JP2017120672A5 - Image processing apparatus, image processing system, and image processing method - Google Patents
Image processing apparatus, image processing system, and image processing method Download PDFInfo
- Publication number
- JP2017120672A5 JP2017120672A5 JP2017076805A JP2017076805A JP2017120672A5 JP 2017120672 A5 JP2017120672 A5 JP 2017120672A5 JP 2017076805 A JP2017076805 A JP 2017076805A JP 2017076805 A JP2017076805 A JP 2017076805A JP 2017120672 A5 JP2017120672 A5 JP 2017120672A5
- Authority
- JP
- Japan
- Prior art keywords
- image
- image processing
- luminance
- acquired
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title claims description 6
- 230000036544 posture Effects 0.000 claims description 10
- 230000000875 corresponding Effects 0.000 claims description 8
- 230000001131 transforming Effects 0.000 claims 2
- 238000005286 illumination Methods 0.000 claims 1
Description
本発明は、入力画像から対象物体の画像を検出する画像認識処理に用いられる辞書生成用の学習画像を生成する画像処理装置、画像処理システム、および画像処理方法に関する。 The present invention relates to an image processing apparatus , an image processing system, and an image processing method for generating a learning image for generating a dictionary used for image recognition processing for detecting an image of a target object from an input image.
本発明は上記問題に鑑み、実環境下で対象物体を撮影した情報に基づき、環境条件を反映して対象物体の表面輝度を近似した学習画像を、容易に生成する画像処理装置、画像処理システム、および画像処理方法を提供することを目的とする。 In view of the above problems, the present invention provides an image processing apparatus and an image processing system that easily generate a learning image that approximates the surface luminance of a target object by reflecting environmental conditions based on information obtained by photographing the target object in a real environment. And an image processing method.
上記目的を達成するための一手段として、本発明の画像処理装置は以下の構成を備える。すなわち、物体の認識において参照される辞書の生成に用いられる学習画像を生成する画像処理装置であって、
姿勢の異なる複数の前記物体を含む輝度画像から複数の領域の各々における前記物体の表面の輝度値を取得し、前記複数の領域の各々における前記物体の表面の向きに係る情報を取得する第1の取得手段と、
前記第1の取得手段により取得した前記複数の領域における前記物体の表面の向きに係る情報と各領域に対応する輝度値との関係を取得する第2の取得手段と、
前記第2の取得手段により取得した関係と前記物体のモデル情報とに基づいて、前記学習画像を生成する生成手段と
を有することを特徴とする。
As a means for achieving the above object, an image processing apparatus of the present invention comprises the following arrangement. That is, an image processing apparatus for generating a learning image used for generation of the dictionary referenced in the recognition of an object,
A brightness value of the surface of the object in each of a plurality of areas is acquired from a brightness image including the plurality of objects having different postures, and information relating to the orientation of the surface of the object in each of the plurality of areas is acquired. Acquisition means of
Second acquisition means for acquiring a relationship between information relating to the orientation of the surface of the object in the plurality of areas acquired by the first acquisition means and a luminance value corresponding to each area;
And generating means for generating the learning image based on the relationship acquired by the second acquiring means and the model information of the object .
Claims (23)
姿勢の異なる複数の前記物体を含む輝度画像から複数の領域の各々における前記物体の表面の輝度値を取得し、前記複数の領域の各々における前記物体の表面の向きに係る情報を取得する第1の取得手段と、
前記第1の取得手段により取得した前記複数の領域における前記物体の表面の向きに係る情報と各領域に対応する輝度値との関係を取得する第2の取得手段と、
前記第2の取得手段により取得した関係と前記物体のモデル情報とに基づいて、前記学習画像を生成する生成手段と
を有することを特徴とする画像処理装置。 An image processing apparatus for generating a learning image used for generation of the dictionary referenced in the recognition of an object,
A brightness value of the surface of the object in each of a plurality of areas is acquired from a brightness image including the plurality of objects having different postures, and information relating to the orientation of the surface of the object in each of the plurality of areas is acquired. Acquisition means of
Second acquisition means for acquiring a relationship between information relating to the orientation of the surface of the object in the plurality of areas acquired by the first acquisition means and a luminance value corresponding to each area;
An image processing apparatus comprising: a generation unit configured to generate the learning image based on the relationship acquired by the second acquisition unit and the model information of the object .
前記第2の取得手段は、前記各輝度画像に対して、前記第1の取得手段により取得した前記複数の領域における前記物体の表面の向きに係る情報と各領域に対応する輝度値との関係を取得することを特徴とする請求項1に記載の画像処理装置。The second acquisition means, for each of the luminance images, a relationship between information relating to the orientation of the surface of the object in the plurality of areas acquired by the first acquisition means and a luminance value corresponding to each area The image processing apparatus according to claim 1, further comprising:
前記生成手段は、前記推定手段により推定した輝度分布と前記物体のモデル情報とに基づいて、前記学習画像を生成することを特徴とする請求項1乃至5の何れか1項に記載の画像処理装置。 Based on the relationship acquired by the second acquisition means, further comprising an estimation means for estimating a luminance distribution on the surface of the object;
The generation unit, based on the model information of the object and luminance distribution estimated by the estimating means, the image processing according to any one of claims 1 to 5, characterized in that to generate the learning image apparatus.
前記識別器に基づいて、前記物体を含む画像から前記物体を認識する認識手段と
を更に有することを特徴とする請求項17に記載の画像処理装置。 It means for obtaining an image including the object,
Recognition means for recognizing the object from an image including the object based on the classifier ;
The image processing apparatus according to claim 17 , further comprising:
姿勢の異なる複数の前記物体を含む輝度画像から複数の領域の各々における前記物体の表面の輝度値を取得し、前記複数の領域の各々における前記物体の表面の向きに係る情報を取得する第1の取得ステップと、
前記第1の取得ステップで取得した前記複数の領域における前記物体の表面の向きに係る情報と各領域に対応する輝度値との関係を取得する第2の取得ステップと、
前記第2の取得ステップで取得した関係と前記物体のモデル情報とに基づいて、前記学習画像を生成する生成ステップと
を有することを特徴とする画像処理方法。 An image processing method for generating a learning image used for generation of the dictionary referenced in the recognition of an object,
A brightness value of the surface of the object in each of a plurality of areas is acquired from a brightness image including the plurality of objects having different postures, and information relating to the orientation of the surface of the object in each of the plurality of areas is acquired. The acquisition step of
A second acquisition step of acquiring a relationship between the luminance value corresponding to the information and each region according to the orientation of the surface of the object in the plurality of areas acquired by the first acquisition step,
An image processing method comprising: a generation step of generating the learning image based on the relationship acquired in the second acquisition step and the model information of the object .
前記第1の取得ステップでは、前記入力された輝度画像の複数の領域の各々における前記物体の表面の輝度値を取得し、前記複数の領域の各々における前記物体の表面の向きに係る情報を取得することを特徴とする請求項20に記載の画像処理方法。In the first acquisition step, the luminance value of the surface of the object in each of the plurality of regions of the input luminance image is acquired, and information relating to the orientation of the surface of the object in each of the plurality of regions is acquired. The image processing method according to claim 20, wherein:
姿勢の異なる複数の前記物体を含む輝度画像を撮影する撮影手段と、Photographing means for photographing a luminance image including a plurality of the objects having different postures;
前記撮影された輝度画像から複数の領域の各々における前記物体の表面の輝度値を取得し、前記複数の領域の各々における前記物体の表面の向きに係る情報を取得する第1の取得手段と、First acquisition means for acquiring a luminance value of the surface of the object in each of a plurality of areas from the captured luminance image, and acquiring information relating to the orientation of the surface of the object in each of the plurality of areas;
前記第1の取得手段により取得した前記複数の領域における前記物体の表面の向きに係る情報と各領域に対応する輝度値との関係を取得する第2の取得手段と、Second acquisition means for acquiring a relationship between information relating to the orientation of the surface of the object in the plurality of areas acquired by the first acquisition means and a luminance value corresponding to each area;
前記第2の取得手段により取得した関係と前記物体のモデル情報とに基づいて、前記学習画像を生成する生成手段とGenerating means for generating the learning image based on the relationship acquired by the second acquiring means and the model information of the object;
を有することを特徴とする画像処理システム。An image processing system comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017076805A JP6255125B2 (en) | 2017-04-07 | 2017-04-07 | Image processing apparatus, image processing system, and image processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017076805A JP6255125B2 (en) | 2017-04-07 | 2017-04-07 | Image processing apparatus, image processing system, and image processing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013074860A Division JP6126437B2 (en) | 2013-03-29 | 2013-03-29 | Image processing apparatus and image processing method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017120672A JP2017120672A (en) | 2017-07-06 |
JP2017120672A5 true JP2017120672A5 (en) | 2017-08-17 |
JP6255125B2 JP6255125B2 (en) | 2017-12-27 |
Family
ID=59272288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017076805A Active JP6255125B2 (en) | 2017-04-07 | 2017-04-07 | Image processing apparatus, image processing system, and image processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6255125B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019061484A (en) | 2017-09-26 | 2019-04-18 | キヤノン株式会社 | Image processing device and control method thereof and program |
EP3474185B1 (en) * | 2017-10-18 | 2023-06-28 | Dassault Systèmes | Classification of 2d images according to types of 3d arrangement |
US11461585B2 (en) * | 2018-03-02 | 2022-10-04 | Nec Corporation | Image collection apparatus, image collection system, image collection method, image generation apparatus, image generation system, image generation method, and program |
US11403491B2 (en) | 2018-04-06 | 2022-08-02 | Siemens Aktiengesellschaft | Object recognition from images using cad models as prior |
JP7017462B2 (en) * | 2018-04-26 | 2022-02-08 | 株式会社神戸製鋼所 | Learning image generation device and learning image generation method, as well as image recognition device and image recognition method |
JP7186521B2 (en) * | 2018-06-12 | 2022-12-09 | シチズンファインデバイス株式会社 | Teacher image generator for visual inspection equipment |
CN111968057B (en) * | 2020-08-24 | 2024-08-20 | 浙江大华技术股份有限公司 | Image noise reduction method and device, storage medium and electronic device |
JP7446615B2 (en) * | 2020-11-09 | 2024-03-11 | 東京ロボティクス株式会社 | Data set generation device, generation method, program, system, machine learning device, object recognition device, and picking system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5290865B2 (en) * | 2009-05-18 | 2013-09-18 | キヤノン株式会社 | Position and orientation estimation method and apparatus |
-
2017
- 2017-04-07 JP JP2017076805A patent/JP6255125B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017120672A5 (en) | Image processing apparatus, image processing system, and image processing method | |
JP2014199584A5 (en) | ||
US10803351B2 (en) | Image processing apparatus and image processing method | |
CN108292362B (en) | Gesture recognition for cursor control | |
JP5837508B2 (en) | Posture state estimation apparatus and posture state estimation method | |
US9665803B2 (en) | Image processing apparatus and image processing method | |
JP6844692B2 (en) | Learning data generator, learning data generation method, and program | |
JP6793151B2 (en) | Object tracking device, object tracking method and object tracking program | |
JP2018116599A5 (en) | ||
JP2010512581A (en) | Fast human pose estimation using appearance and motion via multidimensional boost regression | |
JP2014137756A5 (en) | ||
KR20130101942A (en) | Method and apparatus for motion recognition | |
CN110910452B (en) | Low-texture industrial part pose estimation method based on deep learning | |
JP2020086983A5 (en) | ||
JP2019040229A5 (en) | ||
JP2015219868A (en) | Information processor, information processing method and program | |
JP5704909B2 (en) | Attention area detection method, attention area detection apparatus, and program | |
JP2018042237A5 (en) | ||
JP2015203680A (en) | Information processing device, method, and program | |
JP2017033556A (en) | Image processing method and electronic apparatus | |
US11989928B2 (en) | Image processing system | |
JP2021108022A5 (en) | ||
JP2015187769A (en) | Object detection device, object detection method, and program | |
JP7433849B2 (en) | Information processing device, information processing method and program | |
JP2014178967A (en) | Three-dimensional object recognition device and three-dimensional object recognition method |