Nothing Special   »   [go: up one dir, main page]

JP2017126483A - Led lighting device and led illumination device - Google Patents

Led lighting device and led illumination device Download PDF

Info

Publication number
JP2017126483A
JP2017126483A JP2016005128A JP2016005128A JP2017126483A JP 2017126483 A JP2017126483 A JP 2017126483A JP 2016005128 A JP2016005128 A JP 2016005128A JP 2016005128 A JP2016005128 A JP 2016005128A JP 2017126483 A JP2017126483 A JP 2017126483A
Authority
JP
Japan
Prior art keywords
dimming
led
rate
lighting device
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016005128A
Other languages
Japanese (ja)
Inventor
将武 山下
Masatake Yamashita
将武 山下
竜介 山口
Ryusuke Yamaguchi
竜介 山口
鈴木 信一
Shinichi Suzuki
信一 鈴木
良明 山口
Yoshiaki Yamaguchi
良明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2016005128A priority Critical patent/JP2017126483A/en
Publication of JP2017126483A publication Critical patent/JP2017126483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED lighting device capable of performing high-accuracy initial illuminance correction control.SOLUTION: An LED lighting device (1) comprises DC power supply circuits (20, 40) for supplying a DC output to an LED (2) according to a dimming rate indicated by a dimming command value, a temperature detection circuit (50) for detecting the temperature in the vicinity of the LED, an increase rate determination unit (61) for successively increasing or decreasing a dimming increase rate, which is the increase rate of the dimming rate per unit time, with respect to increase or decrease in the detection temperature detected by the temperature detection circuit, a time counter (68) for counting the lighting time of the LED, and a dimming rate determining unit (62) for determining a dimming command value on the basis of the dimming rate obtained from the dimming increasing rate and the lighting time.SELECTED DRAWING: Figure 1

Description

本発明は、LED点灯装置及びそれを用いたLED照明装置に関する。   The present invention relates to an LED lighting device and an LED lighting device using the LED lighting device.

一般に、LEDの性質として、累積点灯時間の増加に対して光束(それに伴う照度)が低下していくことが知られている。これは、LEDの点灯時間が増加するにつれて、発光に寄与する格子欠陥が変化すること及び青色光を白色光に変換するYAG系の蛍光体が劣化することによって発光効率が低下することに起因する。LED点灯装置には、このような照度の変化を補償するために、いわゆる初期照度補正機能が設けられる場合がある(特許文献1参照)。初期照度補正機能とは、LEDの点灯初期はLED電流を定格電流よりも低減しておき、累積点灯時間が進むにつれてLED電流を増加させて定格電流に近づけていく機能である。これにより、LED点灯開始当初から使用時間の経過にかかわらず一定の照度が得られる。また、初期照度補正機能によって、点灯初期に不要に高い照度で点灯が行われてしまうことが防止され、省エネ及びLEDの長寿命化が実現される。   In general, as a property of an LED, it is known that the luminous flux (the illuminance associated therewith) decreases as the cumulative lighting time increases. This is because as the lighting time of the LED increases, the lattice defects that contribute to light emission change, and the YAG phosphor that converts blue light into white light deteriorates, resulting in a decrease in light emission efficiency. . The LED lighting device may be provided with a so-called initial illuminance correction function in order to compensate for such a change in illuminance (see Patent Document 1). The initial illuminance correction function is a function of reducing the LED current from the rated current at the beginning of LED lighting, and increasing the LED current as the cumulative lighting time proceeds to approach the rated current. Thereby, a fixed illuminance is obtained regardless of the elapsed time of use from the beginning of LED lighting. In addition, the initial illuminance correction function prevents unnecessarily high lighting from being performed at the beginning of lighting, thereby realizing energy saving and extending the life of the LED.

例えば、特許文献1には、LED等のランプが照度補正部を備え、照度補正部が、発光素子の累積点灯時間を計時する計時部と、累積点灯時間を記憶するメモリとを有する構成が開示される。照度補正部には、発光素子の光束減退特性に基づいて照度補正特性が設定されている。照度補正特性は、照度補正値としての調光比と累積点灯時間との対応関係を表し、発光素子の累積点灯時間が増加しても発光素子の光出力が一定に保たれるように設定される。照度補正部は、照度補正特性を使用し、発光素子の累積点灯時間に基づいて発光素子の調光比を決定する。また、照度補正部は、ランプの周囲温度を測定する温度測定部を有し、温度測定部で測定された周囲温度に応じて、使用する照度補正特性を決定する。より具体的には、照度補正部は、周囲温度を判定し、予めメモリに記憶された温度別の複数の光束減退特性の中から対応する温度の光束減退特性を選択し、選択した光束減退特性に基づいて照度補正特性を決定し、この照度補正特性を使用してランプの累積点灯時間に対応する調光比を決定することが開示される。   For example, Patent Document 1 discloses a configuration in which a lamp such as an LED includes an illuminance correction unit, and the illuminance correction unit includes a time measuring unit that measures the cumulative lighting time of the light emitting element and a memory that stores the cumulative lighting time. Is done. In the illuminance correction unit, the illuminance correction characteristic is set based on the light flux decay characteristic of the light emitting element. The illuminance correction characteristic represents the correspondence between the dimming ratio as the illuminance correction value and the cumulative lighting time, and is set so that the light output of the light emitting element remains constant even if the cumulative lighting time of the light emitting element increases. The The illuminance correction unit uses the illuminance correction characteristic and determines the dimming ratio of the light emitting element based on the cumulative lighting time of the light emitting element. The illuminance correction unit includes a temperature measurement unit that measures the ambient temperature of the lamp, and determines illuminance correction characteristics to be used according to the ambient temperature measured by the temperature measurement unit. More specifically, the illuminance correction unit determines the ambient temperature, selects a luminous flux degradation characteristic at a corresponding temperature from a plurality of luminous flux degradation characteristics for each temperature stored in advance in the memory, and selects the selected luminous flux degradation characteristic. And determining the dimming ratio corresponding to the cumulative lighting time of the lamp using the illuminance correction characteristic.

特開2011−222320号公報JP 2011-222320 A

しかし、温度別に記憶された複数の光束減退特性から検出温度に対応するものが選択されて照度補正特性が決定される構成には、以下に示すように、初期照度補正制御の精度に関して改善の余地がある。   However, there is room for improvement with respect to the accuracy of the initial illuminance correction control in the configuration in which the illuminance correction characteristic is determined by selecting the one corresponding to the detected temperature from the plurality of luminous flux decay characteristics stored for each temperature, as shown below. There is.

第1に、検出温度に対する補正制御の追従性又は解像度の向上が望まれる。1つの照度補正特性が長期間又は永続的に使用される構成によると、その後の温度変化によって現実の温度と照度補正特性の決定時の温度との間の乖離が増加することにより、検出温度に対する照度補正の追従性が低下し得る。また、複数の温度設定に対する複数の照度補正特性から1つの温度設定に対する1つの照度補正特性が選択される構成によると、現実の検出温度と適用される設定温度との差(すなわち、検出温度とそれに最も近い設定温度の差)に起因して、検出温度に対する照度補正の解像度は潜在的に低い。このように低い追従性又は解像度によって照度補正の精度低下がもたらされる。   First, it is desired to improve the followability of the correction control for the detected temperature or the resolution. According to the configuration in which one illuminance correction characteristic is used for a long time or permanently, the difference between the actual temperature and the temperature at the time of determining the illuminance correction characteristic increases due to the subsequent temperature change, so that The followability of illumination correction can be reduced. Further, according to the configuration in which one illuminance correction characteristic for one temperature setting is selected from a plurality of illuminance correction characteristics for a plurality of temperature settings, the difference between the actual detected temperature and the applied set temperature (that is, the detected temperature and Due to the closest difference in set temperature), the resolution of illuminance correction with respect to the detected temperature is potentially low. Thus, the accuracy of illumination correction is reduced by such low followability or resolution.

第2に、LEDの劣化速度がより正確に予測又は制御されることが望ましい。上記構成は、LEDの周囲温度から予測したLEDの劣化速度に基づいて照度補正を行うものである。ここで、LEDの周囲温度とLEDの劣化とは一定の相関を有するものの、LEDの素子温度がより直接的な劣化の要因となることから、LEDの素子温度がより正確に照度補正に反映されれば、LEDの劣化速度が正確に予測又は制御され、高精度な初期照度補正制御が実現されるはずである。   Second, it is desirable that the LED degradation rate be predicted or controlled more accurately. The above configuration performs illuminance correction based on the deterioration rate of the LED predicted from the ambient temperature of the LED. Here, although the ambient temperature of the LED and the deterioration of the LED have a certain correlation, the element temperature of the LED causes a more direct deterioration, so the LED element temperature is more accurately reflected in the illuminance correction. Then, the deterioration rate of the LED should be accurately predicted or controlled, and highly accurate initial illumination correction control should be realized.

そこで、本発明は、上記の照度補正制御の追従性若しくは解像度の課題又はLED素子温度の照度補正制御への反映の課題の少なくとも1つに対処して高精度な初期照度補正制御を可能とするLED点灯装置及びそれを用いたLED照明装置を提供することを課題とする。   Therefore, the present invention enables high-precision initial illuminance correction control by addressing at least one of the following problems of followability or resolution of the illuminance correction control or the problem of reflecting the LED element temperature in the illuminance correction control. It is an object to provide an LED lighting device and an LED lighting device using the LED lighting device.

本発明の第1の形態のLED点灯装置は、調光指令値が示す調光率に従って直流出力をLEDに供給する直流電源回路と、LEDの近傍の温度を検出する温度検出回路と、温度検出回路によって検出される検出温度の増加又は減少に対して、単位時間あたりの調光率の上昇率である調光上昇率をそれぞれ逐次的に増加又は減少させる上昇率決定部と、LEDの点灯時間を計測する計時部と、調光上昇率及び点灯時間から得られる調光率に基づいて調光指令値を決定する調光率決定部とを備える。   An LED lighting device according to a first embodiment of the present invention includes a DC power supply circuit that supplies a DC output to an LED according to a dimming rate indicated by a dimming command value, a temperature detection circuit that detects a temperature in the vicinity of the LED, and a temperature detection An increase rate determining unit that sequentially increases or decreases a dimming rate, which is a rate of increase of the dimming rate per unit time, with respect to an increase or decrease in the detected temperature detected by the circuit, and an LED lighting time And a dimming rate determination unit that determines a dimming command value based on the dimming rate obtained from the dimming rate and the lighting time.

上記第1の形態によると、上昇率決定部が検出温度の増加又は減少に対して調光上昇率を逐次的に増加又は減少させ、この調光上昇率及び点灯時間に基づいて調光率決定部が調光指令値を決定するので、検出温度に対して高い追従性を有する照度補正制御が実現される。これにより、高精度な初期照度補正制御が可能となる。   According to the first aspect, the increase rate determination unit sequentially increases or decreases the dimming increase rate with respect to the increase or decrease of the detected temperature, and determines the dimming rate based on the dimming increase rate and the lighting time. Since the unit determines the dimming command value, illuminance correction control having high followability with respect to the detected temperature is realized. Thereby, highly accurate initial illuminance correction control can be performed.

ここで、一態様として、検出温度の増加又は減少に対して調光上昇率が連続的に増加又は減少するように構成される。これにより、検出温度に対して高い解像度の照度補正制御が得られる。   Here, as one aspect, the dimming increase rate is configured to continuously increase or decrease with an increase or decrease in the detected temperature. Thereby, illuminance correction control with high resolution with respect to the detected temperature is obtained.

第2の形態のLED点灯装置では、上記第1の形態において、LEDの順方向電圧を検出する電圧検出回路と、順方向電圧が相対的に高い場合には調光上昇率を増加させ、順方向電圧が相対的に低い場合には調光上昇率を低下させる修正処理部とが更に設けられる。   In the LED lighting device of the second mode, in the first mode, the voltage detection circuit for detecting the forward voltage of the LED and the dimming increase rate are increased when the forward voltage is relatively high. When the directional voltage is relatively low, a correction processing unit for reducing the dimming increase rate is further provided.

上記第2の形態によると、順方向電圧の高/低、すなわちLED電力の高/低に調光上昇率の高/低が対応するので、発熱が多く劣化が速くなり得るLEDに対しては相対的に速い照度上昇が適用され、発熱が小さく劣化が遅くなり得るLEDに対しては相対的に遅く照度上昇が適用される。このように、上記第1の形態で得られる有利な効果に加えて、LEDの素子温度をより正確に反映した高精度な初期照度補正制御が実現される。   According to the second embodiment, the forward voltage is high / low, that is, the LED power is high / low, and the dimming rate is high / low. A relatively fast increase in illuminance is applied, and a relatively slow increase in illuminance is applied to an LED that generates little heat and can be degraded slowly. Thus, in addition to the advantageous effects obtained in the first embodiment, highly accurate initial illumination correction control that more accurately reflects the element temperature of the LED is realized.

さらに、修正処理部は、順方向電圧が相対的に高い場合には調光率を低下させ、順方向電圧が相対的に低い場合には調光率を増加させるように構成されてもよい。これにより、順方向電圧の高/低に調光率の低/高が対応するので、LEDの発熱及び劣化速度が適正化される。また、複数のLED点灯装置から給電されるLED間のLED電力のばらつき、すなわち照度のばらつきが解消される。   Further, the correction processing unit may be configured to decrease the dimming rate when the forward voltage is relatively high and to increase the dimming rate when the forward voltage is relatively low. Thereby, since low / high dimming rate corresponds to high / low forward voltage, the heat generation and deterioration rate of the LED are optimized. Moreover, the variation in LED power among LEDs fed from a plurality of LED lighting devices, that is, the variation in illuminance is eliminated.

第3の形態のLED点灯装置は、調光指令値が示す調光率に従って直流出力をLEDに供給する直流電源回路と、LEDの近傍の温度を検出する温度検出回路と、LEDの順方向電圧を検出する電圧検出回路と、LEDの累積点灯時間に対する調光率の変化を規定する補正関数を、温度検出回路によって検出される検出温度に応じて決定する補正関数決定部と、LEDの累積点灯時間を取得する点灯時間取得部と、補正関数に累積点灯時間を適用して得られる調光率に基づいて調光指令値を決定する調光率決定部と、補正関数決定部によって決定された補正関数における単位時間あたりの調光率の上昇率である調光上昇率について、順方向電圧が相対的に高い場合には調光上昇率を増加させ、順方向電圧が相対的に低い場合には調光上昇率を低下させて補正関数を修正する修正処理部とを備える。   An LED lighting device according to a third aspect includes a DC power supply circuit that supplies a DC output to an LED according to a dimming rate indicated by a dimming command value, a temperature detection circuit that detects a temperature in the vicinity of the LED, and a forward voltage of the LED A correction function determining unit that determines a correction function that defines a change in dimming rate with respect to the cumulative lighting time of the LED according to the detected temperature detected by the temperature detection circuit, and cumulative lighting of the LED Determined by a lighting time acquisition unit that acquires time, a dimming rate determination unit that determines a dimming command value based on a dimming rate obtained by applying the cumulative lighting time to the correction function, and a correction function determination unit Regarding the dimming increase rate, which is the rate of increase of the dimming rate per unit time in the correction function, the dimming increase rate is increased when the forward voltage is relatively high, and the dimming increase rate is relatively low. Is the dimming rate Do not and a correction processing unit for correcting the correction function.

上記第3の形態によると、複数の補正関数から1つの補正関数が選択される簡素な制御構成においても、上記第2の形態と同様に、発熱が多く劣化が速くなり得るLEDに対しては相対的に速い照度上昇が適用され、発熱が小さく劣化が遅くなり得るLEDに対しては相対的に遅く照度上昇が行われる。これにより、LEDの素子温度をより正確に反映した高精度な初期照度補正制御が実現される。   According to the third embodiment, even in a simple control configuration in which one correction function is selected from a plurality of correction functions, as in the second embodiment, for an LED that generates a large amount of heat and can be rapidly deteriorated. A relatively fast increase in illuminance is applied, and an increase in illuminance is relatively slow for LEDs that generate little heat and can be slowed down. Thereby, highly accurate initial illuminance correction control reflecting the element temperature of the LED more accurately is realized.

さらに、修正処理部は、順方向電圧が相対的に高い場合には調光率を低下させ、順方向電圧が相対的に低い場合には調光率を増加させて補正関数を修正するように構成されてもよい。これにより、順方向電圧の高/低に調光率の低/高が対応するので、LEDの発熱及び劣化速度が適正化される。また、複数のLED点灯装置から給電されるLED間のLED電力のばらつき、すなわち照度のばらつきが解消される。   Further, the correction processing unit corrects the correction function by decreasing the dimming rate when the forward voltage is relatively high and increasing the dimming rate when the forward voltage is relatively low. It may be configured. Thereby, since low / high dimming rate corresponds to high / low forward voltage, the heat generation and deterioration rate of the LED are optimized. Moreover, the variation in LED power among LEDs fed from a plurality of LED lighting devices, that is, the variation in illuminance is eliminated.

本発明のLED照明装置は、上記のいずれかによるLED点灯装置と、LEDとを備える。上記のように、高精度な初期照度補正制御を実行するLED点灯装置を用いてLEDが点灯されるので、LED照明装置における適正な寿命管理が可能となる。   The LED lighting device of the present invention includes the LED lighting device according to any one of the above and an LED. As described above, since the LED is turned on using the LED lighting device that executes the highly accurate initial illuminance correction control, it is possible to manage the life of the LED lighting device appropriately.

第1の実施形態によるLED点灯装置及びLED照明装置のブロック図である。It is a block diagram of the LED lighting device and LED lighting device by a 1st embodiment. 第1の実施形態における温度検出回路及び照度補正回路の一例である。It is an example of the temperature detection circuit and illuminance correction circuit in 1st Embodiment. 図2の構成によるLED照明装置の動作を説明する図である。It is a figure explaining operation | movement of the LED lighting apparatus by the structure of FIG. 図2の構成によるLED照明装置の動作を説明する拡大図である。It is an enlarged view explaining operation | movement of the LED lighting apparatus by the structure of FIG. 第2の実施形態によるLED点灯装置及びLED照明装置のブロック図である。It is a block diagram of the LED lighting device and LED lighting device by 2nd Embodiment. 第2の実施形態によるLED照明装置の動作を説明する図である。It is a figure explaining operation | movement of the LED lighting apparatus by 2nd Embodiment. 第2の実施形態によるLED照明装置の動作の発展例を説明する図である。It is a figure explaining the development example of operation | movement of the LED lighting apparatus by 2nd Embodiment. 第3の実施形態によるLED点灯装置及びLED照明装置のブロック図である。It is a block diagram of the LED lighting device and LED lighting device by 3rd Embodiment. 第3の実施形態によるLED照明装置の動作を説明する図である。It is a figure explaining operation | movement of the LED lighting apparatus by 3rd Embodiment. 第3の実施形態によるLED照明装置の動作の発展例を説明する図である。It is a figure explaining the development example of operation | movement of the LED lighting apparatus by 3rd Embodiment. 変形例によるLED点灯装置及びLED照明装置のブロック図である。It is a block diagram of the LED lighting device and LED lighting device by a modification.

<第1の実施形態>
図1に、本発明の第1の実施形態によるLED点灯装置1及びLED照明装置3のブロック図を示す。LED点灯装置1及びLED2によってLED照明装置3が構成される。LED点灯装置1は、商用電源等の交流電源ACから給電され、LED2を点灯する。LED2は、直列接続又は直並列接続された複数のLED素子を備えたLEDモジュールを構成する。
<First Embodiment>
FIG. 1 shows a block diagram of an LED lighting device 1 and an LED lighting device 3 according to the first embodiment of the present invention. The LED lighting device 3 is configured by the LED lighting device 1 and the LED 2. The LED lighting device 1 is supplied with power from an AC power source AC such as a commercial power source and lights the LED 2. LED2 comprises the LED module provided with the some LED element connected in series or series-parallel.

LED点灯装置1は、入力回路10、DC/DCコンバータ20、出力検出回路30、制御回路40、温度検出回路50及び照度補正回路60を備え、交流電源ACから供給される交流入力を所定の直流出力に変換して直流電流及び直流電圧をLED2に供給する。なお、DC/DCコンバータ20及び制御回路40を併せて直流電源回路ともいう。   The LED lighting device 1 includes an input circuit 10, a DC / DC converter 20, an output detection circuit 30, a control circuit 40, a temperature detection circuit 50, and an illuminance correction circuit 60, and receives an AC input supplied from an AC power supply AC as a predetermined direct current. It converts into an output and supplies a direct current and a direct current voltage to LED2. The DC / DC converter 20 and the control circuit 40 are also collectively referred to as a DC power supply circuit.

入力回路10は、ダイオードブリッジ11及び入力コンデンサ12を備える。交流入力電圧がダイオードブリッジ11によって全波整流され、入力コンデンサ12には脈流電圧が現われる。なお、直流電源からの直流電圧がLED点灯装置1に入力される場合には入力回路10は不要である。   The input circuit 10 includes a diode bridge 11 and an input capacitor 12. The AC input voltage is full-wave rectified by the diode bridge 11, and a pulsating voltage appears at the input capacitor 12. Note that the input circuit 10 is not required when a DC voltage from a DC power source is input to the LED lighting device 1.

DC/DCコンバータ20は、スイッチング素子21(MOSFET)、トランス22、ダイオード23及び出力コンデンサ24を備え、スイッチング素子21のPWM駆動によってLED2に直流電力を供給する。DC/DCコンバータ20は、本実施形態においては絶縁型フライバックコンバータからなり、力率改善機能を持つ、いわゆるワンコンバータ方式のフライバック回路を構成する。なお、DC/DCコンバータ20は、バックコンバータ、バックブーストコンバータ等、他の形式のコンバータであってもよい。   The DC / DC converter 20 includes a switching element 21 (MOSFET), a transformer 22, a diode 23, and an output capacitor 24, and supplies DC power to the LED 2 by PWM driving of the switching element 21. In the present embodiment, the DC / DC converter 20 is an insulating flyback converter, and constitutes a so-called one-converter flyback circuit having a power factor improving function. The DC / DC converter 20 may be other types of converters such as a buck converter and a buck boost converter.

スイッチング素子21のオン期間にトランス22の一次巻線によってエネルギーが蓄積され、スイッチング素子21のオフ期間にそのエネルギーがトランス22の二次巻線側からダイオード23を介して出力コンデンサ24に充電される。DC/DCコンバータ20の出力電力は、スイッチング素子21のPWM制御におけるオンデューティ(デューティ比)、一次巻線に対する二次巻線の巻数比等によって決まる。スイッチング素子21は、後述するスイッチング制御用の制御IC45によって駆動される。なお、以降の説明において、入力コンデンサ12の低電位電極側ノードを一次側グランドG1といい、出力コンデンサ24の低電位電極側ノードを二次側グランドG2というものとする。また、DC/DCコンバータ20の出力電流を単に「出力電流」といい、DC/DCコンバータ20の出力電圧を単に「出力電圧」という。各実施形態において、出力電流はLED電流に等しく、出力電圧はLED2の順方向電圧Vfに等しいものとする。   Energy is accumulated by the primary winding of the transformer 22 during the ON period of the switching element 21, and the energy is charged to the output capacitor 24 from the secondary winding side of the transformer 22 via the diode 23 during the OFF period of the switching element 21. . The output power of the DC / DC converter 20 is determined by the on-duty (duty ratio) in the PWM control of the switching element 21, the turn ratio of the secondary winding to the primary winding, and the like. The switching element 21 is driven by a control IC 45 for switching control described later. In the following description, the low potential electrode side node of the input capacitor 12 is referred to as a primary side ground G1, and the low potential electrode side node of the output capacitor 24 is referred to as a secondary side ground G2. The output current of the DC / DC converter 20 is simply referred to as “output current”, and the output voltage of the DC / DC converter 20 is simply referred to as “output voltage”. In each embodiment, the output current is equal to the LED current, and the output voltage is equal to the forward voltage Vf of LED2.

出力検出回路30は、電流検出抵抗31からなる電流検出回路を含み、二次側グランドG2を基準電位とする。電流検出抵抗31は二次側グランドG2とLED2のカソード端との間に挿入された低抵抗素子からなり、出力電流に比例した電圧が電流検出抵抗31に発生する。   The output detection circuit 30 includes a current detection circuit including a current detection resistor 31, and uses the secondary side ground G2 as a reference potential. The current detection resistor 31 is a low resistance element inserted between the secondary side ground G2 and the cathode end of the LED 2, and a voltage proportional to the output current is generated in the current detection resistor 31.

制御回路40は、オペアンプ41、定電圧源42(例えば制御電源)、抵抗43、フォトカプラ44及び制御IC45を含み、DC/DCコンバータ20の出力を定電流制御する。フォトカプラ44はフォトダイオード44d及びフォトトランジスタ44tを含み、フォトダイオード44d及びその前段の回路(オペアンプ41、定電圧源42等)が二次側グランドG2を基準電位とし、フォトトランジスタ44t及びその後段の回路(制御IC45)が一次側グランドG1を基準電位として動作する。なお、制御回路40には、制御電源が適宜給電されるものとする。   The control circuit 40 includes an operational amplifier 41, a constant voltage source 42 (for example, a control power source), a resistor 43, a photocoupler 44, and a control IC 45, and performs constant current control on the output of the DC / DC converter 20. The photocoupler 44 includes a photodiode 44d and a phototransistor 44t, and the photodiode 44d and the preceding circuit (the operational amplifier 41, the constant voltage source 42, etc.) use the secondary side ground G2 as a reference potential, and the phototransistor 44t and the subsequent stage The circuit (control IC 45) operates using the primary side ground G1 as a reference potential. Note that a control power source is appropriately supplied to the control circuit 40.

オペアンプ41の負入力端子(−)には、出力検出回路30からの検出電流値が入力され、オペアンプ41の正入力端子(+)には、照度補正回路60からの目標電流値が入力される。オペアンプ41の負入力端子と出力端子間には不図示の帰還素子(抵抗、コンデンサ、又はこれらの直列回路若しくは並列回路)が接続され、負入力端子電圧と正入力端子電圧の誤差が出力端子において出力される。オペアンプ41の出力はフォトダイオード44dのカソードに接続され、フォトダイオード44dのアノードは抵抗43を介して定電圧源42に接続される。フォトカプラ44では、フォトダイオード44dに流れる電流に応じてフォトトランジスタ44tの出力状態が決定され、フォトトランジスタ44tの出力が入力信号として制御IC45に入力される。通常点灯時においては、オペアンプ41は、出力電流(検出電流値)が目標電流値に一致するようにスイッチング素子21のPWM制御におけるオン幅を決定することになる。   The detection current value from the output detection circuit 30 is input to the negative input terminal (−) of the operational amplifier 41, and the target current value from the illuminance correction circuit 60 is input to the positive input terminal (+) of the operational amplifier 41. . A feedback element (not shown) (resistor, capacitor, or a series circuit or a parallel circuit thereof) is connected between the negative input terminal and the output terminal of the operational amplifier 41, and an error between the negative input terminal voltage and the positive input terminal voltage is detected at the output terminal. Is output. The output of the operational amplifier 41 is connected to the cathode of the photodiode 44 d, and the anode of the photodiode 44 d is connected to the constant voltage source 42 via the resistor 43. In the photocoupler 44, the output state of the phototransistor 44t is determined according to the current flowing through the photodiode 44d, and the output of the phototransistor 44t is input to the control IC 45 as an input signal. During normal lighting, the operational amplifier 41 determines the ON width in the PWM control of the switching element 21 so that the output current (detected current value) matches the target current value.

制御IC45は、一般的なLEDドライバICからなり、制御IC45には不図示の周辺回路素子が適宜接続される。制御IC45は、フォトトランジスタ44tの出力状態に応じたパルス幅のPWM駆動信号を生成し、それをスイッチング素子21のゲート電圧として出力する。例えば、制御IC45は、フォトダイオード44d及びフォトトランジスタ44tの電流の増加/減少に対してPWM制御のオン幅を減少/増加させ、出力電流を低減させる。すなわち、制御回路40は、出力電流が目標電流値に一致するようにDC/DCコンバータ20を定電流制御する。   The control IC 45 includes a general LED driver IC, and peripheral circuit elements (not shown) are appropriately connected to the control IC 45. The control IC 45 generates a PWM drive signal having a pulse width corresponding to the output state of the phototransistor 44 t and outputs it as the gate voltage of the switching element 21. For example, the control IC 45 decreases / increases the on width of the PWM control and decreases the output current with respect to the increase / decrease of the current of the photodiode 44d and the phototransistor 44t. That is, the control circuit 40 performs constant current control on the DC / DC converter 20 so that the output current matches the target current value.

温度検出回路50は、LED2の近傍に配置され、LED2の雰囲気温度又は周辺温度を検出し、この検出温度を電気信号に変換する。温度検出回路50は、回路上はLED点灯装置1の一部を構成しているが、配置上はLED点灯装置1の筐体内ではなく、LED2のモジュールが収納される筐体の内部又は外部に配置されることが好ましい。言い換えると、温度検出回路50は、LED点灯装置1の筐体の外部であってLED照明装置3の筐体の内部又は外部にある。なお、LED2の雰囲気温度又は周辺温度とは、LED2を構成するLEDモジュールが収納される上記筐体の周囲温度である。温度検出回路50は、LED2に並列接続された、抵抗51とPTCサーミスタ52の直列回路を備える。   The temperature detection circuit 50 is disposed in the vicinity of the LED 2, detects the ambient temperature or the ambient temperature of the LED 2, and converts the detected temperature into an electrical signal. The temperature detection circuit 50 constitutes a part of the LED lighting device 1 on the circuit, but is not inside the housing of the LED lighting device 1 but on the inside or outside of the housing in which the module of the LED 2 is housed. Preferably they are arranged. In other words, the temperature detection circuit 50 is outside the housing of the LED lighting device 1 and inside or outside the housing of the LED lighting device 3. The ambient temperature or the ambient temperature of the LED 2 is the ambient temperature of the casing in which the LED module that constitutes the LED 2 is housed. The temperature detection circuit 50 includes a series circuit of a resistor 51 and a PTC thermistor 52 connected in parallel to the LED 2.

本例では、検出温度の高/低に対して、PTCサーミスタ52の電圧、すなわち温度検出回路50の温度検出値の高/低が対応する。温度検出回路50によって検出された温度検出値は照度補正回路60に出力される。なお、検出温度の高低と温度検出回路50の温度検出値の高低の論理が逆になるように温度検出回路50が構成されてもよい。また、配線上可能であれば、温度検出回路50が制御電源と二次側グランドG2の間に接続される構成としてもよい。この場合、温度検出回路50の検出値が出力電圧に影響されないので、LED2の順方向電圧Vfのばらつき又は変動(LED素子の一部短絡等の異常によるばらつきも含む)が温度検出値に影響しない。   In this example, the voltage of the PTC thermistor 52, that is, the high / low of the temperature detection value of the temperature detection circuit 50 corresponds to the high / low of the detection temperature. The temperature detection value detected by the temperature detection circuit 50 is output to the illuminance correction circuit 60. Note that the temperature detection circuit 50 may be configured such that the logic of the detected temperature level and the detected temperature level of the temperature detection circuit 50 are reversed. If possible on the wiring, the temperature detection circuit 50 may be connected between the control power supply and the secondary side ground G2. In this case, since the detection value of the temperature detection circuit 50 is not affected by the output voltage, variations or fluctuations in the forward voltage Vf of the LED 2 (including variations due to abnormalities such as partial short circuit of the LED element) do not affect the temperature detection value. .

照度補正回路60は、例えばマイコンからなり、点灯時間に応じて所定の態様で調光率及び調光指令値を上昇させる初期照度補正機能を実行する。照度補正回路60は、上昇率決定部61、調光率決定部62、A/D変換部66、記憶部67及び計時部68を備え、これらの各部はバスBによって相互に信号又はデータのやり取りが可能な態様で接続される。上昇率決定部61及び調光率決定部62はCPUの一部を構成し、このCPUは、上記各部に含まれない一般的な処理機能を適宜実行できるものとする。A/D変換部66は、温度検出回路50によって検出された検出温度に対応する電圧をA/D変換してマイコンに取り込む。なお、A/D変換部66はマイコンの外部にあってもよい。記憶部67はデータ及びプログラムを記憶するための不揮発性メモリであり、計時部68はタイマ又はカウンタからなる。   The illuminance correction circuit 60 includes, for example, a microcomputer, and executes an initial illuminance correction function for increasing the dimming rate and the dimming command value in a predetermined manner according to the lighting time. The illuminance correction circuit 60 includes an increase rate determination unit 61, a dimming rate determination unit 62, an A / D conversion unit 66, a storage unit 67, and a timing unit 68. These units exchange signals or data with each other via a bus B. Are connected in a possible manner. The increase rate determination unit 61 and the dimming rate determination unit 62 constitute a part of the CPU, and the CPU can appropriately execute general processing functions not included in the above-described units. The A / D converter 66 performs A / D conversion on the voltage corresponding to the detected temperature detected by the temperature detection circuit 50 and takes it into the microcomputer. The A / D converter 66 may be outside the microcomputer. The storage unit 67 is a non-volatile memory for storing data and programs, and the timer unit 68 includes a timer or a counter.

上昇率決定部61は、温度検出回路50によって検出される検出温度の増加/減少に対して、単位時間あたりの調光率の上昇率である調光上昇率を逐次的に増加/減少させる。すなわち、LED2の雰囲気温度が相対的に高い場合には、LED2の劣化(すなわち、光束低下速度)が相対的に速くなることから、上昇率決定部61は、調光率上昇率を増加させる。逆に、LED2の雰囲気温度が相対的に低い場合には、LED2の劣化(すなわち、光束低下速度)が相対的に遅くなることから、上昇率決定部61は、調光率上昇率を低減させる。例えば、同じLED照明装置3においても、夏季には調光上昇率が増加し、冬季には調光上昇率が低減することになる。あるいは、温暖な地域に設置されるLED照明装置3では調光上昇率は相対的に高く、寒冷な地域に設置されるLED照明装置3では調光上昇率は相対的に低くなる。   The increase rate determination unit 61 sequentially increases / decreases the dimming increase rate, which is the increase rate of the dimming rate per unit time, with respect to the increase / decrease of the detected temperature detected by the temperature detection circuit 50. That is, when the ambient temperature of the LED 2 is relatively high, the deterioration of the LED 2 (that is, the light flux decreasing speed) becomes relatively fast, and thus the increase rate determination unit 61 increases the dimming rate increase rate. Conversely, when the ambient temperature of the LED 2 is relatively low, the deterioration of the LED 2 (that is, the luminous flux decrease rate) is relatively slow, and thus the increase rate determination unit 61 reduces the dimming rate increase rate. . For example, even in the same LED lighting device 3, the dimming increase rate increases in the summer, and the dimming increase rate decreases in the winter. Alternatively, the dimming increase rate is relatively high in the LED lighting device 3 installed in a warm region, and the dimming increase rate is relatively low in the LED lighting device 3 installed in a cold region.

調光率決定部62は、上昇率決定部61によって決定された調光上昇率及び計時部68によって計測される点灯時間に従って調光率を決定する。すなわち、第1の時刻において第1の調光率であった場合、第1の時刻から単位時間経過後の第2の時刻における第2の調光率は、決定された調光上昇率に単位時間を乗じた値を第1の調光率に加算して得られた値となる。なお、調光率は、全光点灯用の100%が上限となるように決定される。そして、調光率決定部62は、決定した調光率を、調光指令値である目標電流値に変換し、それを制御回路40のオペアンプ41に出力する。   The dimming rate determination unit 62 determines the dimming rate according to the dimming increase rate determined by the increase rate determination unit 61 and the lighting time measured by the timer unit 68. That is, when it is the first dimming rate at the first time, the second dimming rate at the second time after the unit time has elapsed from the first time is the unit of the determined dimming increase rate. A value obtained by adding the value multiplied by time to the first dimming rate is obtained. The dimming rate is determined so that the upper limit is 100% for all-light lighting. Then, the dimming rate determination unit 62 converts the determined dimming rate into a target current value that is a dimming command value, and outputs it to the operational amplifier 41 of the control circuit 40.

図1においては、検出温度がアナログ値としてA/D変換部66を介して上昇率決定部61に入力される構成を示した。これにより、検出温度に対して連続的調光率が決定される初期照度補正制御が可能となり、初期照度補正の解像度が向上する。一方、検出温度が2値信号として上昇率決定部61に入力されるようにしてもよい。この場合、A/D変換部66は省略されてもよく、構成の簡素化が可能となる。図2に、上記のように検出温度が2値信号として与えられる場合の例示の温度検出回路50及び照度補正回路60を示す。   FIG. 1 shows a configuration in which the detected temperature is input as an analog value to the increase rate determination unit 61 via the A / D conversion unit 66. Thereby, it is possible to perform initial illuminance correction control in which the continuous light control rate is determined with respect to the detected temperature, and the resolution of the initial illuminance correction is improved. On the other hand, the detected temperature may be input to the increase rate determining unit 61 as a binary signal. In this case, the A / D conversion unit 66 may be omitted, and the configuration can be simplified. FIG. 2 shows an exemplary temperature detection circuit 50 and illuminance correction circuit 60 when the detected temperature is given as a binary signal as described above.

図2に示すように、温度検出回路50は、抵抗51、PTCサーミスタ52、及びMOSFET等のスイッチング素子53を含む。上述したように、温度検出回路50は、温度検出精度の観点からLED2のモジュール側に配置されることが好ましい。雰囲気温度が所定の温度閾値(例えば、30℃)を超えると、上昇したPTCサーミスタ52の抵抗値及び電圧によってスイッチング素子53がオンし、上昇率決定部61への入力値はロー(ゼロ)となる。一方、雰囲気温度が温度閾値以下となると、低下したPTCサーミスタ52の抵抗値及び電圧によってスイッチング素子53がオフし、電圧源54(例えば制御電源)から抵抗55を介して上昇率決定部61への入力が発生して入力値がハイとなる。上記の切換が所望の温度閾値で行われるように、抵抗51の抵抗値及びPTCサーミスタ52の特性が選定されるものとする。   As shown in FIG. 2, the temperature detection circuit 50 includes a resistor 51, a PTC thermistor 52, and a switching element 53 such as a MOSFET. As described above, the temperature detection circuit 50 is preferably disposed on the module side of the LED 2 from the viewpoint of temperature detection accuracy. When the ambient temperature exceeds a predetermined temperature threshold (for example, 30 ° C.), the switching element 53 is turned on by the increased resistance value and voltage of the PTC thermistor 52, and the input value to the increase rate determination unit 61 is low (zero). Become. On the other hand, when the ambient temperature becomes equal to or lower than the temperature threshold, the switching element 53 is turned off by the decreased resistance value and voltage of the PTC thermistor 52, and the voltage source 54 (for example, control power supply) is connected to the increase rate determination unit 61 via the resistor 55. An input occurs and the input value goes high. It is assumed that the resistance value of the resistor 51 and the characteristics of the PTC thermistor 52 are selected so that the above switching is performed at a desired temperature threshold.

図3Aに、図2の回路が採用されたLED点灯装置1(LED照明装置3)が固定点に設置された場合に結果として得られることになる点灯状態(調光率:%)及び照度(又は光束)を示す。横軸は、LED2の寿命(例えば、100000時間)にわたる点灯時間である。また、図3Bは、図3Aのグラフの一部拡大図である。なお、本開示の各図において図は模式図であり、寸法通りとは限らない。   In FIG. 3A, when the LED lighting device 1 (LED lighting device 3) employing the circuit of FIG. 2 is installed at a fixed point, a lighting state (dimming rate:%) and illuminance ( Or luminous flux). The horizontal axis represents the lighting time over the lifetime of the LED 2 (for example, 100,000 hours). FIG. 3B is a partially enlarged view of the graph of FIG. 3A. In each figure of this indication, a figure is a mimetic diagram and is not necessarily according to a size.

図3Aに示すように、調光率は80%で開始され、その後上昇され、調光率が100%に達した後は全光点灯が維持される。これにより、照度は寿命にわたって略一定となる。図3Bに示すように(図3Aにおいてもわずかに視認されるように)、調光上昇率は、概ね周期的に切り換えられる。すなわち、雰囲気温度が温度閾値30℃を超える夏季には高い調光上昇率Aが適用され、雰囲気温度が温度閾値30℃以下となる冬季には低い調光上昇率Bが適用される。なお、年間を通じた1日あたりの平均点灯時間が10時間程度である場合、一組の調光上昇率A(夏季)及び調光上昇率B(冬季)のサイクルは3650時間程度となる。   As shown in FIG. 3A, the dimming rate starts at 80% and then increases, and after the dimming rate reaches 100%, the all-light lighting is maintained. Thereby, the illuminance becomes substantially constant over the lifetime. As shown in FIG. 3B (as seen slightly in FIG. 3A), the dimming increase rate is switched approximately periodically. That is, a high dimming rate A is applied in the summer when the ambient temperature exceeds the temperature threshold 30 ° C., and a low dimming rate B is applied in the winter when the ambient temperature is 30 ° C. or less. When the average lighting time per day throughout the year is about 10 hours, the cycle of a set of dimming rate A (summer) and dimming rate B (winter) is about 3650 hours.

なお、調光上昇率A及びBの設定の一例は以下の通りである。調光上昇率Aは、雰囲気温度が35℃一定である場合に照度が一定となる初期照度補正が実行されるように設定された関数である。例えば、調光上昇率Aは、仮に調光上昇率Aが固定されて適用された場合に累積点灯時間が40000時間に達した時点で調光率が100%に達するように構成されている。一方、調光上昇率Bは、雰囲気温度が25℃一定である場合に照度が一定となる初期照度補正が実行されるように設定された関数である。例えば、調光上昇率Bは、仮に調光上昇率Bが固定されて適用された場合に累積点灯時間が60000時間に達した時点で調光率が100%に達するように構成されている。これにより、図3Bに示す初期照度補正制御の結果として、図3Aに示すように、累積点灯時間が40000時間より長く60000時間未満のいずれかの時点(図3Aでは約50000時間付近)で調光率は100%に達する。   An example of setting the dimming increase rates A and B is as follows. The dimming increase rate A is a function set so that the initial illuminance correction is performed such that the illuminance becomes constant when the ambient temperature is constant at 35 ° C. For example, the dimming increase rate A is configured such that the dimming rate reaches 100% when the cumulative lighting time reaches 40000 hours if the dimming increase rate A is fixed and applied. On the other hand, the dimming increase rate B is a function set so that the initial illuminance correction in which the illuminance becomes constant when the ambient temperature is constant at 25 ° C. is executed. For example, the dimming increase rate B is configured such that the dimming rate reaches 100% when the cumulative lighting time reaches 60000 hours if the dimming increase rate B is fixed and applied. Thereby, as a result of the initial illuminance correction control shown in FIG. 3B, as shown in FIG. 3A, dimming is performed at any time (approximately 50000 hours in FIG. 3A) that is longer than 40000 hours and less than 60000 hours. The rate reaches 100%.

なお、図1及び図2の構成いずれにおいても、初回点灯時には、デフォルト設定の調光上昇率が適用されればよい。また、調光率が100%に到達した後は、上昇率決定部61は調光上昇率を決定することなく、調光率決定部62が全光点灯に対応する調光指令値(目標電流値)を制御回路40に出力するようにすればよい。   In any of the configurations of FIGS. 1 and 2, a default dimming increase rate may be applied at the first lighting. Further, after the dimming rate reaches 100%, the increase rate determination unit 61 does not determine the dimming increase rate, and the dimming rate determination unit 62 determines the dimming command value (target current corresponding to all-lighting). Value) may be output to the control circuit 40.

以上のように、本実施形態によるLED点灯装置1は、調光指令値が示す調光率に従って直流出力をLED2に供給する直流電源回路(DC/DCコンバータ20及び制御回路40)と、LED2の近傍の温度を検出する温度検出回路50と、照度補正回路60を備える。照度補正回路60において、上昇率決定部61が、温度検出回路50によって検出される検出温度の増加/減少に対して調光上昇率を逐次的に増加/減少させ、計時部68がLED2の点灯時間を計測し、調光率決定部62が調光上昇率及び点灯時間から得られる調光率に基づいて調光指令値を決定する。   As described above, the LED lighting device 1 according to the present embodiment includes the DC power supply circuit (the DC / DC converter 20 and the control circuit 40) that supplies the DC output to the LED 2 according to the dimming rate indicated by the dimming command value, and the LED 2 A temperature detection circuit 50 for detecting the temperature in the vicinity and an illuminance correction circuit 60 are provided. In the illuminance correction circuit 60, the increase rate determination unit 61 sequentially increases / decreases the dimming increase rate with respect to the increase / decrease of the detected temperature detected by the temperature detection circuit 50, and the timer unit 68 turns on the LED 2 The time is measured, and the dimming rate determination unit 62 determines the dimming command value based on the dimming rate obtained from the dimming increase rate and the lighting time.

このように、上昇率決定部61が検出温度の増加/減少に対して調光上昇率を逐次的に増加/減少させ、この調光上昇率及び点灯時間に基づいて調光率決定部62が調光指令値を決定するので、検出温度に対して高い追従性を有する照度補正が実現される。さらに、検出温度の増加又は減少に対して調光上昇率が連続的に増加又は減少するように構成される場合には、検出温度に対して高い解像度の照度補正が得られる。この高い追従性又は解像度によって、高い精度の初期照度補正制御が実現される。また、高精度な初期照度補正制御を実行するLED点灯装置1を用いてLED2が点灯されるので、LED照明装置3における適正な寿命管理が可能となる。   In this way, the increase rate determination unit 61 sequentially increases / decreases the dimming increase rate with respect to the increase / decrease of the detected temperature, and the dimming rate determination unit 62 performs the increase / decrease based on the dimming increase rate and the lighting time. Since the dimming command value is determined, illuminance correction having high followability with respect to the detected temperature is realized. Further, when the dimming increase rate is continuously increased or decreased with respect to the increase or decrease of the detection temperature, illuminance correction with high resolution can be obtained with respect to the detection temperature. With this high followability or resolution, highly accurate initial illuminance correction control is realized. Moreover, since LED2 is lighted using LED lighting device 1 which performs highly accurate initial illumination correction control, appropriate lifetime management in LED lighting device 3 becomes possible.

<第2の実施形態>
上記第1の実施形態では、初期照度補正制御が雰囲気温度に依存する構成を示したが、本実施形態では、初期照度補正制御が雰囲気温度だけでなく順方向電圧Vfにも依存する構成を示す。
<Second Embodiment>
In the first embodiment, the configuration in which the initial illuminance correction control depends on the ambient temperature is shown, but in the present embodiment, the configuration in which the initial illuminance correction control depends not only on the ambient temperature but also on the forward voltage Vf is shown. .

図4に、本実施形態によるLED点灯装置1及びLED照明装置3のブロック図を示す。本実施形態において、上記第1の実施形態(図1)と実質的に同様の構成には、同一の符号を付し、その詳細な説明を省略する。   FIG. 4 shows a block diagram of the LED lighting device 1 and the LED lighting device 3 according to the present embodiment. In the present embodiment, the same reference numerals are given to substantially the same configurations as those in the first embodiment (FIG. 1), and detailed description thereof will be omitted.

本実施形態では、出力検出回路30は、電流検出抵抗31に加えて、抵抗32及び33を含む電圧検出回路を更に備える。電圧検出回路(抵抗32及び33)は出力コンデンサ24に並列接続された分圧抵抗回路からなり、出力電圧に比例した電圧が抵抗33に発生する。電圧検出回路によって検出される検出電圧、すなわち、LED2の順方向電圧Vfは、照度補正回路60のA/D変換部66に入力される。   In the present embodiment, the output detection circuit 30 further includes a voltage detection circuit including resistors 32 and 33 in addition to the current detection resistor 31. The voltage detection circuit (resistors 32 and 33) is a voltage dividing resistor circuit connected in parallel to the output capacitor 24, and a voltage proportional to the output voltage is generated in the resistor 33. The detection voltage detected by the voltage detection circuit, that is, the forward voltage Vf of the LED 2 is input to the A / D conversion unit 66 of the illuminance correction circuit 60.

照度補正回路60は、上昇率決定部61、調光率決定部62、修正処理部65、A/D変換部66、記憶部67及び計時部68に加え、修正処理部65を更に備え、これらの各部はバスBによって相互に信号又はデータのやり取りが可能な態様で接続される。また、上昇率決定部61、調光率決定部62及び修正処理部65は、CPUの一部を構成する。   The illuminance correction circuit 60 further includes a correction processing unit 65 in addition to the increase rate determination unit 61, the dimming rate determination unit 62, the correction processing unit 65, the A / D conversion unit 66, the storage unit 67, and the time measuring unit 68. These parts are connected by a bus B in such a manner that signals or data can be exchanged with each other. Moreover, the increase rate determination part 61, the light control rate determination part 62, and the correction process part 65 comprise a part of CPU.

修正処理部65は、上昇率決定部61によって決定された調光上昇率について、LED2の順方向電圧Vfが相対的に高い場合には調光上昇率を増加させ、順方向電圧Vfが相対的に低い場合には調光上昇率を低下させるように修正処理を行う。調光率決定部62は、この修正された調光上昇率及び点灯時間に従って調光率を決定し、この調光率に基づく調光指令値である目標電流値を制御回路40に出力する。順方向電圧Vfの高低に対する調光上昇率の高低の関係はLED2の劣化特性、順方向電圧Vfのばらつき等を考慮して予め定められており、順方向電圧Vfの変化に対する調光上昇率の変化は段階的であってもよいし、連続的であってもよい。   The correction processing unit 65 increases the dimming increase rate when the forward voltage Vf of the LED 2 is relatively high with respect to the dimming increase rate determined by the increase rate determining unit 61, and the forward voltage Vf is relatively If it is too low, correction processing is performed so as to reduce the dimming rate. The dimming rate determination unit 62 determines the dimming rate according to the corrected dimming rate and lighting time, and outputs a target current value that is a dimming command value based on the dimming rate to the control circuit 40. The relationship between the level of dimming increase with respect to the level of forward voltage Vf is determined in advance in consideration of the deterioration characteristics of LED 2, variation in forward voltage Vf, and the like. The change may be gradual or continuous.

より詳細には、同じLED電流に対して、順方向電圧Vfが高いほど、LED電力が高く、LED2の素子温度が高く、LED2の劣化が速くなる一方で、順方向電圧Vfが低いほど、LED電力が低く、LED2の素子温度が低く、LED2の劣化が遅くなる。したがって、修正処理部65は、順方向電圧Vfが相対的に高い場合には相対的に速く調光率を増加させ、順方向電圧Vfが相対的に低い場合には相対的に遅く調光率を増加させる。これにより、初期照度補正制御の効果が適正化される。   More specifically, for the same LED current, the higher the forward voltage Vf, the higher the LED power, the higher the element temperature of the LED2, and the faster the LED2 deteriorates, while the lower the forward voltage Vf, The power is low, the element temperature of the LED 2 is low, and the deterioration of the LED 2 is delayed. Accordingly, the correction processing unit 65 increases the dimming rate relatively fast when the forward voltage Vf is relatively high, and relatively slow when the forward voltage Vf is relatively low. Increase. Thereby, the effect of the initial illuminance correction control is optimized.

図5を参照して、調光率変化の例示とともにLED点灯装置1の動作を説明する。図5は、同じ環境に設置された3台のLED点灯装置1における調光率C1、C2及びC3の変化を示し、縦軸は点灯状態(調光率)であり、横軸は累積点灯時間である。各調光率の変化に対応する照度(光束)は略一定となるものとする。調光率C1、C2及びC3は、LED点灯装置1に接続されたLED2の順方向電圧VfがそれぞれVf1、Vf2及びVf3である場合に結果として得られることになる調光率である。ここで、Vf1<Vf2<Vf3である。図示するように、修正処理の結果としての調光上昇率に関して、C1<C2<C3、となる。すなわち、相対的に高い順方向電圧VfのLED2に対しては相対的に速い照度上昇が適用され、相対的に低い順方向電圧VfのLED2に対しては相対的に遅い照度上昇が適用される。   With reference to FIG. 5, operation | movement of the LED lighting device 1 is demonstrated with the illustration of a light control rate change. FIG. 5 shows changes in dimming rates C1, C2 and C3 in three LED lighting devices 1 installed in the same environment, where the vertical axis is the lighting state (dimming rate), and the horizontal axis is the cumulative lighting time. It is. It is assumed that the illuminance (light flux) corresponding to the change in each dimming rate is substantially constant. The dimming rates C1, C2, and C3 are dimming rates that are obtained as a result when the forward voltage Vf of the LED 2 connected to the LED lighting device 1 is Vf1, Vf2, and Vf3, respectively. Here, Vf1 <Vf2 <Vf3. As shown in the figure, the dimming increase rate as a result of the correction process is C1 <C2 <C3. That is, a relatively fast illuminance increase is applied to the LED 2 having a relatively high forward voltage Vf, and a relatively slow illuminance increase is applied to the LED 2 having a relatively low forward voltage Vf. .

以上のように、本実施形態のLED点灯装置1は、出力検出回路30が、LED2の順方向電圧Vfを検出する電圧検出回路(抵抗32及び33)を含み、修正決定部65が、順方向電圧Vfが相対的に高い場合には調光上昇率を増加させ、順方向電圧Vfが相対的に低い場合には調光上昇率を低下させるように修正処理を行う。これにより、順方向電圧Vfの高/低、すなわち、LED電力の高/低に調光上昇率の高/低が対応するので、発熱が多く劣化が速くなり得るLED2に対しては相対的に速い照度上昇が適用され、発熱が小さく劣化が遅くなり得るLED2に対しては相対的に遅い照度上昇が適用される。このように、上記第1の実施形態で得られる有利な効果に加えて、LED2の素子温度をより正確に反映した高精度な初期照度補正制御が実現される。   As described above, in the LED lighting device 1 of the present embodiment, the output detection circuit 30 includes the voltage detection circuit (resistors 32 and 33) that detects the forward voltage Vf of the LED 2, and the correction determination unit 65 includes the forward direction. When the voltage Vf is relatively high, the dimming increase rate is increased, and when the forward voltage Vf is relatively low, correction processing is performed so as to decrease the dimming increase rate. Accordingly, the forward voltage Vf is high / low, that is, the LED power is high / low, and the dimming increase rate is high / low. A fast increase in illuminance is applied, and a relatively slow increase in illuminance is applied to the LED 2 that generates a small amount of heat and can be degraded slowly. Thus, in addition to the advantageous effects obtained in the first embodiment, highly accurate initial illuminance correction control that more accurately reflects the element temperature of the LED 2 is realized.

<第2の実施形態の発展例>
本実施形態の発展例として、修正処理部65が、調光率決定部62によって決定された調光率(調光指令値)を更に修正するようにしてもよい。具体的には、修正処理部65は、順方向電圧Vfが相対的に高い場合には調光率を低下させ、順方向電圧Vfが相対的に低い場合には、調光率を増加させる。順方向電圧Vfの高低に対する調光率(調光指令値)の低高の関係はLED2の劣化特性、順方向電圧Vfのばらつき等を考慮して予め定められており、順方向電圧Vfの変化に対する調光率の変化は段階的であってもよいし、連続的であってもよい。
<Development of Second Embodiment>
As a development example of the present embodiment, the correction processing unit 65 may further correct the dimming rate (the dimming command value) determined by the dimming rate determining unit 62. Specifically, the correction processing unit 65 decreases the dimming rate when the forward voltage Vf is relatively high, and increases the dimming rate when the forward voltage Vf is relatively low. The relationship between the level of the dimming rate (dimming command value) with respect to the level of the forward voltage Vf is predetermined in consideration of the deterioration characteristics of the LED 2 and variations in the forward voltage Vf, and the change in the forward voltage Vf. The change in the dimming rate with respect to may be stepwise or continuous.

図6を参照して、調光率変化の例示とともにLED点灯装置1の動作を説明する。図6は、同じ環境に設置された3台のLED点灯装置1における調光率D1、D2及びD3を示し、縦軸は点灯状態(調光率)であり、横軸は累積点灯時間である。各調光率の変化に対応する照度(光束)は略一定となるものとする。調光率D1、D2及びD3は、LED点灯装置1に接続されたLED2の順方向電圧VfがそれぞれVf1、Vf2及びVf3(Vf1<Vf2<Vf3)である場合に、結果として得られることになる調光率である。順方向電圧Vfは点灯初期において上記の差となって現れるので、修正処理部65による修正処理は点灯初期(例えば、初回点灯時)に行われればよい。   With reference to FIG. 6, operation | movement of the LED lighting device 1 is demonstrated with the illustration of a light control rate change. FIG. 6 shows dimming rates D1, D2 and D3 in the three LED lighting devices 1 installed in the same environment, the vertical axis is the lighting state (dimming rate), and the horizontal axis is the cumulative lighting time. . It is assumed that the illuminance (light flux) corresponding to the change in each dimming rate is substantially constant. The dimming rates D1, D2, and D3 are obtained as a result when the forward voltages Vf of the LEDs 2 connected to the LED lighting device 1 are Vf1, Vf2, and Vf3 (Vf1 <Vf2 <Vf3), respectively. Dimming rate. Since the forward voltage Vf appears as the above difference at the beginning of lighting, the correction processing by the correction processing unit 65 may be performed at the beginning of lighting (for example, at the first lighting).

このような修正処理の結果として、調光率D1は調光率D2の初期調光率を増加させたものとなり、調光率D3は調光率D2の初期調光率を低下させたものとなる。言い換えると、調光率D1は図5の調光率C1を全体として上昇させたものとなり、調光率D3は図5の調光率C3を全体として低下させたものとなる。これにより、相対的に高い順方向電圧VfのLED2に対しては相対的に低い調光率でかつ速い照度上昇が適用され、相対的に低い順方向電圧VfのLED2に対しては相対的に高い調光率でかつ遅い照度上昇が適用される。   As a result of such correction processing, the dimming rate D1 is obtained by increasing the initial dimming rate of the dimming rate D2, and the dimming rate D3 is obtained by reducing the initial dimming rate of the dimming rate D2. Become. In other words, the dimming rate D1 is obtained by increasing the dimming rate C1 in FIG. 5 as a whole, and the dimming rate D3 is obtained by reducing the dimming rate C3 in FIG. 5 as a whole. As a result, a relatively low dimming rate and a fast increase in illuminance are applied to the LED 2 having a relatively high forward voltage Vf, and relatively to an LED 2 having a relatively low forward voltage Vf. A high dimming rate and a slow illuminance increase are applied.

なお、第2の実施形態及びその発展例において、修正処理部65による調光上昇率の修正処理又は調光率(調光指令値)の修正処理は、調光率が100%に達する前の期間であれば、点灯初期に限らず随時実行されてもよい。これは、順方向電圧Vfが経時的に変動し得るものであること、及びLED2を構成するLED素子の一部短絡故障によって順方向電圧Vfが低減し得ることを考慮するものである。また、結果として調光率が上述したように修正されるのであれば、修正処理部65は、調光率を修正してもよいし、調光指令値を修正してもよい。   In the second embodiment and its development example, the dimming rate correction process or the dimming rate (dimming command value) correction process performed by the correction processing unit 65 is performed before the dimming rate reaches 100%. If it is a period, you may perform at any time not only in the lighting initial stage. This takes into consideration that the forward voltage Vf can be varied with time and that the forward voltage Vf can be reduced by a partial short-circuit failure of the LED elements constituting the LED 2. As a result, if the dimming rate is corrected as described above, the correction processing unit 65 may correct the dimming rate or the dimming command value.

以上のように、本例のLED点灯装置1においては、修正処理部65は、順方向電圧Vfが相対的に高い場合には調光率を低下させ、順方向電圧Vfが相対的に低い場合には調光率を増加させる。これにより、順方向電圧Vfの高/低に調光率の低/高が対応するので、LED2の発熱及び劣化速度が適正化される。また、複数のLED点灯装置1から給電されるLED2間のLED電力のばらつき、すなわち照度のばらつきが解消される効果も得られる。   As described above, in the LED lighting device 1 of this example, the correction processing unit 65 reduces the dimming rate when the forward voltage Vf is relatively high, and the forward voltage Vf is relatively low. To increase the dimming rate. Thereby, the low / high dimming rate corresponds to the high / low forward voltage Vf, so that the heat generation and deterioration rate of the LED 2 are optimized. Moreover, the effect of eliminating the variation in LED power between the LEDs 2 fed from the plurality of LED lighting devices 1, that is, the variation in illuminance can also be obtained.

<第3の実施形態>
上記第2の実施形態では、点灯時間及び順方向電圧Vfに基づいて初期照度補正制御が行われる構成の前提として、調光上昇率が逐次的に決定される構成を示した。本実施形態では、調光上昇率が予め決定されている構成において、点灯時間及び順方向電圧Vfに基づいて初期照度補正制御が行われる構成を示す。
<Third Embodiment>
In the second embodiment, the configuration in which the dimming increase rate is sequentially determined as a premise of the configuration in which the initial illuminance correction control is performed based on the lighting time and the forward voltage Vf is shown. In the present embodiment, a configuration in which the initial illumination correction control is performed based on the lighting time and the forward voltage Vf in a configuration in which the dimming increase rate is determined in advance is shown.

図7に、本実施形態によるLED点灯装置1及びLED照明装置3のブロック図を示す。本実施形態において、上記第2の実施形態(図4)と実質的に同様の構成には、同一の符号を付し、その詳細な説明を省略する。   FIG. 7 shows a block diagram of the LED lighting device 1 and the LED lighting device 3 according to the present embodiment. In the present embodiment, components substantially the same as those of the second embodiment (FIG. 4) are denoted by the same reference numerals, and detailed description thereof is omitted.

照度補正回路60は、調光率決定部62、補正関数決定部63、点灯時間取得部64、修正処理部65、A/D変換部66、記憶部67及び計時部68を備え、これらの各部はバスBによって相互に信号又はデータのやり取りが可能な態様で接続される。また、調光率決定部62、補正関数決定部63、点灯時間取得部64及び修正処理部65は、CPUの一部を構成する。なお、温度検出回路50及び照度補正回路60として、図2に示す構成が採用されてもよい。   The illuminance correction circuit 60 includes a dimming rate determination unit 62, a correction function determination unit 63, a lighting time acquisition unit 64, a correction processing unit 65, an A / D conversion unit 66, a storage unit 67, and a timer unit 68. Are connected by a bus B in such a manner that signals or data can be exchanged with each other. Moreover, the light control rate determination part 62, the correction function determination part 63, the lighting time acquisition part 64, and the correction process part 65 comprise some CPUs. Note that the configuration shown in FIG. 2 may be employed as the temperature detection circuit 50 and the illuminance correction circuit 60.

記憶部67には、LED2の累積点灯時間に対する調光率を示す調光指令値(目標電流値)の変化を、雰囲気温度ごとに規定する複数の補正関数が記憶される。補正関数に関しては後述する。   The storage unit 67 stores a plurality of correction functions that define changes in the dimming command value (target current value) indicating the dimming rate with respect to the cumulative lighting time of the LED 2 for each ambient temperature. The correction function will be described later.

補正関数決定部63は、上記のような累積点灯時間に対する調光率の変化を規定する補正関数を、例えば初期点灯時の雰囲気温度に基づいて決定する。補正関数決定部63は、記憶部67に記憶されている複数の補正関数から雰囲気温度に応じて1つの補正関数を選択する。より具体的には、補正関数決定部63は、まずデフォルト設定の補正関数又は点灯状態(例えば、調光率80%)において初期点灯を行い、初期点灯時に検出された雰囲気温度に最も近い値の雰囲気温度に対する補正関数をその後採用する。なお、初期点灯とは、LED2がLED点灯装置1に装着されてから数回以内程度の点灯、好ましくは初回点灯を意味する。   The correction function determination unit 63 determines a correction function that defines the change in the dimming rate with respect to the cumulative lighting time as described above, for example, based on the ambient temperature during initial lighting. The correction function determination unit 63 selects one correction function from the plurality of correction functions stored in the storage unit 67 according to the ambient temperature. More specifically, the correction function determination unit 63 first performs initial lighting in a default setting correction function or lighting state (for example, dimming rate 80%), and has a value closest to the ambient temperature detected at the time of initial lighting. A correction function for the ambient temperature is then adopted. The initial lighting means lighting within a few times after the LED 2 is mounted on the LED lighting device 1, preferably the first lighting.

点灯時間取得部64は、LED2の累積点灯時間を取得する。累積点灯時間は、計時部68による計時出力から取得され、記憶部67に記憶される。なお、調光率が100%で一定となった後の期間においては累積点灯時間を取得する必要はない。   The lighting time acquisition unit 64 acquires the cumulative lighting time of the LED 2. The cumulative lighting time is acquired from the time output from the time measuring unit 68 and stored in the storage unit 67. In the period after the dimming rate becomes constant at 100%, it is not necessary to acquire the cumulative lighting time.

調光率決定部62は、補正関数決定部63によって決定された補正関数に累積点灯時間を適用(代入)して調光率を決定し、この調光率を調光指令値である目標電流値に変換し、それを制御回路40のオペアンプ41に出力する。   The dimming rate determination unit 62 determines the dimming rate by applying (substituting) the cumulative lighting time to the correction function determined by the correction function determining unit 63, and determines the dimming rate as a target current that is a dimming command value. The value is converted into a value and output to the operational amplifier 41 of the control circuit 40.

修正処理部65は、電圧検出回路(抵抗32及び33)によって検出された順方向電圧VfをA/D変換部66を介して取得する。修正決定部65は、補正関数決定部63によって決定された補正関数における単位時間あたりの調光率の上昇率である調光上昇率について、順方向電圧Vfが相対的に高い場合には調光上昇率を増加させ、順方向電圧Vfが相対的に低い場合には調光上昇率を低下させるように補正関数を修正する。この修正処理の作用及び効果は、第2の実施形態において説明したものと同様である。すなわち、修正処理部65は、順方向電圧Vfが相対的に高い場合には相対的に速く調光率を増加させ、順方向電圧Vfが相対的に低い場合には相対的に遅く調光率を増加させることによって、初期照度補正制御の効果を適正化する。   The correction processing unit 65 acquires the forward voltage Vf detected by the voltage detection circuit (resistors 32 and 33) via the A / D conversion unit 66. When the forward voltage Vf is relatively high with respect to the dimming increase rate that is the rate of increase of the dimming rate per unit time in the correction function determined by the correction function determining unit 63, the correction determination unit 65 performs dimming when the forward voltage Vf is relatively high. When the forward rate Vf is relatively low, the correction function is corrected so as to decrease the dimming rate when the rate of increase is increased. The operation and effect of this correction processing are the same as those described in the second embodiment. That is, the correction processing unit 65 increases the dimming rate relatively fast when the forward voltage Vf is relatively high, and relatively slow when the forward voltage Vf is relatively low. By increasing the value, the effect of the initial illuminance correction control is optimized.

図8を参照して、補正関数の例示とともにLED点灯装置1の動作を説明する。図8において、補正関数E0及びF0は、LED2の順方向電圧Vfの標準値に対応する補正関数であり、補正関数E0は雰囲気温度35℃に対する補正関数を示し、補正関数F0は雰囲気温度25℃に対する補正関数を示す。横軸は累積点灯時間である。補正関数E0及びF0とも、調光率80%で点灯が開始される。例えば、補正関数E0については、累積点灯時間が40000時間となる時点において調光率が100%となり、補正関数F0については、累積点灯時間が60000時間となる時点において調光率が100%となるように予め設定されている。図8においても、各補正関数に対応する照度(光束)は略一定となるものとする。   With reference to FIG. 8, the operation of the LED lighting device 1 will be described together with an example of the correction function. In FIG. 8, correction functions E0 and F0 are correction functions corresponding to the standard value of the forward voltage Vf of the LED 2, the correction function E0 indicates a correction function for an ambient temperature of 35 ° C., and the correction function F0 is an ambient temperature of 25 ° C. The correction function for is shown. The horizontal axis is the cumulative lighting time. Both the correction functions E0 and F0 are turned on at a dimming rate of 80%. For example, for the correction function E0, the dimming rate is 100% when the cumulative lighting time is 40000 hours, and for the correction function F0, the dimming rate is 100% when the cumulative lighting time is 60000 hours. Is set in advance. Also in FIG. 8, it is assumed that the illuminance (light flux) corresponding to each correction function is substantially constant.

修正処理部65は、順方向電圧Vfが標準値よりも所定量を超えて高い場合には補正関数E0/F0の調光上昇率を増加させて補正関数E0/F0を補正関数E1/F1に修正する。また、修正処理部65は、順方向電圧Vfが標準値よりも所定量を超えて低い場合には補正関数E0/F0の調光上昇率を減少させて補正関数E0/F0を補正関数E2/F2に修正する。これにより、各温度帯において、相対的に高い順方向電圧VfのLED2に対しては相対的に速い照度上昇が適用され、相対的に低い順方向電圧VfのLED2に対しては相対的に遅い照度上昇が適用される。上記所定量、及び所定量と調光上昇率変化量との関係は、LED2の劣化特性、順方向電圧Vfのばらつき等を考慮して適宜定められる。   When the forward voltage Vf is higher than the standard value by a predetermined amount, the correction processing unit 65 increases the dimming increase rate of the correction function E0 / F0 to change the correction function E0 / F0 to the correction function E1 / F1. Correct it. Further, when the forward voltage Vf is lower than the standard value by a predetermined amount, the correction processing unit 65 reduces the dimming increase rate of the correction function E0 / F0 and changes the correction function E0 / F0 to the correction function E2 / Correct to F2. Thereby, in each temperature zone, a relatively fast illuminance increase is applied to the LED 2 having a relatively high forward voltage Vf, and relatively slow to the LED 2 having a relatively low forward voltage Vf. Increased illumination is applied. The predetermined amount and the relationship between the predetermined amount and the amount of change in dimming rate are appropriately determined in consideration of the deterioration characteristics of the LED 2 and variations in the forward voltage Vf.

なお、2つの雰囲気温度(35℃及び25℃)に対する補正関数(E0〜E2及びF0〜F2)を示すが、3以上の雰囲気温度に対する補正関数が規定されてもよい。例えば、雰囲気温度15℃について、標準値の順方向電圧Vfについて累積点灯時間100000時間で調光率100%となるような(すなわち、寿命のほぼ全域にわたって調光率が上昇し続けるような)関数が規定されてもよい。また、順方向電圧Vfの変化に対する補正関数間の変化(例えば、補正関数E1〜E2間及び補正関数F1〜F2間の変化)は、段階的なものであっても連続的なものであってもよい。   In addition, although the correction function (E0-E2 and F0-F2) with respect to two atmospheric temperature (35 degreeC and 25 degreeC) is shown, the correction function with respect to three or more atmospheric temperatures may be prescribed | regulated. For example, for an ambient temperature of 15 ° C., a function that results in a dimming rate of 100% at a cumulative lighting time of 100,000 hours for a standard forward voltage Vf (that is, the dimming rate continues to increase over almost the entire life). May be defined. Further, the change between the correction functions with respect to the change in the forward voltage Vf (for example, the change between the correction functions E1 to E2 and the change between the correction functions F1 to F2) is continuous even if it is stepwise. Also good.

以上のように、本実施形態のLED点灯装置1は、調光指令値が示す調光率に従って直流出力をLED2に供給する直流電源回路(DC/DCコンバータ20及び制御回路40)と、LED近傍の温度を検出する温度検出回路50と、LED2の順方向電圧Vfを検出する電圧検出回路(抵抗32及び33)と、照度補正回路60を備える。照度補正回路60において、補正関数決定部63が、累積点灯時間に対する調光率の変化を規定する補正関数を検出温度に応じて決定し、点灯時間取得部64がLEDの累積点灯時間を取得し、調光率決定部62が補正関数に累積点灯時間を適用して得られる調光率に基づいて調光指令値を決定する。そして、修正処理部65が、順方向電圧Vfが相対的に高い場合には調光上昇率を増加させ、順方向電圧Vfが相対的に低い場合には調光上昇率を低下させるように補正関数を修正する。   As described above, the LED lighting device 1 according to the present embodiment includes a DC power supply circuit (DC / DC converter 20 and control circuit 40) that supplies a DC output to the LED 2 according to the dimming rate indicated by the dimming command value, and the vicinity of the LED. A temperature detection circuit 50 for detecting the temperature of the LED 2, a voltage detection circuit (resistors 32 and 33) for detecting the forward voltage Vf of the LED 2, and an illuminance correction circuit 60. In the illuminance correction circuit 60, the correction function determination unit 63 determines a correction function that defines a change in the dimming rate with respect to the cumulative lighting time according to the detected temperature, and the lighting time acquisition unit 64 acquires the cumulative lighting time of the LED. The dimming rate determination unit 62 determines the dimming command value based on the dimming rate obtained by applying the cumulative lighting time to the correction function. The correction processing unit 65 corrects the dimming increase rate to increase when the forward voltage Vf is relatively high, and to decrease the dimming increase rate when the forward voltage Vf is relatively low. Modify the function.

このように、複数の補正関数から1つの補正関数が選択される簡素な制御構成においても、上記第2の実施形態と同様に、発熱が多く劣化が速くなり得るLED2に対しては相対的に速い照度上昇が適用され、発熱が小さく劣化が遅くなり得るLED2に対しては相対的に遅い照度上昇が適用される。これにより、LED2の素子温度をより正確に反映した高精度な初期照度補正制御が実現される。   As described above, even in a simple control configuration in which one correction function is selected from a plurality of correction functions, as in the second embodiment, the heat generation is large and the LED 2 can be deteriorated relatively quickly. A fast increase in illuminance is applied, and a relatively slow increase in illuminance is applied to the LED 2 that generates a small amount of heat and can be degraded slowly. Thereby, highly accurate initial illuminance correction control reflecting the element temperature of the LED 2 more accurately is realized.

<第3の実施形態の発展例>
本実施形態の発展例として、修正処理部65が、補正関数決定部63によって決定された補正関数を更に修正するようにしてもよい。具体的には、修正処理部65は、順方向電圧Vfが相対的に高い場合には調光率(調光指令値)を低下させ、順方向電圧Vfが相対的に低い場合には調光率(調光指令値)を増加させて補正関数を更に修正する。
<Development of Third Embodiment>
As a development example of the present embodiment, the correction processing unit 65 may further correct the correction function determined by the correction function determination unit 63. Specifically, the correction processing unit 65 reduces the dimming rate (the dimming command value) when the forward voltage Vf is relatively high, and adjusts the light when the forward voltage Vf is relatively low. The correction function is further modified by increasing the rate (dimming command value).

図9を参照して、補正関数の例示とともにLED点灯装置1の動作を説明する。補正関数E0及びF0は図8に示すものと同様であり、補正関数E0及びF0はそれぞれ雰囲気温度35℃及び25℃における順方向電圧Vfの標準値に対応する補正関数である。横軸は累積点灯時間である。図9においても、各補正関数に対応する照度(光束)は略一定となるものとする。   With reference to FIG. 9, the operation of the LED lighting device 1 will be described together with an example of the correction function. The correction functions E0 and F0 are the same as those shown in FIG. 8, and the correction functions E0 and F0 are correction functions corresponding to the standard values of the forward voltage Vf at the atmospheric temperature of 35 ° C. and 25 ° C., respectively. The horizontal axis is the cumulative lighting time. Also in FIG. 9, the illuminance (light flux) corresponding to each correction function is assumed to be substantially constant.

修正処理部65は、初期点灯時に順方向電圧Vfが標準値よりも所定量を超えて高い場合には補正関数E0/F0の初期調光率を低下させて補正関数E0/F0を補正関数E3/F3に修正する。一方、修正処理部65は、初期点灯時に順方向電圧Vfが標準値よりも所定量を超えて低い場合には補正関数E0/F0の初期調光率を増加させて補正関数E0/F0を補正関数E4/F4に修正する。これにより、各温度帯において、相対的に高い順方向電圧VfのLED2に対しては相対的に低い調光率で速い照度上昇が適用され、相対的に低い順方向電圧VfのLED2に対しては相対的に高い調光率で遅い照度上昇が適用される。上記所定量、及び所定量と調光率変化量との関係は、LED2の劣化特性、順方向電圧Vfのばらつき等を考慮して適宜定められる。なお、結果として調光率が上述したように修正されるのであれば、修正処理部65は、調光率を修正してもよいし、調光指令値を修正してもよい。   The correction processing unit 65 reduces the initial dimming rate of the correction function E0 / F0 and reduces the correction function E0 / F0 to the correction function E3 when the forward voltage Vf is higher than the standard value by a predetermined amount at the initial lighting. Correct to / F3. On the other hand, the correction processing unit 65 corrects the correction function E0 / F0 by increasing the initial dimming rate of the correction function E0 / F0 when the forward voltage Vf is lower than the standard value by a predetermined amount during initial lighting. Modify to function E4 / F4. Thereby, in each temperature range, a fast illuminance increase is applied at a relatively low dimming rate to the LED 2 having a relatively high forward voltage Vf, and to the LED 2 having a relatively low forward voltage Vf. A relatively high dimming rate and a slow illuminance increase are applied. The predetermined amount and the relationship between the predetermined amount and the dimming rate change amount are appropriately determined in consideration of the deterioration characteristics of the LED 2 and variations in the forward voltage Vf. As a result, if the dimming rate is corrected as described above, the correction processing unit 65 may correct the dimming rate or the dimming command value.

また、2つの雰囲気温度(35℃及び25℃)に対する補正関数(E0〜E4及びF0〜F4)を示すが、3以上の雰囲気温度に対する補正関数が規定されてもよい。例えば、雰囲気温度15℃について、標準値の順方向電圧Vfについて累積点灯時間100000時間で調光率100%となるような関数が規定されてもよい。また、順方向電圧Vfの変化に対する補正関数間の変化(例えば、補正関数E3〜E4間及び補正関数F3〜F4間の変化)は、段階的なものであっても連続的なものであってもよい。   Moreover, although the correction function (E0-E4 and F0-F4) with respect to two atmospheric temperature (35 degreeC and 25 degreeC) is shown, the correction function with respect to three or more atmospheric temperatures may be prescribed | regulated. For example, for an ambient temperature of 15 ° C., a function that provides a dimming rate of 100% after a cumulative lighting time of 100,000 hours for a standard forward voltage Vf may be defined. Further, the change between the correction functions with respect to the change in the forward voltage Vf (for example, the change between the correction functions E3 to E4 and between the correction functions F3 to F4) is continuous even if it is stepwise. Also good.

以上のように、本例のLED点灯装置1は、順方向電圧Vfが相対的に高い場合には調光率を低下させ、順方向電圧Vfが相対的に低い場合には調光率を増加させて補正関数を更に修正する。このように、順方向電圧Vfの高/低に調光率の低/高が対応するので、LED2の発熱及び劣化速度が適正化される。また、複数のLED点灯装置1から給電されるLED2間のLED電力のばらつき、すなわち照度のばらつきが解消される効果も得られる。   As described above, the LED lighting device 1 of the present example decreases the dimming rate when the forward voltage Vf is relatively high, and increases the dimming rate when the forward voltage Vf is relatively low. To correct the correction function further. Thus, the low / high dimming rate corresponds to the high / low forward voltage Vf, so that the heat generation and deterioration rate of the LED 2 are optimized. Moreover, the effect of eliminating the variation in LED power between the LEDs 2 fed from the plurality of LED lighting devices 1, that is, the variation in illuminance can also be obtained.

<変形例>
以上に本発明の好適な実施形態を示したが、本発明は、例えば以下に示すように種々の態様に変形可能である。
<Modification>
Although preferred embodiments of the present invention have been described above, the present invention can be modified into various modes as shown below, for example.

(1)修正処理部65の変形
上記各実施形態では、調光上昇率が上昇率決定部61によって決定された後、調光率若しくは調光指令値が調光率決定部62によって決定された後、又は補正関数が補正関数決定部63によって決定された後に、修正処理部65によってそれぞれの値に対する修正処理が行われる構成を示した。一方、調光上昇率、調光率若しくは調光指令値又は補正関数の決定処理と、修正処理部65によるそれらの値に対する修正処理とがそれぞれ実質的に同時に行われてもよい。
(1) Modification of Correction Processing Unit 65 In each of the above embodiments, the dimming rate or the dimming command value is determined by the dimming rate determining unit 62 after the dimming rate increasing rate is determined by the increasing rate determining unit 61. The configuration in which correction processing for each value is performed by the correction processing unit 65 is shown later or after the correction function is determined by the correction function determination unit 63. On the other hand, the process of determining the dimming rate, the dimming ratio, the dimming command value, or the correction function, and the correction process for those values by the correction processing unit 65 may be performed substantially simultaneously.

(2)出力電流制御の変形
上記各実施形態では、直流電源回路(DC/DCコンバータ20及び制御回路40)における出力電流制御に電流フィードバックが採用される構成を示したが、より簡素な構成として出力電流制御にフィードフォワードが採用される構成も可能である。図10に、この場合のLED点灯装置1及びLED照明装置3のブロック図を示す。図10に示すように、制御回路40において、照度補正回路60からの調光指令値(目標電流値)は、増幅回路46を介してフォトダイオード44dに入力される。温度検出回路50及び照度補正回路60は、第1から第3の実施形態について上述したいずれかの温度検出回路50及び照度補正回路60である(したがって、検出回路30(電圧検出回路)は必要に応じて設けられる)。このように、制御回路40は、温度検出回路50によって検出された雰囲気温度に基づいて照度補正回路60によって決定された目標電流値に応じてDC/DCコンバータ20の出力電流をフィードフォワード制御する。
(2) Modification of output current control In each of the above embodiments, the configuration in which current feedback is employed for output current control in the DC power supply circuit (DC / DC converter 20 and control circuit 40) has been described. A configuration in which feedforward is adopted for output current control is also possible. FIG. 10 shows a block diagram of the LED lighting device 1 and the LED lighting device 3 in this case. As shown in FIG. 10, in the control circuit 40, the dimming command value (target current value) from the illuminance correction circuit 60 is input to the photodiode 44 d via the amplifier circuit 46. The temperature detection circuit 50 and the illuminance correction circuit 60 are any of the temperature detection circuit 50 and the illuminance correction circuit 60 described above for the first to third embodiments (therefore, the detection circuit 30 (voltage detection circuit) is necessary). Provided). In this way, the control circuit 40 performs feedforward control of the output current of the DC / DC converter 20 according to the target current value determined by the illuminance correction circuit 60 based on the ambient temperature detected by the temperature detection circuit 50.

1 LED点灯装置
2 LED
3 LED照明装置
20 DC/DCコンバータ(直流電源回路)
30 出力検出回路
32、33 抵抗(電圧検出回路)
40 制御回路(直流電源回路)
50 温度検出回路
60 照度補正回路
61 上昇率決定部
62 調光率決定部
63 補正関数決定部
64 点灯時間取得部
65 修正処理部
68 計時部
1 LED lighting device 2 LED
3 LED lighting device 20 DC / DC converter (DC power supply circuit)
30 Output detection circuit 32, 33 Resistance (voltage detection circuit)
40 Control circuit (DC power supply circuit)
DESCRIPTION OF SYMBOLS 50 Temperature detection circuit 60 Illuminance correction circuit 61 Ascent rate determination part 62 Dimming rate determination part 63 Correction function determination part 64 Lighting time acquisition part 65 Correction process part 68 Time measuring part

Claims (7)

LED点灯装置であって、
調光指令値が示す調光率に従って直流出力をLEDに供給する直流電源回路と、
前記LEDの近傍の温度を検出する温度検出回路と、
前記温度検出回路によって検出される検出温度の増加又は減少に対して、単位時間あたりの調光率の上昇率である調光上昇率をそれぞれ逐次的に増加又は減少させる上昇率決定部と、
前記LEDの点灯時間を計測する計時部と、
前記調光上昇率及び前記点灯時間から得られる調光率に基づいて前記調光指令値を決定する調光率決定部と
を備えたLED点灯装置。
An LED lighting device,
A DC power supply circuit that supplies a DC output to the LED according to the dimming rate indicated by the dimming command value;
A temperature detection circuit for detecting a temperature in the vicinity of the LED;
An increase rate determination unit that sequentially increases or decreases a dimming increase rate, which is an increase rate of the dimming rate per unit time, with respect to an increase or decrease in the detection temperature detected by the temperature detection circuit;
A timer for measuring the lighting time of the LED;
An LED lighting device comprising: a dimming rate determining unit that determines the dimming command value based on the dimming rate obtained from the dimming rate and the lighting time.
請求項1に記載のLED点灯装置において、前記検出温度の増加又は減少に対して前記調光上昇率が連続的に増加又は減少するように構成された、LED点灯装置。   The LED lighting device according to claim 1, wherein the dimming increase rate is continuously increased or decreased with respect to an increase or decrease in the detected temperature. 請求項1又は2に記載のLED点灯装置であって、
前記LEDの順方向電圧を検出する電圧検出回路と、
前記順方向電圧が相対的に高い場合には前記調光上昇率を増加させ、前記順方向電圧が相対的に低い場合には前記調光上昇率を低下させる修正処理部と
を更に備えたLED点灯装置。
The LED lighting device according to claim 1 or 2,
A voltage detection circuit for detecting a forward voltage of the LED;
And a correction processing unit that increases the dimming increase rate when the forward voltage is relatively high, and reduces the dimming increase rate when the forward voltage is relatively low. Lighting device.
請求項3に記載のLED点灯装置において、前記修正処理部が、前記順方向電圧が相対的に高い場合には前記調光率を低下させ、前記順方向電圧が相対的に低い場合には前記調光率を増加させるように構成された、LED点灯装置。   4. The LED lighting device according to claim 3, wherein the correction processing unit reduces the dimming rate when the forward voltage is relatively high, and the correction processing unit reduces the dimming rate when the forward voltage is relatively low. An LED lighting device configured to increase the dimming rate. LED点灯装置であって、
調光指令値が示す調光率に従って直流出力をLEDに供給する直流電源回路と、
前記LEDの近傍の温度を検出する温度検出回路と、
前記LEDの順方向電圧を検出する電圧検出回路と、
前記LEDの累積点灯時間に対する前記調光率の変化を規定する補正関数を、前記温度検出回路によって検出される検出温度に応じて決定する補正関数決定部と、
前記LEDの累積点灯時間を取得する点灯時間取得部と、
前記補正関数に前記累積点灯時間を適用して得られる調光率に基づいて前記調光指令値を決定する調光率決定部と、
前記補正関数決定部によって決定された前記補正関数における単位時間あたりの調光率の上昇率である調光上昇率について、前記順方向電圧が相対的に高い場合には前記調光上昇率を増加させ、前記順方向電圧が相対的に低い場合には前記調光上昇率を低下させて前記補正関数を修正する修正処理部と
を備えたLED点灯装置。
An LED lighting device,
A DC power supply circuit that supplies a DC output to the LED according to the dimming rate indicated by the dimming command value;
A temperature detection circuit for detecting a temperature in the vicinity of the LED;
A voltage detection circuit for detecting a forward voltage of the LED;
A correction function determining unit that determines a correction function that defines a change in the dimming rate with respect to the cumulative lighting time of the LED according to a detected temperature detected by the temperature detection circuit;
A lighting time acquisition unit for acquiring a cumulative lighting time of the LED;
A dimming rate determining unit that determines the dimming command value based on a dimming rate obtained by applying the cumulative lighting time to the correction function;
The dimming increase rate, which is the rate of increase of the dimming rate per unit time in the correction function determined by the correction function determining unit, is increased when the forward voltage is relatively high. And a correction processing unit that corrects the correction function by reducing the dimming increase rate when the forward voltage is relatively low.
請求項5に記載のLED点灯装置において、前記修正処理部が、前記順方向電圧が相対的に高い場合には前記調光率を低下させ、前記順方向電圧が相対的に低い場合には前記調光率を増加させて前記補正関数を更に修正するように構成された、LED点灯装置。   6. The LED lighting device according to claim 5, wherein the correction processing unit decreases the dimming rate when the forward voltage is relatively high, and the correction processing unit reduces the dimming rate when the forward voltage is relatively low. An LED lighting device configured to further modify the correction function by increasing a dimming rate. 請求項1から6のいずれか一項に記載のLED点灯装置と、前記LEDとを備えた照明装置。

The lighting device provided with the LED lighting device as described in any one of Claim 1 to 6, and the said LED.

JP2016005128A 2016-01-14 2016-01-14 Led lighting device and led illumination device Pending JP2017126483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016005128A JP2017126483A (en) 2016-01-14 2016-01-14 Led lighting device and led illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016005128A JP2017126483A (en) 2016-01-14 2016-01-14 Led lighting device and led illumination device

Publications (1)

Publication Number Publication Date
JP2017126483A true JP2017126483A (en) 2017-07-20

Family

ID=59365244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016005128A Pending JP2017126483A (en) 2016-01-14 2016-01-14 Led lighting device and led illumination device

Country Status (1)

Country Link
JP (1) JP2017126483A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041725A (en) * 2011-08-12 2013-02-28 Sharp Corp Illuminating device
JP2013165004A (en) * 2012-02-13 2013-08-22 Mitsubishi Electric Corp Lighting control system
JP2014127907A (en) * 2012-12-27 2014-07-07 Sharp Corp Illumination device for original and original reading device having the same device
JP2015230819A (en) * 2014-06-05 2015-12-21 新日本無線株式会社 LED lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041725A (en) * 2011-08-12 2013-02-28 Sharp Corp Illuminating device
JP2013165004A (en) * 2012-02-13 2013-08-22 Mitsubishi Electric Corp Lighting control system
JP2014127907A (en) * 2012-12-27 2014-07-07 Sharp Corp Illumination device for original and original reading device having the same device
JP2015230819A (en) * 2014-06-05 2015-12-21 新日本無線株式会社 LED lighting device

Similar Documents

Publication Publication Date Title
JP5607980B2 (en) Lighting device, lamp, lighting circuit device, lighting fixture
JP5853170B2 (en) Lighting device and lighting apparatus
US8502461B2 (en) Driving circuit and control circuit
TWI445440B (en) Driving circuit
US9253843B2 (en) Driving circuit with dimming controller for driving light sources
US20140070721A1 (en) Solid-state light-emitting element drive device, lighting system and lighting fixture
US9313836B2 (en) Circuit and method for detecting the duration of the interruption of a mains input
JP2010153566A (en) Led driving method
JP5411724B2 (en) Lighting control apparatus, lighting control system, and lighting control method
JP2016051525A (en) Lighting device, lighting fixture using the lighting device, and illumination system using the lighting fixture
JP2014131420A (en) Power-supply device
KR20140057925A (en) Led driving circuit for optical-volume controlling according to shifting of source voltage
JP2017126483A (en) Led lighting device and led illumination device
CN102413604B (en) Led lighter and lighting device using the led lighter
JP6756210B2 (en) LED lighting device and LED lighting device
JP6245506B2 (en) Lighting device
JP2017117606A (en) Led lighting device and led illumination device
EP3007521A2 (en) Driving circuit with dimming controller for driving light sources
JP2012054142A (en) Led lighting system
JP2022061263A (en) Lighting device and lighting fixture
CN114731747A (en) Light emitting diode, LED, based lighting device arranged for emitting light of a specific color and corresponding method
JP7463844B2 (en) Lighting devices and luminaires
JP7172770B2 (en) Lighting device and lighting device
JP2013041725A (en) Illuminating device
JP2014120454A (en) Lighting device, and method of controlling lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303