off-axis aberration) due to the movement of the focusing group Gf1. When the upper limit of conditional expression (1) is exceeded, the refractive power of the first focusing group Gf1 becomes weak, the amount of movement during focusing increases, and off-axis aberrations, field curvature, coma that occur during focusing are increased. A lot of aberrations occur. Also, if the refractive power of the second focusing group Gf2 becomes too strong, spherical aberration will be deteriorated when performing field curvature correction. In order to secure the effect of conditional expression (1), it is desirable to set the upper limit value of conditional expression (1) to 0.900. In order to further secure the effect of conditional expression (1), it is desirable to set the upper limit value of conditional expression (1) to 0.800. In order to further secure the effect of the conditional expression (1), it is desirable to set the upper limit value of the conditional expression (1) to 0.700. In order to further secure the effect of the conditional expression (1), it is desirable to set the upper limit value of the conditional expression (1) to 0.600. In order to further secure the effect of conditional expression (1), it is desirable to set the upper limit value of conditional expression (1) to 0.500.

また、条件式(1)の下限値付近においては、第2合焦群Gf2の屈折力が弱くなり過ぎるため、像面湾曲補正を良好に行うことができなくなる。そのため、この条件式(1)の効果を確実にするために、条件式(1)の下限値を0.020とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.040とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.060とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.080とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.100とすることが望ましい。   Also, in the vicinity of the lower limit value of conditional expression (1), the refractive power of the second focusing group Gf2 becomes too weak, so that field curvature correction cannot be performed satisfactorily. Therefore, in order to ensure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.020. In order to further secure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.040. In order to further secure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.060. In order to further secure the effect of the conditional expression (1), it is desirable that the lower limit value of the conditional expression (1) is 0.080. In order to further secure the effect of conditional expression (1), it is desirable to set the lower limit value of conditional expression (1) to 0.100.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(2)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (2).

0.010 < |FZ2T/FZ1T| < 1.000 (2)
但し、
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.010 <| FZ2T / FZ1T | <1.000 (2)
However,
FZ1T: On-axis focal position fluctuation amount [mm] when the first focusing group Gf1 moves 1 [mm] in the optical axis direction in the telephoto end state and infinitely focused state
FZ2T: A variation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state

条件式(2)は、良好な至近性能を得るために、広角端状態における、第1合焦群Gf1と第2合焦群Gf2との合焦位置感度を規定している。この条件式(2)を満足することにより、第1合焦群Gf1より第2合焦群Gf2の方が、軸上合焦位置変動量が小さくなる。上述したように、第2合焦群Gf2は軸外収差補正を行うため、軸上での合焦位置変動量が第1合焦群G1fよりも小さい必要があり、この変動量の差が大きいほど補正が容易となる。条件式(2)の上限値を上回ると、第2合焦群Gf2の軸上合焦位置変動量が大きくなり、軸上及び軸外合焦位置を揃えるために第1合焦群Gf1の移動量が大きくなり、近距離合焦時の球面収差やコマ収差が大きくなってしまう。なお、この条件式(2)の効果を確実にするために、条件式(2)の上限値を0.900とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の上限値を0.800とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の上限値を0.750とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の上限値を0.700とすることが望ましい。一方、条件式(2)の下限値を下回ると、第2合焦群Gf2の屈折力が弱くなるため、軸外収差補正が困難になる。なお、この条件式(2)の効果を確実にするために、条件式(2)の下限値を0.015とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の下限値を0.020とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の下限値を0.025とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の下限値を0.030とすることが望ましい。   Conditional expression (2) defines the focus position sensitivity of the first focus group Gf1 and the second focus group Gf2 in the wide-angle end state in order to obtain good close-up performance. By satisfying this conditional expression (2), the axial focusing position fluctuation amount is smaller in the second focusing group Gf2 than in the first focusing group Gf1. As described above, since the second focusing group Gf2 performs off-axis aberration correction, the focus position fluctuation amount on the axis needs to be smaller than that of the first focusing group G1f, and the difference between the fluctuation amounts is large. The correction becomes easier. If the upper limit value of conditional expression (2) is exceeded, the amount of on-axis focus position fluctuation of the second focus group Gf2 increases, and the first focus group Gf1 moves to align the on-axis and off-axis focus positions. This increases the amount of spherical aberration and coma when focusing at close distance. In order to secure the effect of the conditional expression (2), it is desirable to set the upper limit value of the conditional expression (2) to 0.900. In order to further secure the effect of the conditional expression (2), it is desirable to set the upper limit value of the conditional expression (2) to 0.800. In order to further secure the effect of conditional expression (2), it is desirable to set the upper limit value of conditional expression (2) to 0.750. In order to further secure the effect of conditional expression (2), it is desirable to set the upper limit value of conditional expression (2) to 0.700. On the other hand, if the lower limit value of conditional expression (2) is not reached, the refractive power of the second focusing group Gf2 becomes weak, making it difficult to correct off-axis aberrations. In order to secure the effect of the conditional expression (2), it is desirable that the lower limit value of the conditional expression (2) is 0.015. In order to further secure the effect of the conditional expression (2), it is desirable that the lower limit value of the conditional expression (2) is 0.020. In order to further secure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to 0.025. In order to further secure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to 0.030.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (3).

0.050 < |FZ2W/FZ2T| < 0.950 (3)
但し、
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.050 <| FZ2W / FZ2T | <0.950 (3)
However,
FZ2W: On-axis focusing position variation [mm] when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state
FZ2T: A variation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state

条件式(3)は、良好な至近性能を得るために、第2合焦群Gf2における広角端状態及び望遠端状態の合焦位置感度を規定している。この条件式(3)を満足することにより、広角端状態より望遠端状態の方が、第2合焦群Gf2の合焦位置変動量が大きくなる。第2合焦群Gf2は、軸外収差補正を行うが、広角端状態では像面湾曲が発生しやすく、軸上での合焦位置変化が小さいことが望ましい。条件式(3)の上限値を上回ると、広角端状態での軸上、軸外合焦位置を良好に合わせることができなくなる。なお、この条件式(3)の効果を確実にするために、条件式(3)の上限値を0.900とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の上限値を0.850とすることが望ましい。一方、条件式(3)の下限値を下回ると、望遠端状態での軸上、軸外合焦位置を良好に合わせることができなくなる。なお、この条件式(3)の効果を確実にするために、条件式(3)の下限値を0.250とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の下限値を0.350とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の下限値を0.500とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の下限値を0.600とすることが望ましい。   Conditional expression (3) defines the focus position sensitivity of the wide-angle end state and the telephoto end state in the second focus group Gf2 in order to obtain good close-up performance. By satisfying conditional expression (3), the focus position fluctuation amount of the second focus group Gf2 becomes larger in the telephoto end state than in the wide-angle end state. Although the second focusing group Gf2 performs off-axis aberration correction, it is desirable that the curvature of field is likely to occur in the wide-angle end state and that the change in the focusing position on the axis is small. If the upper limit value of conditional expression (3) is exceeded, the off-axis focusing position on the axis in the wide-angle end state cannot be satisfactorily adjusted. In order to secure the effect of conditional expression (3), it is desirable to set the upper limit value of conditional expression (3) to 0.900. In order to further secure the effect of conditional expression (3), it is desirable to set the upper limit value of conditional expression (3) to 0.850. On the other hand, if the lower limit of conditional expression (3) is not reached, the off-axis focusing position on the axis in the telephoto end state cannot be satisfactorily adjusted. In order to secure the effect of the conditional expression (3), it is desirable to set the lower limit value of the conditional expression (3) to 0.250. In order to further secure the effect of conditional expression (3), it is desirable to set the lower limit of conditional expression (3) to 0.350. In order to further secure the effect of conditional expression (3), it is desirable to set the lower limit value of conditional expression (3) to 0.500. In order to further secure the effect of conditional expression (3), it is desirable to set the lower limit value of conditional expression (3) to 0.600.

また、本実施形態に係る変倍光学系ZLにおいて、像側合焦群GfRの1つを第1合焦群Gf1とし、物体側合焦群GfFの1つを第2合焦群とすることが望ましい。物体側合焦群GfFを第1合焦群Gf1とした場合、前玉径の大型化及び像面湾曲収差の発生が懸念されるため、像側合焦群GfRを第1合焦群Gf1にすることが望ましい。   In the zoom optical system ZL according to the present embodiment, one of the image-side focusing groups GfR is a first focusing group Gf1, and one of the object-side focusing groups GfF is a second focusing group. Is desirable. When the object-side focusing group GfF is the first focusing group Gf1, there is a concern about an increase in the front lens diameter and the occurrence of field curvature aberration. Therefore, the image-side focusing group GfR is changed to the first focusing group Gf1. It is desirable to do.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(4)を満足する、すなわち、第1合焦群Gf1は正の屈折力を有することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (4), that is, the first focusing group Gf1 has a positive refractive power.

ff1 > 0 (4)
但し、
ff1:第1合焦群Gf1の焦点距離
ff1> 0 (4)
However,
ff1: Focal length of the first focusing group Gf1

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(5)を満足する、すなわち、第2合焦群Gf2は負の屈折力を有することが望ましい。   Further, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (5), that is, the second focusing group Gf2 has a negative refractive power.

ff2 < 0 (5)
但し、
ff2:第2合焦群Gf2の焦点距離
ff2 <0 (5)
However,
ff2: Focal length of the second focusing group Gf2

なお、本実施形態に係る変倍光学系ZLは、条件式(5)を満足するときは、上述の条件式(3)に代えて、次の条件式(3′)を満足することが望ましい。   In addition, when the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (5), it is preferable that the following conditional expression (3 ′) is satisfied instead of the above-described conditional expression (3). .

0.400 < |FZ2W/FZ2T| < 0.950 (3′)
但し、
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.400 <| FZ2W / FZ2T | <0.950 (3 ')
However,
FZ2W: On-axis focusing position variation [mm] when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state
FZ2T: A variation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(6)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (6).

0.010 < |FZ1W/FZ1T| < 1.500 (6)
但し、
FZ1W:広角端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.010 <| FZ1W / FZ1T | <1.500 (6)
However,
FZ1W: On-axis focusing position variation [mm] when the first focusing group Gf1 moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state
FZ1T: On-axis focal position fluctuation amount [mm] when the first focusing group Gf1 moves 1 [mm] in the optical axis direction in the telephoto end state and infinitely focused state

条件式(6)は、良好な至近性能を得るために、第1合焦群Gf1における広角端状態及び望遠端状態の合焦位置感度を規定している。この条件式(6)の上限値を上回ると、広角端状態での第1合焦群Gf1の軸上感度が高くなり、球面収差及びコマ収差の変動が大きくなるため、良好な至近性能を得ることができない。なお、この条件式(6)の効果を確実にするために、条件式(6)の上限値を0.700とすることが望ましい。また、この条件式(6)の効果を更に確実にするために、条件式(6)の上限値を0.350とすることが望ましい。一方、条件式(6)の下限値を下回ると、望遠端状態での第1合焦群G1fの軸上感度が高くなり、球面収差及びコマ収差の変動が大きくなるため、良好な至近性能を得ることができない。なお、この条件式(6)の効果を確実にするために、条件式(6)の下限値を0.050とすることが望ましい。また、この条件式(6)の効果を更に確実にするために、条件式(6)の下限値を0.100とすることが望ましい。   Conditional expression (6) defines the focus position sensitivity of the wide-angle end state and the telephoto end state in the first focus group Gf1 in order to obtain good close-up performance. Exceeding the upper limit value of conditional expression (6) increases the on-axis sensitivity of the first focusing group Gf1 in the wide-angle end state and increases the fluctuations of spherical aberration and coma aberration, thereby obtaining good close-up performance. I can't. In order to secure the effect of the conditional expression (6), it is desirable to set the upper limit value of the conditional expression (6) to 0.700. In order to further secure the effect of conditional expression (6), it is desirable to set the upper limit of conditional expression (6) to 0.350. On the other hand, if the lower limit value of conditional expression (6) is not reached, the on-axis sensitivity of the first focusing group G1f in the telephoto end state increases, and fluctuations in spherical aberration and coma aberration increase, resulting in good close-up performance. Can't get. In order to secure the effect of the conditional expression (6), it is desirable that the lower limit value of the conditional expression (6) is 0.050. In order to further secure the effect of conditional expression (6), it is desirable to set the lower limit value of conditional expression (6) to 0.100.

また、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFより物体側に、少なくとも1つの物体側レンズ群(例えば、図1における第2レンズ群G2)を有し、変倍時に、物体側レンズ群(第2レンズ群G2)と物体側合焦群GfFとの間隔が変化するように構成されていることが望ましい。物体側合焦群GfFより物体側に物体側レンズ群を配置することにより、この物体側レンズ群で物体側合焦群GfFへの光線を集光できたり、倍率をかけることができたりするため、物体側レンズ群GfFを比較的簡素で径の小さなレンズ群とすることができる。   In addition, the zoom optical system ZL according to the present embodiment includes at least one object side lens group (for example, the second lens group G2 in FIG. 1) on the object side of the object side focusing group GfF. It is sometimes desirable that the distance between the object side lens group (second lens group G2) and the object side focusing group GfF is changed. By disposing the object-side lens group closer to the object side than the object-side focusing group GfF, the object-side lens group can condense the light beam to the object-side focusing group GfF or multiply the magnification. The object side lens group GfF can be a relatively simple lens group having a small diameter.

また、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFより物体側に、負の屈折力を有する負レンズ群を少なくとも1つ(例えば、図1における第2レンズ群G2)有し、変倍時に、負レンズ群(第2レンズ群G2)と物体側合焦群GfFとの間隔が変化するように構成されていることが望ましい。物体側合焦群GfFより物体側に負レンズ群を配置することにより、物体側合焦群GfFへの光線入射角度を抑制しやすくなるため、物体側合焦群GfFで発生する像面湾曲量を比較的小さくでき、像側合焦群GfRでの補正を容易にすることができる。   Further, the variable magnification optical system ZL according to the present embodiment has at least one negative lens group having negative refractive power on the object side from the object side focusing group GfF (for example, the second lens group G2 in FIG. 1). It is desirable that the distance between the negative lens group (second lens group G2) and the object-side focusing group GfF changes during zooming. By disposing the negative lens group closer to the object side than the object-side focusing group GfF, it becomes easy to suppress the light incident angle to the object-side focusing group GfF, and thus the amount of field curvature generated in the object-side focusing group GfF Can be made relatively small, and correction in the image-side focusing group GfR can be facilitated.

また、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFより物体側に、正の屈折力を有する正レンズ群(例えば、図1における第1レンズ群G1)及び負の屈折力を有する負レンズ群(例えば、図1における第2レンズ群G2)を少なくとも1つずつ有し、変倍時に、正レンズ群(第1レンズ群G1)と負レンズ群(第2レンズ群G2)との間隔、及び、負レンズ群(第2レンズ群G2)と物体側合焦群GfFとの間隔が変化するように構成されていることが望ましい。上述した負レンズ群より更に物体側に正レンズ群を配置することにより、変倍比を増やしつつ、物体側及び像側合焦群GfF,GfRを比較的小さくでき、また、合焦スピードを速くすることができる。   In addition, the variable magnification optical system ZL according to the present embodiment has a positive lens group (for example, the first lens group G1 in FIG. 1) having a positive refractive power and a negative refraction, closer to the object side than the object side focusing group GfF. At least one negative lens group (for example, the second lens group G2 in FIG. 1) having power is provided, and at the time of zooming, the positive lens group (first lens group G1) and the negative lens group (second lens group G2) ) And the distance between the negative lens group (second lens group G2) and the object-side focusing group GfF is preferably changed. By disposing the positive lens group further on the object side than the negative lens group described above, the object side and image side focusing groups GfF and GfR can be made relatively small while increasing the zoom ratio, and the focusing speed can be increased. can do.

また、本実施形態に係る変倍光学系ZLにおいて、物体側合焦群GfFの1つは、物体側に凹面を向けた負レンズ(例えば、図1における負メニスカスレンズL31)からなることが望ましい。このように構成することで、変倍時の球面収差及び像面湾曲収差変動を抑制することができる。また、効率良く変倍することができ、レンズの小型化に繋がる。   In the variable magnification optical system ZL according to the present embodiment, one of the object side focusing groups GfF is preferably composed of a negative lens (for example, a negative meniscus lens L31 in FIG. 1) having a concave surface directed toward the object side. . With this configuration, it is possible to suppress spherical aberration and field curvature aberration fluctuation during zooming. In addition, the magnification can be changed efficiently, leading to a reduction in size of the lens.

また、本実施形態に係る変倍光学系ZLにおいて、物体側合焦群GfF及び像側合焦群GfRはそれぞれ1つであることが望ましい。このように構成することで、簡素な構成で軸外光線の近距離性能を発揮させることができる。   In the zoom optical system ZL according to the present embodiment, it is desirable that each of the object-side focusing group GfF and the image-side focusing group GfR is one. By comprising in this way, the short distance performance of an off-axis ray can be exhibited with a simple structure.

また、本実施形態に係る変倍光学系ZLにおいて、第1合焦群Gf1は、以下に示す条件式(7)を満足するレンズ(例えば、図1における負メニスカスレンズL31)を有することが望ましい。   In the zoom optical system ZL according to the present embodiment, it is desirable that the first focusing group Gf1 has a lens that satisfies the following conditional expression (7) (for example, the negative meniscus lens L31 in FIG. 1). .

νd1 > 45.0 (7)
但し、
νd1:第1合焦群Gf1に含まれるレンズの媒質のd線に対するアッベ数
νd1> 45.0 (7)
However,
νd1: Abbe number for the d-line of the lens medium included in the first focusing group Gf1

第1合焦群Gf1に、条件式(7)を満足するレンズを配置することにより、この第1合焦群Gf1で発生する色収差を小さくすることができる。この条件式(7)の下限値を下回る、すなわち、アッベ数の小さい媒質でレンズを構成すると、色補正を行うために、この第1合焦群Gf1のレンズ枚数が増えてしまう。なお、この条件式(7)の効果を確実にするために、条件式(7)の下限値を48.0にすることが望ましい。また、この条件式(7)の効果を更に確実にするために、条件式(7)の下限値を50.0にすることが望ましい。また、この条件式(7)の効果を更に確実にするために、条件式(7)の下限値を52.0にすることが望ましい。   By disposing a lens that satisfies the conditional expression (7) in the first focusing group Gf1, chromatic aberration generated in the first focusing group Gf1 can be reduced. If the lens is made of a medium having a lower Abbe number than the conditional expression (7), that is, a medium having a small Abbe number, the number of lenses in the first focusing group Gf1 increases in order to perform color correction. In order to secure the effect of conditional expression (7), it is desirable to set the lower limit value of conditional expression (7) to 48.0. In order to further secure the effect of conditional expression (7), it is desirable to set the lower limit value of conditional expression (7) to 50.0. In order to further secure the effect of conditional expression (7), it is desirable to set the lower limit value of conditional expression (7) to 52.0.

また、本実施形態に係る変倍光学系ZLにおいて、物体側合焦群GfFは1つであって、1つの負レンズからなり、また、物体側合焦群GfFの物体側に対向する位置には負の屈折力を有する負レンズ群(例えば、図1における第2レンズ群G2)を有し、さらに、物体側合焦群GfFの像側に対向する位置には正の屈折力を有する正レンズ群(例えば、図1における第4レンズ群G4)を有するように構成されていることが望ましい。このように構成することで、物体側合焦群GfFの像倍率変化を小さくすることができる。   In the variable magnification optical system ZL according to the present embodiment, there is one object-side focusing group GfF, which is composed of one negative lens, and at a position facing the object side of the object-side focusing group GfF. Has a negative lens group having a negative refractive power (for example, the second lens group G2 in FIG. 1), and further has a positive refractive power at a position facing the image side of the object side focusing group GfF. It is desirable to have a lens group (for example, the fourth lens group G4 in FIG. 1). With this configuration, the change in image magnification of the object-side focusing group GfF can be reduced.

また、本実施形態に係る変倍光学系ZLにおいて、変倍時に、第2合焦群Gf2とこの第2合焦群Gf2の物体側に対向する位置に配置されるレンズ群(例えば、図1における第4レンズ群G4)との間隔が変化し、第2合焦群Gf2とこの第2合焦群Gf2の像側に対向する位置に配置されるレンズ群(例えば、図1における第6レンズ群G6)との間隔が変化するように構成されていることが望ましい。このように構成することにより、変倍時の球面収差及び像面湾曲収差変動を抑制することができる。   In the zoom optical system ZL according to the present embodiment, the second focusing group Gf2 and a lens group (for example, FIG. 1) disposed at a position facing the object side of the second focusing group Gf2 at the time of zooming. In the second lens group G4), and the second focusing group Gf2 and a lens group (for example, the sixth lens in FIG. 1) disposed at a position facing the image side of the second focusing group Gf2. It is desirable that the distance from the group G6) be changed. With this configuration, it is possible to suppress spherical aberration and field curvature aberration fluctuations during zooming.

なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述したそれぞれの効果を得ることが可能である。   Note that the conditions and configurations described above each exhibit the above-described effects, and are not limited to satisfying all the conditions and configurations. Even if the above conditions or combinations of configurations are satisfied, the above-described effects can be obtained.

次に、本実施形態に係る変倍光学系ZLを備えた光学機器であるカメラを図16に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。   Next, a camera that is an optical apparatus including the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. This camera 1 is a so-called mirrorless camera of interchangeable lens provided with a variable magnification optical system ZL according to the present embodiment as a photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Further, when a release button (not shown) is pressed by the photographer, an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. In the present embodiment, an example of a mirrorless camera has been described. However, a variable power optical system ZL according to the present embodiment is applied to a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system. Even when the camera is mounted, the same effect as the camera 1 can be obtained.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本実施形態では、5群、6群、7群構成の変倍光学系ZLを示したが、以上の構成条件等は、4群、8群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像面側にレンズまたはレンズ群を追加した構成でも構わない。具体的には、最も像面側に、変倍時又は合焦時に像面に対する位置を固定されたレンズ群を追加した構成が考えられる。また、群とは、変倍時、合焦時、縮筒時などの少なくとも1つで変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すこととしてもよい。また、本実施形態の変倍光学系ZLは、変倍時に各群間の空気間隔が変化するように、第1レンズ群G1〜第5レンズ群G5(又は第6レンズ群G6、第7レンズ群G7)がそれぞれ光軸に沿って移動するように構成してもよい。また、レンズ成分とは、単レンズ又は複数のレンズが接合された接合レンズをいう。   In the present embodiment, the variable magnification optical system ZL having the 5-group, 6-group, and 7-group configurations is shown, but the above-described configuration conditions and the like can also be applied to other group configurations such as the 4-group and 8-group. Further, a configuration in which a lens or a lens group is added closest to the object side, or a configuration in which a lens or a lens group is added closest to the image plane side may be used. Specifically, a configuration in which a lens group whose position relative to the image plane is fixed at the time of zooming or focusing is added to the most image plane side. Further, the group may indicate a portion having at least one lens that is separated by an air interval that changes at least one of when zooming, focusing, and contraction. Further, the variable magnification optical system ZL of the present embodiment has the first lens group G1 to the fifth lens group G5 (or the sixth lens group G6 and the seventh lens) so that the air spacing between the groups changes at the time of zooming. Each group G7) may be configured to move along the optical axis. The lens component refers to a single lens or a cemented lens in which a plurality of lenses are cemented.

また、2以上のレンズ群、2以上の部分レンズ群、または光学系全体を光軸方向に移動させて、無限遠物体から近距離物点への合焦を行う合焦群としてもよい。この場合、合焦群はオートフォーカスにも適用でき、オートフォーカス用のモータ駆動(DCモータ、ステッピングモータ、ボイスコイルモータ等、モータの種類は限定されない)にも適している。例えば、上述した6群構成の場合は、第3レンズ群G3(物体側合焦群GfF)及び第5レンズ群G5(像側合焦群GfR)を合焦群とし、その他のレンズは合焦時に像面に対する位置を固定とするのが好ましい。モータにかかる負荷を考慮すると、合焦レンズ群は1つまたは2つのレンズ成分から構成するのが好ましい。また、物体側合焦群GfFと像側合焦群GfRとの間には、合焦時に光軸方向の位置を固定されるレンズを少なくとも1つ配置するのが好ましい。   Further, it may be a focusing group that performs focusing from an object at infinity to a short-distance object point by moving two or more lens groups, two or more partial lens groups, or the entire optical system in the optical axis direction. In this case, the focusing group can also be applied to autofocusing, and is also suitable for motor driving for autofocusing (the type of motor is not limited, such as a DC motor, a stepping motor, or a voice coil motor). For example, in the case of the 6-group configuration described above, the third lens group G3 (object-side focusing group GfF) and the fifth lens group G5 (image-side focusing group GfR) are set as the focusing group, and the other lenses are focused. Sometimes it is preferable to fix the position relative to the image plane. In consideration of the load applied to the motor, the focusing lens group is preferably composed of one or two lens components. In addition, it is preferable to dispose at least one lens whose position in the optical axis direction is fixed during focusing between the object-side focusing group GfF and the image-side focusing group GfR.

また、レンズ群または部分レンズ群を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れによって生じる像ブレを補正する防振群としてもよい。特に、開口絞りSより像側であって、像側合焦群GfRの物体側または像側に対向する位置に配置されたレンズ群の少なくとも一部を防振レンズ群としてもよい。また、防振レンズ群は、レンズ枚数に特に限定は無く、1枚の単レンズや複数のレンズ成分から構成することとしてもよい。   In addition, the lens group or partial lens group is moved so as to have a displacement component perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake. It is good also as an anti-vibration group. In particular, at least a part of the lens group disposed on the image side of the aperture stop S and at a position facing the object side or the image side of the image side focusing group GfR may be used as the vibration proof lens group. The anti-vibration lens group is not particularly limited in the number of lenses, and may be composed of a single lens or a plurality of lens components.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、物体側合焦群GfFと像側合焦群GfRとの間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。また、第1合焦群Gf1を開口絞りSより像側に配置する場合、開口絞りSと第1合焦群Gf1との間には、合焦時に光軸方向の位置を固定されるレンズを少なくとも1つ配置するのが好ましい。   The aperture stop S is preferably disposed between the object-side focusing group GfF and the image-side focusing group GfR. However, instead of providing a member as an aperture stop, a role of a lens frame is used instead. Also good. When the first focusing group Gf1 is disposed on the image side from the aperture stop S, a lens that fixes the position in the optical axis direction during focusing is provided between the aperture stop S and the first focusing group Gf1. It is preferable to arrange at least one.

さらに、各レンズ面には、フレアやゴーストを軽減し高い光学性能を達成するために、反射防止膜を施してもよい。反射防止膜は、適宜選択可能であり、単層コーティングや、多層膜コーティングや、微細な結晶粒子からなる超低屈折率層を有する反射防止膜等、膜の種類は限定されない。反射防止膜を施す面数も特に限定されない。   Further, each lens surface may be provided with an antireflection film in order to reduce flare and ghost and achieve high optical performance. The antireflection film can be selected as appropriate, and the type of film is not limited, such as a single layer coating, a multilayer coating, or an antireflection film having an ultra-low refractive index layer made of fine crystal particles. The number of surfaces on which the antireflection film is applied is not particularly limited.

以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図17を参照して説明する。なお、ここでは図1に示す6群構成の変倍光学系ZL1に基づいて説明するが、5群又は7群構成の場合においても同様である。まず、各レンズを配置して第1レンズ群G1〜第6レンズ群G6をそれぞれ準備し(ステップS100)、開口絞りSと、開口絞りSより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群GfFと、開口絞りSより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群GfRと、を配置し(ステップS200)、合焦時に、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように配置し(ステップS300)、物体側合焦群GfFの1つ及び像側合焦群GfRの1つのうち、一方を第1合焦群Gf1とし、他方を第2合焦群Gf2としたとき、上述した条件を満足するように配置する(ステップS400)。   Hereinafter, an outline of a method for manufacturing the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. Here, description will be made based on the variable magnification optical system ZL1 having the 6-group configuration shown in FIG. 1, but the same applies to the case of the 5-group or 7-group configuration. First, the first lens group G1 to the sixth lens group G6 are prepared by arranging each lens (step S100). The first lens group G1 to the sixth lens group G6 are arranged on the object side from the aperture stop S and the aperture stop S. At least one object-side focusing group GfF that moves and at least one image-side focusing group GfR that is arranged on the image side from the aperture stop S and moves in the optical axis direction during focusing are arranged (step S200). At the time of focusing, the object side focusing group GfF and the image side focusing group GfR are arranged so as to have different movement trajectories (step S300), and one of the object side focusing group GfF and one of the image side focusing group GfR are arranged. When one is set as the first focusing group Gf1 and the other is set as the second focusing group Gf2, one is arranged so as to satisfy the above-described condition (step S400).

具体的には、本実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL22、及び、両凸レンズL23を配置して第2レンズ群G2とし、物体側に凹面を向けた負メニスカスレンズL31を配置して第3レンズ群G3とし、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と両凹レンズL43とを接合した接合負レンズを配置して第4レンズ群G4とし、両凹レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズを配置して第5レンズ群G5とし、物体側のレンズ面が非球面形状に形成された、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL61、物体側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL62と物体側に凹面を向けた負メニスカスレンズL63とを接合した接合正レンズ、及び、物体側に凹面を向けた負メニスカスレンズL64を配置して第6レンズ群G6とする。なお、開口絞りSは第4レンズ群G4の最も物体側に配置する。また、第3レンズ群G3を物体側合焦群GfF(第1合焦群Gf1)とし、第5レンズ群G5を像側合焦群GfR(第2合焦群Gf2)とする。このように準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。   Specifically, in this embodiment, for example, as illustrated in FIG. 1, in order from the object side, a cemented positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are cemented, and the object side A positive meniscus lens L13 having a convex surface is disposed in the first lens group G1, and a negative meniscus lens L21 having a convex surface on the object side, an object side lens surface, and an image side lens surface are formed in an aspheric shape. An aspherical negative lens L22 having a biconcave lens shape and a biconvex lens L23 are arranged as the second lens group G2, and a negative meniscus lens L31 having a concave surface facing the object side is arranged as the third lens group G3. -Side positive lens L41 having a biconvex lens shape in which the lens surface on the side and the lens surface on the image side are formed in an aspheric shape, and a cemented negative lens in which the biconvex lens L42 and the biconcave lens L43 are cemented together The fourth lens group G4 is arranged, and a cemented negative lens in which a biconcave lens L51 and a positive meniscus lens L52 having a convex surface facing the object side are cemented is arranged as a fifth lens group G5, and the object side lens surface A positive meniscus aspherical lens L61 having a concave surface facing the object side, an aspherical positive lens L62 having a biconvex lens shape having an aspheric lens surface on the object side, A cemented positive lens in which a negative meniscus lens L63 having a concave surface directed toward the object side and a negative meniscus lens L64 having a concave surface directed toward the object side are disposed to form a sixth lens group G6. The aperture stop S is disposed on the most object side of the fourth lens group G4. The third lens group G3 is an object-side focusing group GfF (first focusing group Gf1), and the fifth lens group G5 is an image-side focusing group GfR (second focusing group Gf2). The lens groups thus prepared are arranged in the above-described procedure to manufacture the variable magnification optical system ZL.

以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図4、図7、図10、及び、図13は、各実施例に係る変倍光学系ZL(ZL1〜ZL5)の構成及び屈折力配分を示す断面図である。また、これらの変倍光学系ZL1〜ZL5の断面図の下部には、広角端状態(W)から中間焦点距離状態(M)を経て望遠端状態(T)に変倍する際の、各レンズ群G1〜G5(又はG6、G7)の光軸に沿った移動方向、及び、無限遠合焦状態(∞)から至近合焦状態に合焦する際の物体側合焦群GfF及び像側合焦群GfRの光軸に沿った移動方向が矢印で示されている。   Hereinafter, each example of the present application will be described with reference to the drawings. 1, FIG. 4, FIG. 7, FIG. 10, and FIG. 13 are cross-sectional views showing the configuration and refractive power distribution of the variable magnification optical system ZL (ZL1 to ZL5) according to each example. In addition, in the lower part of the sectional views of these variable magnification optical systems ZL1 to ZL5, each lens for zooming from the wide angle end state (W) to the telephoto end state (T) through the intermediate focal length state (M) is shown. The movement direction along the optical axis of the groups G1 to G5 (or G6, G7) and the object-side focusing group GfF and image-side focusing when focusing from the infinitely focused state (∞) to the closest focused state The moving direction of the focal group GfR along the optical axis is indicated by an arrow.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「e−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), K is the conic constant, and An is the nth-order aspherical coefficient, it is expressed by the following equation (a). . In the following examples, “en” represents “× 10 −n ”.

S(y)=(y2/r)/{1+(1−K×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1−K × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の左側に*印を付している。   In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the left side of the surface number.

[第1実施例]
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、から構成されている。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example. The zoom optical system ZL1 shown in FIG. 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power. The third lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. .

この変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL22、及び、両凸レンズL23を有して構成されている。また、第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31を有して構成されている。また、第4レンズ群G4は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と両凹レンズL43とを接合した接合負レンズを有して構成されている。また、第5レンズ群G5は、物体側から順に、両凹レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズを有して構成されている。また、第6レンズ群G6は、物体側から順に、物体側のレンズ面が非球面形状に形成された、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL61、物体側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL62と物体側に凹面を向けた負メニスカスレンズL63とを接合した接合正レンズ、及び、物体側に凹面を向けた負メニスカスレンズL64を有して構成されている。また、開口絞りSは、第4レンズ群G4の最も物体側のレンズ面(第15面)の物体側に配置されている。   In the variable magnification optical system ZL1, the first lens group G1 includes, in order from the object side, a cemented positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are cemented, and a convex surface on the object side. The positive meniscus lens L13 is directed. In addition, the second lens group G2, in order from the object side, is a negative meniscus lens L21 having a convex surface directed toward the object side, a lens surface on the object side, and a lens surface on the image side and a biconcave lens shape in which the image side lens surface is formed in an aspheric shape. It has a spherical negative lens L22 and a biconvex lens L23. The third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side. The fourth lens group G4 includes, in order from the object side, an aspheric positive lens L41 having a biconvex lens shape in which an object-side lens surface and an image-side lens surface are formed in an aspheric shape, and a biconvex lens L42 and both It has a cemented negative lens in which a concave lens L43 is cemented. The fifth lens group G5 includes a negative cemented lens in which, in order from the object side, a biconcave lens L51 and a positive meniscus lens L52 having a convex surface directed toward the object side are cemented. The sixth lens group G6 includes, in order from the object side, an aspheric positive lens L61 having a positive meniscus lens shape with a concave surface facing the object side, and a lens on the object side. A cemented positive lens in which an aspherical positive lens L62 having a biconvex lens shape whose surface is formed in an aspherical shape and a negative meniscus lens L63 having a concave surface facing the object side, and a negative meniscus lens having a concave surface facing the object side L64 is configured. The aperture stop S is disposed on the object side of the most object side lens surface (fifteenth surface) of the fourth lens group G4.

この変倍光学系ZL1では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が増大し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少し、第6レンズ群G6と像面Iとの空気間隔が増大するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。   In the variable magnification optical system ZL1, the air gap between the first lens group G1 and the second lens group G2 increases during the magnification change from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group. The air gap between G3 increases, the air gap between the third lens group G3 and the fourth lens group G4 decreases, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the fifth lens. The lens groups of the first lens group G1 to the sixth lens group G6 so that the air gap between the group G5 and the sixth lens group G6 decreases and the air gap between the sixth lens group G6 and the image plane I increases. Moves on the optical axis. The aperture stop S moves together with the fourth lens group G4 during zooming.

また、この変倍光学系ZL1では、物体側合焦群GfFを第3レンズ群G3とし、像側合焦群GfRを第5レンズ群G5とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第2レンズ群G2、第4レンズ群G4及び第6レンズ群G6を像面Iに対して固定とし、物体側合焦群GfFである第3レンズ群G3を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第5レンズ群G5を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。   In this variable magnification optical system ZL1, the object-side focusing group GfF is the third lens group G3, the image-side focusing group GfR is the fifth lens group G5, and focusing from an infinite object to a short-distance object is performed. The first lens group G1, the second lens group G2, the fourth lens group G4, and the sixth lens group G6 are fixed with respect to the image plane I, and the third lens group G3 that is the object-side focusing group GfF is the optical axis. Is moved from the image side to the object side, and the fifth lens group G5 which is the image side focusing group GfR is moved from the image side to the object side along the optical axis. In this focusing, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第1実施例に係る変倍光学系ZL1の諸元の値を掲げる。ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   The values of the specifications of the variable magnification optical system ZL1 according to the first example are listed below. Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. The description of these symbols and the description of the specification table are the same in the following embodiments.

まず、表1に全体諸元を示す。この全体諸元において、fは全系の焦点距離、FNOはFナンバー、ωは半画角[°]、Yは最大像高、TLは全長、及び、BFはバックフォーカスの値を表しており、広角端状態(W)、中間焦点距離状態(M)及び望遠端状態(T)のそれぞれにおける値が示されている。ここで、全長TLは、無限合焦時の最も物体側のレンズ面(図1における第1面)から像面Iまでの光軸上の距離を示している。また、バックフォーカスBFは、無限遠合焦時の最も像側のレンズ面(図1における第29面)から像面Iまでの光軸上の距離を示している。なお、BF(air)はバックフォーカスの空気換算長を示している。   First, Table 1 shows the overall specifications. In this overall specification, f is the focal length of the entire system, FNO is the F number, ω is the half field angle [°], Y is the maximum image height, TL is the total length, and BF is the back focus value. The values in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T) are shown. Here, the total length TL indicates the distance on the optical axis from the most object side lens surface (first surface in FIG. 1) to the image plane I at the time of infinite focusing. Further, the back focus BF indicates the distance on the optical axis from the most image side lens surface (the 29th surface in FIG. 1) to the image surface I when focusing on infinity. Note that BF (air) indicates the air equivalent length of the back focus.

次に、表2にレンズデータを示す。このレンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径0.00000は平面を示し、空気の屈折率1.00000は省略してある。   Table 2 shows lens data. In the lens data, the first column m indicates the order (surface number) of the lens surfaces from the object side along the direction in which the light beam travels, the second column r indicates the curvature radius of each lens surface, and the third column d. Is the distance (surface spacing) on the optical axis from each optical surface to the next optical surface, the fourth column nd and the fifth column νd are the refractive index and Abbe number for the d-line (λ = 587.6 nm). Show. Further, the radius of curvature of 0.00000 indicates a plane, and the refractive index of air of 1.0000 is omitted.

また、表3にレンズ群焦点距離を示す。このレンズ群焦点距離におけるgは各レンズ群の符号を、mは各レンズ群の始面(最も物体側のレンズ面の面番号)を、fgは各レンズ群の焦点距離を示している。   Table 3 shows the lens group focal length. In this lens group focal length, g represents the sign of each lens group, m represents the starting surface of each lens group (surface number of the lens surface closest to the object side), and fg represents the focal length of each lens group.

この変倍光学系ZL1において、第8面、第9面、第15面、第16面、第23面及び第25面は非球面形状に形成されている。次の表4に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the zoom optical system ZL1, the eighth surface, the ninth surface, the fifteenth surface, the sixteenth surface, the twenty-third surface, and the twenty-fifth surface are formed in an aspherical shape. Table 4 below shows aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

また、この変倍光学系ZL1において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D5、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D13、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D19、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D22、及び、第6レンズ群G6と像面Iとの軸上空気間隔D29(バックフォーカスBFに相当する)は、変倍及び合焦に際して変化する。次の表5に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。なお、この表5において、Infiniteは無限遠合焦状態を示し、Closestは至近合焦状態を示す。また、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態を示す。また、D0は変倍光学系ZL1の最も物体側の面(第1面)から物体までの距離を示し、βは撮影倍率を示し、fは全系の焦点距離を示す。   In the variable magnification optical system ZL1, the axial air distance D5 between the first lens group G1 and the second lens group G2, the axial air distance D11 between the second lens group and the third lens group G3, and the third lens. On-axis air gap D13 between group G3 and fourth lens group G4, on-axis air gap D19 between fourth lens group G4 and fifth lens group G5, on-axis between fifth lens group G5 and sixth lens group G6 The air gap D22 and the on-axis air gap D29 (corresponding to the back focus BF) between the sixth lens group G6 and the image plane I change during zooming and focusing. Table 5 below shows the variable intervals in the infinitely focused object state and the closest focused state. In Table 5, Infinite indicates the infinitely focused state, and Closest indicates the closest focused state. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state. D0 represents the distance from the most object side surface (first surface) of the variable magnification optical system ZL1 to the object, β represents the photographing magnification, and f represents the focal length of the entire system.

次の表6に、この変倍光学系ZL1における各条件式対応値を示す。この条件式対応値において、ff1は第1合焦群Gf1の焦点距離を、ff2は第2合焦群Gf2の焦点距離を、FZ1Wは広角端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、FZ1Tは望遠端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、FZ2Wは広角端状態且つ無限遠合焦状態において前記第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、FZ2Tは望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、νd1は第1合焦群Gf1に含まれるレンズの媒質のd線に対するアッベ数をそれぞれ表している。なお、この第1実施例において、第1合焦群Gf1は、物体側合焦群GfFである第3レンズ群G3が相当し、第2合焦群Gf2は、像側合焦群GfRである第5レンズ群G5が相当する。また、νd1は、第1合焦群Gf1である第3レンズ群G3の負メニスカスレンズL31の値である。   Table 6 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL1. In this conditional expression corresponding value, ff1 is the focal length of the first focusing group Gf1, ff2 is the focal length of the second focusing group Gf2, and FZ1W is the first focusing group in the wide-angle end state and infinite focusing state. The fluctuation amount [mm] of the on-axis focusing position when Gf1 moves 1 [mm] in the optical axis direction, and FZ1T indicates that the first focusing group Gf1 is in the optical axis direction in the telephoto end state and infinite focusing state. FZ2W moves the second focusing group Gf2 by 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state when the movement amount is 1 [mm]. FZ2T is the on-axis alignment when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and infinite focus state. The focal position variation [mm], νd1 is the lens medium included in the first focusing group Gf1 Represent respectively the Abbe number for the line. In the first embodiment, the first focusing group Gf1 corresponds to the third lens group G3 that is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. This corresponds to the fifth lens group G5. Further, νd1 is a value of the negative meniscus lens L31 of the third lens group G3 that is the first focusing group Gf1.

このように、第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。   Thus, the variable magnification optical system ZL1 according to the first example satisfies the conditional expressions (1) to (3), (5), (3 '), (6), and (7).

この変倍光学系ZL1の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図2及び図3に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバー又は開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、横収差図では各像高の値を示している。また、dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。また、非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示している。また、歪曲収差図はd線の値を示している。また、以降に示す各実施例の収差図においても、本実施例と同様の符号を用いる。これらの各収差図より、この変倍光学系ZL1は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。   The variable magnification optical system ZL1 has a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram, a magnification chromatic aberration diagram in a wide-angle end state, an intermediate focal length state, and a telephoto end state in an infinitely focused state and a close-in-focus state. Transverse aberration diagrams are shown in FIGS. In each aberration diagram, FNO represents an F number, NA represents a numerical aperture, and Y represents an image height. The spherical aberration diagram shows the F-number or numerical aperture corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the lateral aberration diagram shows the value of each image height. ing. D represents the d-line (λ = 587.6 nm), and g represents the g-line (λ = 435.8 nm). In the astigmatism diagrams, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Further, the distortion diagram shows the value of the d-line. Also, the same reference numerals as in this example are used in the aberration diagrams of the examples shown below. From these aberration diagrams, the variable magnification optical system ZL1 corrects various aberrations well from the infinitely focused object state to the closest focused state in focusing and from the wide-angle end state to the telephoto end state in zooming. You can see that

[第2実施例]
図4は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図4に示す変倍光学系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、から構成されている。
[Second Embodiment]
FIG. 4 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example. The zoom optical system ZL2 shown in FIG. 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power. The third lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. .

この変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL22、及び、両凸レンズL23を有して構成されている。また、第3レンズ群G3は、物体側から順に、両凹レンズL31と両凸レンズL32とを接合した接合負レンズを有して構成されている。また、第4レンズ群G4は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と両凹レンズL43とを接合した接合正レンズを有して構成されている。また、第5レンズ群G5は、物体側から順に、両凹レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズを有して構成されている。また、第6レンズ群G6は、物体側から順に、物体側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL61と物体側に凹面を向けた負メニスカスレンズL62とを接合した接合正レンズ、両凸レンズL63と物体側に凹面を向けた負メニスカスレンズL64とを接合した接合正レンズ、物体側に凹面を向けた正メニスカスレンズL65、及び、両凹レンズL66を有して構成されている。また、開口絞りSは、第4レンズ群G4の最も物体側のレンズ面(第16面)の物体側に配置されている。   In the variable magnification optical system ZL2, the first lens group G1 includes, in order from the object side, a cemented positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are cemented, and a convex surface on the object side. The positive meniscus lens L13 is directed. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave aspherical negative lens L22 in which the object-side lens surface is formed in an aspheric shape, and The lens has a biconvex lens L23. The third lens group G3 includes a cemented negative lens in which a biconcave lens L31 and a biconvex lens L32 are cemented in order from the object side. The fourth lens group G4 includes, in order from the object side, an aspheric positive lens L41 having a biconvex lens shape in which an object-side lens surface and an image-side lens surface are formed in an aspheric shape, and a biconvex lens L42 and both It has a cemented positive lens that is cemented with the concave lens L43. The fifth lens group G5 includes a negative cemented lens in which, in order from the object side, a biconcave lens L51 and a positive meniscus lens L52 having a convex surface directed toward the object side are cemented. Further, in the sixth lens group G6, in order from the object side, the aspheric lens surface on the object side is formed in an aspheric shape, the aspherical positive lens L61 in the shape of a positive meniscus lens with the concave surface facing the object side, and the concave surface on the object side are formed. A cemented positive lens in which the negative meniscus lens L62 directed toward the object is cemented, a cemented positive lens in which the biconvex lens L63 is bonded to the negative meniscus lens L64 in which the concave surface is directed toward the object side, a positive meniscus lens L65 having a concave surface directed toward the object side, and The lens has a biconcave lens L66. The aperture stop S is disposed on the object side of the lens surface (16th surface) closest to the object side of the fourth lens group G4.

この変倍光学系ZL2では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が増大し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少し、第6レンズ群G6と像面Iとの空気間隔が増大するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。   In the zoom optical system ZL2, the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group. The air gap between G3 increases, the air gap between the third lens group G3 and the fourth lens group G4 decreases, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the fifth lens. The lens groups of the first lens group G1 to the sixth lens group G6 so that the air gap between the group G5 and the sixth lens group G6 decreases and the air gap between the sixth lens group G6 and the image plane I increases. Moves on the optical axis. The aperture stop S moves together with the fourth lens group G4 during zooming.

また、この変倍光学系ZL2では、物体側合焦群GfFを第3レンズ群G3とし、像側合焦群GfRを第5レンズ群G5とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第2レンズ群G2、第4レンズ群G4及び第6レンズ群G6を像面Iに対して固定とし、物体側合焦群GfFである第3レンズ群G3を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第5レンズ群G5を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。   In the zoom optical system ZL2, the object-side focusing group GfF is the third lens group G3, the image-side focusing group GfR is the fifth lens group G5, and focusing from an object at infinity to a short-distance object is The first lens group G1, the second lens group G2, the fourth lens group G4, and the sixth lens group G6 are fixed with respect to the image plane I, and the third lens group G3 that is the object-side focusing group GfF is the optical axis. Is moved from the image side to the object side, and the fifth lens group G5 which is the image side focusing group GfR is moved from the image side to the object side along the optical axis. In this focusing, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第2実施例に係る変倍光学系ZL2の諸元の値を掲げる。まず、表7に全体諸元を示す。   The values of the specifications of the variable magnification optical system ZL2 according to the second example are listed below. First, Table 7 shows the overall specifications.

次に、表8に第2実施例におけるレンズデータを示す。   Table 8 shows lens data in the second example.

また、表9に第2実施例におけるレンズ群焦点距離を示す。   Table 9 shows lens group focal lengths in the second example.

この変倍光学系ZL2において、第8面、第16面、第17面及び第24面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the variable magnification optical system ZL2, the eighth surface, the sixteenth surface, the seventeenth surface, and the twenty-fourth surface are formed in an aspherical shape. Table 10 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

また、この変倍光学系ZL2において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D5、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D14、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D20、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D23、及び、第6レンズ群G6と像面Iとの軸上空気間隔D33(バックフォーカスBFに相当する)は、変倍及び合焦に際して変化する。次の表11に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。   In the variable magnification optical system ZL2, the axial air distance D5 between the first lens group G1 and the second lens group G2, the axial air distance D11 between the second lens group and the third lens group G3, and the third lens. On-axis air gap D14 between group G3 and fourth lens group G4, on-axis air gap D20 between fourth lens group G4 and fifth lens group G5, on-axis between fifth lens group G5 and sixth lens group G6 The air space D23 and the on-axis air space D33 (corresponding to the back focus BF) between the sixth lens group G6 and the image plane I change during zooming and focusing. Table 11 below shows variable intervals in an infinitely focused object state and a close-in focused state.

次の表12に、この変倍光学系ZL2における各条件式対応値を示す。なお、この第2実施例において、第1合焦群Gf1は、物体側合焦群GfFである第3レンズ群G3が相当し、第2合焦群Gf2は、像側合焦群GfRである第5レンズ群G5が相当する。また、νd1は、第1合焦群Gf1である第3レンズ群G3の両凹レンズL31の値である。   Table 12 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL2. In the second embodiment, the first focusing group Gf1 corresponds to the third lens group G3 that is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. This corresponds to the fifth lens group G5. Further, νd1 is a value of the biconcave lens L31 of the third lens group G3 which is the first focusing group Gf1.

このように、第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。   Thus, the variable magnification optical system ZL2 according to the second example satisfies the conditional expressions (1) to (3), (5), (3 '), (6), and (7).

この変倍光学系ZL2の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図5及び図6に示す。これらの各収差図より、この変倍光学系ZL2は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。   This variable magnification optical system ZL2 has a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram, a magnification chromatic aberration diagram in a wide-angle end state, an intermediate focal length state, and a telephoto end state in an infinitely focused state and a close-in-focus state. Transverse aberration diagrams are shown in FIGS. From these aberration diagrams, this variable magnification optical system ZL2 corrects various aberrations well from the infinite object focusing state to the closest focusing state in focusing and from the wide-angle end state to the telephoto end state in zooming. You can see that

[第3実施例]
図7は、第3実施例に係る変倍光学系ZL3の構成を示す図である。この図7に示す変倍光学系ZL3は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、から構成されている。
[Third embodiment]
FIG. 7 is a diagram showing a configuration of the variable magnification optical system ZL3 according to the third example. The zoom optical system ZL3 shown in FIG. 7 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a positive refractive power. The third lens group G3 includes a third lens group G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12とを接合した接合正レンズを有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL22、両凸レンズL23、及び、像側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL24を有して構成されている。また、第3レンズ群G3は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL31、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33とを接合した接合正レンズ、両凹レンズL34と物体側に凸面を向けた正メニスカスレンズL35とを接合した接合正レンズ、及び、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL36を有して構成されている。また、第4レンズ群G4は、像側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL41を有して構成されている。また、第5レンズ群G5は、物体側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL51を有して構成されている。また、開口絞りSは、第3レンズ群G3の非球面正レンズL31と両凸レンズL32との間に配置されている。また、第5レンズ群G5と像面Iとの間にはフィルタFLが配置されている。   In the variable magnification optical system ZL3, the first lens group G1 includes, in order from the object side, a cemented positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side are cemented. It is comprised. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens shape in which the lens surface on the object side is formed in an aspherical shape, and the convex surface is directed toward the object side. The aspherical negative lens L22, the biconvex lens L23, and the aspherical negative lens L24 having a biconcave shape in which the image-side lens surface is formed in an aspherical shape. The third lens group G3 includes, in order from the object side, an aspheric positive lens L31 having a biconvex lens shape in which the lens surface on the object side and the lens surface on the image side are formed in an aspheric shape, and a biconvex lens L32 on the object side. A cemented positive lens in which a negative meniscus lens L33 having a concave surface is cemented, a cemented positive lens in which a biconcave lens L34 and a positive meniscus lens L35 having a convex surface on the object side are cemented, and a lens surface on the object side and an image side It has a biconvex lens-shaped aspherical positive lens L36 having a lens surface formed in an aspherical shape. Further, the fourth lens group G4 includes an aspheric negative lens L41 having a negative meniscus lens shape in which an image side lens surface is formed in an aspheric shape and a convex surface is directed toward the object side. The fifth lens group G5 includes an aspheric positive lens L51 having a biconvex lens shape in which the lens surface on the object side is formed in an aspheric shape. The aperture stop S is disposed between the aspheric positive lens L31 and the biconvex lens L32 in the third lens group G3. A filter FL is disposed between the fifth lens group G5 and the image plane I.

この変倍光学系ZL3では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5とフィルタFLとの空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第3レンズ群G3とともに移動する。   In the variable magnification optical system ZL3, when changing the magnification from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group. The air gap between G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the fifth lens. Each lens group from the first lens group G1 to the fifth lens group G5 moves on the optical axis so that the air gap between the group G5 and the filter FL decreases. The aperture stop S moves together with the third lens group G3 during zooming.

また、この変倍光学系ZL3では、物体側合焦群GfFを第2レンズ群G2とし、像側合焦群GfRを第4レンズ群G4とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5を像面Iに対して固定とし、物体側合焦群GfFである第2レンズ群G2を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第4レンズ群G4を光軸に沿って物体側から像側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。   In the zoom optical system ZL3, the object-side focusing group GfF is the second lens group G2, the image-side focusing group GfR is the fourth lens group G4, and focusing from an object at infinity to a short-distance object is performed. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I, and the second lens group G2, which is the object side focusing group GfF, is viewed from the image side along the optical axis. The fourth lens group G4, which is the image side focusing group GfR, is moved to the object side and moved from the object side to the image side along the optical axis. In this focusing, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第3実施例に係る変倍光学系ZL3の諸元の値を掲げる。まず、表13に全体諸元を示す。   The values of the specifications of the variable magnification optical system ZL3 according to the third example are listed below. First, Table 13 shows the overall specifications.

次に、表14に第3実施例におけるレンズデータを示す。   Next, Table 14 shows lens data in the third example.

また、表15に第3実施例におけるレンズ群焦点距離を示す。   Table 15 shows lens group focal lengths in the third example.

この変倍光学系ZL3において、第6面、第11面、第12面、第13面、第21面、第22面、第24面及び第25面は非球面形状に形成されている。次の表16に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the zoom optical system ZL3, the sixth surface, the eleventh surface, the twelfth surface, the thirteenth surface, the twenty-first surface, the twenty-second surface, the twenty-fourth surface, and the twenty-fifth surface are formed in an aspherical shape. Table 16 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

また、この変倍光学系ZL3において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D3、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D22、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D24、及び、第5レンズ群G5とフィルタFLIとの軸上空気間隔D26は、変倍及び合焦に際して変化する。次の表17に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。   In the variable magnification optical system ZL3, the axial air distance D3 between the first lens group G1 and the second lens group G2, the axial air distance D11 between the second lens group and the third lens group G3, the third lens On-axis air gap D22 between group G3 and fourth lens group G4, on-axis air gap D24 between fourth lens group G4 and fifth lens group G5, and on-axis air between fifth lens group G5 and filter FLI The interval D26 changes upon zooming and focusing. Table 17 below shows the variable intervals in the infinitely focused object state and the close-up focused state.

次の表18に、この変倍光学系ZL3における各条件式対応値を示す。なお、この第3実施例において、第1合焦群Gf1は、物体側合焦群GfFである第2レンズ群G2が相当し、第2合焦群Gf2は、像側合焦群GfRである第4レンズ群G4が相当する。また、νd1は、第1合焦群Gf1である第2レンズ群G2の負メニスカスレンズL21の値である。   Table 18 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL3. In the third embodiment, the first focusing group Gf1 corresponds to the second lens group G2 that is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. This corresponds to the fourth lens group G4. Further, νd1 is a value of the negative meniscus lens L21 of the second lens group G2 that is the first focusing group Gf1.

このように、第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。   Thus, the variable magnification optical system ZL3 according to the third example satisfies the conditional expressions (1) to (3), (5), (3 '), (6), and (7).

この変倍光学系ZL3の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図8及び図9に示す。これらの各収差図より、この変倍光学系ZL3は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。   This variable magnification optical system ZL3 has a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram, a magnification chromatic aberration diagram in a wide-angle end state, an intermediate focal length state, and a telephoto end state in an infinitely focused state and a close-in-focus state. Transverse aberration diagrams are shown in FIGS. From these aberration diagrams, the variable magnification optical system ZL3 corrects various aberrations well from the infinite object focusing state to the closest focusing state in focusing and from the wide-angle end state to the telephoto end state in zooming. You can see that

[第4実施例]
図10は、第4実施例に係る変倍光学系ZL4の構成を示す図である。この図10に示す変倍光学系ZL4は、物体側から順に、負の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、から構成されている。
[Fourth embodiment]
FIG. 10 is a diagram illustrating a configuration of the variable magnification optical system ZL4 according to the fourth example. The zoom optical system ZL4 shown in FIG. 10 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a positive refractive power. The third lens group G3 includes a third lens group G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL4において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL12、及び、両凸レンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側のレンズ面が非球面形状に形成され、物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL21と物体側に凹面を向けた正メニスカスレンズL22とを接合した接合負レンズを有して構成されている。また、第3レンズ群G3は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成され、物体側に凸面を向けた正メニスカスレンズ形状の非球面正レンズL31、及び、両凸レンズL32と両凹レンズL33とを接合した接合正レンズを有して構成されている。また、第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とを接合した接合負レンズを有して構成されている。また、第5レンズ群G5は、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズ、両凸レンズL53と物体側に凹面を向けた負メニスカスレンズL54とを接合した接合正レンズ、両凸レンズL55、及び、両凹レンズL56を有して構成されている。また、開口絞りSは、第3レンズ群G3の最も物体側のレンズ面(第11面)の物体側に配置されている。   In the variable magnification optical system ZL4, the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, a lens surface on the object side formed in an aspherical shape, and a convex surface on the object side. A negative meniscus lens-shaped aspherical negative lens L12 and a biconvex lens L13 are provided. Further, in the second lens group G2, in order from the object side, the lens surface on the object side is formed in an aspheric shape, and the aspheric negative lens L21 having a negative meniscus shape with the concave surface facing the object side and the concave surface on the object side are formed. It has a cemented negative lens in which a positive meniscus lens L22 directed to it is cemented. In the third lens group G3, in order from the object side, the lens surface on the object side and the lens surface on the image side are formed in an aspherical shape, and an aspherical positive lens L31 in the shape of a positive meniscus lens having a convex surface directed toward the object side. And a positive cemented lens in which a biconvex lens L32 and a biconcave lens L33 are cemented. The fourth lens group G4 includes, in order from the object side, a cemented negative lens in which a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side are cemented. The fifth lens group G5 includes a negative meniscus negative lens L51 having a negative meniscus lens shape having an aspheric lens surface on the object side and a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The lens includes a cemented negative lens in which L52 is cemented, a cemented positive lens in which a biconvex lens L53 and a negative meniscus lens L54 having a concave surface facing the object side are cemented, a biconvex lens L55, and a biconcave lens L56. The aperture stop S is disposed on the object side of the most object side lens surface (11th surface) of the third lens group G3.

この変倍光学系ZL4では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が減少し、第3レンズ群G3と第4レンズ群G4の空気間隔が増大し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少し、第5レンズ群G5と像面Iの空気間隔が増大するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第3レンズ群G3とともに移動する。   In the variable magnification optical system ZL4, when changing the magnification from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group G3. The air gap between the third lens group G3 and the fourth lens group G4 increases, the air gap between the fourth lens group G4 and the fifth lens group G5 decreases, and the fifth lens group G5 and the image are separated. Each lens group from the first lens group G1 to the fifth lens group G5 moves on the optical axis so that the air spacing of the surface I increases. The aperture stop S moves together with the third lens group G3 during zooming.

また、この変倍光学系ZL4では、物体側合焦群GfFを第2レンズ群G2とし、像側合焦群GfRを第4レンズ群G4とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5を像面Iに対して固定とし、物体側合焦群GfFである第2レンズ群G2を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第4レンズ群G4を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。   In the zoom optical system ZL4, the object-side focusing group GfF is the second lens group G2, the image-side focusing group GfR is the fourth lens group G4, and focusing from an infinite object to a short-distance object is performed. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I, and the second lens group G2, which is the object side focusing group GfF, is viewed from the image side along the optical axis. The fourth lens group G4, which is the image side focusing group GfR, is moved to the object side and moved from the image side to the object side along the optical axis. In this focusing, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第4実施例に係る変倍光学系ZL4の諸元の値を掲げる。まず、表19に全体諸元を示す。   The values of the specifications of the variable magnification optical system ZL4 according to the fourth example are listed below. First, Table 19 shows the overall specifications.

次に、表20に第4実施例におけるレンズデータを示す。   Table 20 shows lens data in the fourth example.

また、表21に第4実施例におけるレンズ群焦点距離を示す。   Table 21 shows the focal length of the lens group in the fourth example.

この変倍光学系ZL4において、第3面、第7面、第11面、第12面、及び第19面は非球面形状に形成されている。次の表22に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the variable magnification optical system ZL4, the third surface, the seventh surface, the eleventh surface, the twelfth surface, and the nineteenth surface are formed in an aspherical shape. Table 22 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

また、この変倍光学系ZL4において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D6、第2レンズ群と第3レンズ群G3との軸上空気間隔D9、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D15、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D18、及び、第5レンズ群G5と像面Iとの軸上空気間隔D28(バックフォーカスBFに相当する)は、変倍及び合焦に際して変化する。次の表23に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。   In the zoom optical system ZL4, the axial air distance D6 between the first lens group G1 and the second lens group G2, the axial air distance D9 between the second lens group and the third lens group G3, and the third lens. On-axis air gap D15 between group G3 and fourth lens group G4, on-axis air gap D18 between fourth lens group G4 and fifth lens group G5, and on-axis between fifth lens group G5 and image plane I The air gap D28 (corresponding to the back focus BF) changes during zooming and focusing. Table 23 below shows variable intervals in an infinitely focused object state and a close-in focused state.

次の表24に、この変倍光学系ZL4における各条件式対応値を示す。なお、この第4実施例において、第1合焦群Gf1は、物体側合焦群GfFである第2レンズ群G2が相当し、第2合焦群Gf2は、像側合焦群GfRである第4レンズ群G4が相当する。また、νd1は、第1合焦群Gf1である第2レンズ群G2の非球面負レンズL21の値である。   Table 24 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL4. In the fourth embodiment, the first focusing group Gf1 corresponds to the second lens group G2 that is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. This corresponds to the fourth lens group G4. Further, νd1 is a value of the aspheric negative lens L21 of the second lens group G2 which is the first focusing group Gf1.

このように、第4実施例に係る変倍光学系ZL4は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。   Thus, the zoom optical system ZL4 according to the fourth example satisfies the conditional expressions (1) to (3), (5), (3 '), (6), and (7).

この変倍光学系ZL4の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図11及び図12に示す。これらの各収差図より、この変倍光学系ZL4は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。   This variable magnification optical system ZL4 has a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram, a chromatic aberration diagram of magnification, and a wide-angle end state, an intermediate focal length state, and a telephoto end state in an infinitely focused state and a close-in-focus state. Transverse aberration diagrams are shown in FIGS. From these aberration diagrams, this variable magnification optical system ZL4 corrects various aberrations well from the infinitely far object focused state to the closest focused state in focusing and from the wide-angle end state to the telephoto end state in zooming. You can see that

[第5実施例]
図13は、第5実施例に係る変倍光学系ZL5の構成を示す図である。この図13に示す変倍光学系ZL5は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、から構成されている。
[Fifth embodiment]
FIG. 13 is a diagram showing a configuration of a variable magnification optical system ZL5 according to the fifth example. The zoom optical system ZL5 shown in FIG. 13 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power. A third lens group G3, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, a sixth lens group G6 having a negative refractive power, and a negative refractive power. And a seventh lens group G7.

この変倍光学系ZL5において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合正レンズ、及び、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合負レンズを有して構成されている。また、第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31を有して構成されている。また、第4レンズ群G4は、物体側から順に、両凸レンズL41、両凹レンズL42と両凸レンズL43とを接合した接合正レンズ、及び、物体側に凹面を向けた正メニスカスレンズL44と物体側に凹面を向けた負メニスカスレンズL45とを接合した接合負レンズを有して構成されている。また、第5レンズ群G5は、物体側から順に、両凸レンズL51と両凹レンズL52とを接合した接合負レンズ、並びに、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL53を有して構成されている。また、第6レンズ群G6は、物体側から順に、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL61と物体側に凸面を向けた正メニスカスレンズL62とを接合した接合負レンズ、及び、両凸レンズL63を有して構成されている。また、第7レンズ群G7は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL71と物体側に凸面を向けた負メニスカスレンズL72とを接合した接合負レンズを有して構成されている。また、開口絞りSは、第4レンズ群G4の最も物体側のレンズ面(第15面)の物体側に配置されている。また、第7レンズ群G7と像面Iとの間にはフィルタFLが配置されている。   In the zoom optical system ZL5, the first lens group G1 includes, in order from the object side, a cemented positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are cemented, and a convex surface on the object side. The positive meniscus lens L13 is directed. In the second lens group G2, in order from the object side, a cemented positive lens in which the biconvex lens L21 and the biconcave lens L22 are cemented, and a positive meniscus lens L24 in which the convex surface is directed to the object side are cemented. It has a cemented negative lens. The third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side. The fourth lens group G4 includes, in order from the object side, a biconvex lens L41, a cemented positive lens in which the biconcave lens L42 and the biconvex lens L43 are cemented, and a positive meniscus lens L44 having a concave surface facing the object side and the object side. It has a cemented negative lens in which a negative meniscus lens L45 having a concave surface is cemented. In the fifth lens group G5, in order from the object side, a cemented negative lens obtained by cementing the biconvex lens L51 and the biconcave lens L52, and the object-side lens surface and the image-side lens surface are formed in an aspherical shape. It has a biconvex lens-shaped aspherical positive lens L53. Further, in the sixth lens group G6, in order from the object side, the lens surface on the object side is formed in an aspheric shape, and the aspheric negative lens L61 in the shape of a negative meniscus lens having a convex surface directed toward the object side is provided with a convex surface on the object side. It has a cemented negative lens cemented with a directed positive meniscus lens L62, and a biconvex lens L63. The seventh lens group G7 includes, in order from the object side, a cemented negative lens in which a positive meniscus lens L71 having a convex surface facing the object side and a negative meniscus lens L72 having a convex surface facing the object side are cemented. ing. The aperture stop S is disposed on the object side of the most object side lens surface (fifteenth surface) of the fourth lens group G4. A filter FL is disposed between the seventh lens group G7 and the image plane I.

この変倍光学系ZL5では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が変化し、第5レンズ群G5と第6レンズ群G6との空気間隔が変化し、第6レンズ群G6と第7レンズ群G7との空気間隔が変化するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が光軸上を移動する。このとき、第7レンズ群G7は像面Iに対して固定されている。なお、開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。   In the zoom optical system ZL5, when zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group. The air gap between G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 decreases, the air gap between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens. Each of the first lens group G1 to the sixth lens group G6 is changed so that the air gap between the group G5 and the sixth lens group G6 changes and the air gap between the sixth lens group G6 and the seventh lens group G7 changes. The lens group moves on the optical axis. At this time, the seventh lens group G7 is fixed with respect to the image plane I. The aperture stop S moves together with the fourth lens group G4 during zooming.

また、この変倍光学系ZL5では、物体側合焦群GfFを第3レンズ群G3とし、像側合焦群GfRを第5レンズ群G5とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第2レンズ群G2、第4レンズ群G4、第6レンズ群G6及び第7レンズ群G7を像面Iに対して固定とし、物体側合焦群GfFである第3レンズ群G3を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第5レンズ群G5を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。   In this variable magnification optical system ZL5, the object-side focusing group GfF is the third lens group G3, the image-side focusing group GfR is the fifth lens group G5, and focusing from an infinite object to a short-distance object is performed. The first lens group G1, the second lens group G2, the fourth lens group G4, the sixth lens group G6, and the seventh lens group G7 are fixed with respect to the image plane I, and are a third object group focusing group GfF. The lens group G3 is moved from the image side to the object side along the optical axis, and the fifth lens group G5 that is the image side focusing group GfR is moved from the image side to the object side along the optical axis. It is configured. In this focusing, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第5実施例に係る変倍光学系ZL5の諸元の値を掲げる。まず、表25に全体諸元を示す。   The values of the specifications of the variable magnification optical system ZL5 according to the fifth example are listed below. First, Table 25 shows the overall specifications.

次に、表26に第5実施例におけるレンズデータを示す。   Table 26 shows lens data in the fifth example.

また、表27に第5実施例におけるレンズ群焦点距離を示す。   Table 27 shows lens group focal lengths in the fifth example.

この変倍光学系ZL5において、第26面、第27面及び第28面は非球面形状に形成されている。次の表28に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the variable magnification optical system ZL5, the 26th surface, the 27th surface and the 28th surface are formed in an aspherical shape. Table 28 below shows aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

また、この変倍光学系ZL5において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D5、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D13、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D22、第5レンズ群G5と第6レンズ群G6との軸上空気間隔27、及び、第6レンズ群G6と第7レンズ群G7との軸上空気間隔D32は、変倍及び合焦に際して変化する。次の表29に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。   In the zoom optical system ZL5, the axial air distance D5 between the first lens group G1 and the second lens group G2, the axial air distance D11 between the second lens group and the third lens group G3, and the third lens. On-axis air gap D13 between group G3 and fourth lens group G4, on-axis air gap D22 between fourth lens group G4 and fifth lens group G5, on-axis between fifth lens group G5 and sixth lens group G6 The air space 27 and the axial air space D32 between the sixth lens group G6 and the seventh lens group G7 change during zooming and focusing. Table 29 below shows the variable intervals in the infinitely focused object state and the closest focused state.

次の表30に、この変倍光学系ZL5における各条件式対応値を示す。なお、この第5実施例において、第1合焦群Gf1は、像側合焦群GfRである第5レンズ群G5が相当し、第2合焦群Gf2は、物体側合焦群GfFである第3レンズ群G3が相当する。また、νd1は、第1合焦群Gf1である第5レンズ群G5の非球面正レンズL53の値である。   Table 30 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL5. In the fifth embodiment, the first focusing group Gf1 corresponds to the fifth lens group G5 which is the image side focusing group GfR, and the second focusing group Gf2 is the object side focusing group GfF. This corresponds to the third lens group G3. Further, νd1 is a value of the aspheric positive lens L53 of the fifth lens group G5 which is the first focusing group Gf1.

このように、第5実施例に係る変倍光学系ZL5は、上記条件式(1)、(2)、(4)〜(7)を満足している。   Thus, the zoom optical system ZL5 according to Example 5 satisfies the conditional expressions (1), (2), and (4) to (7).

この変倍光学系ZL5の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図14及び図15に示す。これらの各収差図より、この変倍光学系ZL5は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。   The variable magnification optical system ZL5 has spherical aberration diagrams, astigmatism diagrams, distortion aberration diagrams, magnification chromatic aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state in the infinitely focused state and the closest focused state. Transverse aberration diagrams are shown in FIGS. From these aberration diagrams, the variable magnification optical system ZL5 corrects various aberrations well from the infinite object focusing state to the closest focusing state in focusing and from the wide-angle end state to the telephoto end state in zooming. You can see that

1 カメラ(光学機器) ZL(ZL1〜ZL5) 変倍光学系
GfF 物体側合焦群 S 開口絞り GfR 像側合焦群
Gf1 第1合焦群 Gf2 第2合焦群
DESCRIPTION OF SYMBOLS 1 Camera (optical apparatus) ZL (ZL1-ZL5) Variable magnification optical system GfF Object side focusing group S Aperture stop GfR Image side focusing group Gf1 1st focusing group Gf2 2nd focusing group

Claims (12)

複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なり、
前記物体側合焦群の1つ及び前記像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする変倍光学系。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A variable magnification optical system having a plurality of lens groups, wherein the distance between the lens groups changes at the time of zooming,
An aperture stop,
At least one object-side focusing group that is disposed on the object side of the aperture stop and moves in the optical axis direction during focusing;
And at least one image-side focusing group that is disposed on the image side from the aperture stop and moves in the optical axis direction during focusing,
At the time of focusing, the movement trajectory of the object side focusing group and the image side focusing group is different,
Of one of the object-side focusing groups and one of the image-side focusing groups, when one is a first focusing group and the other is a second focusing group, the following condition is satisfied: A variable power optical system.
| Ff1 / ff2 | <1.00
0.010 <| FZ2T / FZ1T | <1.00
0.050 <| FZ2W / FZ2T | <0.950
However,
ff1: focal length of the first focusing group ff2: focal length of the second focusing group FZ1T: the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state Amount of change in focus position on the axis [mm]
FZ2W: On-axis focusing position variation [mm] when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state
FZ2T: A variation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state
複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なり、
前記像側合焦群の1つを第1合焦群とし、前記物体側合焦群の1つを第2合焦群としたとき、次式の条件を満足することを特徴とする変倍光学系。
|ff1/ff2| < 1.000
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
A variable magnification optical system having a plurality of lens groups, wherein the distance between the lens groups changes at the time of zooming,
An aperture stop,
At least one object-side focusing group that is disposed on the object side of the aperture stop and moves in the optical axis direction during focusing;
And at least one image-side focusing group that is disposed on the image side from the aperture stop and moves in the optical axis direction during focusing,
At the time of focusing, the movement trajectory of the object side focusing group and the image side focusing group is different,
A zooming function characterized in that when one of the image-side focusing groups is a first focusing group and one of the object-side focusing groups is a second focusing group, the following condition is satisfied: Optical system.
| Ff1 / ff2 | <1.00
However,
ff1: focal length of the first focusing group ff2: focal length of the second focusing group
次式の条件を満足することを特徴とする請求項1または2に記載の変倍光学系。
0.010 < |FZ1W/FZ1T| < 1.500
但し、
FZ1W:広角端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
3. The variable magnification optical system according to claim 1, wherein a condition of the following formula is satisfied.
0.010 <| FZ1W / FZ1T | <1.500
However,
FZ1W: On-axis focusing position variation [mm] when the first focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state
FZ1T: On-axis focusing position variation [mm] when the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state
前記物体側合焦群より物体側に、少なくとも1つの物体側レンズ群を有し、
変倍時に、前記物体側レンズ群と前記物体側合焦群との間隔が変化することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
Having at least one object side lens group closer to the object side than the object side focusing group;
4. The zoom optical system according to claim 1, wherein an interval between the object-side lens group and the object-side focusing group changes during zooming. 5.
前記物体側合焦群より物体側に、負の屈折力を有する負レンズ群を少なくとも1つを有し、
変倍時に、前記負レンズ群と前記物体側合焦群との間隔が変化することを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。
Having at least one negative lens group having negative refractive power closer to the object side than the object side focusing group;
5. The zoom optical system according to claim 1, wherein an interval between the negative lens group and the object-side focusing group changes during zooming.
前記物体側合焦群より物体側に、正の屈折力を有する正レンズ群及び負の屈折力を有する負レンズ群を少なくとも1つずつを有し、
変倍時に、前記正レンズ群と前記負レンズ群との間隔、及び、前記負レンズ群と前記物体側合焦群との間隔が変化することを特徴とする請求項1〜5のいずれか一項に記載の変倍光学系。
At least one positive lens group having positive refractive power and one negative lens group having negative refractive power on the object side from the object side focusing group,
The distance between the positive lens group and the negative lens group and the distance between the negative lens group and the object-side focusing group change during zooming. The zoom optical system according to item.
前記物体側合焦群の1つは、物体側に凹面を向けた負レンズからなることを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。   The variable power optical system according to claim 1, wherein one of the object-side focusing groups includes a negative lens having a concave surface facing the object side. 前記物体側合焦群及び前記像側合焦群はそれぞれ1つであることを特徴とする請求項1〜7のいずれか一項に記載の変倍光学系。   The variable power optical system according to claim 1, wherein the object-side focusing group and the image-side focusing group are each one. 前記第1合焦群は、次式の条件を満足するレンズを有することを特徴とする請求項1〜8のいずれか一項に記載の変倍光学系。
νd1 > 45.0
但し、
νd1:前記第1合焦群に含まれる前記レンズの媒質のd線に対するアッベ数
The variable power optical system according to claim 1, wherein the first focusing group includes a lens that satisfies a condition of the following expression.
νd1> 45.0
However,
νd1: Abbe number of the lens medium included in the first focusing group with respect to the d-line
前記物体側合焦群は1つであって、1つの負レンズからなり、
前記物体側合焦群の物体側に対向する位置には負の屈折力を有する負レンズ群を有し、
前記物体側合焦群の像側に対向する位置には正の屈折力を有する正レンズ群を有することを特徴とする請求項1〜9のいずれか一項に記載の変倍光学系。
The object side focusing group is one and consists of one negative lens,
A negative lens group having a negative refractive power at a position facing the object side of the object side focusing group;
The variable power optical system according to any one of claims 1 to 9, further comprising a positive lens group having a positive refractive power at a position facing the image side of the object side focusing group.
変倍時に、前記第2合焦群と前記第2合焦群の物体側に対向する位置に配置されるレンズ群との間隔が変化し、前記第2合焦群と前記第2合焦群の像側に対向する位置に配置されるレンズ群との間隔が変化することを特徴とする請求項1〜10のいずれか一項に記載の変倍光学系。   At the time of zooming, an interval between the second focusing group and the lens group arranged at a position facing the object side of the second focusing group changes, and the second focusing group and the second focusing group are changed. The variable power optical system according to claim 1, wherein an interval between the lens unit and the lens unit disposed at a position facing the image side of the zoom lens is changed. 複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系の製造方法であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を配置し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なるように配置し、
前記物体側合焦群の1つ及び前記像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
|ff1/ff2| < 1.0
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A method of manufacturing a variable magnification optical system having a plurality of lens groups, wherein the distance between the lens groups changes at the time of zooming,
An aperture stop,
At least one object-side focusing group that is disposed on the object side of the aperture stop and moves in the optical axis direction during focusing;
And at least one image side focusing group that is arranged on the image side from the aperture stop and moves in the optical axis direction at the time of focusing, and
At the time of focusing, the object side focusing group and the image side focusing group are arranged so that the movement trajectories are different,
Of one of the object-side focusing groups and one of the image-side focusing groups, when one is a first focusing group and the other is a second focusing group, the condition of the following equation is satisfied: A method of manufacturing a variable magnification optical system, characterized in that it is arranged.
| Ff1 / ff2 | <1.0
0.010 <| FZ2T / FZ1T | <1.00
0.050 <| FZ2W / FZ2T | <0.950
However,
ff1: focal length of the first focusing group ff2: focal length of the second focusing group FZ1T: the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state Amount of change in focus position on the axis [mm]
FZ2W: On-axis focusing position variation [mm] when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state
FZ2T: A variation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state
JP2016007868A 2016-01-19 2016-01-19 Variable magnification optical system and optical equipment Active JP6691320B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016007868A JP6691320B2 (en) 2016-01-19 2016-01-19 Variable magnification optical system and optical equipment
JP2020068769A JP6970903B2 (en) 2016-01-19 2020-04-07 Variable magnification optical system and optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007868A JP6691320B2 (en) 2016-01-19 2016-01-19 Variable magnification optical system and optical equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020068769A Division JP6970903B2 (en) 2016-01-19 2020-04-07 Variable magnification optical system and optical equipment

Publications (2)

Publication Number Publication Date
JP2017129668A true JP2017129668A (en) 2017-07-27
JP6691320B2 JP6691320B2 (en) 2020-04-28

Family

ID=59396176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007868A Active JP6691320B2 (en) 2016-01-19 2016-01-19 Variable magnification optical system and optical equipment

Country Status (1)

Country Link
JP (1) JP6691320B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028258A (en) * 2017-07-31 2019-02-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same
WO2019097715A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
WO2019097719A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
WO2019097718A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
WO2019097716A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
CN110426814A (en) * 2019-07-10 2019-11-08 浙江大华技术股份有限公司 A kind of camera lens
WO2020136747A1 (en) * 2018-12-26 2020-07-02 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2020137650A1 (en) * 2018-12-25 2020-07-02 株式会社nittoh Cinema imaging lens
CN111965803A (en) * 2020-07-29 2020-11-20 南京波长光电科技股份有限公司 270nm-350nm ultraviolet band three-field-of-view optical system
JPWO2020250671A1 (en) * 2019-06-14 2020-12-17
JP2021012243A (en) * 2019-07-03 2021-02-04 キヤノン株式会社 Zoom lens and image capturing device
JPWO2021039698A1 (en) * 2019-08-26 2021-03-04
JP2021047297A (en) * 2019-09-19 2021-03-25 キヤノン株式会社 Optical system and image capturing device having the same
WO2021140790A1 (en) * 2020-01-08 2021-07-15 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP2022176367A (en) * 2018-03-15 2022-11-25 株式会社ニコン Optical system and optical device
JP7494018B2 (en) 2020-06-08 2024-06-03 キヤノン株式会社 Optical system and imaging device having the same
US12140739B2 (en) 2019-06-14 2024-11-12 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316341A (en) * 1998-05-02 1999-11-16 Canon Inc Inner focus type photographing lens
JP2014095781A (en) * 2012-11-08 2014-05-22 Olympus Imaging Corp Zoom lens and image capturing device having the same
WO2014129187A1 (en) * 2013-02-22 2014-08-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2014160229A (en) * 2013-01-25 2014-09-04 Panasonic Corp Zoom lens system, interchangeable lens unit and camera system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316341A (en) * 1998-05-02 1999-11-16 Canon Inc Inner focus type photographing lens
JP2014095781A (en) * 2012-11-08 2014-05-22 Olympus Imaging Corp Zoom lens and image capturing device having the same
JP2014160229A (en) * 2013-01-25 2014-09-04 Panasonic Corp Zoom lens system, interchangeable lens unit and camera system
WO2014129187A1 (en) * 2013-02-22 2014-08-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028258A (en) * 2017-07-31 2019-02-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP7095706B2 (en) 2017-11-20 2022-07-05 株式会社ニコン Magnification optical system, optical device, and manufacturing method of variable magnification optical system
JPWO2019097718A1 (en) * 2017-11-20 2020-10-22 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
CN111386486B (en) * 2017-11-20 2022-03-01 株式会社尼康 Variable magnification optical system and optical device
WO2019097716A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
US11598940B2 (en) 2017-11-20 2023-03-07 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
WO2019097715A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2021167973A (en) * 2017-11-20 2021-10-21 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
WO2019097719A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JPWO2019097719A1 (en) * 2017-11-20 2020-10-22 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
US11314066B2 (en) 2017-11-20 2022-04-26 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
JPWO2019097715A1 (en) * 2017-11-20 2020-10-22 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
JPWO2019097716A1 (en) * 2017-11-20 2020-11-19 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
WO2019097718A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP7063340B2 (en) 2017-11-20 2022-05-09 株式会社ニコン Magnification optical system, optical device, and manufacturing method of variable magnification optical system
CN111386486A (en) * 2017-11-20 2020-07-07 株式会社尼康 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP7092147B2 (en) 2017-11-20 2022-06-28 株式会社ニコン Magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP7111224B2 (en) 2017-11-20 2022-08-02 株式会社ニコン Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
JP2022176367A (en) * 2018-03-15 2022-11-25 株式会社ニコン Optical system and optical device
JP7414107B2 (en) 2018-03-15 2024-01-16 株式会社ニコン Optical system and optical equipment
WO2020137650A1 (en) * 2018-12-25 2020-07-02 株式会社nittoh Cinema imaging lens
JPWO2020137650A1 (en) * 2018-12-25 2021-11-04 株式会社nittoh Movie shooting lens
JP7360177B2 (en) 2018-12-25 2023-10-12 株式会社nittoh movie shooting lens
JP7163974B2 (en) 2018-12-26 2022-11-01 株式会社ニコン Variable Magnification Optical System and Optical Equipment
JPWO2020136747A1 (en) * 2018-12-26 2021-09-27 株式会社ニコン Manufacturing method of variable magnification optical system, optical equipment and variable magnification optical system
WO2020136747A1 (en) * 2018-12-26 2020-07-02 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
CN114026481A (en) * 2019-06-14 2022-02-08 株式会社尼康 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
WO2020250671A1 (en) * 2019-06-14 2020-12-17 株式会社ニコン Variable power optical system, optical device, and variable power optical system manufacturing method
US12140739B2 (en) 2019-06-14 2024-11-12 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP7259956B2 (en) 2019-06-14 2023-04-18 株式会社ニコン Variable Magnification Optical System and Optical Equipment
JPWO2020250671A1 (en) * 2019-06-14 2020-12-17
JP7277290B2 (en) 2019-07-03 2023-05-18 キヤノン株式会社 Zoom lens and imaging device
US11803042B2 (en) 2019-07-03 2023-10-31 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP2021012243A (en) * 2019-07-03 2021-02-04 キヤノン株式会社 Zoom lens and image capturing device
CN110426814A (en) * 2019-07-10 2019-11-08 浙江大华技术股份有限公司 A kind of camera lens
JPWO2021039698A1 (en) * 2019-08-26 2021-03-04
JP7226567B2 (en) 2019-08-26 2023-02-21 株式会社ニコン Variable Magnification Optical System and Optical Equipment
CN114341697A (en) * 2019-08-26 2022-04-12 株式会社尼康 Variable power optical system, optical apparatus, and method for manufacturing variable power optical system
CN114341697B (en) * 2019-08-26 2024-06-11 株式会社尼康 Variable magnification optical system and optical device
JP2021047297A (en) * 2019-09-19 2021-03-25 キヤノン株式会社 Optical system and image capturing device having the same
JP7353887B2 (en) 2019-09-19 2023-10-02 キヤノン株式会社 Optical system and imaging device having the same
CN114830007A (en) * 2020-01-08 2022-07-29 株式会社尼康 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
CN114830007B (en) * 2020-01-08 2023-10-20 株式会社尼康 Variable magnification optical system and optical device
WO2021140790A1 (en) * 2020-01-08 2021-07-15 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP7439839B2 (en) 2020-01-08 2024-02-28 株式会社ニコン Variable magnification optics and optical equipment
JPWO2021140790A1 (en) * 2020-01-08 2021-07-15
JP7494018B2 (en) 2020-06-08 2024-06-03 キヤノン株式会社 Optical system and imaging device having the same
CN111965803A (en) * 2020-07-29 2020-11-20 南京波长光电科技股份有限公司 270nm-350nm ultraviolet band three-field-of-view optical system
CN111965803B (en) * 2020-07-29 2022-03-29 南京波长光电科技股份有限公司 270nm-350nm ultraviolet band three-field-of-view optical system

Also Published As

Publication number Publication date
JP6691320B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6691320B2 (en) Variable magnification optical system and optical equipment
CN109477952B (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JP2021096485A (en) Variable power optical system, optical apparatus and method for manufacturing variable power optical system
JP2017156432A (en) Optical system, optical apparatus and method for manufacturing optical system
JP6237147B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6237146B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2017156426A (en) Variable power optical system, optical apparatus and method for manufacturing variable power optical system
JP7227572B2 (en) Variable magnification optical system and optical equipment
JP6467804B2 (en) Zoom lens and optical apparatus
JP2013178430A (en) Variable power optical system, optical device having the variable power optical system, and method for manufacturing variable power optical system
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JP6620998B2 (en) Variable magnification optical system and optical apparatus
JP6970903B2 (en) Variable magnification optical system and optical equipment
JP6232806B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6446821B2 (en) Magnification optical system and optical equipment
JP6232805B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5871163B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP6497597B2 (en) Magnification optical system and optical equipment
JP2023042600A (en) Variable power optical system and optical equipment
JP2017156429A (en) Optical system, optical apparatus, and method for manufacturing optical system
JP2017102201A (en) Zoom lens, optical instrument, and zoom lens manufacturing method
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2014048373A (en) Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6691320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250