Nothing Special   »   [go: up one dir, main page]

JP2017114990A - Thermoplastic resin composition for heat cycle injection molding, molded product and method for producing molded product - Google Patents

Thermoplastic resin composition for heat cycle injection molding, molded product and method for producing molded product Download PDF

Info

Publication number
JP2017114990A
JP2017114990A JP2015250417A JP2015250417A JP2017114990A JP 2017114990 A JP2017114990 A JP 2017114990A JP 2015250417 A JP2015250417 A JP 2015250417A JP 2015250417 A JP2015250417 A JP 2015250417A JP 2017114990 A JP2017114990 A JP 2017114990A
Authority
JP
Japan
Prior art keywords
mass
resin composition
thermoplastic resin
meth
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015250417A
Other languages
Japanese (ja)
Other versions
JP6678449B2 (en
Inventor
智紀 高瀬
Tomonori Takase
智紀 高瀬
幸作 垰
Kosaku Tao
幸作 垰
信隆 長谷
Nobutaka Hase
信隆 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Techno UMG Co Ltd
Original Assignee
Mitsubishi Chemical Corp
UMG ABS Ltd
Mitsubishi Chemicals Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, UMG ABS Ltd, Mitsubishi Chemicals Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015250417A priority Critical patent/JP6678449B2/en
Publication of JP2017114990A publication Critical patent/JP2017114990A/en
Application granted granted Critical
Publication of JP6678449B2 publication Critical patent/JP6678449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

【課題】ヒートサイクル射出成形したときに、表面外観、耐引っ掻き傷性、耐衝撃性、発色性、耐熱性、耐熱老化性に優れた成形品が得られる熱可塑性樹脂組成物およびその成形品の提供。
【解決手段】ポリオルガノシロキサン(Aa)およびポリ(メタ)アクリル酸エステル(Ab)からなる複合ゴム状重合体(A)の存在下にビニル系単量体成分(m1)を重合して得られたグラフト共重合体(B)と、ビニル系単量体成分(m2)を重合して得られた(メタ)アクリル酸エステル樹脂(C)と、を含み、複合ゴム状重合体(A)中のポリオルガノシロキサン(Aa)の含有率が1〜20質量%で、複合ゴム状重合体(A)の体積平均粒子径が0.05〜0.15μmであり、ビニル系単量体成分(m2)中のマレイミド系化合物の含有率が1〜30質量%、芳香族ビニル化合物の含有率が5.5〜15質量%であるヒートサイクル射出成形用熱可塑性樹脂組成物。
【選択図】なし
[PROBLEMS] To provide a thermoplastic resin composition capable of obtaining a molded article excellent in surface appearance, scratch resistance, impact resistance, color development, heat resistance, and heat aging resistance upon heat cycle injection molding, and the molded article. Provided.
It is obtained by polymerizing a vinyl monomer component (m1) in the presence of a composite rubber-like polymer (A) comprising a polyorganosiloxane (Aa) and a poly (meth) acrylic acid ester (Ab). In the composite rubber-like polymer (A), the graft copolymer (B) and the (meth) acrylate resin (C) obtained by polymerizing the vinyl monomer component (m2) The polyorganosiloxane (Aa) has a content of 1 to 20% by mass, the composite rubber-like polymer (A) has a volume average particle size of 0.05 to 0.15 μm, and a vinyl monomer component (m2 The thermoplastic resin composition for heat cycle injection molding in which the content of the maleimide compound is 1 to 30% by mass and the content of the aromatic vinyl compound is 5.5 to 15% by mass.
[Selection figure] None

Description

本発明は、ヒートサイクル射出成形用熱可塑性樹脂組成物、これを用いた成形品および成形品の製造方法に関する。   The present invention relates to a thermoplastic resin composition for heat cycle injection molding, a molded article using the same, and a method for producing the molded article.

成形品の耐衝撃性を向上させることによって、成形品の用途が拡大するだけでなく、成形品の薄肉化や大型化への対応が可能になるなど、工業的な有用性が非常に高くなる。そのため、成形品の耐衝撃性の向上については、これまでに様々な手法が提案されている。
これら手法のうち、ゴム質重合体と硬質樹脂とを組み合わせた樹脂材料を用いることによって、硬質樹脂に由来する特性を保持しつつ成形品の耐衝撃性を高める手法は、すでに工業化されている。このような樹脂材料としては、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−エチレン・α−オレフィン−スチレン(AES)樹脂、ポリオルガノシロキサン−アクリル酸エステル−アクリロニトリル−スチレン(SAS)樹脂、アクリロニトリル−スチレン−アクリル酸エステル(ASA)樹脂、またはこれらをさらに硬質樹脂に添加した熱可塑性樹脂組成物等が挙げられる。
また、近年では車輛分野などで塗装工程を省略する無塗装化が進んでいる。この場合、成形品がそのまま製品へ組み付けられることから、成形品には高い意匠性が求められる。成形品の意匠性を向上するため、成形時に金型表面温度を熱可塑性樹脂組成物の熱変形温度以上またはガラス転移温度以上に加熱する成形方法が提案されている。
Improving the impact resistance of the molded product not only expands the applications of the molded product, but also makes it extremely useful for industrial applications, such as enabling the molded product to be made thinner and larger. . Therefore, various techniques have been proposed so far for improving the impact resistance of the molded product.
Among these techniques, a technique for improving the impact resistance of a molded product while maintaining the characteristics derived from the hard resin by using a resin material in which a rubber polymer and a hard resin are combined has already been industrialized. Examples of such resin materials include acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-ethylene / α-olefin-styrene (AES) resin, polyorganosiloxane-acrylic ester-acrylonitrile-styrene (SAS) resin, acrylonitrile- Examples thereof include a styrene-acrylic acid ester (ASA) resin or a thermoplastic resin composition obtained by adding these to a hard resin.
In recent years, no-painting has been promoted in the vehicle field, etc., omitting the painting process. In this case, since the molded product is assembled to the product as it is, the molded product is required to have high designability. In order to improve the designability of a molded product, a molding method has been proposed in which the mold surface temperature is heated to a temperature equal to or higher than the heat distortion temperature of the thermoplastic resin composition or the glass transition temperature during molding.

硬質樹脂に由来する特性を保持しつつ、耐衝撃性が向上した成形品を得ることができる熱可塑性樹脂組成物や、成形品の意匠性を向上するための成形方法としては、例えば、下記のものが提案されている。
(1)硬質樹脂であるメタクリル酸エステル樹脂に、SAS樹脂を添加した熱可塑性樹脂組成物(特許文献1)。
(2)硬質樹脂であるメタクリル酸エステル樹脂に、ABS樹脂を添加した熱可塑性樹脂組成物をヒートサイクル射出成形し、成形時に金型表面温度を熱可塑性樹脂組成物の熱変形温度以上に加熱する方法(特許文献2)。
(3)硬質樹脂であるポリカーボネート樹脂に、メタクリル酸エステル樹脂およびAES樹脂およびアクリロニトリル−スチレン(AS)樹脂を添加した熱可塑性樹脂組成物を射出成形し、成形時に金型表面温度を熱可塑性樹脂組成物のガラス転移温度以上に加熱する方法(特許文献3)。
As a thermoplastic resin composition capable of obtaining a molded article having improved impact resistance while maintaining the characteristics derived from the hard resin, and a molding method for improving the design of the molded article, for example, Things have been proposed.
(1) A thermoplastic resin composition obtained by adding a SAS resin to a methacrylic ester resin which is a hard resin (Patent Document 1).
(2) A thermoplastic resin composition obtained by adding an ABS resin to a methacrylic ester resin, which is a hard resin, is subjected to heat cycle injection molding, and the mold surface temperature is heated to a temperature higher than the thermal deformation temperature of the thermoplastic resin composition during molding. Method (Patent Document 2).
(3) A thermoplastic resin composition obtained by adding a methacrylic ester resin, an AES resin, and an acrylonitrile-styrene (AS) resin to a polycarbonate resin, which is a hard resin, is injection-molded, and the mold surface temperature is set during the molding. A method of heating above the glass transition temperature of an object (Patent Document 3).

しかし、(1)の熱可塑性樹脂組成物では、成形品の耐衝撃性を向上させるためにSAS樹脂を多量に添加する必要があり、得られる成形品においては、メタクリル酸エステル樹脂に由来する表面硬度(耐傷付き性)や耐熱性、耐熱老化性が著しく低くなる。
(2)の成形方法で得られる成形品は、成形品表面の意匠性は良好であるが、熱可塑性樹脂組成物に耐熱成分を用いておらず、またABS樹脂を用いていることから、車輛分野等で必要とされる高い耐熱性および耐候性を有さない。
(3)の成形方法で得られる成形品は、ポリカーボネート樹脂を用いていることから、耐候性が不十分である。
However, in the thermoplastic resin composition (1), it is necessary to add a large amount of SAS resin in order to improve the impact resistance of the molded product. In the obtained molded product, the surface derived from the methacrylic ester resin Hardness (scratch resistance), heat resistance, and heat aging resistance are significantly reduced.
The molded product obtained by the molding method (2) has good design on the surface of the molded product, but does not use a heat-resistant component in the thermoplastic resin composition and uses an ABS resin. It does not have high heat resistance and weather resistance required in fields.
Since the molded product obtained by the molding method (3) uses a polycarbonate resin, the weather resistance is insufficient.

特開平08−283524号公報Japanese Patent Laid-Open No. 08-283524 特開2005−220265号公報JP 2005-220265 A 特開2012−131908号公報JP 2012-131908 A

本発明は、ヒートサイクル射出成形したときに、表面外観、耐引っ掻き傷性、耐衝撃性、発色性、耐熱性、耐熱老化性に優れた成形品が得られる熱可塑性樹脂組成物、これを用いた成形品および成形品の製造方法を提供する。   The present invention relates to a thermoplastic resin composition capable of obtaining a molded product having excellent surface appearance, scratch resistance, impact resistance, color development, heat resistance, and heat aging resistance when heat cycle injection molding is used. And a method for producing the molded product.

本発明は、以下の態様を包含する。
[1]金型のキャビティ表面が交互に加熱冷却される射出成形金型を用いて、金型のキャビティ表面温度を繰り返し上下させるヒートサイクル射出成形法により成形される熱可塑性樹脂組成物であって、
ポリオルガノシロキサン(Aa)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Ab)からなる複合ゴム状重合体(A)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体成分(m1)を重合して得られたグラフト共重合体(B)と、
(メタ)アクリル酸エステル、マレイミド系化合物および芳香族ビニル化合物を含むビニル系単量体成分(m2)を重合して得られた(メタ)アクリル酸エステル樹脂(C)と、を含み、
前記複合ゴム状重合体(A)(100質量%)中の前記ポリオルガノシロキサン(Aa)の含有率が1〜20質量%であり、
前記複合ゴム状重合体(A)の体積平均粒子径が0.05〜0.15μmであり、
前記ビニル系単量体成分(m2)(100質量%)中の前記マレイミド系化合物の含有率が1〜30質量%で、前記芳香族ビニル化合物の含有率が5.5〜15質量%である、ヒートサイクル射出成形用熱可塑性樹脂組成物。
[2]シリコーンオイル(D)をさらに含む、[1]に記載のヒートサイクル射出成形用熱可塑性樹脂組成物。
[3]スチレン系樹脂(E)をさらに含む、[1]または[2]に記載のヒートサイクル射出成形用熱可塑性樹脂組成物。
[4]オレフィン系共重合体の存在下にビニル系単量体成分(m4)を重合して得られたグラフト共重合体(I)をさらに含む、[1]〜[3]のいずれかに記載のヒートサイクル射出成形用熱可塑性樹脂組成物。
[5][1]〜[4]のいずれかに記載のヒートサイクル射出成形用熱可塑性樹脂組成物を成形してなる成形品。
[6][1]〜[4]のいずれかに記載のヒートサイクル射出成形用熱可塑性樹脂組成物を、金型のキャビティ表面が交互に加熱冷却される射出成形金型を用いて、金型のキャビティ表面温度を繰り返し上下させるヒートサイクル射出成形法により成形して成形品を得る、成形品の製造方法。
The present invention includes the following aspects.
[1] A thermoplastic resin composition molded by a heat cycle injection molding method in which a mold cavity surface temperature is repeatedly raised and lowered using an injection mold in which mold cavity surfaces are alternately heated and cooled. ,
Poly (meth) acrylate ester having units derived from polyorganosiloxane (Aa) and (meth) acrylate, and one or both of a unit derived from a crosslinking agent and a unit derived from a graft crossing agent A graft copolymer obtained by polymerizing a vinyl monomer component (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the composite rubber-like polymer (A) comprising (Ab) ( B) and
A (meth) acrylic ester resin (C) obtained by polymerizing a vinyl monomer component (m2) containing a (meth) acrylic ester, a maleimide compound and an aromatic vinyl compound,
The content of the polyorganosiloxane (Aa) in the composite rubber-like polymer (A) (100% by mass) is 1 to 20% by mass,
The composite rubber-like polymer (A) has a volume average particle diameter of 0.05 to 0.15 μm,
The content of the maleimide compound in the vinyl monomer component (m2) (100% by mass) is 1 to 30% by mass, and the content of the aromatic vinyl compound is 5.5 to 15% by mass. A thermoplastic resin composition for heat cycle injection molding.
[2] The thermoplastic resin composition for heat cycle injection molding according to [1], further comprising a silicone oil (D).
[3] The thermoplastic resin composition for heat cycle injection molding according to [1] or [2], further comprising a styrene resin (E).
[4] In any one of [1] to [3], further comprising a graft copolymer (I) obtained by polymerizing a vinyl monomer component (m4) in the presence of an olefin copolymer The thermoplastic resin composition for heat cycle injection molding described.
[5] A molded product obtained by molding the thermoplastic resin composition for heat cycle injection molding according to any one of [1] to [4].
[6] The thermoplastic resin composition for heat cycle injection molding according to any one of [1] to [4], using an injection mold in which the cavity surface of the mold is alternately heated and cooled, A method for producing a molded product, wherein a molded product is obtained by molding by a heat cycle injection molding method in which the cavity surface temperature is repeatedly raised and lowered.

本発明によれば、ヒートサイクル射出成形したときに、表面外観、耐引っ掻き傷性、耐衝撃性、発色性、耐熱性、耐熱老化性に優れた成形品が得られる熱可塑性樹脂組成物、これを用いた成形品および成形品の製造方法を提供できる。   According to the present invention, a thermoplastic resin composition capable of obtaining a molded article having excellent surface appearance, scratch resistance, impact resistance, color development, heat resistance, and heat aging resistance upon heat cycle injection molding, It is possible to provide a molded article and a method for producing the molded article using the.

[実施例]で作製した耐傷付き性および表面外観性評価用成形品の概略斜視図である。It is a schematic perspective view of the molded article for scratch resistance and surface appearance evaluation produced in [Example].

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味する。
「成形品」とは、熱可塑性樹脂組成物を成形してなるものを意味する。ヒートサイクル射出成形用熱可塑性樹脂組成物の成形品は、ヒートサイクル射出成形用熱可塑性樹脂組成物をヒートサイクル射出成形してなるものを意味する。
「耐引っ掻き傷性」とは、爪等の硬く尖ったもので成形品の表面を引っ掻いたときに生じる傷(引っ掻き傷)に対する傷付きにくさを意味する。
「耐熱老化性」とは、成形品を高温条件下で静置する前後で色が変化しにくい(静置前後での色の差が小さい)ことを意味する。
「表面外観性」とは、成形品表面に光沢があり、ウェルド部の色むらがないことを意味する。
The following definitions of terms apply throughout this specification and the claims.
“(Meth) acrylic acid” means acrylic acid or methacrylic acid.
“Molded product” means a product formed by molding a thermoplastic resin composition. The molded product of the thermoplastic resin composition for heat cycle injection molding means a product obtained by heat cycle injection molding of the thermoplastic resin composition for heat cycle injection molding.
“Scratch resistance” means the resistance to scratches (scratches) caused by scratching the surface of a molded article with a hard pointed object such as a nail.
“Heat aging resistance” means that the color hardly changes before and after the molded product is allowed to stand under a high temperature condition (the color difference between before and after standing is small).
“Surface appearance” means that the surface of the molded article is glossy and there is no uneven color in the welded portion.

「ヒートサイクル射出成形用熱可塑性樹脂組成物」
本発明のヒートサイクル射出成形用熱可塑性樹脂組成物(以下、単に「熱可塑性樹脂組成物」ともいう。)は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とを含む。本発明の熱可塑性樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲内で、シリコーンオイル(D)、スチレン系樹脂(E)、グラフト共重合体(I)、他の熱可塑性樹脂、各種添加剤を含んでいてもよい。
"Thermoplastic resin composition for heat cycle injection molding"
The thermoplastic resin composition for heat cycle injection molding of the present invention (hereinafter also simply referred to as “thermoplastic resin composition”) comprises a graft copolymer (B) and a (meth) acrylate resin (C). Including. If necessary, the thermoplastic resin composition of the present invention can be used within the range that does not impair the effects of the present invention, such as silicone oil (D), styrene resin (E), graft copolymer (I), A plastic resin and various additives may be included.

グラフト共重合体(B)は、複合ゴム状重合体(A)の存在下にビニル系単量体成分(m1)を重合して得られたものである。
複合ゴム状重合体(A)は、ポリオルガノシロキサン(Aa)およびポリ(メタ)アクリル酸エステル(Ab)からなるものである。
(メタ)アクリル酸エステル樹脂(C)は、ビニル系単量体成分(m2)を重合して得られたものである。
The graft copolymer (B) is obtained by polymerizing the vinyl monomer component (m1) in the presence of the composite rubber-like polymer (A).
The composite rubbery polymer (A) is composed of a polyorganosiloxane (Aa) and a poly (meth) acrylic acid ester (Ab).
The (meth) acrylic ester resin (C) is obtained by polymerizing the vinyl monomer component (m2).

スチレン系樹脂(E)は、ビニル系単量体成分(m3)を重合して得られたものである。
グラフト共重合体(I)は、オレフィン系共重合体の存在下に、ビニル系単量体成分(m4)を重合して得られたものである。
グラフト共重合体(I)は、エチレン・α−オレフィン共重合体(F)、オレフィン樹脂水性分散体(G)、または架橋エチレン・α−オレフィン共重合体(H)の存在下に、ビニル系単量体成分(m4)を重合して得られたものであることが好ましい。
以下、各成分((A)〜(I)、(m1)〜(m4)等)について説明する。
The styrene resin (E) is obtained by polymerizing the vinyl monomer component (m3).
The graft copolymer (I) is obtained by polymerizing the vinyl monomer component (m4) in the presence of an olefin copolymer.
The graft copolymer (I) is a vinyl-based copolymer in the presence of an ethylene / α-olefin copolymer (F), an aqueous olefin resin dispersion (G), or a crosslinked ethylene / α-olefin copolymer (H). It is preferably obtained by polymerizing the monomer component (m4).
Hereinafter, each component ((A)-(I), (m1)-(m4) etc.) is demonstrated.

<ポリオルガノシロキサン(Aa)>
ポリオルガノシロキサン(Aa)としては特に制限はないが、ビニル重合性官能基を有するポリオルガノシロキサンが好ましく、ポリオルガノシロキサンを構成する全構成単位の総モル数に対し、ビニル重合性官能基を含有するシロキサン単位0.3〜3モル%と、ジメチルシロキサン単位97〜99.7モル%とを含み、ポリジメチルシロキサン中の全ケイ素原子の総モル数に対し、3個以上のシロキサン結合を有するケイ素原子が1モル%以下であるポリオルガノシロキサンがより好ましい。
<Polyorganosiloxane (Aa)>
Although there is no restriction | limiting in particular as polyorganosiloxane (Aa), The polyorganosiloxane which has a vinyl polymerizable functional group is preferable, and contains vinyl polymerizable functional group with respect to the total number of moles of all the structural units which comprise polyorganosiloxane. Silicon having 0.3 to 3 mol% of siloxane units and 97 to 99.7 mol% of dimethylsiloxane units, and having 3 or more siloxane bonds with respect to the total number of moles of all silicon atoms in the polydimethylsiloxane A polyorganosiloxane having 1 mol% or less of atoms is more preferred.

ポリオルガノシロキサン(Aa)を構成するジメチルシロキサンとしては、例えば、3員環以上のジメチルシロキサン系環状体が挙げられる。中でも、3員環〜7員環のものが好ましい。具体的にはヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等が挙げられる。これらは1種でまたは2種以上を組み合わせて使用できる。   Examples of the dimethylsiloxane constituting the polyorganosiloxane (Aa) include a dimethylsiloxane-based cyclic body having three or more members. Among these, a 3-membered to 7-membered ring is preferable. Specific examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. These can be used alone or in combination of two or more.

ビニル重合性官能基含有シロキサンとしては、ビニル重合性官能基を含有し、かつ、ジメチルシロキサンとシロキサン結合を介して結合しうるものであれば制限されないが、ジメチルシロキサンとの反応性を考慮すると、ビニル重合性官能基を含有する各種アルコキシシラン化合物が好ましい。具体的には、β−メタクリロイルオキシエチルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルメトキシジメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルエトキシジエチルシラン、γ−メタクリロイルオキシプロピルジエトキシメチルシランおよび∂−メタクリロイルオキシブチルジエトキシメチルシラン等のメタクリロイルオキシシロキサン、テトラメチルテトラビニルシクロテトラシロキサン等のビニルシロキサン、p−ビニルフェニルジメトキシメチルシラン等のビニルフェニルシロキサン等が挙げられる。これらビニル重合性官能基含有シロキサンは、1種でまたは2種以上を組み合わせて使用できる。   The vinyl polymerizable functional group-containing siloxane is not limited as long as it contains a vinyl polymerizable functional group and can be bonded to dimethylsiloxane via a siloxane bond, but considering the reactivity with dimethylsiloxane, Various alkoxysilane compounds containing a vinyl polymerizable functional group are preferred. Specifically, β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropylmethoxydimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylethoxydiethylsilane, methacryloyloxysiloxanes such as γ-methacryloyloxypropyldiethoxymethylsilane and ∂-methacryloyloxybutyldiethoxymethylsilane, vinylsiloxanes such as tetramethyltetravinylcyclotetrasiloxane, vinylphenylsiloxanes such as p-vinylphenyldimethoxymethylsilane, etc. Is mentioned. These vinyl polymerizable functional group-containing siloxanes can be used alone or in combination of two or more.

ポリオルガノシロキサン(Aa)には、必要に応じて、構成成分としてシロキサン系架橋剤が含まれていてもよい。
シロキサン系架橋剤としては、3官能性または4官能性のシラン系架橋剤、例えばトリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン等が挙げられる。
The polyorganosiloxane (Aa) may contain a siloxane-based crosslinking agent as a constituent component, if necessary.
Examples of the siloxane crosslinking agent include trifunctional or tetrafunctional silane crosslinking agents such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane.

ポリオルガノシロキサン(Aa)の製造方法は、限定されない。例えば、以下の方法により製造できる。
まず、ジメチルシロキサンとビニル重合性官能基を含有するシロキサンとからなるシロキサン混合物に、必要に応じてシロキサン系架橋剤を添加し、次いで、乳化剤および水によって乳化させて、水性媒体にシロキサン混合物が分散したシロキサン混合物水性分散体を得る。次いで、高速回転による剪断力で微粒子化するホモミキサーや、高圧発生機による噴出力で微粒子化するホモジナイザー等を使用して、シロキサン混合物水性分散体中の分散粒子(シロキサン混合物)を微粒子化させる。ここで、ホモジナイザー等の高圧乳化装置を使用すると、分散粒子、ひいてはポリオルガノシロキサン(Aa)の粒子径の分布が小さくなるので好ましい。次いで、分散粒子を微粒子化したシロキサン混合物水性分散体を、酸触媒を含む酸水溶液中に添加して高温下で重合させる。そして、反応液を冷却し、さらに苛性ソーダ、苛性カリ、炭酸ナトリウム等のアルカリ性物質で中和することで重合を停止させて、水性媒体にポリオルガノシロキサン(Aa)が分散した水性分散体を得る。
水性媒体としては、水、水と混和する有機溶剤(以下、「水混和性有機溶剤」ともいう。)、およびこれらの混合物が挙げられる。水混和性有機溶剤としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール類;ポリアルキレングリコールのアルキルエーテル類;N−メチル−2−ピロリドン等のラクタム類等が挙げられる。本発明では、水性媒体として、水のみを用いるか、または水と水混和性有機溶剤との混合物を用いることが好ましい。
The manufacturing method of polyorganosiloxane (Aa) is not limited. For example, it can be produced by the following method.
First, if necessary, a siloxane-based crosslinking agent is added to a siloxane mixture composed of dimethylsiloxane and a siloxane containing a vinyl polymerizable functional group, and then emulsified with an emulsifier and water to disperse the siloxane mixture in an aqueous medium. A siloxane mixture aqueous dispersion is obtained. Subsequently, the dispersed particles (siloxane mixture) in the aqueous siloxane mixture dispersion are made into fine particles using a homomixer that makes fine particles by a shearing force by high-speed rotation, a homogenizer that makes fine particles by a jet output from a high-pressure generator, or the like. Here, it is preferable to use a high-pressure emulsifier such as a homogenizer because the particle size distribution of the dispersed particles, and thus the polyorganosiloxane (Aa), becomes small. Next, the siloxane mixture aqueous dispersion in which the dispersed particles are atomized is added to an acid aqueous solution containing an acid catalyst and polymerized at a high temperature. Then, the reaction liquid is cooled and further neutralized with an alkaline substance such as caustic soda, caustic potash or sodium carbonate to stop the polymerization, thereby obtaining an aqueous dispersion in which polyorganosiloxane (Aa) is dispersed in an aqueous medium.
Examples of the aqueous medium include water, an organic solvent miscible with water (hereinafter, also referred to as “water-miscible organic solvent”), and a mixture thereof. Examples of the water-miscible organic solvent include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; Alkyl ethers; and lactams such as N-methyl-2-pyrrolidone. In the present invention, it is preferable to use only water or a mixture of water and a water-miscible organic solvent as the aqueous medium.

上記ポリオルガノシロキサン(Aa)の製造において、乳化剤としては、アニオン系乳化剤が好ましい。アニオン系乳化剤としては、例えば、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム(ラウリルスルホン酸ナトリウム等)、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどが挙げられる。これらの中でも、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム等のスルホン酸系の乳化剤が好ましい。これらの乳化剤は、シロキサン混合物100質量部(固形分として)に対して、0.05質量部〜5質量部程度の範囲で使用されることが好ましい。   In the production of the polyorganosiloxane (Aa), the emulsifier is preferably an anionic emulsifier. Examples of the anionic emulsifier include sodium alkylbenzene sulfonate, sodium alkyl sulfonate (such as sodium lauryl sulfonate), sodium polyoxyethylene nonylphenyl ether sulfate, and the like. Among these, sulfonic acid-based emulsifiers such as sodium alkylbenzene sulfonate and sodium alkyl sulfonate are preferable. These emulsifiers are preferably used in a range of about 0.05 to 5 parts by mass with respect to 100 parts by mass (as solid content) of the siloxane mixture.

重合に用いられる酸触媒としては、脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸等のスルホン酸類、および硫酸、塩酸、硝酸等の鉱酸類等が挙げられる。これらの酸触媒は、1種でまたは2種以上を組み合わせて使用できる。
これらの中でも、ポリオルガノシロキサン(Aa)の水性分散体の安定化作用に優れているため、脂肪族置換ベンゼンスルホン酸が好ましく、n−ドデシルベンゼンスルホン酸が特に好ましい。また、n−ドデシルベンゼンスルホン酸と硫酸等の鉱酸とを併用すると、ポリオルガノシロキサン(Aa)の水性分散体に使用した乳化剤が、熱可塑性樹脂組成物の発色性に影響を及ぼすことを極力抑えることができる。
Examples of the acid catalyst used for the polymerization include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, and aliphatic substituted naphthalenesulfonic acid, and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. These acid catalysts can be used alone or in combination of two or more.
Among these, aliphatic substituted benzene sulfonic acid is preferable and n-dodecyl benzene sulfonic acid is particularly preferable because it is excellent in stabilizing action of the aqueous dispersion of polyorganosiloxane (Aa). In addition, when n-dodecylbenzenesulfonic acid and a mineral acid such as sulfuric acid are used in combination, the emulsifier used in the aqueous dispersion of polyorganosiloxane (Aa) affects the color developability of the thermoplastic resin composition as much as possible. Can be suppressed.

水性分散体中のポリオルガノシロキサン(Aa)の体積平均粒子径は、成形品の発色性がより優れること、ポリオルガノシロキサン(Aa)を製造する際の水性分散体の粘度上昇や凝塊物 (コアギュラム)発生を防止できることから、0.01〜0.09μmが好ましく、0.02〜0.08μmがより好ましい。
体積平均粒子径は、レーザー回折・散乱法によって測定される値である。具体的には、後述する実施例に示す方法で測定される。
なお、ポリオルガノシロキサン(Aa)の体積平均粒子径を制御する方法としては、例えば、特開平5−279434号公報に記載された方法を採用できる。
The volume average particle diameter of the polyorganosiloxane (Aa) in the aqueous dispersion is such that the color development of the molded article is more excellent, the viscosity of the aqueous dispersion during the production of the polyorganosiloxane (Aa), and agglomerates ( (Coagulum) can be prevented, and is preferably 0.01 to 0.09 μm, more preferably 0.02 to 0.08 μm.
The volume average particle diameter is a value measured by a laser diffraction / scattering method. Specifically, it is measured by the method shown in the examples described later.
In addition, as a method of controlling the volume average particle diameter of the polyorganosiloxane (Aa), for example, a method described in JP-A-5-279434 can be employed.

<ポリ(メタ)アクリル酸エステル(Ab)>
ポリ(メタ)アクリル酸エステル(Ab)は、(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方とを有する共重合体である。
なお、ポリ(メタ)アクリル酸エステル(Ab)において、架橋剤またはグラフト交叉剤に相当する(メタ)アクリル酸エステルは、架橋剤またはグラフト交叉剤であり、(メタ)アクリル酸エステルには該当しないものとする。
<Poly (meth) acrylic acid ester (Ab)>
The poly (meth) acrylic acid ester (Ab) is a copolymer having a unit derived from a (meth) acrylic acid ester, a unit derived from a crosslinking agent, and a unit derived from a graft crossing agent or both. It is.
In addition, in poly (meth) acrylic acid ester (Ab), (meth) acrylic acid ester corresponding to the cross-linking agent or graft crossing agent is a cross-linking agent or graft crossing agent, and does not correspond to (meth) acrylic acid ester. Shall.

(メタ)アクリル酸エステルとしては、アルキル基の炭素数が1〜12である(メタ)アクリル酸アルキルエステル;フェニル基、ベンジル基等の芳香族炭化水素基を有する(メタ)アクリル酸エステル等が挙げられる。(メタ)アクリル酸エステルとしては、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸エチルが好ましい。(メタ)アクリル酸エステルは、1種でまたは2種以上を組み合わせて使用できる。   Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters having 1 to 12 carbon atoms in the alkyl group; (meth) acrylic acid esters having an aromatic hydrocarbon group such as a phenyl group and a benzyl group. Can be mentioned. As (meth) acrylic acid ester, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are preferable. The (meth) acrylic acid ester can be used alone or in combination of two or more.

架橋剤およびグラフト交叉剤はそれぞれ、成形品の耐衝撃性、発色性、熱老化性を改善する。
架橋剤としては、ジメタクリレート系化合物、具体例には、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,4−ブチレングリコールジメタクリレート等が挙げられる。
グラフト交叉剤としては、アリル化合物、具体的には、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等が挙げられる。
Each of the crosslinking agent and the graft crossing agent improves the impact resistance, color developability and heat aging property of the molded product.
Examples of the crosslinking agent include dimethacrylate compounds, and specific examples include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and the like.
Examples of the grafting agent include allyl compounds, specifically, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like.

ポリ(メタ)アクリル酸エステル(Ab)中、架橋剤に由来する単位およびグラフト交叉剤に由来する単位の合計量は、成形品の耐衝撃性、発色性、耐熱老化性が優れ、グラフト共重合体(B)製造時の凝塊物(コアギュラム)が少なくなることから、ポリ(メタ)アクリル酸エステル(Ab)を構成する全単位の合計100質量%に対し、0.1〜5質量%が好ましく、0.2〜3質量%がより好ましく、0.5〜2質量%がさらに好ましい。   In the poly (meth) acrylic acid ester (Ab), the total amount of the unit derived from the crosslinking agent and the unit derived from the graft crossing agent is excellent in impact resistance, color developability and heat aging resistance of the molded product, Since the coagulum (coagulum) at the time of production of the combined body (B) is reduced, 0.1 to 5% by mass is 100% by mass with respect to a total of 100% by mass of all units constituting the poly (meth) acrylic acid ester (Ab). Preferably, 0.2-3 mass% is more preferable, and 0.5-2 mass% is further more preferable.

<複合ゴム状重合体(A)>
複合ゴム状重合体(A)は、ポリオルガノシロキサン(Aa)およびポリ(メタ)アクリル酸エステル(Ab)からなる。
複合ゴム状重合体(A)は、典型的には、ポリオルガノシロキサン(Aa)とポリ(メタ)アクリル酸エステル(Ab)とが互いにミクロレベルで絡み合った、または互いに化学結合した構造を有すると推測される。
<Composite rubbery polymer (A)>
The composite rubbery polymer (A) is composed of a polyorganosiloxane (Aa) and a poly (meth) acrylic acid ester (Ab).
The composite rubber-like polymer (A) typically has a structure in which a polyorganosiloxane (Aa) and a poly (meth) acrylic acid ester (Ab) are entangled with each other at a micro level or chemically bonded to each other. Guessed.

複合ゴム状重合体(A)中のポリオルガノシロキサン(Aa)の含有率は、複合ゴム状重合体(A)の総質量(100質量%)に対し、1〜20質量%が好ましく、3〜18質量%がより好ましい。ポリオルガノシロキサン(Aa)の含有率が前記範囲の下限値以上であれば、成形品の耐衝撃性がより優れ、前記範囲の上限値以下であれば、耐衝撃性がより優れる。   The content of the polyorganosiloxane (Aa) in the composite rubbery polymer (A) is preferably 1 to 20% by mass relative to the total mass (100% by mass) of the composite rubbery polymer (A). 18 mass% is more preferable. If the content of the polyorganosiloxane (Aa) is not less than the lower limit of the above range, the impact resistance of the molded product is more excellent, and if it is not more than the upper limit of the above range, the impact resistance is more excellent.

複合ゴム状重合体(A)の製造方法としては特に制限されない。例えば、別々に製造したポリオルガノシロキサン(Aa)の水性分散体とポリ(メタ)アクリル酸エステル(Ab)の水性分散体とをヘテロ凝集または共肥大化する方法、ポリオルガノシロキサン(Aa)の水性分散体およびポリ(メタ)アクリル酸エステル(Ab)の水性分散体のいずれか一方の中で、他方の重合体を形成させて複合化させる方法等が挙げられる。これらの方法により、複合ゴム状重合体(A)の水性分散体が得られる。
複合ゴム状重合体(A)の製造方法としては、上記の中でも、成形品の耐衝撃性および発色性がより優れることから、ポリオルガノシロキサン(Aa)の水性分散体中で、(メタ)アクリル酸エステル系単量体と、架橋剤およびグラフト交叉剤のいずれか一方または両方とを含む単量体成分を乳化重合させる方法が好ましい。たとえば、室温下、ポリオルガノシロキサン(Aa)の水性分散体に、乳化剤と、単量体成分とを加えて40〜80℃に昇温し、ラジカル重合開始剤を加えて0.5〜3時間程度重合させることにより、複合ゴム状重合体(A)の水性分散体が得られる。
It does not restrict | limit especially as a manufacturing method of a composite rubber-like polymer (A). For example, a method of heteroaggregating or co-hygrolating an aqueous dispersion of polyorganosiloxane (Aa) and an aqueous dispersion of poly (meth) acrylic acid ester (Ab) separately produced, and an aqueous solution of polyorganosiloxane (Aa) In any one of the dispersion and the aqueous dispersion of poly (meth) acrylic acid ester (Ab), there is a method of forming the other polymer and making it composite. By these methods, an aqueous dispersion of the composite rubber-like polymer (A) is obtained.
As a method for producing the composite rubber-like polymer (A), among them, the impact resistance and color developability of the molded product are more excellent. Therefore, in the aqueous dispersion of polyorganosiloxane (Aa), (meth) acrylic is used. A method of emulsion polymerization of a monomer component containing an acid ester monomer and one or both of a crosslinking agent and a graft crossing agent is preferred. For example, an emulsifier and a monomer component are added to an aqueous dispersion of polyorganosiloxane (Aa) at room temperature, the temperature is raised to 40 to 80 ° C., and a radical polymerization initiator is added for 0.5 to 3 hours. An aqueous dispersion of the composite rubber-like polymer (A) is obtained by polymerizing to a certain extent.

乳化重合で使用される乳化剤の好ましい具体例としては、オレイン酸、ステアリン酸、ミリスチン酸、ステアリン酸、パルミチン酸等の脂肪酸のナトリウムまたはカリウム塩、ラウリル硫酸ナトリウム、N−ラウロイルサルコシン酸ナトリウム、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム等が挙げられる。
乳化剤としては、熱可塑性樹脂組成物の成形時のガス発生をより抑制できる点から、一分子中に官能基を二つ以上有する酸型乳化剤またはその塩が好ましく、中でも、アルケニルコハク酸ジカリウムまたはアルキルジフェニルエーテルジスルホン酸ナトリウムが好ましい。
ラジカル重合開始剤としては、過酸化物、アゾ系開始剤、酸化剤と還元剤とを組み合わせたレドックス系開始剤等が挙げられる。これらのうち、レドックス系開始剤が好ましく、硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ロンガリット・ヒドロパーオキサイドを組み合わせたスルホキシレート系開始剤が特に好ましい。
Preferable specific examples of the emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids such as oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinate. Examples include dipotassium acid, sodium alkyldiphenyl ether disulfonate, sodium polyoxyethylene alkylphenyl ether sulfate, and the like.
The emulsifier is preferably an acid-type emulsifier having two or more functional groups in one molecule or a salt thereof from the viewpoint that gas generation during molding of the thermoplastic resin composition can be further suppressed. Among them, dipotassium alkenyl succinate or alkyl Sodium diphenyl ether disulfonate is preferred.
Examples of the radical polymerization initiator include peroxides, azo initiators, redox initiators in which an oxidizing agent and a reducing agent are combined. Of these, redox initiators are preferable, and sulfoxylate initiators in which ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, longalite, and hydroperoxide are combined are particularly preferable.

水性分散体に分散している複合ゴム状重合体(A)の体積平均粒子径は、0.05〜0.15μmであり、0.07〜0.13μmが好ましい。
つまりグラフト共重合体(B)は、体積平均粒子径が0.05〜0.15μmである複合ゴム状重合体(A)の存在下にビニル系単量体成分(m1)を重合することによって得られるものであり、熱可塑性樹脂組成物は、前記グラフト共重合体(B)に由来して、体積平均粒子径が0.05〜0.15μmである複合ゴム状重合体(A)を含むものである。
複合ゴム状重合体(A)の体積平均粒子径が前記範囲の下限値以上であると、成形品の耐衝撃性がより優れ、前記範囲の上限値以下であると、成形品の発色性、耐熱老化性、耐侯性がより優れる。
複合ゴム状重合体(A)の体積平均粒子径を制御する方法として、特に制限されないが、乳化剤の種類または使用量を調整する方法等が挙げられる。
なお、前記水性分散体中の複合ゴム状重合体(A)の平均粒子径が、そのまま熱可塑性樹脂組成物中の複合ゴム状重合体(A)の体積平均粒子径を示すことを、電子顕微鏡の画像解析によって確認している。
The composite rubber-like polymer (A) dispersed in the aqueous dispersion has a volume average particle size of 0.05 to 0.15 μm, preferably 0.07 to 0.13 μm.
That is, the graft copolymer (B) is obtained by polymerizing the vinyl monomer component (m1) in the presence of the composite rubber-like polymer (A) having a volume average particle diameter of 0.05 to 0.15 μm. The thermoplastic resin composition obtained is derived from the graft copolymer (B) and contains a composite rubber-like polymer (A) having a volume average particle diameter of 0.05 to 0.15 μm. It is a waste.
When the volume average particle diameter of the composite rubber-like polymer (A) is not less than the lower limit of the above range, the impact resistance of the molded product is more excellent, and when it is not more than the upper limit of the above range, the color developability of the molded product, Excellent heat aging resistance and weather resistance.
Although it does not restrict | limit especially as a method of controlling the volume average particle diameter of a composite rubber-like polymer (A), The method etc. which adjust the kind or usage-amount of an emulsifier are mentioned.
Note that the average particle size of the composite rubber-like polymer (A) in the aqueous dispersion shows the volume average particle size of the composite rubber-like polymer (A) in the thermoplastic resin composition as it is. This is confirmed by image analysis.

<ビニル系単量体成分(m1)>
ビニル系単量体成分(m1)は、単量体として少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む。
ビニル系単量体成分(m1)は、本発明の効果を損なわない範囲で、芳香族ビニル化合物およびシアン化ビニル化合物の他に、これらと共重合可能な他の単量体をさらに含んでもよい。
<Vinyl monomer component (m1)>
The vinyl monomer component (m1) contains at least an aromatic vinyl compound and a vinyl cyanide compound as monomers.
The vinyl monomer component (m1) may further contain other monomers copolymerizable with these in addition to the aromatic vinyl compound and the vinyl cyanide compound as long as the effects of the present invention are not impaired. .

芳香族ビニル化合物としては、例えば、スチレン、α−メチルスチレン、o−,m−もしくはp−メチルスチレン、ビニルキシレン、p−t−ブチルスチレン、エチルスチレンなどが挙げられる。これらの中でも、スチレン、α−メチルスチレンが好ましい。これらは1種でまたは2種以上を組み合わせて使用できる。   Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Among these, styrene and α-methylstyrene are preferable. These can be used alone or in combination of two or more.

シアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは1種でまたは2種以上を組み合わせて使用できる。   Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more.

他の単量体としては、例えば、メタクリル酸エステル、アクリル酸エステル、マレイミド系化合物等が挙げられる。
メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸i−プロピル、メタクリル酸n−ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸2−エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸フェニル等が挙げられる。
アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等が挙げられる。
マレイミド系化合物としては、例えば、N−アルキルマレイミド(N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−i−プロピルマレイミド、N−n−ブチルマレイミド、N−i−ブチルマレイミド、N−tert−ブチルマレイミド、N−シクロヘキシルマレイミド等)、N−アリールマレイミド(N−フェニルマレイミド、N−アルキル置換フェニルマレイミド、N−クロロフェニルマレイミド等)、N−アラルキルマレイミド等のN−置換マレイミド化合物が挙げられる。
これらは1種でまたは2種以上を組み合わせて使用できる。
Examples of other monomers include methacrylic acid esters, acrylic acid esters, maleimide compounds, and the like.
Methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, methacrylic acid. Examples include isoamyl, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, and phenyl methacrylate.
Examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
Examples of maleimide compounds include N-alkylmaleimide (N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide). , N-tert-butylmaleimide, N-cyclohexylmaleimide, etc.), N-arylmaleimide (N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, N-chlorophenylmaleimide, etc.), N-substituted maleimide compounds such as N-aralkylmaleimide Is mentioned.
These can be used alone or in combination of two or more.

ビニル系単量体成分(m1)中の芳香族ビニル化合物の含有率は、ビニル系単量体成分(m1)の総質量(100質量%)に対し、65〜82質量%が好ましく、73〜80質量%がより好ましく、75〜80質量%がさらに好ましい。ビニル系単量体成分(m1)の総質量に対する芳香族ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がより優れる。   65-82 mass% is preferable with respect to the total mass (100 mass%) of a vinyl-type monomer component (m1), and the content rate of the aromatic vinyl compound in a vinyl-type monomer component (m1) is 73- 80 mass% is more preferable, and 75-80 mass% is further more preferable. When the content of the aromatic vinyl compound relative to the total mass of the vinyl monomer component (m1) is within the above range, the color developability and impact resistance of the molded product are more excellent.

ビニル系単量体成分(m1)中のシアン化ビニル化合物の含有率は、ビニル系単量体成分(m1)の総質量(100質量%)に対し、18〜35質量%が好ましく、20〜27質量%がより好ましく、20〜25質量%がさらに好ましい。ビニル系単量体成分(m1)の総質量に対するシアン化ビニル化合物の含有率が上記範囲内であれば、成形品の発色性、耐衝撃性がより優れる。   The content of the vinyl cyanide compound in the vinyl monomer component (m1) is preferably 18 to 35 mass% with respect to the total mass (100 mass%) of the vinyl monomer component (m1), and is preferably 20 to 20 mass%. 27 mass% is more preferable, and 20-25 mass% is further more preferable. When the content of the vinyl cyanide compound with respect to the total mass of the vinyl monomer component (m1) is within the above range, the color developability and impact resistance of the molded product are more excellent.

<グラフト共重合体(B)>
グラフト共重合体(B)は、複合ゴム状重合体(A)の存在下にビニル系単量体成分(m1)を重合することによって得られたものである。
グラフト共重合体(B)は、体積平均粒子径が0.05〜0.15μmである粒状の複合ゴム状重合体(A)に、ビニル系単量体成分(m1)の重合体からなるグラフト鎖が結合したものであり、おおむね、複合ゴム状重合体(A)からなるコア部と、ビニル系単量体成分(m1)の重合体からなる外層部(シェル)とから構成されると推測される。ただし、完全にはこのようなコア−シェル型になっているとは限らないので、「複合ゴム状重合体(A)の存在下にビニル系単量体成分(m1)を重合することによって得られたもの」と規定することがより適切とされる。
<Graft copolymer (B)>
The graft copolymer (B) is obtained by polymerizing the vinyl monomer component (m1) in the presence of the composite rubber-like polymer (A).
The graft copolymer (B) is a graft composed of a polymer of a vinyl monomer component (m1) on a granular composite rubber-like polymer (A) having a volume average particle diameter of 0.05 to 0.15 μm. Presumed to be composed of a core part composed of a composite rubber-like polymer (A) and an outer layer part (shell) composed of a polymer of the vinyl monomer component (m1). Is done. However, since it does not always have such a core-shell type, it is obtained by polymerizing the vinyl monomer component (m1) in the presence of the composite rubber-like polymer (A). It is more appropriate to define "

グラフト共重合体(B)は、複合ゴム状重合体(A)20〜90質量%の存在下に、ビニル系単量体成分(m1)10〜80質量%(ただし、複合ゴム状重合体(A)とビニル系単量体成分(m1)との合計は100質量%である。)を重合して得られたものであることが好ましく、複合ゴム状重合体(A)25〜85質量%の存在下に、ビニル系単量体成分(m1)15〜75質量%を重合して得られたものであることがより好ましく、複合ゴム状重合体(A)30〜80質量%の存在下に、ビニル系単量体成分(m1)20〜70質量%を重合して得られたものであることがさらに好ましい。
すなわち、グラフト共重合体(B)は、複合ゴム状重合体(A)20〜90質量%と、ビニル系単量体成分(m1)の重合体10〜80質量%(ただし、複合ゴム状重合体(A)とビニル系単量体成分(m1)の重合体との合計は100質量%である。)とからなるものであることが好ましく、複合ゴム状重合体(A)25〜85質量%と、ビニル系単量体成分(m1)の重合体15〜75質量%とからなるものであることがより好ましく、複合ゴム状重合体(A)30〜80質量%と、ビニル系単量体成分(m1)の重合体20〜70質量%とからなるものであることがさらに好ましい。
複合ゴム状重合体(A)とビニル系単量体成分(m1)との合計(100質量%)に対する複合ゴム状重合体(A)の含有率が前記範囲内であれば、グラフト共重合体(B)の生産性が良好であるとともに、成形品の発色性、耐衝撃性がより優れる。
In the presence of 20 to 90% by mass of the composite rubbery polymer (A), the graft copolymer (B) is 10 to 80% by mass of the vinyl monomer component (m1) (however, the composite rubbery polymer ( The total of A) and the vinyl monomer component (m1) is 100% by mass.) And is preferably obtained by polymerizing 25 to 85% by mass of the composite rubber-like polymer (A). More preferably, it is obtained by polymerizing 15 to 75% by mass of the vinyl monomer component (m1) in the presence of 30% to 80% by mass of the composite rubber-like polymer (A). Furthermore, it is more preferable to be obtained by polymerizing 20 to 70% by mass of the vinyl monomer component (m1).
That is, the graft copolymer (B) is composed of 20 to 90% by mass of the composite rubbery polymer (A) and 10 to 80% by mass of the polymer of the vinyl monomer component (m1) (however, the composite rubbery heavy The total of the polymer (A) and the polymer of the vinyl monomer component (m1) is 100% by mass.), And the composite rubber-like polymer (A) is 25 to 85% by mass. And 15 to 75% by mass of the polymer of the vinyl monomer component (m1), more preferably 30 to 80% by mass of the composite rubber-like polymer (A), More preferably, it is composed of 20 to 70% by mass of the polymer of the body component (m1).
If the content of the composite rubber-like polymer (A) with respect to the total (100% by mass) of the composite rubber-like polymer (A) and the vinyl monomer component (m1) is within the above range, the graft copolymer The productivity of (B) is good, and the color developability and impact resistance of the molded product are more excellent.

グラフト共重合体(B)は、例えば、乳化重合により製造される。すなわち、複合ゴム状重合体(A)の水性分散体にビニル系単量体成分(m1)を加え、乳化剤の存在下でビニル系単量体成分(m1)をラジカル重合させることにより製造される。これにより、グラフト共重合体(B)の水性分散体が得られる。この際、グラフト率およびグラフト成分の分子量を制御するため、各種公知の連鎖移動剤を添加してもよい。
ラジカル重合の重合条件は、特に限定されず、たとえば、60〜90℃で1〜4時間の重合条件が挙げられる。
The graft copolymer (B) is produced, for example, by emulsion polymerization. That is, it is produced by adding a vinyl monomer component (m1) to an aqueous dispersion of a composite rubber-like polymer (A) and radically polymerizing the vinyl monomer component (m1) in the presence of an emulsifier. . Thereby, the aqueous dispersion of a graft copolymer (B) is obtained. At this time, various known chain transfer agents may be added in order to control the graft ratio and the molecular weight of the graft component.
The polymerization conditions for radical polymerization are not particularly limited, and examples include polymerization conditions at 60 to 90 ° C. for 1 to 4 hours.

ラジカル重合の際に用いるラジカル重合開始剤としては、過酸化物、アゾ系開始剤、酸化剤と還元剤とを組み合わせたレドックス系開始剤等が挙げられる。これらのうち、レドックス系開始剤が好ましく、硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ロンガリット・ヒドロパーオキサイドを組み合わせたスルホキシレート系開始剤が特に好ましい。   Examples of radical polymerization initiators used in radical polymerization include peroxides, azo initiators, redox initiators in which an oxidizing agent and a reducing agent are combined. Of these, redox initiators are preferable, and sulfoxylate initiators in which ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, longalite, and hydroperoxide are combined are particularly preferable.

乳化剤としては、複合ゴム状重合体(A)の製造の際に用いた乳化剤が挙げられる。複合ゴム状重合体(A)に含まれる乳化剤をそのまま用い、ビニル系単量体成分(m1)の重合の際に乳化剤を追加しなくてもよいし、必要に応じてビニル系単量体成分(m1)の重合の際に乳化剤を追加してもよい。   As an emulsifier, the emulsifier used in the case of manufacture of a composite rubber-like polymer (A) is mentioned. The emulsifier contained in the composite rubber polymer (A) is used as it is, and it is not necessary to add an emulsifier when polymerizing the vinyl monomer component (m1). If necessary, the vinyl monomer component An emulsifier may be added during the polymerization of (m1).

グラフト共重合体(B)の水性分散体からグラフト共重合体(B)を回収する方法としては、(i)凝固剤を溶解させた熱水中にグラフト共重合体(B)の水性分散体を投入して、スラリー状態に凝析することによって回収する方法(湿式法)、(ii)加熱雰囲気中にグラフト共重合体(B)の水性分散体を噴霧することにより、半直接的にグラフト共重合体(B)を回収する方法(スプレードライ法)、等が挙げられる。   The method of recovering the graft copolymer (B) from the aqueous dispersion of the graft copolymer (B) includes (i) an aqueous dispersion of the graft copolymer (B) in hot water in which a coagulant is dissolved. (Ii) by spraying an aqueous dispersion of the graft copolymer (B) in a heated atmosphere and semi-directly grafting. Examples thereof include a method (spray dry method) for recovering the copolymer (B).

凝固剤としては、硫酸、塩酸、リン酸、硝酸等の無機酸、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩等が挙げられる。凝固剤は、重合で用いた乳化剤に対応させて選定される。すなわち、脂肪酸石鹸、ロジン酸石鹸等のカルボン酸石鹸のみを用いた場合、どのような凝固剤を用いてもよい。ドデシルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合、金属塩を用いる必要がある。   Examples of the coagulant include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid, and metal salts such as calcium chloride, calcium acetate and aluminum sulfate. The coagulant is selected according to the emulsifier used in the polymerization. That is, when using only carboxylic acid soaps such as fatty acid soaps and rosin acid soaps, any coagulant may be used. When an emulsifier exhibiting stable emulsifying power is contained even in an acidic region such as sodium dodecylbenzenesulfonate, a metal salt must be used.

スラリー状態のグラフト共重合体(B)から乾燥状態のグラフト共重合体(B)を得る方法としては、洗浄によって、スラリーに残存する乳化剤残渣を水中に溶出させた後に、以下の(i−1)または(i−2)の処理を行う方法等が挙げられる。
(i−1)前記スラリーを遠心脱水機またはプレス脱水機で脱水し、さらに気流乾燥機等で乾燥する。
(i−2)圧搾脱水機、押出機等で前記スラリーの脱水と乾燥とを同時に実施する。
乾燥後には、グラフト共重合体(B)は、粉体または粒子状で得られる。また、圧搾脱水機または押出機から排出されたグラフト共重合体(B)を直接、熱可塑性樹脂組成物を製造する押出機または成形機に送ることもできる。
As a method for obtaining the dry graft copolymer (B) from the slurry graft copolymer (B), the emulsifier residue remaining in the slurry is eluted in water by washing, and then the following (i-1) ) Or (i-2).
(I-1) The slurry is dehydrated by a centrifugal dehydrator or a press dehydrator, and further dried by an air dryer or the like.
(I-2) The slurry is dehydrated and dried at the same time using a press dehydrator or an extruder.
After drying, the graft copolymer (B) is obtained in the form of powder or particles. Moreover, the graft copolymer (B) discharged | emitted from the press dehydrator or the extruder can also be sent directly to the extruder or molding machine which manufactures a thermoplastic resin composition.

<ビニル系単量体成分(m2)>
ビニル系単量体成分(m2)は、単量体として少なくとも(メタ)アクリル酸エステル、マレイミド系化合物および芳香族ビニル化合物を含む。
ビニル系単量体成分(m2)は、本発明の効果を損なわない範囲で、(メタ)アクリル酸エステル、マレイミド系化合物および芳香族ビニル化合物の他に、これらと共重合可能な他の単量体をさらに含んでもよい。
<Vinyl monomer component (m2)>
The vinyl monomer component (m2) contains at least a (meth) acrylic acid ester, a maleimide compound and an aromatic vinyl compound as monomers.
The vinyl monomer component (m2) is within the range not impairing the effects of the present invention, in addition to the (meth) acrylic acid ester, the maleimide compound and the aromatic vinyl compound, and other monomers which can be copolymerized therewith. It may further include a body.

(メタ)アクリル酸エステルとしては、アルキル基の炭素数が1〜12である(メタ)アクリル酸アルキルエステル;フェニル基、ベンジル基等の芳香族炭化水素基を有する(メタ)アクリル酸エステル等が挙げられる。これらは、1種でまたは2種以上を組み合わせて使用できる。(メタ)アクリル酸エステルとしては、メタクリル酸メチルが好ましい。   Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters having 1 to 12 carbon atoms in the alkyl group; (meth) acrylic acid esters having an aromatic hydrocarbon group such as a phenyl group and a benzyl group. Can be mentioned. These can be used alone or in combination of two or more. As the (meth) acrylic acid ester, methyl methacrylate is preferable.

マレイミド系化合物としては、例えば、N−アルキルマレイミド(N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−i−プロピルマレイミド、N−n−ブチルマレイミド、N−i−ブチルマレイミド、N−tert−ブチルマレイミド、N−シクロヘキシルマレイミド等)、N−アリールマレイミド(N−フェニルマレイミド、N−アルキル置換フェニルマレイミド、N−クロロフェニルマレイミド等)、N−アラルキルマレイミド等のN−置換マレイミド化合物が挙げられる。これらは1種でまたは2種以上を組み合わせて使用できる。
マレイミド系化合物としては、成形品の発色性や耐候性がより優れる点から、N−シクロヘキシルマレイミドおよびN−フェニルマレイミドの少なくとも一方を含むことが好ましく、N−シクロヘキシルマレイミドおよびN−フェニルマレイミドの両方を含むことが特に好ましい。
Examples of maleimide compounds include N-alkylmaleimide (N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide). , N-tert-butylmaleimide, N-cyclohexylmaleimide, etc.), N-arylmaleimide (N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, N-chlorophenylmaleimide, etc.), N-substituted maleimide compounds such as N-aralkylmaleimide Is mentioned. These can be used alone or in combination of two or more.
The maleimide-based compound preferably contains at least one of N-cyclohexylmaleimide and N-phenylmaleimide from the viewpoint of more excellent color developability and weather resistance of the molded article, and includes both N-cyclohexylmaleimide and N-phenylmaleimide. It is particularly preferable to include it.

芳香族ビニル化合物としては、例えば、スチレン、α−メチルスチレン、o−,m−もしくはp−メチルスチレン、ビニルキシレン、p−t−ブチルスチレン、エチルスチレンなどが挙げられる。これらの中でも、スチレン、α−メチルスチレンが好ましい。これらは1種でまたは2種以上を組み合わせて使用できる。   Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Among these, styrene and α-methylstyrene are preferable. These can be used alone or in combination of two or more.

他の単量体としては、例えば、シアン化ビニル化合物(アクリロニトリル、メタクリロニトリル等)等が挙げられる。他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of other monomers include vinyl cyanide compounds (acrylonitrile, methacrylonitrile, etc.). Another monomer may be used individually by 1 type and may be used in combination of 2 or more type.

ビニル系単量体成分(m2)中の(メタ)アクリル酸エステルの含有率は、ビニル系単量体成分(m2)の総質量(100質量%)に対し、55〜93.5質量%が好ましく、60〜84.5質量%がより好ましい。ビニル系単量体成分(m2)中の(メタ)アクリル酸エステルの含有率が前記範囲内であれば、成形品の耐衝撃性、発色性、耐引っ掻き傷性、耐候性、耐熱老化性がより優れる。   The content of the (meth) acrylic acid ester in the vinyl monomer component (m2) is 55 to 93.5% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m2). 60-604.5 mass% is more preferable. If the content of the (meth) acrylic acid ester in the vinyl monomer component (m2) is within the above range, the molded product has impact resistance, color development, scratch resistance, weather resistance, and heat aging resistance. Better.

ビニル系単量体成分(m2)中のマレイミド系化合物の含有率は、ビニル系単量体成分(m2)の総質量(100質量%)に対し、1〜30質量%であり、10〜30質量%が好ましく、10〜20質量%がより好ましい。ビニル系単量体成分(m2)中のマレイミド系化合物の含有率が前記範囲の下限値以上であれば、成形品の耐熱性、耐熱老化性がより優れ、前記範囲の上限値以下であれば、成形品の発色性および耐候性がより優れる。   The content of the maleimide compound in the vinyl monomer component (m2) is 1 to 30% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m2). % By mass is preferable, and 10 to 20% by mass is more preferable. If the content of the maleimide compound in the vinyl monomer component (m2) is not less than the lower limit of the above range, the heat resistance and heat aging resistance of the molded product are more excellent, and if not more than the upper limit of the above range. Further, the coloring property and weather resistance of the molded product are more excellent.

ビニル系単量体成分(m2)中の芳香族ビニル化合物の含有率は、ビニル系単量体成分(m2)の総質量(100質量%)に対し、5.5〜15質量%であり、5.5〜10質量%が好ましい。ビニル系単量体成分(m2)中の芳香族ビニル化合物の含有率が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐熱老化性、発色性、耐候性のバランスに優れる。   The content of the aromatic vinyl compound in the vinyl monomer component (m2) is 5.5 to 15% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m2). 5.5-10 mass% is preferable. If the content of the aromatic vinyl compound in the vinyl monomer component (m2) is within the above range, the fluidity of the thermoplastic resin composition, the heat aging resistance of the molded product, the color developability, and the weather resistance are balanced. Excellent.

<(メタ)アクリル酸エステル樹脂(C)>
(メタ)アクリル酸エステル樹脂(C)は、ビニル系単量体成分(m2)を重合することによって得られる。つまり、ビニル系単量体成分(m2)の重合体であり、少なくとも(メタ)アクリル酸エステルに由来する単位と、マレイミド系化合物に由来する単位と、芳香族ビニル化合物に由来する単位とを含み、マレイミド系化合物に由来する単位の含有率は、全単位の総質量(100質量%)に対して1〜30質量%であり、芳香族ビニル化合物に由来する単位の含有率は、全単位の総質量(100質量%)に対して5.5〜15質量%である。
ビニル系単量体成分(m2)の重合方法は、限定されない。重合方法としては、公知の重合方法(乳化重合法、懸濁重合法、溶液重合法等)が挙げられる。
<(Meth) acrylic ester resin (C)>
The (meth) acrylic ester resin (C) can be obtained by polymerizing the vinyl monomer component (m2). That is, it is a polymer of the vinyl monomer component (m2), and includes at least a unit derived from a (meth) acrylic acid ester, a unit derived from a maleimide compound, and a unit derived from an aromatic vinyl compound. The content of units derived from maleimide compounds is 1 to 30% by mass relative to the total mass (100% by mass) of all units, and the content of units derived from aromatic vinyl compounds is It is 5.5-15 mass% with respect to the total mass (100 mass%).
The polymerization method of the vinyl monomer component (m2) is not limited. Examples of the polymerization method include known polymerization methods (emulsion polymerization method, suspension polymerization method, solution polymerization method, etc.).

乳化重合法による(メタ)アクリル酸エステル樹脂(C)の製造方法としては、例えば、反応器内にビニル系単量体成分(m2)と乳化剤と重合開始剤と連鎖移動剤とを仕込み、加熱して重合し、得られた(メタ)アクリル酸エステル樹脂(C)を含む水性分散体から析出法によって(メタ)アクリル酸エステル樹脂(C)を回収する方法が挙げられる。
乳化重合の重合条件は、特に限定されず、たとえば、40〜120℃で1〜15時間の重合条件が挙げられる。
乳化剤としては、通常の乳化重合用乳化剤(ロジン酸カリウム、アルキルベンゼンスルホン酸ナトリウム等)が挙げられる。
重合開始剤としては、有機、無機の過酸化物系開始剤が挙げられる。
連鎖移動剤としては、メルカプタン類、α−メチルスチレンダイマー、テルペン類等が挙げられる。
析出法としては、水性分散体からグラフト共重合体(B)を回収するときと同様の方法を採用できる。
As a method for producing the (meth) acrylic ester resin (C) by the emulsion polymerization method, for example, a vinyl monomer component (m2), an emulsifier, a polymerization initiator, and a chain transfer agent are charged in a reactor and heated. And a method of recovering the (meth) acrylic ester resin (C) from the aqueous dispersion containing the (meth) acrylic ester resin (C) obtained by a precipitation method.
The polymerization conditions for emulsion polymerization are not particularly limited, and examples include polymerization conditions at 40 to 120 ° C. for 1 to 15 hours.
Examples of the emulsifier include usual emulsion polymerization emulsifiers (potassium rosinate, sodium alkylbenzenesulfonate, etc.).
Examples of the polymerization initiator include organic and inorganic peroxide initiators.
Examples of chain transfer agents include mercaptans, α-methylstyrene dimers, terpenes and the like.
As the precipitation method, a method similar to that used for recovering the graft copolymer (B) from the aqueous dispersion can be employed.

懸濁重合法による(メタ)アクリル酸エステル樹脂(C)の製造方法としては、例えば、反応器内にビニル系単量体成分(m2)と懸濁剤と懸濁助剤と重合開始剤と連鎖移動剤とを仕込み、加熱して重合し、得られたスラリーを脱水、乾燥して(メタ)アクリル酸エステル樹脂(C)を回収する方法が挙げられる。
懸濁重合の重合条件は、特に限定されず、たとえば、40〜120℃で1〜15時間の重合条件が挙げられる。
懸濁剤としては、トリカルシウムフォスファイト、ポリビニルアルコール等が挙げられる。
懸濁助剤としては、アルキルベンゼンスルホン酸ナトリウム等が挙げられる。
重合開始剤としては、有機ペルオキシド類等が挙げられる。
連鎖移動剤としては、メルカプタン類、α−メチルスチレンダイマー、テルペン類等が挙げられる。
Examples of the method for producing the (meth) acrylic ester resin (C) by the suspension polymerization method include, for example, a vinyl monomer component (m2), a suspending agent, a suspending aid, and a polymerization initiator in the reactor. Examples include a method in which a chain transfer agent is charged, polymerized by heating, and the resulting slurry is dehydrated and dried to recover the (meth) acrylate resin (C).
The polymerization conditions for suspension polymerization are not particularly limited, and examples include polymerization conditions at 40 to 120 ° C. for 1 to 15 hours.
Examples of the suspending agent include tricalcium phosphite and polyvinyl alcohol.
Examples of the suspension aid include sodium alkylbenzene sulfonate.
Examples of the polymerization initiator include organic peroxides.
Examples of chain transfer agents include mercaptans, α-methylstyrene dimers, terpenes and the like.

(メタ)アクリル酸エステル樹脂(C)の質量平均分子量(Mw)は、100,000〜300,000であることが好ましく、120,000〜220,000であることがより好ましい。(メタ)アクリル酸エステル樹脂(C)の質量平均分子量が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐衝撃性、発色性、耐引っ掻き傷性、耐熱老化性がより優れる。
(メタ)アクリル酸エステル樹脂(C)の質量平均分子量(Mw)は、テトラヒドロフラン(THF)に溶解した溶液を、ゲルパーミエーションクロマトグラフィ(GPC)により分析して求められる標準ポリスチレン(PS)換算の値である。
(メタ)アクリル酸エステル樹脂(C)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The mass average molecular weight (Mw) of the (meth) acrylic acid ester resin (C) is preferably 100,000 to 300,000, and more preferably 120,000 to 220,000. If the weight average molecular weight of the (meth) acrylic ester resin (C) is within the above range, the fluidity of the thermoplastic resin composition, the impact resistance of the molded product, the coloring property, the scratch resistance, and the heat aging resistance Better.
The weight average molecular weight (Mw) of the (meth) acrylic ester resin (C) is a value in terms of standard polystyrene (PS) calculated by analyzing a solution dissolved in tetrahydrofuran (THF) by gel permeation chromatography (GPC). It is.
(Meth) acrylic acid ester resin (C) may be used individually by 1 type, and may be used in combination of 2 or more type.

<シリコーンオイル(D)>
シリコーンオイル(D)は、ポリオルガノシロキサン構造をもつものであれば、特に限定されない。例えば、未変性シリコーンオイルであってもよいし、変性シリコーンオイルであってもよい。
未変性シリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等が挙げられる。
変性シリコーンオイルは、ポリオルガノシロキサン構造中の側鎖の一部および/またはポリオルガノシロキサン構造の片末端部分、または、ポリオルガノシロキサン構造の両末端部分に各種有機基が導入されたシリコーンオイルである。上記変性シリコーンオイルとしては、アミノ変性シリコーンオイル、アルキル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、フッ素変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、メチルスチリル変性シリコーンオイル、メチル塩素化フェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、アクリル酸変性シリコーンオイル、メタクリル酸変性シリコーンオイル、メルカプト変性シリコーンオイル、フェノール変性シリコーンオイル、カルビノール変性シリコーンオイル等が挙げられる。
シリコーンオイル(D)は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
<Silicone oil (D)>
The silicone oil (D) is not particularly limited as long as it has a polyorganosiloxane structure. For example, it may be an unmodified silicone oil or a modified silicone oil.
Examples of the unmodified silicone oil include dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, and the like.
The modified silicone oil is a silicone oil in which various organic groups are introduced into a part of the side chain in the polyorganosiloxane structure and / or one terminal part of the polyorganosiloxane structure, or both terminal parts of the polyorganosiloxane structure. . Examples of the modified silicone oil include amino-modified silicone oil, alkyl-modified silicone oil, polyether-modified silicone oil, fluorine-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, methylstyryl-modified silicone oil, and methyl chlorinated phenyl. Examples include silicone oil, methyl hydrogen silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, acrylic acid-modified silicone oil, methacrylic acid-modified silicone oil, mercapto-modified silicone oil, phenol-modified silicone oil, and carbinol-modified silicone oil. .
A silicone oil (D) may be used individually by 1 type, and may be used in combination of 2 or more type.

<ビニル系単量体成分(m3)>
ビニル系単量体成分(m3)は、単量体として少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む。
ビニル系単量体成分(m3)は、本発明の効果を損なわない範囲で、芳香族ビニル化合物およびシアン化ビニル化合物の他に、これらと共重合可能な他の単量体をさらに含んでもよい。
<Vinyl monomer component (m3)>
The vinyl monomer component (m3) contains at least an aromatic vinyl compound and a vinyl cyanide compound as monomers.
The vinyl monomer component (m3) may further contain other monomers copolymerizable with these in addition to the aromatic vinyl compound and the vinyl cyanide compound as long as the effects of the present invention are not impaired. .

芳香族ビニル化合物およびシアン化ビニル化合物の具体例としては、それぞれ、ビニル系単量体成分(m1)で挙げたものと同様のものが挙げられる。好ましいものも同様である。
他の単量体としては、例えば、メタクリル酸エステル、アクリル酸エステル、マレイミド系化合物等が挙げられる。これらの単量体の具体例としては、それぞれ、ビニル系単量体成分(m1)で挙げたものと同様のものが挙げられる。他の単量体は1種でまたは2種以上を組み合わせて使用できる。
Specific examples of the aromatic vinyl compound and the vinyl cyanide compound are the same as those exemplified for the vinyl monomer component (m1). The preferable ones are also the same.
Examples of other monomers include methacrylic acid esters, acrylic acid esters, maleimide compounds, and the like. Specific examples of these monomers are the same as those mentioned for the vinyl monomer component (m1). Other monomers can be used alone or in combination of two or more.

ビニル系単量体成分(m3)中の芳香族ビニル化合物の含有率は、ビニル系単量体成分(m3)の総質量(100質量%)に対し、50〜90質量%が好ましく、55〜80質量%がより好ましい。ビニル系単量体成分(m3)中の芳香族ビニル化合物の含有率が前記範囲内であれば、得られる熱可塑性樹脂組成物の流動性、成形品の発色性がより優れる。   The content of the aromatic vinyl compound in the vinyl monomer component (m3) is preferably 50 to 90% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m3). 80 mass% is more preferable. When the content of the aromatic vinyl compound in the vinyl monomer component (m3) is within the above range, the fluidity of the resulting thermoplastic resin composition and the color developability of the molded product are more excellent.

ビニル系単量体成分(m3)中のシアン化ビニル化合物の含有率は、ビニル系単量体成分(m3)の総質量(100質量%)に対し、10〜50質量%が好ましく、20〜45質量%がより好ましい。ビニル系単量体成分(m3)中のシアン化ビニル化合物の含有率が前記範囲内であれば、成形品の耐衝撃性、耐熱性がより優れる。   The content of the vinyl cyanide compound in the vinyl monomer component (m3) is preferably 10 to 50% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m3). 45 mass% is more preferable. When the content of the vinyl cyanide compound in the vinyl monomer component (m3) is within the above range, the impact resistance and heat resistance of the molded product are more excellent.

<スチレン系樹脂(E)>
スチレン系樹脂(E)は、ビニル系単量体成分(m3)を重合して得られる。つまり、ビニル系単量体成分(m3)の重合体であり、少なくとも、芳香族ビニル化合物に由来する単位と、シアン化ビニル化合物に由来する単位とを含む。
ビニル系単量体成分(m3)の重合方法は、限定されない。重合方法としては、公知の重合方法(乳化重合法、懸濁重合法、塊状重合法、溶液重合法等)が挙げられ、成形品の耐熱性の点から、懸濁重合法、塊状重合法が好ましい。この際、各種公知の連鎖移動剤を添加してもよい。
連鎖移動剤としては、メルカプタン類、α−メチルスチレンダイマー、テルペン類等が挙げられる。
重合条件は、特に限定されず、たとえば、40〜130℃で1〜20時間の重合条件が挙げられる。
<Styrene resin (E)>
The styrene resin (E) is obtained by polymerizing the vinyl monomer component (m3). That is, it is a polymer of the vinyl monomer component (m3) and includes at least a unit derived from an aromatic vinyl compound and a unit derived from a vinyl cyanide compound.
The polymerization method of the vinyl monomer component (m3) is not limited. Examples of the polymerization method include known polymerization methods (emulsion polymerization method, suspension polymerization method, bulk polymerization method, solution polymerization method, etc.). preferable. At this time, various known chain transfer agents may be added.
Examples of chain transfer agents include mercaptans, α-methylstyrene dimers, terpenes and the like.
Polymerization conditions are not particularly limited, and examples include polymerization conditions at 40 to 130 ° C. for 1 to 20 hours.

スチレン系樹脂(E)の質量平均分子量(Mw)は70,000〜200,000であることが好ましく、90,000〜150,000であることが好ましい。スチレン系樹脂(E)の質量平均分子量が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐衝撃性がより優れる。
スチレン系樹脂(E)の質量平均分子量は、テトラヒドロフラン(THF)に溶解した溶液を、ゲルパーミエーションクロマトグラフィ(GPC)により分析して求められる、標準ポリスチレン(PS)換算の値である。
The mass average molecular weight (Mw) of the styrene resin (E) is preferably 70,000 to 200,000, more preferably 90,000 to 150,000. When the mass average molecular weight of the styrene resin (E) is within the above range, the fluidity of the thermoplastic resin composition and the impact resistance of the molded product are more excellent.
The mass average molecular weight of the styrene-based resin (E) is a value in terms of standard polystyrene (PS) calculated by analyzing a solution dissolved in tetrahydrofuran (THF) by gel permeation chromatography (GPC).

<エチレン・α−オレフィン共重合体(F)>
エチレン・α−オレフィン共重合体(F)は、エチレンと炭素数が3以上のα−オレフィンとを公知の重合方法によって共重合することによって得られた、エチレン単位とα−オレフィン単位とを含む共重合体である。
エチレン・α−オレフィン共重合体(F)は、非共役ジエン単位をさらに含んでもよい。エチレン・α−オレフィン共重合体(F)が非共役ジエン単位を含むことで、成形品の耐衝撃性がより優れる。
<Ethylene / α-olefin copolymer (F)>
The ethylene / α-olefin copolymer (F) includes an ethylene unit and an α-olefin unit obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms by a known polymerization method. It is a copolymer.
The ethylene / α-olefin copolymer (F) may further contain a non-conjugated diene unit. When the ethylene / α-olefin copolymer (F) contains a non-conjugated diene unit, the impact resistance of the molded product is further improved.

α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−デセン、1−ウンデセン、1−イコセン、1−ドコセン等が挙げられ、成形品の耐衝撃性の点から、炭素数が3〜20のα−オレフィンが好ましく、プロピレンが特に好ましい。   Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-icosene, 1-docosene, etc. From the viewpoint of impact resistance, an α-olefin having 3 to 20 carbon atoms is preferable, and propylene is particularly preferable.

非共役ジエンとしては、ジシクロペンタジエン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、1,5−ヘキサジエン、2−メチル−1,5−ヘキサジエン、1,4−シクロヘプタジエン、1,5−シクロオクタジエン等が挙げられる。中でも、得られる成形品の耐衝撃性がより優れることから、ジシクロペンタジエンおよび/または5−エチリデン−2−ノルボルネンが、非共役ジエン単位として好ましい。   Non-conjugated dienes include dicyclopentadiene, 5-ethylidene-2-norbornene, 1,4-hexadiene, 1,5-hexadiene, 2-methyl-1,5-hexadiene, 1,4-cycloheptadiene, 1, 5-cyclooctadiene etc. are mentioned. Among these, dicyclopentadiene and / or 5-ethylidene-2-norbornene is preferable as the non-conjugated diene unit because the resulting molded article has more excellent impact resistance.

エチレン・α−オレフィン共重合体(F)のエチレン単位の含有率は、エチレン・α−オレフィン共重合体(F)を構成する全ての構成単位の合計を100質量%としたときに、45〜80質量%が好ましく、50〜75質量%がより好ましい。エチレン単位の含有率が前記範囲内であれば、成形品の耐衝撃性がより優れる。   The ethylene unit content of the ethylene / α-olefin copolymer (F) is 45 to 45% when the total of all the structural units constituting the ethylene / α-olefin copolymer (F) is 100% by mass. 80 mass% is preferable and 50-75 mass% is more preferable. When the ethylene unit content is within the above range, the impact resistance of the molded product is more excellent.

エチレン単位とα−オレフィン単位の合計の含有率は、エチレン・α−オレフィン共重合体(F)を構成する全ての構成単位の合計を100質量%としたときに、90〜100質量%が好ましく、95〜99質量%がより好ましい。エチレン単位とα−オレフィン単位の合計の含有率が前記範囲内であれば、成形品の耐衝撃性がより優れる。   The total content of ethylene units and α-olefin units is preferably 90 to 100% by mass when the total of all the structural units constituting the ethylene / α-olefin copolymer (F) is 100% by mass. 95-99 mass% is more preferable. When the total content of the ethylene unit and the α-olefin unit is within the above range, the impact resistance of the molded product is more excellent.

エチレン・α−オレフィン共重合体(F)の質量平均分子量(Mw)は、4×10〜35×10が好ましく、5×10〜10×10がより好ましい。質量平均分子量(Mw)が4×10以上であれば、成形品の耐衝撃性、発色性がより優れる。一方、質量平均分子量(Mw)が35×10以下であれば、熱可塑性樹脂組成物の流動性がより優れる。質量平均分子量(Mw)が5×10〜10×10であれば、熱可塑性樹脂組成物の流動性および成形品の発色性、耐衝撃性がさらに優れる。 The mass average molecular weight (Mw) of the ethylene / α-olefin copolymer (F) is preferably 4 × 10 4 to 35 × 10 4, and more preferably 5 × 10 4 to 10 × 10 4 . When the mass average molecular weight (Mw) is 4 × 10 4 or more, the impact resistance and color developability of the molded product are more excellent. On the other hand, if the mass average molecular weight (Mw) is 35 × 10 4 or less, the fluidity of the thermoplastic resin composition is more excellent. When the mass average molecular weight (Mw) is 5 × 10 4 to 10 × 10 4 , the fluidity of the thermoplastic resin composition, the color developability of the molded product, and the impact resistance are further improved.

エチレン・α−オレフィン共重合体(F)の分子量分布(Mw/数平均分子量(Mn))は、1.0〜5.0が好ましく、3.1〜4.0がより好ましい。分子量分布(Mw/Mn)が5.0以下であれば、成形品の耐衝撃性がより優れる。分子量分布(Mw/Mn)が3.1〜4.0であれば、熱可塑性樹脂組成物の流動性および成形品の耐衝撃性がさらに優れる。   The molecular weight distribution (Mw / number average molecular weight (Mn)) of the ethylene / α-olefin copolymer (F) is preferably from 1.0 to 5.0, more preferably from 3.1 to 4.0. When the molecular weight distribution (Mw / Mn) is 5.0 or less, the impact resistance of the molded product is more excellent. When the molecular weight distribution (Mw / Mn) is 3.1 to 4.0, the fluidity of the thermoplastic resin composition and the impact resistance of the molded product are further improved.

エチレン・α−オレフィン共重合体(F)の質量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定し、標準ポリスチレンで換算した値である。   The mass average molecular weight (Mw) and the number average molecular weight (Mn) of the ethylene / α-olefin copolymer (F) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.

エチレン・α−オレフィン共重合体(F)の製造方法は、限定されない。エチレン・α−オレフィン共重合体(F)は、通常、メタロセン触媒またはチーグラー・ナッタ触媒を用いてエチレンとα−オレフィンとを、またはエチレンとα−オレフィンと非共役ジエンとを共重合することによって製造される。   The method for producing the ethylene / α-olefin copolymer (F) is not limited. The ethylene / α-olefin copolymer (F) is usually obtained by copolymerizing ethylene and α-olefin or ethylene, α-olefin and non-conjugated diene using a metallocene catalyst or Ziegler-Natta catalyst. Manufactured.

メタロセン触媒としては、遷移金属(ジルコニウム、チタン、ハフニウム等)にシクロペンタジエニル骨格を有する有機化合物、ハロゲン原子等が配位したメタロセン錯体と、有機アルミニウム化合物、有機ホウ素化合物等とを組み合わせた触媒が挙げられる。
チーグラー・ナッタ触媒としては、遷移金属(チタン、バナジウム、ジルコニウム、ハフニウム等)のハロゲン化物と有機アルミニウム化合物、有機ホウ素化合物等とを組み合わせた触媒が挙げられる。
As a metallocene catalyst, a catalyst obtained by combining an organic compound having a cyclopentadienyl skeleton with a transition metal (zirconium, titanium, hafnium, etc.), a metallocene complex in which a halogen atom or the like is coordinated, an organoaluminum compound, an organoboron compound, etc. Is mentioned.
Examples of the Ziegler-Natta catalyst include a catalyst in which a halide of a transition metal (titanium, vanadium, zirconium, hafnium, etc.) is combined with an organic aluminum compound, an organic boron compound, or the like.

重合方法としては、前記触媒(メタロセン触媒またはチーグラー・ナッタ触媒)の存在下に、エチレンとα−オレフィンとを、またはエチレンとα−オレフィンと非共役ジエンとを溶媒中で共重合させる方法が挙げられる。溶媒としては、炭化水素溶媒(ベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン、オクタン等)が挙げられる。炭化水素溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、原料のα−オレフィンを溶媒として用いてもよい。
重合の際、水素等の分子量調節剤を用いてもよい。
重合条件は、特に限定されず、たとえば、40〜120℃、0.2〜5MPaで1〜10時間の重合条件が挙げられる。
Examples of the polymerization method include a method in which ethylene and α-olefin, or ethylene, α-olefin, and non-conjugated diene are copolymerized in a solvent in the presence of the catalyst (metallocene catalyst or Ziegler-Natta catalyst). It is done. Examples of the solvent include hydrocarbon solvents (benzene, toluene, xylene, pentane, hexane, heptane, octane, etc.). A hydrocarbon solvent may be used individually by 1 type, and 2 or more types may be mixed and used for it. Moreover, you may use the raw material alpha olefin as a solvent.
In the polymerization, a molecular weight regulator such as hydrogen may be used.
Polymerization conditions are not particularly limited, and examples include polymerization conditions of 40 to 120 ° C. and 0.2 to 5 MPa for 1 to 10 hours.

エチレン、α−オレフィン、非共役ジエンそれぞれの供給量、水素等の分子量調節剤の種類や量、触媒の種類や量、反応温度、圧力等の反応条件を変更することによって、エチレン・α−オレフィン共重合体(F)のエチレン単位の含有率、質量平均分子量(Mw)および分子量分布(Mw/Mn)を調整することができる。   By changing reaction conditions such as supply amount of ethylene, α-olefin and non-conjugated diene, type and amount of molecular weight regulator such as hydrogen, type and amount of catalyst, reaction temperature and pressure, ethylene and α-olefin The ethylene unit content, mass average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the copolymer (F) can be adjusted.

<オレフィン樹脂水性分散体(G)>
オレフィン樹脂水性分散体(G)は、エチレン・α−オレフィン共重合体(F)を水性媒体に分散させたものである。
オレフィン樹脂水性分散体(G)は、その他の成分として、乳化剤、酸変性オレフィン重合体等を含有してもよい。
<Olefin resin aqueous dispersion (G)>
The aqueous olefin resin dispersion (G) is obtained by dispersing the ethylene / α-olefin copolymer (F) in an aqueous medium.
The aqueous olefin resin dispersion (G) may contain an emulsifier, an acid-modified olefin polymer, and the like as other components.

乳化剤としては、公知のものが挙げられ、例えば、長鎖アルキルカルボン酸塩、スルホコハク酸アルキルエステル塩、アルキルベンゼンスルホン酸塩等が挙げられる。
オレフィン樹脂水性分散体(G)中の乳化剤の含有量は、得られる熱可塑性樹脂組成物の熱着色を抑制でき、オレフィン樹脂水性分散体(G)に分散しているエチレン・α−オレフィン共重合体(F)の粒子径制御が容易である点から、エチレン・α−オレフィン共重合体(F)100質量部に対して1〜8質量部が好ましい。
Examples of the emulsifier include known ones, and examples thereof include long-chain alkyl carboxylates, sulfosuccinic acid alkyl ester salts, and alkylbenzene sulfonates.
The content of the emulsifier in the aqueous olefin resin dispersion (G) can suppress thermal coloring of the resulting thermoplastic resin composition, and the ethylene / α-olefin copolymer dispersed in the aqueous olefin resin dispersion (G). In view of easy control of the particle diameter of the coalescence (F), 1 to 8 parts by mass is preferable with respect to 100 parts by mass of the ethylene / α-olefin copolymer (F).

酸変性オレフィン重合体としては、質量平均分子量が1,000〜5,000のオレフィン重合体(ポリエチレン、ポリプロピレン等)を、官能基を有する化合物(不飽和カルボン酸化合物等)で変性したものが挙げられる。不飽和カルボン酸化合物としては、例えば、アクリル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸、マレイン酸モノアミド等が挙げられる。
オレフィン樹脂水性分散体(G)中の酸変性オレフィン重合体の含有量は、エチレン・α−オレフィン共重合体(F)100質量部に対して、1〜40質量部が好ましい。酸変性オレフィン重合体の添加量が前記範囲内であれば、成形品の耐衝撃性がさらに優れる。
Examples of the acid-modified olefin polymer include those obtained by modifying an olefin polymer having a mass average molecular weight of 1,000 to 5,000 (polyethylene, polypropylene, etc.) with a compound having a functional group (such as an unsaturated carboxylic acid compound). It is done. Examples of the unsaturated carboxylic acid compound include acrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, maleic acid monoamide, and the like.
The content of the acid-modified olefin polymer in the aqueous olefin resin dispersion (G) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the ethylene / α-olefin copolymer (F). When the addition amount of the acid-modified olefin polymer is within the above range, the impact resistance of the molded product is further improved.

オレフィン樹脂水性分散体(G)の調製方法は、限定されない。調製方法としては、例えば、(g1)公知の溶融混練手段(ニーダー、バンバリーミキサー、多軸スクリュー押出機等)でエチレン・α−オレフィン共重合体(F)を溶融混練し、機械的せん断力を与えて分散させ、水性媒体に添加する方法;(g2)エチレン・α−オレフィン共重合体(F)を炭化水素溶媒(ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等)に溶解し、水性媒体に添加して乳化させた後、十分に撹拌し、炭化水素溶媒を留去する方法等が挙げられる。オレフィン樹脂水性分散体(G)の調製の際に、その他の成分として酸変性オレフィン重合体、乳化剤等を添加してもよい。   The preparation method of the olefin resin aqueous dispersion (G) is not limited. As the preparation method, for example, (g1) the ethylene / α-olefin copolymer (F) is melt-kneaded by a known melt-kneading means (kneader, Banbury mixer, multi-screw extruder, etc.), and the mechanical shearing force is increased. (G2) The ethylene / α-olefin copolymer (F) is dissolved in a hydrocarbon solvent (pentane, hexane, heptane, benzene, toluene, xylene, etc.), and then added to an aqueous medium. And then emulsifying and emulsifying the mixture, followed by sufficient stirring to distill off the hydrocarbon solvent. In preparing the aqueous olefin resin dispersion (G), an acid-modified olefin polymer, an emulsifier, and the like may be added as other components.

酸変性オレフィン重合体の添加方法は、限定されない。例えば、前記(g1)の方法において、エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体とを混合し、溶融混練する方法、前記(g2)の方法において、エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体とを炭化水素溶媒に溶解する方法等が挙げられる。
エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体との混合方法は、限定されない。混合方法としては、ニーダー、バンバリーミキサー、多軸スクリュー押出機等を用いた溶融混練法等が挙げられる。この場合、エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体とを混合する工程が、それらの混合物を溶融混練する工程を兼ねてもよい。
乳化剤の添加方法は、限定されない。例えば、酸変性オレフィン重合体の添加方法と同様の方法が挙げられる。また、前記(g1)または(g2)の方法において、水性媒体に乳化剤を添加する方法、前記(g2)の方法において、炭化水素溶媒に乳化剤を溶解する方法等が挙げられる。
The method for adding the acid-modified olefin polymer is not limited. For example, in the method (g1), the ethylene / α-olefin copolymer (F) and the acid-modified olefin polymer are mixed and melt-kneaded, and in the method (g2), the ethylene / α-olefin is mixed. Examples thereof include a method of dissolving the copolymer (F) and the acid-modified olefin polymer in a hydrocarbon solvent.
The mixing method of the ethylene / α-olefin copolymer (F) and the acid-modified olefin polymer is not limited. Examples of the mixing method include a melt kneading method using a kneader, a Banbury mixer, a multi-screw extruder and the like. In this case, the step of mixing the ethylene / α-olefin copolymer (F) and the acid-modified olefin polymer may also serve as a step of melt-kneading the mixture.
The method for adding the emulsifier is not limited. For example, the method similar to the addition method of an acid-modified olefin polymer is mentioned. Examples of the method (g1) or (g2) include a method of adding an emulsifier to an aqueous medium, and a method of dissolving the emulsifier in a hydrocarbon solvent in the method (g2).

オレフィン樹脂水性分散体(G)を構成するエチレン・α−オレフィン共重合体(F)の体積平均粒子径は、成形品の物性が優れる点から、0.20〜0.60μmが好ましく、0.30〜0.50μmがより好ましい。
つまりグラフト共重合体(I)が、体積平均粒子径が0.20〜0.60μmであるエチレン・α−オレフィン共重合体(F)の存在下にビニル系単量体成分(m1)を重合することによって得られるものであり、熱可塑性樹脂組成物が、前記グラフト共重合体(I)に由来して、体積平均粒子径が0.20〜0.60μmであるエチレン・α−オレフィン共重合体(F)を含むものであることが好ましい。
体積平均粒子径が0.20μm以上であれば、成形品の耐衝撃性がより優れる。体積平均粒子径が0.60μm以下であれば、成形品の耐衝撃性、発色性、耐熱老化性がより優れる。エチレン・α−オレフィン共重合体(F)の平均粒子径が0.3〜0.5μmであれば、成形品の耐衝撃性、発色性、耐熱老化性がさらに優れる。
なお、オレフィン樹脂水性分散体(G)を構成するエチレン・α−オレフィン共重合体(F)の体積平均粒子径が、そのまま熱可塑性樹脂組成物中のエチレン・α−オレフィン共重合体(F)の体積平均粒子径を示すことを、電子顕微鏡の画像解析によって確認している。
The volume average particle diameter of the ethylene / α-olefin copolymer (F) constituting the aqueous olefin resin dispersion (G) is preferably 0.20 to 0.60 μm in view of excellent physical properties of the molded product. 30-0.50 micrometer is more preferable.
That is, the graft copolymer (I) polymerizes the vinyl monomer component (m1) in the presence of the ethylene / α-olefin copolymer (F) having a volume average particle diameter of 0.20 to 0.60 μm. Ethylene / α-olefin copolymer having a volume average particle diameter of 0.20 to 0.60 μm derived from the graft copolymer (I). It is preferable that a combination (F) is included.
When the volume average particle diameter is 0.20 μm or more, the impact resistance of the molded product is more excellent. When the volume average particle size is 0.60 μm or less, the impact resistance, color developability, and heat aging resistance of the molded product are more excellent. When the average particle diameter of the ethylene / α-olefin copolymer (F) is 0.3 to 0.5 μm, the impact resistance, color developability, and heat aging resistance of the molded product are further improved.
The volume average particle diameter of the ethylene / α-olefin copolymer (F) constituting the olefin resin aqueous dispersion (G) is the same as that of the ethylene / α-olefin copolymer (F) in the thermoplastic resin composition. It is confirmed by image analysis with an electron microscope that the volume average particle diameter is shown.

オレフィン樹脂水性分散体(G)に分散しているエチレン・α−オレフィン共重合体(F)の体積平均粒子径を制御する方法としては、乳化剤の種類または使用量、酸変性オレフィン重合体の種類または含有量、混練時に加えるせん断力、温度条件等を調整する方法が挙げられる。
乳化剤の使用量は、エチレン・α−オレフィン共重合体(F)100質量%に対して1.0〜10.0質量%が好ましい。酸変性オレフィン重合体の使用量は、エチレン・α−オレフィン共重合体(F)に対して5.0〜30.0質量%が好ましい。混練時の温度条件としては、100〜300℃が好ましい。
The method for controlling the volume average particle size of the ethylene / α-olefin copolymer (F) dispersed in the aqueous olefin resin dispersion (G) includes the type or amount of emulsifier, the type of acid-modified olefin polymer. Or the method of adjusting content, the shear force added at the time of kneading | mixing, temperature conditions, etc. is mentioned.
The amount of the emulsifier used is preferably 1.0 to 10.0% by mass with respect to 100% by mass of the ethylene / α-olefin copolymer (F). The amount of the acid-modified olefin polymer used is preferably 5.0 to 30.0% by mass relative to the ethylene / α-olefin copolymer (F). As temperature conditions at the time of kneading | mixing, 100-300 degreeC is preferable.

<架橋エチレン・α−オレフィン共重合体(H)>
架橋エチレン・α−オレフィン共重合体(H)は、エチレン・α−オレフィン共重合体(F)またはオレフィン樹脂水性分散体(G)中に分散しているエチレン・α−オレフィン系共重合体(F)を架橋処理することにより得られたものである。架橋処理によって、成形品の耐衝撃性、発色性のバランスがさらに優れる。
<Crosslinked ethylene / α-olefin copolymer (H)>
The crosslinked ethylene / α-olefin copolymer (H) is an ethylene / α-olefin copolymer (F) dispersed in an ethylene / α-olefin copolymer (F) or an aqueous olefin resin dispersion (G) ( F) was obtained by crosslinking treatment. Crosslinking treatment further improves the balance between impact resistance and color development of the molded product.

架橋エチレン・α−オレフィン共重合体(H)のゲル含有率は、成形品の耐衝撃性、発色性とのバランスの点から、35〜85質量%が好ましく、45〜80質量%がより好ましく、60〜75質量%が特に好ましい。
本発明におけるゲル含有率とは、架橋エチレン・α−オレフィン共重合体(H)をトルエンで膨潤させた場合の、膨潤前の架橋エチレン・α−オレフィン共重合体(H)に対する、乾燥させたトルエン不溶解分の割合である。詳しくは、実施例に記載の方法により求められる。
The gel content of the crosslinked ethylene / α-olefin copolymer (H) is preferably from 35 to 85% by mass, more preferably from 45 to 80% by mass, from the viewpoint of the balance between the impact resistance and color developability of the molded product. 60 to 75% by mass is particularly preferable.
The gel content in the present invention means that the crosslinked ethylene / α-olefin copolymer (H) is swollen with toluene, and the crosslinked ethylene / α-olefin copolymer (H) before swelling is dried. This is the proportion of toluene insoluble matter. In detail, it calculates | requires by the method as described in an Example.

エチレン・α−オレフィン共重合体(F)またはオレフィン樹脂水性分散体(G)の架橋処理は、公知の方法によって行うことができる。架橋処理の方法としては、(a)有機過酸化物と、必要に応じて多官能性化合物とを添加して架橋処理を行う方法、(b)電離性放射線によって架橋処理を行う方法等が挙げられ、成形品の耐衝撃性、発色性の点から、(a)の方法が好ましい。   The crosslinking treatment of the ethylene / α-olefin copolymer (F) or the aqueous olefin resin dispersion (G) can be carried out by a known method. Examples of the crosslinking treatment method include (a) a method in which an organic peroxide and, if necessary, a polyfunctional compound are added to carry out a crosslinking treatment, and (b) a method in which a crosslinking treatment is performed with ionizing radiation. The method (a) is preferred from the viewpoint of impact resistance and color development of the molded product.

(a)の方法としては、具体的には、エチレン・α−オレフィン共重合体(F)またはオレフィン樹脂水性分散体(G)に、有機過酸化物と、必要に応じて多官能性化合物とを添加し、加熱する方法等が挙げられる。
例えば、エチレン・α−オレフィン共重合体(F)に、有機過酸化物と、必要に応じて多官能性化合物とを添加し、溶融混練し、粉砕すると、架橋エチレン・α−オレフィン共重合体(H)の粉体が得られる。必要に応じ、粉砕により得られた粉砕物に対し、分級等の処理を行ってもよい。オレフィン樹脂水性分散体(G)に、有機過酸化物と、必要に応じて多官能性化合物とを添加して架橋処理すると、架橋エチレン・α−オレフィン共重合体(H)の水性分散体が得られる。
有機過酸化物および多官能性化合物の添加量、加熱温度、加熱時間等を調整することによって、架橋エチレン・α−オレフィン共重合体(H)のゲル含有率を調整できる。
加熱温度は、有機過酸化物の種類によって異なる。加熱温度は、有機過酸化物の10時間半減期温度の−5℃〜+30℃が好ましい。
加熱時間は、3〜15時間が好ましい。
Specifically, as the method of (a), an ethylene / α-olefin copolymer (F) or an aqueous olefin resin dispersion (G) is mixed with an organic peroxide and, if necessary, a polyfunctional compound. The method of adding and heating is mentioned.
For example, when an organic peroxide and, if necessary, a polyfunctional compound are added to the ethylene / α-olefin copolymer (F), melt-kneaded, and pulverized, a crosslinked ethylene / α-olefin copolymer is obtained. A powder of (H) is obtained. If necessary, the pulverized product obtained by pulverization may be subjected to a treatment such as classification. When an organic peroxide and, if necessary, a polyfunctional compound are added to the olefin resin aqueous dispersion (G) and subjected to crosslinking treatment, an aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (H) is obtained. can get.
The gel content of the crosslinked ethylene / α-olefin copolymer (H) can be adjusted by adjusting the addition amount of organic peroxide and polyfunctional compound, heating temperature, heating time and the like.
The heating temperature varies depending on the type of organic peroxide. The heating temperature is preferably −5 ° C. to + 30 ° C., which is the 10-hour half-life temperature of the organic peroxide.
The heating time is preferably 3 to 15 hours.

有機過酸化物は、エチレン・α−オレフィン共重合体(F)に架橋構造を形成させるためのものである。有機過酸化物としては、例えば、ペルオキシエステル化合物、ペルオキシケタール化合物、ジアルキルペルオキシド化合物等が挙げられる。有機過酸化物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The organic peroxide is for forming a crosslinked structure in the ethylene / α-olefin copolymer (F). Examples of the organic peroxide include a peroxy ester compound, a peroxy ketal compound, a dialkyl peroxide compound, and the like. An organic peroxide may be used individually by 1 type, and may be used in combination of 2 or more type.

有機過酸化物としては、架橋エチレン・α−オレフィン共重合体(G)のゲル含有率を調整しやすい点から、ジアルキルペルオキシド化合物が特に好ましい。
ジアルキルペルオキシド化合物の具体例としては、α,α’−ビス(t−ブチルペルオキシ)ジイソプロピルベンゼン、ジクミルペルオキシド、2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキサン、t−ブチルクミルペルオキシド、ジ−t−ブチルペルオキシド、2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキシン−3等が挙げられる。
As the organic peroxide, a dialkyl peroxide compound is particularly preferable because the gel content of the crosslinked ethylene / α-olefin copolymer (G) can be easily adjusted.
Specific examples of the dialkyl peroxide compound include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, and t-butyl. Examples include cumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 and the like.

有機過酸化物の添加量は、架橋エチレン・α−オレフィン共重合体(H)のゲル含有率を35〜85質量%の範囲に調整しやすい点から、エチレン・α−オレフィン共重合体(F)100質量部に対して0.1〜5質量部が好ましい。   The addition amount of the organic peroxide is such that the gel content of the crosslinked ethylene / α-olefin copolymer (H) can be easily adjusted to a range of 35 to 85% by mass, so that the ethylene / α-olefin copolymer (F ) 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass.

多官能性化合物は、架橋エチレン・α−オレフィン共重合体(H)のゲル含有率を調整するために、必要に応じて有機過酸化物と併用されるものである。
多官能性化合物としては、ジビニルベンゼン、メタクリル酸アリル、エチレングリコールジメタクリレート、1,3−ブチレンジメタクリレート、テトラエチレングリコールジアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ペンタエリスリトールテトラアクリレート等が挙げられ、ゲル含有率を調整しやすい点から、ジビニルベンゼンが好ましい。多官能性化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The polyfunctional compound is used in combination with an organic peroxide as necessary in order to adjust the gel content of the crosslinked ethylene / α-olefin copolymer (H).
Examples of the polyfunctional compound include divinylbenzene, allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, tetraethylene glycol diacrylate, triallyl cyanurate, triallyl isocyanurate, pentaerythritol tetraacrylate, and the like. From the viewpoint of easily adjusting the gel content, divinylbenzene is preferable. A polyfunctional compound may be used individually by 1 type, and may be used in combination of 2 or more type.

多官能性化合物の添加量は、架橋エチレン・α−オレフィン共重合体(H)のゲル含有率を35〜85質量%に調整しやすい点から、エチレン・α−オレフィン共重合体(F)100質量部に対して1〜5質量部が好ましい。   The addition amount of the polyfunctional compound is such that the gel content of the crosslinked ethylene / α-olefin copolymer (H) can be easily adjusted to 35 to 85% by mass, so that the ethylene / α-olefin copolymer (F) 100 is added. 1-5 mass parts is preferable with respect to a mass part.

エチレン・α−オレフィン共重合体(F)を架橋処理して架橋エチレン・α−オレフィン共重合体(H)を得る場合、エチレン・α−オレフィン共重合体(F)に酸変性オレフィン重合体が添加されてもよい。
酸変性オレフィン重合体は、オレフィン樹脂水性分散体(G)の説明で挙げたものと同様である。酸変性オレフィン重合体の添加量は、オレフィン樹脂水性分散体(G)中の酸変性オレフィン重合体の含有量と同様に、エチレン・α−オレフィン共重合体(F)100質量部に対して、1〜40質量部が好ましい。
酸変性オレフィン重合体の添加方法は、限定されない。エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体とを混合した後に架橋処理をしてもよいし、エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体とをそれぞれ架橋処理した後に混合してもよい。
エチレン・α−オレフィン共重合体(F)と酸変性オレフィン重合体との混合方法は、限定されない。混合方法としては、ニーダー、バンバリーミキサー、多軸スクリュー押出機等を用いた溶融混練法等が挙げられる。
When the ethylene / α-olefin copolymer (F) is crosslinked to obtain a crosslinked ethylene / α-olefin copolymer (H), an acid-modified olefin polymer is added to the ethylene / α-olefin copolymer (F). It may be added.
The acid-modified olefin polymer is the same as that described in the description of the aqueous olefin resin dispersion (G). The amount of the acid-modified olefin polymer added is the same as the content of the acid-modified olefin polymer in the aqueous olefin resin dispersion (G), with respect to 100 parts by mass of the ethylene / α-olefin copolymer (F). 1-40 mass parts is preferable.
The method for adding the acid-modified olefin polymer is not limited. Crosslinking may be performed after mixing the ethylene / α-olefin copolymer (F) and the acid-modified olefin polymer, or the ethylene / α-olefin copolymer (F) and the acid-modified olefin polymer. You may mix, after each crosslinking process.
The mixing method of the ethylene / α-olefin copolymer (F) and the acid-modified olefin polymer is not limited. Examples of the mixing method include a melt kneading method using a kneader, a Banbury mixer, a multi-screw extruder and the like.

架橋エチレン・α−オレフィン共重合体(H)の体積平均粒子径、または水性分散体中の架橋エチレン・α−オレフィン共重合体(H)の体積平均粒子径は、成形品の物性が優れる点から、0.2〜0.6μmが好ましく、0.3〜0.5μmがより好ましい。体積平均粒子径が0.2μm以上であれば、成形品の耐衝撃性がより優れる。体積平均粒子径が0.6μm以下であれば、成形品の耐衝撃性、発色性、耐熱老化性がより優れる。架橋エチレン・α−オレフィン(H)の体積平均粒子径が0.3μm〜0.5μmであれば、成形品の耐衝撃性、発色性、耐熱老化性がさらに優れる。   The volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (H) or the volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (H) in the aqueous dispersion is excellent in the physical properties of the molded product. Therefore, 0.2 to 0.6 μm is preferable, and 0.3 to 0.5 μm is more preferable. When the volume average particle diameter is 0.2 μm or more, the impact resistance of the molded product is more excellent. When the volume average particle diameter is 0.6 μm or less, the impact resistance, color developability, and heat aging resistance of the molded product are more excellent. When the volume average particle diameter of the crosslinked ethylene / α-olefin (H) is 0.3 μm to 0.5 μm, the impact resistance, color developability, and heat aging resistance of the molded product are further improved.

なお、オレフィン樹脂水性分散体(G)を有機過酸化物によって架橋処理した架橋エチレン・α−オレフィン共重合体(H)の水性分散体中の架橋エチレン・α−オレフィン共重合体(H)の体積平均粒子径は、オレフィン樹脂水性分散体(G)中のエチレン・α−オレフィン共重合体(F)の体積平均粒子径に対して変化はない。つまりオレフィン樹脂水性分散体(G)中のエチレン・α−オレフィン共重合体(F)の粒子の表面や内部にてエチレン・α−オレフィン共重合体(F)の架橋反応が進行し、粒子径の拡大を伴わない。
また、架橋エチレン・α−オレフィン共重合体(H)の水性分散体中の体積平均粒子径が、架橋エチレン・α−オレフィン共重合体(H)の体積平均粒子径を示すことを、電子顕微鏡の画像解析によって確認している。
In addition, the crosslinked ethylene / α-olefin copolymer (H) in the aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (H) obtained by crosslinking the aqueous dispersion of the olefin resin (G) with an organic peroxide. The volume average particle diameter does not change with respect to the volume average particle diameter of the ethylene / α-olefin copolymer (F) in the aqueous olefin resin dispersion (G). That is, the crosslinking reaction of the ethylene / α-olefin copolymer (F) proceeds on the surface or inside of the particles of the ethylene / α-olefin copolymer (F) in the aqueous dispersion of olefin resin (G), and the particle diameter Without the expansion of.
The volume average particle size in the aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (H) indicates the volume average particle size of the crosslinked ethylene / α-olefin copolymer (H). This is confirmed by image analysis.

<ビニル系単量体成分(m4)>
ビニル系単量体成分(m4)は、単量体として少なくとも芳香族ビニル化合物、シアン化ビニル化合物、および他のビニル系単量体からなる群から選ばれる少なくとも1種を含む。
ビニル系単量体成分(m4)は、芳香族ビニル化合物およびシアン化ビニル化合物を含むことが好ましい。
<Vinyl monomer component (m4)>
The vinyl monomer component (m4) contains at least one selected from the group consisting of aromatic vinyl compounds, vinyl cyanide compounds, and other vinyl monomers as monomers.
The vinyl monomer component (m4) preferably contains an aromatic vinyl compound and a vinyl cyanide compound.

芳香族ビニル化合物としては、例えば、スチレン、α−メチルスチレン、o−,m−またはp−メチルスチレン、ビニルキシレン、p−t−ブチルスチレン、エチルスチレン等が挙げられ、熱可塑性樹脂組成物の流動性、成形品の発色性、耐衝撃性の点から、スチレン、α−メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and α-methylstyrene are preferable from the viewpoints of fluidity, color developability of molded products, and impact resistance. An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.

シアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。シアン化ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile. A vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.

他のビニル系単量体としては、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等)、メタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等)、マレイミド系化合物(N−シクロヘキシルマレイミド、N−フェニルマレイミド等)等が挙げられる。他のビニル系単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Other vinyl monomers include acrylic acid esters (methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc.), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacrylic acid) Butyl), maleimide compounds (N-cyclohexylmaleimide, N-phenylmaleimide, etc.). Another vinyl-type monomer may be used individually by 1 type, and may be used in combination of 2 or more type.

ビニル系単量体成分(m4)中の芳香族ビニル化合物の含有率は、ビニル系単量体成分(m4)の総質量(100質量%)に対し、60〜85質量%が好ましく、62〜80質量%がより好ましい。芳香族ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。   The content of the aromatic vinyl compound in the vinyl monomer component (m4) is preferably 60 to 85% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m4), and 62 to 80 mass% is more preferable. When the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.

ビニル系単量体成分(m4)中のシアン化ビニル化合物の含有率は、ビニル系単量体成分(m4)の総質量(100質量%)に対し、15〜40質量%が好ましく、20〜38質量%がより好ましい。シアン化ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。   The content of the vinyl cyanide compound in the vinyl monomer component (m4) is preferably 15 to 40% by mass with respect to the total mass (100% by mass) of the vinyl monomer component (m4). 38 mass% is more preferable. When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.

<グラフト共重合体(I)>
グラフト共重合体(I)は、オレフィン系共重合体の存在下にビニル系単量体成分(m4)を重合して得られたものであり、例えば、下記の(α)、(β)、(γ)、(δ)が挙げられる。
(α)エチレン・α−オレフィン共重合体(F)の存在下に、ビニル系単量体成分(m4)を重合して得られたもの。
(β)オレフィン樹脂水性分散体(G)の存在下に、ビニル系単量体成分(m4)を重合して得られたもの。
(γ)エチレン・α−オレフィン共重合体(F)に架橋処理して得られた架橋エチレン・α−オレフィン共重合体(H)の存在下に、ビニル系単量体成分(m4)を重合して得られたもの。
(δ)オレフィン樹脂水性分散体(G)に架橋処理して得られた架橋エチレン・α−オレフィン共重合体(H)の水性分散体の存在下に、ビニル系単量体成分(m4)を重合して得られたもの。
グラフト共重合体(I)は、オレフィン系共重合体(エチレン・α−オレフィン共重合体(F)、架橋エチレン・α−オレフィン共重合体(H)等)に、ビニル系単量体成分(m4)の重合体からなるグラフト鎖が結合したものであり、おおむね、粒状のオレフィン系共重合体からなるコア部と、ビニル系単量体成分(m4)の重合体からなる外層部(シェル部)とから構成されると推測される。ただし、完全にはこのようなコアシェル型になっているとは限らないので、「オレフィン系共重合体の存在下にビニル系単量体成分(m4)を重合して得られたもの」と規定することがより適切とされる。
<Graft copolymer (I)>
The graft copolymer (I) is obtained by polymerizing the vinyl monomer component (m4) in the presence of the olefin copolymer, and includes, for example, the following (α), (β), (Γ) and (δ) may be mentioned.
(Α) A product obtained by polymerizing the vinyl monomer component (m4) in the presence of the ethylene / α-olefin copolymer (F).
(Β) A product obtained by polymerizing the vinyl monomer component (m4) in the presence of the aqueous olefin resin dispersion (G).
(Γ) A vinyl monomer component (m4) is polymerized in the presence of the crosslinked ethylene / α-olefin copolymer (H) obtained by crosslinking the ethylene / α-olefin copolymer (F). Obtained.
(Δ) In the presence of the aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (H) obtained by crosslinking the aqueous olefin resin dispersion (G), the vinyl monomer component (m4) is added. Obtained by polymerization.
The graft copolymer (I) is prepared by adding an olefin copolymer (ethylene / α-olefin copolymer (F), crosslinked ethylene / α-olefin copolymer (H), etc.) to a vinyl monomer component ( m4) a graft chain composed of a polymer, and a core part composed of a granular olefin copolymer and an outer layer part (shell part) composed of a polymer of a vinyl monomer component (m4). ). However, since it is not always such a core-shell type, it is defined as “obtained by polymerizing a vinyl monomer component (m4) in the presence of an olefin copolymer”. It is more appropriate to do.

グラフト共重合体(I)は、オレフィン系共重合体50〜80質量%の存在下に、ビニル系単量体成分(m4)20〜50質量%(ただし、オレフィン系共重合体とビニル系単量体成分(m4)との合計は100質量%である。)を重合して得られたものが好ましい。
すなわち、グラフト共重合体(I)は、オレフィン系共重合体50〜80質量%と、ビニル系単量体成分(m4)の重合体20〜50質量%(ただし、オレフィン系共重合体とビニル系単量体成分(m4)の重合体との合計は100質量%である。)とからなるものであることが好ましい。
オレフィン共重合体の含有割合が50〜80質量%であれば、熱可塑性樹脂組成物の流動性や、成形品の耐衝撃性、発色性の物性バランスがさらに向上する。
The graft copolymer (I) is a vinyl monomer component (m4) 20 to 50% by mass in the presence of 50 to 80% by mass of the olefin copolymer (provided that the olefin copolymer and vinyl monomer The total obtained with the monomer component (m4) is 100% by mass).
That is, the graft copolymer (I) contains 50 to 80% by mass of an olefin copolymer and 20 to 50% by mass of a polymer of a vinyl monomer component (m4) (however, the olefin copolymer and vinyl). The total amount of the system monomer component (m4) and the polymer is 100% by mass.).
When the content ratio of the olefin copolymer is 50 to 80% by mass, the fluidity of the thermoplastic resin composition, the impact resistance of the molded product, and the physical property balance of color development properties are further improved.

グラフト共重合体(I)のグラフト率は、熱可塑性樹脂組成物の流動性および成形品の耐衝撃性、発色性のバランスの点から、20〜100質量%が好ましい。
グラフト共重合体(I)のグラフト率は、後述の実施例に記載の方法により測定される値である。
The graft ratio of the graft copolymer (I) is preferably 20 to 100% by mass from the viewpoint of the balance between the fluidity of the thermoplastic resin composition, the impact resistance of the molded product, and the color developability.
The graft ratio of the graft copolymer (I) is a value measured by the method described in Examples below.

ビニル系単量体成分(m4)の重合方法としては、公知の重合方法(乳化重合法、溶液重合法、懸濁重合法、塊状重合法等)が挙げられる。   Examples of the polymerization method of the vinyl monomer component (m4) include known polymerization methods (emulsion polymerization method, solution polymerization method, suspension polymerization method, bulk polymerization method, etc.).

乳化重合法によるグラフト共重合体(I)の製造方法としては、例えば、ビニル系単量体成分(m4)に有機過酸化物を混合したものを、オレフィン系共重合体の水性分散体(例えばオレフィン樹脂水性分散体(G)または架橋エチレン・α−オレフィン共重合体(H)の水性分散体)に対して連続的に添加する方法が挙げられる。
有機過酸化物は、有機過酸化物と遷移金属と還元剤とを組み合わせたレドックス系開始剤として用いるのが好ましい。
重合の際に、連鎖移動剤、乳化剤等を状況に応じて用いてもよい。
As the method for producing the graft copolymer (I) by the emulsion polymerization method, for example, a mixture of an organic peroxide and a vinyl monomer component (m4) is used as an aqueous dispersion of an olefin copolymer (for example, Examples thereof include a method of continuously adding to an aqueous dispersion of an olefin resin (G) or an aqueous dispersion of a crosslinked ethylene / α-olefin copolymer (H)).
The organic peroxide is preferably used as a redox initiator that combines an organic peroxide, a transition metal, and a reducing agent.
In the polymerization, a chain transfer agent, an emulsifier or the like may be used depending on the situation.

レドックス系開始剤としては、重合反応条件を高温下にする必要がなく、オレフィン共重合体の劣化等を避け、成形品の耐衝撃性の低下を回避できる点から、有機過酸化物と硫酸第一鉄−キレート剤−還元剤を組み合わせたものが好ましい。
有機過酸化物としては、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、t−ブチルヒドロペルオキシド等が挙げられる。
レドックス系開始剤としては、クメンヒドロペルオキシドと、硫酸第一鉄と、ピロリン酸ナトリウムと、デキストロースとからなるものがより好ましい。
The redox initiator does not require the polymerization reaction conditions to be at a high temperature, avoids deterioration of the olefin copolymer, etc., and avoids reduction in impact resistance of the molded product. A combination of a ferrous iron-chelating agent-reducing agent is preferred.
Examples of the organic peroxide include cumene hydroperoxide, diisopropylbenzene hydroperoxide, and t-butyl hydroperoxide.
The redox initiator is more preferably composed of cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose.

連鎖移動剤としては、メルカプタン類(オクチルメルカプタン、n−またはt−ドデシルメルカプタン、n−ヘキサデシルメルカプタン、n−またはt−テトラデシルメルカプタン等)、アリル化合物(アリルスルフォン酸、メタアリルスルフォン酸、これらのナトリウム塩等)、α−メチルスチレンダイマー等が挙げられ、分子量を調整することが容易な点から、メルカプタン類が好ましい。連鎖移動剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
連鎖移動剤の添加方法は、一括、分割、連続のいずれでもよい。
連鎖移動剤の添加量は、ビニル単量体成分(m4)100質量部に対して2.0質量部以下が好ましい。
Examples of chain transfer agents include mercaptans (octyl mercaptan, n- or t-dodecyl mercaptan, n-hexadecyl mercaptan, n- or t-tetradecyl mercaptan, etc.), allyl compounds (allylsulfonic acid, methallylsulfonic acid, these Sodium salts, etc.), α-methylstyrene dimers, and the like, and mercaptans are preferred from the viewpoint of easy adjustment of the molecular weight. A chain transfer agent may be used individually by 1 type, and may be used in combination of 2 or more type.
The method for adding the chain transfer agent may be any of batch, split, and continuous.
The addition amount of the chain transfer agent is preferably 2.0 parts by mass or less with respect to 100 parts by mass of the vinyl monomer component (m4).

乳化剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等が挙げられる。
アニオン性界面活性剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪酸スルホン酸塩、リン酸系塩、脂肪酸塩、アミノ酸誘導体塩等が挙げられる。
ノニオン性界面活性剤としては、通常のポリエチレングリコールのアルキルエステル型、アルキルエーテル型、アルキルフェニルエーテル型等が挙げられる。
両性界面活性剤としては、アニオン部にカルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等を有し、カチオン部にアミン塩、第4級アンモニウム塩等を有するものが挙げられる。
乳化剤の添加量は、ビニル単量体成分(m4)100質量部に対して10質量部以下が好ましい。
乳化重合の重合条件は、特に限定されず、たとえば、50〜90℃で1〜10時間の重合条件が挙げられる。
Examples of the emulsifier include anionic surfactants, nonionic surfactants, and amphoteric surfactants.
Examples of the anionic surfactants include higher alcohol sulfates, alkylbenzene sulfonates, fatty acid sulfonates, phosphate salts, fatty acid salts, and amino acid derivative salts.
Examples of nonionic surfactants include ordinary polyethylene glycol alkyl ester types, alkyl ether types, and alkyl phenyl ether types.
Examples of the amphoteric surfactant include those having a carboxylate salt, sulfate ester salt, sulfonate salt, phosphate ester salt and the like in the anion portion and amine salts and quaternary ammonium salts in the cation portion.
The addition amount of the emulsifier is preferably 10 parts by mass or less with respect to 100 parts by mass of the vinyl monomer component (m4).
The polymerization conditions for emulsion polymerization are not particularly limited, and examples include polymerization conditions at 50 to 90 ° C. for 1 to 10 hours.

乳化重合法によって得られるグラフト共重合体(I)は、水中に分散した状態である。
グラフト共重合体(I)を含む水性分散体からグラフト共重合体(I)を回収する方法としては、例えば、水性分散体に析出剤を添加し、加熱、撹拌した後、析出剤を分離し、析出したグラフト共重合体(I)を水洗、脱水、乾燥する析出法が挙げられる。
析出剤としては、例えば、硫酸、酢酸、塩化カルシウム、硫酸マグネシウム等の水溶液が挙げられる。析出剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
グラフト共重合体(I)を含む水性分散体に、必要に応じて酸化防止剤を添加してもよい。
The graft copolymer (I) obtained by the emulsion polymerization method is in a state of being dispersed in water.
As a method for recovering the graft copolymer (I) from the aqueous dispersion containing the graft copolymer (I), for example, a precipitation agent is added to the aqueous dispersion, heated and stirred, and then the precipitation agent is separated. And a precipitation method in which the precipitated graft copolymer (I) is washed with water, dehydrated and dried.
Examples of the precipitating agent include aqueous solutions of sulfuric acid, acetic acid, calcium chloride, magnesium sulfate, and the like. A precipitation agent may be used individually by 1 type, and may be used in combination of 2 or more type.
If necessary, an antioxidant may be added to the aqueous dispersion containing the graft copolymer (I).

溶液重合法によるグラフト共重合体(I)の製造方法としては、例えば、オレフィン系共重合体(例えばエチレン・α−オレフィン共重合体(F)または架橋エチレン・α−オレフィン共重合体(H))を溶媒に溶解した溶液に、重合開始剤およびビニル系単量体成分(m4)を添加する方法が挙げられる。
溶媒としては、通常のラジカル重合で使用される不活性重合溶剤が用いられ、例えば、エチルベンゼン、トルエンなどの芳香族炭化水素、メチルエチルケトン、アセトンなどのケトン類、ジクロロメチレン、四塩化炭素などのハロゲン化炭化水素などが用いられる。
溶液重合における重合開始剤としては、一般的な開始剤が用いられ、例えば、ケトンパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイドなどの有機過酸化物が用いられる。また、重合開始剤の添加方法としては、一括添加する方法または連続的に添加する方法が挙げられる。
溶液重合の重合条件は、特に限定されず、たとえば、50〜90℃で1〜10時間の重合条件が挙げられる。
Examples of the method for producing the graft copolymer (I) by the solution polymerization method include olefin copolymers (for example, ethylene / α-olefin copolymer (F) or crosslinked ethylene / α-olefin copolymer (H)). ) Is dissolved in a solvent, and a polymerization initiator and a vinyl monomer component (m4) are added.
As the solvent, an inert polymerization solvent used in usual radical polymerization is used. For example, aromatic hydrocarbons such as ethylbenzene and toluene, ketones such as methyl ethyl ketone and acetone, halogenated compounds such as dichloromethylene and carbon tetrachloride. A hydrocarbon or the like is used.
As the polymerization initiator in the solution polymerization, a general initiator is used, and for example, organic peroxides such as ketone peroxide, dialkyl peroxide, diacyl peroxide, peroxy ester, hydroperoxide are used. Moreover, as the addition method of a polymerization initiator, the method of adding collectively or the method of adding continuously is mentioned.
The polymerization conditions for solution polymerization are not particularly limited, and examples include polymerization conditions at 50 to 90 ° C. for 1 to 10 hours.

<他の熱可塑性樹脂>
他の熱可塑性樹脂としては、例えば、(メタ)アクリル酸エステル樹脂(C)以外の他の(メタ)アクリル酸エステル樹脂、ポリカーボネート、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル、ポリスチレン、ポリアセタール、変性ポリフェニレンエーテル(変性PPE)、エチレン−酢酸ビニル共重合体、ポリアリレート、液晶ポリエステル、ポリエチレン、ポリプロピレン、ポリアミド(ナイロン)、フッ素樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Other thermoplastic resins>
Other thermoplastic resins include, for example, (meth) acrylic ester resins other than (meth) acrylic ester resin (C), polycarbonate, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl chloride , Polystyrene, polyacetal, modified polyphenylene ether (modified PPE), ethylene-vinyl acetate copolymer, polyarylate, liquid crystal polyester, polyethylene, polypropylene, polyamide (nylon), fluororesin and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.

<各種添加剤>
各種添加剤としては、酸化防止剤、紫外線吸収剤、滑剤、可塑剤、安定剤、離型剤、帯電防止剤、加工助剤、着色剤(顔料、染料等)、炭素繊維、ガラス繊維、ウォラストナイト、炭酸カルシウム、シリカ等の充填剤、ドリップ防止剤、抗菌剤、防カビ剤、カップリング剤、パラフィンオイル等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Various additives>
Various additives include antioxidants, UV absorbers, lubricants, plasticizers, stabilizers, release agents, antistatic agents, processing aids, colorants (pigments, dyes, etc.), carbon fibers, glass fibers, Examples thereof include fillers such as lastite, calcium carbonate and silica, antidrip agents, antibacterial agents, antifungal agents, coupling agents, and paraffin oil. These may be used individually by 1 type and may be used in combination of 2 or more type.

<各成分の含有量>
グラフト共重合体(B)の含有量は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)との合計100質量%に対し18〜80質量%が好ましく、30〜60質量%がより好ましい。グラフト共重合体(B)の含有量が前記範囲内であれば、成形品の耐衝撃性、耐熱性のバランスがより優れる。
<Content of each component>
The content of the graft copolymer (B) is 100 mass in total of the graft copolymer (B), the (meth) acrylic ester resin (C), the styrene resin (E), and the graft copolymer (I). 18-80 mass% is preferable with respect to%, and 30-60 mass% is more preferable. If the content of the graft copolymer (B) is within the above range, the balance of impact resistance and heat resistance of the molded product is more excellent.

(メタ)アクリル酸エステル樹脂(C)の含有量は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)との合計100質量%に対し20〜82質量%が好ましく、40〜70質量%がより好ましい。(メタ)アクリル酸エステル樹脂(C)の含有量が前記範囲内であれば、成形品の発色性、耐熱性、耐熱老化性のバランスがより優れる。   The content of the (meth) acrylic ester resin (C) is that of the graft copolymer (B), the (meth) acrylic ester resin (C), the styrene resin (E), and the graft copolymer (I). 20-82 mass% is preferable with respect to a total of 100 mass%, and 40-70 mass% is more preferable. If content of (meth) acrylic ester resin (C) is in the said range, the balance of the color development property, heat resistance, and heat aging resistance of a molded article will be more excellent.

シリコーンオイル(D)の含有量は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)の合計100質量部に対し、0.1〜5質量部が好ましく、0.3〜3質量部がより好ましい。シリコーンオイル(D)の含有量が前記範囲内であれば、成形品の耐衝撃性、発色性、耐熱老化性がより優れる。   The content of the silicone oil (D) is 100 parts by mass in total of the graft copolymer (B), the (meth) acrylate resin (C), the styrene resin (E), and the graft copolymer (I). 0.1-5 mass parts is preferable, and 0.3-3 mass parts is more preferable. When the content of the silicone oil (D) is within the above range, the impact resistance, color developability, and heat aging resistance of the molded product are more excellent.

スチレン系樹脂(E)の含有量は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)の合計100質量%に対し0〜40質量%が好ましく、1〜40質量%がより好ましい。スチレン系樹脂(E)の含有量が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐衝撃性、発色性、耐侯性、耐熱老化性のバランスに優れる。
前記スチレン系樹脂(E)の含有量が0質量%であることは、熱可塑性樹脂組成物がスチレン系樹脂(E)を含まないことを示す。
The content of the styrene resin (E) is 100% by mass in total of the graft copolymer (B), the (meth) acrylate resin (C), the styrene resin (E), and the graft copolymer (I). 0-40 mass% is preferable with respect to 1-40 mass%. When the content of the styrenic resin (E) is within the above range, the fluidity of the thermoplastic resin composition, the impact resistance of the molded article, the color development, the weather resistance, and the heat aging resistance are excellent.
The content of the styrenic resin (E) of 0% by mass indicates that the thermoplastic resin composition does not contain the styrenic resin (E).

グラフト共重合体(I)の含有量は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)との合計100質量%に対し0〜15質量%が好ましい。グラフト共重合体(I)の含有量が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐衝撃性、発色性、耐熱性、耐熱老化性等の物性バランスに優れる。
前記グラフト共重合体(I)の含有量が0質量%であることは、熱可塑性樹脂組成物がグラフト共重合体(I)を含まないことを示す。
The content of the graft copolymer (I) is 100 mass in total of the graft copolymer (B), the (meth) acrylic ester resin (C), the styrene resin (E), and the graft copolymer (I). 0-15 mass% is preferable with respect to%. When the content of the graft copolymer (I) is within the above range, the balance of physical properties such as fluidity of the thermoplastic resin composition, impact resistance of the molded article, color development, heat resistance, and heat aging resistance is excellent.
The content of the graft copolymer (I) being 0% by mass indicates that the thermoplastic resin composition does not contain the graft copolymer (I).

複合ゴム状重合体(A)と、グラフト共重合体(I)中のオレフィン系共重合体との合計(100質量%)に対し、オレフィン系共重合体(エチレン・α−オレフィン共重合体(F)、オレフィン樹脂水性分散体(G)中のエチレン・α−オレフィン共重合体(F)、架橋エチレン・α−オレフィン共重合体(H))の割合は、1〜45質量%が好ましく、4〜32質量%がより好ましい。すなわち、該オレフィン系共重合体と複合ゴム状重合体(A)との合計(100質量%)に対し、複合ゴム状重合体(A)の割合は、55〜99質量%が好ましく、68〜96質量%がより好ましい。オレフィン系共重合体の割合が1質量%以上(複合ゴム状重合体(A)の割合が99質量%以下)であれば、成形品の耐衝撃性の持続性がより優れる。オレフィン系共重合体の割合が15質量%以下(複合ゴム状重合体(A)の割合が85質量%以上)であれば、成形品の発色性や耐熱老化性、耐侯性がより優れる。   For the total (100% by mass) of the composite rubber-like polymer (A) and the olefin copolymer in the graft copolymer (I), an olefin copolymer (ethylene / α-olefin copolymer ( F), the proportion of the ethylene / α-olefin copolymer (F) and the crosslinked ethylene / α-olefin copolymer (H) in the aqueous olefin resin dispersion (G) is preferably 1 to 45% by mass, 4-32 mass% is more preferable. That is, the ratio of the composite rubber-like polymer (A) is preferably 55 to 99% by mass with respect to the total (100% by mass) of the olefin copolymer and the composite rubber-like polymer (A), and 68 to 96 mass% is more preferable. If the ratio of the olefin copolymer is 1% by mass or more (the ratio of the composite rubber-like polymer (A) is 99% by mass or less), the durability of the impact resistance of the molded article is more excellent. When the ratio of the olefin copolymer is 15% by mass or less (the ratio of the composite rubber-like polymer (A) is 85% by mass or more), the color developability, heat aging resistance, and weather resistance of the molded product are further improved.

複合ゴム状重合体(A)と、グラフト共重合体(I)中のオレフィン系共重合体との合計の含有量(ゴム含有量)は、熱可塑性樹脂組成物100質量%に対し5〜30質量%が好ましく、10〜25質量%がより好ましい。ゴム含有量が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐衝撃性、発色性、耐熱性がさらに優れる。   The total content (rubber content) of the composite rubber-like polymer (A) and the olefin-based copolymer in the graft copolymer (I) is 5 to 30 with respect to 100% by mass of the thermoplastic resin composition. % By mass is preferable, and 10 to 25% by mass is more preferable. When the rubber content is within the above range, the fluidity of the thermoplastic resin composition, the impact resistance of the molded product, the color development, and the heat resistance are further improved.

グラフト共重合体(B)とグラフト共重合体(I)との合計の含有量は、グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)との合計100質量%に対し10〜60質量%が好ましい。グラフト共重合体(B)およびグラフト共重合体(I)の合計の含有量が前記範囲内であれば、熱可塑性樹脂組成物の流動性、成形品の耐衝撃性、発色性、耐熱性等の物性バランスがさらに優れる。   The total content of graft copolymer (B) and graft copolymer (I) is as follows: graft copolymer (B), (meth) acrylic ester resin (C), styrenic resin (E) and graft 10-60 mass% is preferable with respect to a total of 100 mass% with copolymer (I). If the total content of the graft copolymer (B) and the graft copolymer (I) is within the above range, the fluidity of the thermoplastic resin composition, the impact resistance of the molded product, the color development, the heat resistance, etc. The physical property balance is even better.

グラフト共重合体(B)の含有量は、熱可塑性樹脂組成物の総質量に対し、18〜80質量%が好ましく、30〜60質量%がより好ましい。グラフト共重合体(B)の含有量が前記範囲内であれば、成形品の耐傷付き性、耐衝撃性、耐熱性のバランスがより優れる。   18-80 mass% is preferable with respect to the total mass of a thermoplastic resin composition, and, as for content of a graft copolymer (B), 30-60 mass% is more preferable. When the content of the graft copolymer (B) is within the above range, the balance of scratch resistance, impact resistance, and heat resistance of the molded product is more excellent.

(メタ)アクリル酸エステル樹脂(C)の含有量は、熱可塑性樹脂組成物の総質量に対し、20〜82質量%が好ましく、40〜70質量%がより好ましい。(メタ)アクリル酸エステル樹脂(C)の含有量が前記範囲内であれば、成形品の発色性、耐熱性、耐熱老化性のバランスがより優れる。
他の(メタ)アクリル酸エステル樹脂の含有量は、(メタ)アクリル酸エステル樹脂(C)と他の(メタ)アクリル酸エステル樹脂との合計に対し、0〜90 質量%が好ましく、15〜80質量%がより好ましい。
20-82 mass% is preferable with respect to the total mass of a thermoplastic resin composition, and, as for content of (meth) acrylic acid ester resin (C), 40-70 mass% is more preferable. If content of (meth) acrylic ester resin (C) is in the said range, the balance of the color development property, heat resistance, and heat aging resistance of a molded article will be more excellent.
The content of the other (meth) acrylic ester resin is preferably 0 to 90% by mass with respect to the total of the (meth) acrylic ester resin (C) and the other (meth) acrylic ester resin. 80 mass% is more preferable.

本発明の熱可塑性樹脂組成物の好ましい実施形態として、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)とを含み、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)との合計に対し、グラフト共重合体(B)の含有量が18〜80質量%、(メタ)アクリル酸エステル樹脂(C)の含有量が20〜82質量%である熱可塑性樹脂組成物が挙げられる。
本実施形態においては、前記グラフト共重合体(B)の含有量が30〜60質量%で、前記(メタ)アクリル酸エステル樹脂(C)の含有量が40〜70質量%であることが好ましい。
本実施形態において、熱可塑性樹脂組成物の総質量に対するグラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)との合計の含有量は、50〜100質量%が好ましい。
As a preferred embodiment of the thermoplastic resin composition of the present invention, it includes a graft copolymer (B) and a (meth) acrylic ester resin (C),
The content of the graft copolymer (B) is 18 to 80% by mass with respect to the total of the graft copolymer (B) and the (meth) acrylate resin (C), and the (meth) acrylate resin (C ) Is a thermoplastic resin composition having a content of 20 to 82% by mass.
In this embodiment, it is preferable that content of the said graft copolymer (B) is 30-60 mass%, and content of the said (meth) acrylic ester resin (C) is 40-70 mass%. .
In the present embodiment, the total content of the graft copolymer (B) and the (meth) acrylic ester resin (C) with respect to the total mass of the thermoplastic resin composition is preferably 50 to 100% by mass.

本発明の熱可塑性樹脂組成物の他の好ましい実施形態として、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)と、シリコーンオイル(D)とを含み、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)との合計に対し、グラフト共重合体(B)の含有量が18〜80質量%、(メタ)アクリル酸エステル樹脂(C)の含有量が20〜82質量%であり、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)との合計100質量部に対し、シリコーンオイル(D)の含有量が0.1〜5質量部である熱可塑性樹脂組成物が挙げられる。
本実施形態においては、前記グラフト共重合体(B)の含有量が30〜60質量%で、前記(メタ)アクリル酸エステル樹脂(C)の含有量が40〜70質量%で、前記シリコーンオイル(D)の含有量が0.3〜3質量部であることが好ましい。
本実施形態において、熱可塑性樹脂組成物の総質量に対するグラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とシリコーンオイル(D)との合計の含有量は、50〜100質量%が好ましい。
Other preferred embodiments of the thermoplastic resin composition of the present invention include a graft copolymer (B), a (meth) acrylic ester resin (C), and a silicone oil (D).
The content of the graft copolymer (B) is 18 to 80% by mass with respect to the total of the graft copolymer (B) and the (meth) acrylate resin (C), and the (meth) acrylate resin (C ) Content is 20 to 82% by mass,
A thermoplastic resin composition having a silicone oil (D) content of 0.1 to 5 parts by mass with respect to 100 parts by mass in total of the graft copolymer (B) and the (meth) acrylic ester resin (C). Is mentioned.
In this embodiment, the content of the graft copolymer (B) is 30 to 60% by mass, the content of the (meth) acrylic ester resin (C) is 40 to 70% by mass, and the silicone oil The content of (D) is preferably 0.3 to 3 parts by mass.
In this embodiment, the total content of the graft copolymer (B), the (meth) acrylic ester resin (C), and the silicone oil (D) with respect to the total mass of the thermoplastic resin composition is 50 to 100 mass. % Is preferred.

本発明の熱可塑性樹脂組成物の他の好ましい実施形態として、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)と、シリコーンオイル(D)と、スチレン系樹脂(E)とを含み、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)との合計に対し、グラフト共重合体(B)の含有量が18〜60質量%、(メタ)アクリル酸エステル樹脂(C)の含有量が20〜81質量%、スチレン系樹脂(E)の含有量が1〜40質量%であり、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)との合計100質量部に対し、シリコーンオイル(D)の含有量が0.1〜5質量部である熱可塑性樹脂組成物が挙げられる。
本実施形態においては、前記グラフト共重合体(B)の含有量が30〜60質量%で、前記(メタ)アクリル酸エステル樹脂(C)の含有量が20〜69質量%で、前記スチレン系樹脂(E)の含有量が1〜30質量%で、前記シリコーンオイル(D)の含有量が0.3〜3質量部であることが好ましい。
本実施形態において、熱可塑性樹脂組成物の総質量に対するグラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とシリコーンオイル(D)とスチレン系樹脂(E)との合計の含有量は、70〜100質量%が好ましい。
As other preferable embodiments of the thermoplastic resin composition of the present invention, a graft copolymer (B), a (meth) acrylic ester resin (C), a silicone oil (D), and a styrenic resin (E) Including
The content of the graft copolymer (B) is 18 to 60% by mass with respect to the total of the graft copolymer (B), the (meth) acrylic ester resin (C), and the styrene resin (E). ) The content of acrylic ester resin (C) is 20 to 81 mass%, the content of styrene resin (E) is 1 to 40 mass%,
The silicone oil (D) content is 0.1 to 5 parts by mass with respect to 100 parts by mass in total of the graft copolymer (B), the (meth) acrylic ester resin (C), and the styrene resin (E). The thermoplastic resin composition which is is mentioned.
In this embodiment, the content of the graft copolymer (B) is 30 to 60% by mass, the content of the (meth) acrylic ester resin (C) is 20 to 69% by mass, and the styrenic It is preferable that the content of the resin (E) is 1 to 30% by mass and the content of the silicone oil (D) is 0.3 to 3 parts by mass.
In this embodiment, the total content of the graft copolymer (B), the (meth) acrylic ester resin (C), the silicone oil (D), and the styrenic resin (E) with respect to the total mass of the thermoplastic resin composition. The amount is preferably 70 to 100% by mass.

本発明の熱可塑性樹脂組成物の他の好ましい実施形態として、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)と、グラフト共重合体(I)とを含み、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とグラフト共重合体(I)との合計に対し、グラフト共重合体(B)の含有量が18〜60質量%、(メタ)アクリル酸エステル樹脂(C)の含有量が20〜81質量%、グラフト共重合体(I)の含有量が1〜15質量%である熱可塑性樹脂組成物が挙げられる。
本実施形態においては、前記グラフト共重合体(B)の含有量が30〜60質量%で、前記(メタ)アクリル酸エステル樹脂(C)の含有量が30〜69質量%で、前記グラフト共重合体(I)の含有量が1〜10質量%であることが好ましい。
本実施形態において、熱可塑性樹脂組成物の総質量に対するグラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とグラフト共重合体(I)との合計の含有量は、50〜100質量%が好ましい。
Other preferred embodiments of the thermoplastic resin composition of the present invention include a graft copolymer (B), a (meth) acrylate resin (C), and a graft copolymer (I),
The content of the graft copolymer (B) is 18 to 60% by mass with respect to the total of the graft copolymer (B), the (meth) acrylic ester resin (C) and the graft copolymer (I). A thermoplastic resin composition in which the content of the (meth) acrylic ester resin (C) is 20 to 81% by mass and the content of the graft copolymer (I) is 1 to 15% by mass.
In this embodiment, the content of the graft copolymer (B) is 30 to 60% by mass, the content of the (meth) acrylic ester resin (C) is 30 to 69% by mass, The content of the polymer (I) is preferably 1 to 10% by mass.
In this embodiment, the total content of the graft copolymer (B), the (meth) acrylic ester resin (C), and the graft copolymer (I) with respect to the total mass of the thermoplastic resin composition is 50 to 100 mass% is preferable.

本発明の熱可塑性樹脂組成物の他の好ましい実施形態として、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)と、シリコーンオイル(D)と、グラフト共重合体(I)とを含み、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とグラフト共重合体(I)との合計に対し、グラフト共重合体(B)の含有量が18〜60質量%、(メタ)アクリル酸エステル樹脂(C)の含有量が20〜81質量%、グラフト共重合体(I)の含有量が1〜15質量%であり、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とグラフト共重合体(I)との合計100質量部に対し、シリコーンオイル(D)の含有量が0.1〜5質量部である熱可塑性樹脂組成物が挙げられる。
本実施形態においては、前記グラフト共重合体(B)の含有量が30〜60質量%で、前記(メタ)アクリル酸エステル樹脂(C)の含有量が30〜69質量%で、前記グラフト共重合体(I)の含有量が1〜10質量%で、前記シリコーンオイル(D)の含有量が0.3〜3質量部であることが好ましい。
本実施形態において、熱可塑性樹脂組成物の総質量に対するグラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とシリコーンオイル(D)とグラフト共重合体(I)との合計の含有量は、50〜100質量%が好ましい。
As another preferable embodiment of the thermoplastic resin composition of the present invention, a graft copolymer (B), a (meth) acrylic ester resin (C), a silicone oil (D), and a graft copolymer (I ) And
The content of the graft copolymer (B) is 18 to 60% by mass with respect to the total of the graft copolymer (B), the (meth) acrylic ester resin (C) and the graft copolymer (I). The content of the (meth) acrylate resin (C) is 20 to 81% by mass, the content of the graft copolymer (I) is 1 to 15% by mass,
Content of silicone oil (D) is 0.1-5 mass with respect to a total of 100 mass parts of graft copolymer (B), (meth) acrylic ester resin (C), and graft copolymer (I). Part of the thermoplastic resin composition.
In this embodiment, the content of the graft copolymer (B) is 30 to 60% by mass, the content of the (meth) acrylic ester resin (C) is 30 to 69% by mass, The content of the polymer (I) is preferably 1 to 10% by mass, and the content of the silicone oil (D) is preferably 0.3 to 3 parts by mass.
In this embodiment, the total of the graft copolymer (B), the (meth) acrylic ester resin (C), the silicone oil (D), and the graft copolymer (I) with respect to the total mass of the thermoplastic resin composition. The content is preferably 50 to 100% by mass.

本発明の熱可塑性樹脂組成物の他の好ましい実施形態として、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)と、シリコーンオイル(D)と、スチレン系樹脂(E)と、グラフト共重合体(I)とを含み、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)との合計に対し、グラフト共重合体(B)の含有量が18〜60質量%、(メタ)アクリル酸エステル樹脂(C)の含有量が20〜80質量%、スチレン系樹脂(E)の含有量が1〜40質量%、グラフト共重合体(I)の含有量が1〜10質量%であり、
グラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とスチレン系樹脂(E)とグラフト共重合体(I)との合計100質量部に対し、シリコーンオイル(D)の含有量が0.1〜5質量部である熱可塑性樹脂組成物が挙げられる。
本実施形態においては、前記グラフト共重合体(B)の含有量が30〜60質量%で、前記(メタ)アクリル酸エステル樹脂(C)の含有量が40〜68質量%で、前記スチレン系樹脂(E)の含有量が1〜40質量%で、前記グラフト共重合体(I)の含有量が1〜10質量%で、前記シリコーンオイル(D)の含有量が0.3〜3質量部であることが好ましい。
本実施形態において、熱可塑性樹脂組成物の総質量に対するグラフト共重合体(B)と(メタ)アクリル酸エステル樹脂(C)とシリコーンオイル(D)とスチレン系樹脂(E)とグラフト共重合体(I)との合計の含有量は、90〜100質量%が好ましい。
As other preferable embodiments of the thermoplastic resin composition of the present invention, a graft copolymer (B), a (meth) acrylic ester resin (C), a silicone oil (D), and a styrenic resin (E) And graft copolymer (I),
Graft copolymer (B), (meth) acrylic acid ester resin (C), styrenic resin (E) and graft copolymer (I) have a total content of graft copolymer (B). 18-60 mass%, content of (meth) acrylic ester resin (C) is 20-80 mass%, content of styrene resin (E) is 1-40 mass%, graft copolymer (I) Content is 1-10 mass%,
Content of silicone oil (D) with respect to a total of 100 parts by mass of graft copolymer (B), (meth) acrylic ester resin (C), styrene resin (E) and graft copolymer (I) May be 0.1 to 5 parts by mass of a thermoplastic resin composition.
In this embodiment, the content of the graft copolymer (B) is 30 to 60% by mass, the content of the (meth) acrylic ester resin (C) is 40 to 68% by mass, and the styrenic The content of the resin (E) is 1 to 40% by mass, the content of the graft copolymer (I) is 1 to 10% by mass, and the content of the silicone oil (D) is 0.3 to 3% by mass. Part.
In this embodiment, the graft copolymer (B), the (meth) acrylic ester resin (C), the silicone oil (D), the styrene resin (E), and the graft copolymer with respect to the total mass of the thermoplastic resin composition. The total content of (I) is preferably 90 to 100% by mass.

上記の各実施形態において、(メタ)アクリル酸エステル樹脂(C)の一部が他の(メタ)アクリル酸エステル樹脂で置換されていてもよい。他の(メタ)アクリル酸エステル樹脂の含有量は、(メタ)アクリル酸エステル樹脂(C)と他の(メタ)アクリル酸エステル樹脂との合計に対し、0〜90質量%が好ましく、15〜80質量%がより好ましい。   In each of the above embodiments, a part of the (meth) acrylic ester resin (C) may be replaced with another (meth) acrylic ester resin. The content of the other (meth) acrylic ester resin is preferably 0 to 90% by mass with respect to the total of the (meth) acrylic ester resin (C) and the other (meth) acrylic ester resin. 80 mass% is more preferable.

<熱可塑性樹脂組成物の製造方法>
熱可塑性樹脂組成物は、グラフト共重合体(B)と、(メタ)アクリル酸エステル樹脂(C)と、必要に応じて他の成分(シリコーンオイル(D)、スチレン系樹脂(E)、グラフト共重合体(I)、他の熱可塑性樹脂、各種添加剤)を混合することにより得られる。
<Method for producing thermoplastic resin composition>
The thermoplastic resin composition comprises a graft copolymer (B), a (meth) acrylic ester resin (C), and other components (silicone oil (D), styrenic resin (E), graft as required. It can be obtained by mixing copolymer (I), other thermoplastic resin, and various additives.

<熱可塑性樹脂組成物の用途>
本発明の熱可塑性樹脂組成物は、金型のキャビティ表面が交互に加熱冷却される射出成形金型を用いて、金型のキャビティ表面温度を繰り返し上下させるヒートサイクル射出成形法により成形され、成形品とされる。
ヒートサイクル射出成形法については後で詳しく説明する。
<Uses of thermoplastic resin composition>
The thermoplastic resin composition of the present invention is molded by a heat cycle injection molding method in which the cavity surface temperature of the mold is repeatedly raised and lowered using an injection mold in which the cavity surface of the mold is alternately heated and cooled. It is considered a product.
The heat cycle injection molding method will be described in detail later.

<作用効果>
以上説明した本発明の熱可塑性樹脂組成物にあっては、ポリオルガノシロキサン(Aa)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Ab)からなる複合ゴム状重合体(A)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体成分(m1)を重合して得られたグラフト共重合体(B)と、(メタ)アクリル酸エステル、マレイミド系化合物および芳香族ビニル化合物を含むビニル系単量体成分(m2)を重合して得られた(メタ)アクリル酸エステル樹脂(C)と、を含み、複合ゴム状重合体(A)(100質量%)中のポリオルガノシロキサン(Aa)の含有率が1〜20質量%であり、複合ゴム状重合体(A)の体積平均粒子径が0.05μm〜0.15μmであり、ビニル系単量体成分(m2)(100質量%)中の前記マレイミド系化合物の含有率が1〜30質量%で、前記芳香族ビニル化合物の含有率が5.5〜15質量%であるため、ヒートサイクル射出成形法により成形したときに、表面外観、耐引っ掻き傷性、耐衝撃性、発色性、耐熱性、耐熱老化性に優れた成形品が得られる。また、熱可塑性樹脂組成物の流動性も良好である。
<Effect>
In the thermoplastic resin composition of the present invention described above, units derived from polyorganosiloxane (Aa) and (meth) acrylic acid ester, units derived from a crosslinking agent, and units derived from a graft crossing agent A vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a composite rubber-like polymer (A) comprising a poly (meth) acrylic acid ester (Ab) having either or both of A graft copolymer (B) obtained by polymerizing the component (m1) and a vinyl monomer component (m2) containing a (meth) acrylic acid ester, a maleimide compound and an aromatic vinyl compound are polymerized. (Meth) acrylic acid ester resin (C) obtained, and inclusion of polyorganosiloxane (Aa) in composite rubber-like polymer (A) (100% by mass) Of the composite rubber-like polymer (A) is 0.05 μm to 0.15 μm, and the vinyl monomer component (m2) (100% by mass) Since the content of the maleimide compound is 1 to 30% by mass and the content of the aromatic vinyl compound is 5.5 to 15% by mass, the surface appearance and scratch resistance when molded by the heat cycle injection molding method A molded article having excellent scratch resistance, impact resistance, color development, heat resistance, and heat aging resistance can be obtained. Moreover, the fluidity of the thermoplastic resin composition is also good.

本発明の熱可塑性樹脂組成物は、本発明の熱可塑性樹脂組成物から形成した成形品(Ma2)のシャルピー衝撃強度が、5kJ/m以上であることが好ましく、5〜20kJ/mであることがより好ましい。シャルピー衝撃強度が前記下限値以上であれば、耐衝撃性が充分に優れ、前記上限値以下であれば、他の特性のバランスが良好である。
「成形品(Ma2)」は、熱可塑性樹脂組成物を2軸押出機で溶融混練し、金型のキャビティ表面が交互に加熱冷却される射出成形金型を備える射出成型機にて、シリンダー温度260℃、金型への樹脂充填時の金型温度110℃、冷却時の金型温度40℃の条件でヒートサイクル射出成形を行って、縦80mm、横10mm、厚さ4mmの成形品としたものである。
「シャルピー衝撃強度」は、前記成形品(Ma2)について、ISO 179−1:2000にしたがい、ノッチ付、23℃の条件でシャルピー衝撃試験を行って測定される値である。
In the thermoplastic resin composition of the present invention, the molded article (Ma2) formed from the thermoplastic resin composition of the present invention preferably has a Charpy impact strength of 5 kJ / m 2 or more, and is 5 to 20 kJ / m 2 . More preferably. If the Charpy impact strength is not less than the lower limit, the impact resistance is sufficiently excellent, and if it is not more than the upper limit, the balance of other characteristics is good.
“Molded product (Ma2)” is an injection molding machine equipped with an injection mold in which a thermoplastic resin composition is melt-kneaded with a twin-screw extruder and the cavity surface of the mold is alternately heated and cooled. Heat cycle injection molding was performed under the conditions of 260 ° C., mold temperature 110 ° C. during resin filling into the mold, and mold temperature 40 ° C. during cooling to obtain a molded product having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm. Is.
The “Charpy impact strength” is a value measured by conducting a Charpy impact test on the molded product (Ma2) according to ISO 179-1: 2000 under notched conditions at 23 ° C.

本発明の熱可塑性樹脂組成物は、本発明の熱可塑性樹脂組成物から形成した成形品(Ma2)の荷重たわみ温度が、80℃以上であることが好ましく、80〜115℃であることがより好ましい。荷重たわみ温度が前記下限値以上であれば、耐熱性が充分に優れ、前記上限値以下であれば、他の特性のバランスが良好である。
「荷重たわみ温度」は、前記成形品(Ma2)について、ISO 75−1:2004に準拠し、1.83MPa、4mm、フラットワイズ法で測定される値である。
In the thermoplastic resin composition of the present invention, the deflection temperature under load of the molded article (Ma2) formed from the thermoplastic resin composition of the present invention is preferably 80 ° C. or higher, more preferably 80 to 115 ° C. preferable. If the deflection temperature under load is equal to or higher than the lower limit value, the heat resistance is sufficiently excellent, and if it is equal to or lower than the upper limit value, the balance of other characteristics is good.
The “deflection temperature under load” is a value measured by the flat-wise method for the molded product (Ma2) in accordance with ISO 75-1: 2004 according to 1.83 MPa, 4 mm.

本発明の熱可塑性樹脂組成物は、本発明の熱可塑性樹脂組成物から形成した成形品(Ma1)の明度Lが、7.0以下であることが好ましく、3.0〜7.0がより好ましい。明度Lが前記上限値以下であれば、発色性が充分に優れ、前記下限値以上であれば、他の特性のバランスが良好である。
「成形品(Ma1)」は、熱可塑性樹脂組成物を、樹脂成分(グラフト共重合体(B)、(メタ)アクリル酸エステル樹脂(C)、スチレン系樹脂(E)、グラフト共重合体(I)、他の熱可塑性樹脂)の合計量100部に対して0.8部のカーボンブラックを含む状態で2軸押出機で溶融混練し、金型のキャビティ表面が交互に加熱冷却される射出成形金型を備える射出成型機にて、シリンダー温度260℃、金型への樹脂充填時の金型温度110℃、冷却時の金型温度40℃の条件でヒートサイクル射出成形を行って成形品としたものである。
「明度L」は、前記成形品(Ma1)について、SCE方式にて測定される値である。SCE方式による明度(L)の詳しい測定方法は、後述する実施例に示す。
In the thermoplastic resin composition of the present invention, the lightness L * of the molded article (Ma1) formed from the thermoplastic resin composition of the present invention is preferably 7.0 or less, and 3.0 to 7.0 is preferable. More preferred. If the lightness L * is not more than the above upper limit value, the color developability is sufficiently excellent, and if it is not less than the above lower limit value, the balance of other characteristics is good.
“Molded product (Ma1)” is a thermoplastic resin composition obtained by converting a resin component (graft copolymer (B), (meth) acrylate resin (C), styrenic resin (E), graft copolymer ( I) Injection in which the mold cavity surface is alternately heated and cooled by melt-kneading with a twin-screw extruder in a state containing 0.8 parts of carbon black with respect to 100 parts of the total amount of other thermoplastic resins) In an injection molding machine equipped with a molding die, heat cycle injection molding is performed under conditions of a cylinder temperature of 260 ° C., a mold temperature of 110 ° C. when filling the mold with resin, and a mold temperature of 40 ° C. during cooling. It is what.
“Lightness L * ” is a value measured by the SCE method for the molded product (Ma1). A detailed method for measuring the lightness (L * ) by the SCE method will be described in Examples described later.

本発明の熱可塑性樹脂組成物は、本発明の熱可塑性樹脂組成物から形成した成形品(Ma1)の耐候性試験前後の変色の度合い(ΔE)が3.0以下であることが好ましく、1.0〜3.0であることがより好ましい。前記ΔEが前記上限値以下であれば、耐候性が充分に優れ、前記下限値以上であれば、他の特性のバランスが良好である。
「耐候性試験」は、成形品(Ma1)を、サンシャインウェザーメーターを用い、ブラックパネル温度63℃、サイクル条件60分(降雨12分)の条件で1000時間処理する試験である。
「変色の度合い(ΔE)」は、分光測色計を用いて、SCE方式にて測定される値である。
In the thermoplastic resin composition of the present invention, the degree of discoloration (ΔE) before and after the weather resistance test of the molded article (Ma1) formed from the thermoplastic resin composition of the present invention is preferably 3.0 or less. More preferably, it is 0.0-3.0. If ΔE is not more than the upper limit value, the weather resistance is sufficiently excellent, and if it is not less than the lower limit value, the balance of other characteristics is good.
The “weather resistance test” is a test in which the molded product (Ma1) is treated for 1000 hours using a sunshine weather meter at a black panel temperature of 63 ° C. and a cycle condition of 60 minutes (rainfall 12 minutes).
The “degree of color change (ΔE)” is a value measured by the SCE method using a spectrocolorimeter.

本発明の熱可塑性樹脂組成物は、本発明の熱可塑性樹脂組成物から形成した成形品(Ma1)の耐熱老化性試験前後の変色の度合い(ΔE)が3.4以下であることが好ましく、0.5〜3.4であることがより好ましい。前記ΔEが前記上限値以下であれば、耐熱老化性が充分に優れ、前記下限値以上であれば、他の特性のバランスが良好である。
「耐熱老化性試験」は、成形品(Ma1)を、恒温器を用い、温度90℃、湿度30%の条件で500時間処理する試験である。変色の度合い(ΔE)は前記のとおりである。
In the thermoplastic resin composition of the present invention, the degree of discoloration (ΔE) before and after the heat aging resistance test of the molded article (Ma1) formed from the thermoplastic resin composition of the present invention is preferably 3.4 or less, More preferably, it is 0.5 to 3.4. If ΔE is not more than the upper limit value, the heat aging resistance is sufficiently excellent, and if it is not less than the lower limit value, the balance of other characteristics is good.
The “heat aging resistance test” is a test in which the molded article (Ma1) is treated for 500 hours using a thermostat at a temperature of 90 ° C. and a humidity of 30%. The degree of color change (ΔE) is as described above.

本発明の熱可塑性樹脂組成物は、本発明の熱可塑性樹脂組成物から形成した成形品(Ma1)の鉛筆硬度試験前後の明度の差L(mb−ma)の絶対値が3.0未満であることが好ましく、1.0以上3.0未満であることがより好ましい。L(mb−ma)の絶対値が前記上限値以下であれば、耐引っ掻き傷性が充分に優れ、前記下限値以上であれば、他の特性のバランスが良好である。
「L(mb−ma)」は、下記式(3)から算出される値である。
ΔL(mb−ma)=L(mb)−L(ma) ・・・(3)
「L(ma)」は、成形品(Ma1)の明度Lである。「L(mb)」は、成形品(Mb)の明度Lである。明度Lは前記のとおりである。
「成形品(Mb)」は、鉛筆硬度試験機を用い、7.35N(750g)の荷重で、3Hの硬度の鉛筆を成形品(Ma1)の表面に押しつけ、その状態で成形品(Ma1)を5cmほど移動させることによって、成形品(Ma1)の表面を鉛筆で引っ掻き、傷を付けたものである。
In the thermoplastic resin composition of the present invention, the absolute value of the lightness difference L * (mb-ma) before and after the pencil hardness test of the molded article (Ma1) formed from the thermoplastic resin composition of the present invention is less than 3.0. It is preferable that it is 1.0 or more and less than 3.0. If the absolute value of L * (mb-ma) is not more than the above upper limit value, scratch resistance is sufficiently excellent, and if it is not less than the above lower limit value, the balance of other characteristics is good.
“L * (mb−ma)” is a value calculated from the following equation (3).
ΔL * (mb−ma) = L * (mb) −L * (ma) (3)
“L * (ma)” is the lightness L * of the molded product (Ma1). “L * (mb)” is the lightness L * of the molded product (Mb). The lightness L * is as described above.
“Molded product (Mb)” is a pencil hardness tester, and a 3H hardness pencil is pressed against the surface of the molded product (Ma1) under a load of 7.35 N (750 g), and the molded product (Ma1) is in that state. The surface of the molded product (Ma1) is scratched with a pencil by moving about 5 cm.

「成形品」
本発明の成形品は、本発明の熱可塑性樹脂組成物を成形してなるものである。
本発明の成形品の製造方法、つまり本発明の熱可塑性樹脂組成物の成形方法としては、前述のとおり、ヒートサイクル射出成形法が用いられる。
"Molding"
The molded article of the present invention is formed by molding the thermoplastic resin composition of the present invention.
As described above, the heat cycle injection molding method is used as the method for producing the molded article of the present invention, that is, the molding method of the thermoplastic resin composition of the present invention.

ヒートサイクル射出成形法では、金型のキャビティ表面が交互に加熱冷却される射出成形金型を用いて、金型のキャビティ表面温度を繰り返し上下させて熱可塑性樹脂組成物の成形を行う。ヒートサイクル射出成形法では、熱可塑性樹脂組成物を金型に射出する前に、金型のキャビティ表面温度を、熱可塑性樹脂組成物の熱変形温度(HDT)以上の温度に上げた後、熱可塑性樹脂組成物を射出し、金型のキャビティ表面温度を下げて熱可塑性樹脂組成物を冷却して成形品を得て、この成形品を金型から取り出す。その後、再度、金型のキャビティ表面温度を、熱可塑性樹脂組成物の熱変形温度以上の温度に上げて、上記の一連の工程(熱可塑性樹脂組成物の射出、冷却、成形品の取り出し)を繰り返す。
ヒートサイクル射出成形法のより具体的な条件としては、熱可塑性樹脂組成物の熱変形温度(HDT)T℃に対して、(T+120℃)〜(T+200℃)の樹脂温度で射出し、金型温度T℃は(T+5℃)〜(T+50℃)とし、冷却時の温度T℃は(T−10℃)〜(T−50℃)とし、T−T=15〜100℃の条件を採用することが好ましい。また、このヒートサイクルの周期としては、一般の射出成形の周期と同じか、一般の射出成形の周期+10%以内であることが好ましい。
熱変形温度は、荷重たわみ温度の別称であり、前述の測定方法により測定される。
金型のキャビティ表面温度を熱可塑性樹脂組成物の熱変形温度以上に加熱する方法としては、熱水冷水切替方式、蒸気加熱方式、加熱オイル方式、金型表面断熱方式などが挙げられるが、特に限定されない。
In the heat cycle injection molding method, a thermoplastic resin composition is molded by repeatedly raising and lowering the cavity surface temperature of the mold using an injection mold in which the cavity surface of the mold is alternately heated and cooled. In the heat cycle injection molding method, before the thermoplastic resin composition is injected into a mold, the cavity surface temperature of the mold is raised to a temperature equal to or higher than the thermal deformation temperature (HDT) of the thermoplastic resin composition, The plastic resin composition is injected, the cavity surface temperature of the mold is lowered, the thermoplastic resin composition is cooled to obtain a molded product, and the molded product is taken out from the mold. Thereafter, the cavity surface temperature of the mold is again raised to a temperature equal to or higher than the thermal deformation temperature of the thermoplastic resin composition, and the above-described series of steps (injection of thermoplastic resin composition, cooling, removal of molded product) is performed. repeat.
More specific conditions of the heat cycle injection molding method include injection at a resin temperature of (T + 120 ° C.) to (T + 200 ° C.) with respect to the thermal deformation temperature (HDT) T ° C. of the thermoplastic resin composition, and a mold. The temperature T A ° C is (T + 5 ° C.) to (T + 50 ° C.), the cooling temperature T B ° C is (T−10 ° C.) to (T−50 ° C.), and T A −T B = 15 to 100 ° C. It is preferable to adopt conditions. The cycle of the heat cycle is preferably the same as the cycle of general injection molding or within the cycle of general injection molding + 10%.
Thermal deformation temperature is another name for deflection temperature under load, and is measured by the above-described measuring method.
Examples of the method of heating the mold cavity surface temperature above the heat distortion temperature of the thermoplastic resin composition include a hot water / cold water switching method, a steam heating method, a heating oil method, a mold surface heat insulation method, etc. It is not limited.

以上説明した本発明の成形品にあっては、本発明の熱可塑性樹脂組成物を用いているため、耐引っ掻き傷性、耐衝撃性、発色性、耐熱性、耐候性、耐熱老化性に優れる。また、熱可塑性樹脂組成物をヒートサイクル射出成形法によって成形しているため、成形品の耐引っ掻き傷性がより優れ、表面外観性にも優れる。   In the molded article of the present invention described above, since the thermoplastic resin composition of the present invention is used, it is excellent in scratch resistance, impact resistance, color development, heat resistance, weather resistance, and heat aging resistance. . Further, since the thermoplastic resin composition is molded by the heat cycle injection molding method, the molded article has better scratch resistance and excellent surface appearance.

以下、具体的に実施例を示す。ただし、本発明は、これら実施例に限定されるものではない。
以下に記載の「%」は「質量%」、「部」は「質量部」を意味する。
以下の実施例および比較例における各種測定および評価方法は、以下の通りである。
Hereinafter, an example is shown concretely. However, the present invention is not limited to these examples.
In the following, “%” means “mass%” and “part” means “part by mass”.
Various measurements and evaluation methods in the following examples and comparative examples are as follows.

<平均粒子径の測定方法>
マイクロトラック(日機装社製「ナノトラック150」)を用い、測定溶媒として純水を用いて体積平均粒子径(μm)を測定した。
<Measurement method of average particle diameter>
The volume average particle diameter (μm) was measured using Microtrac (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.

<(メタ)アクリル酸エステル樹脂(C)およびスチレン系樹脂(E)の質量平均分子量の測定方法>
GPC(GPC:東ソー社製「HLC8220」、カラム:東ソー社製「TSK GEL SuperHZM−H」を用い、テトラヒドロフラン(THF:40℃)の溶媒として、ポリスチレン換算での質量平均分子量(Mw)を測定した。
<Method for measuring mass average molecular weight of (meth) acrylic ester resin (C) and styrene resin (E)>
Using GPC (GPC: “HLC8220” manufactured by Tosoh Corporation, column: “TSK GEL SuperHZM-H” manufactured by Tosoh Corporation), the mass average molecular weight (Mw) in terms of polystyrene was measured as a solvent of tetrahydrofuran (THF: 40 ° C.). .

<エチレン・α−オレフィン共重合体(F)の質量平均分子量(Mw)、分子量分布(Mw/Mn)の測定方法>
GPC(GPC:Waters社製「GPC/V2000」、カラム:昭和電工社製「Shodex AT−G+AT−806MS」)を用い、o−ジクロロベンゼン(145℃)を溶媒として、ポリスチレン換算での質量平均分子量(Mw)、数平均分子量分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
<Method for Measuring Mass Average Molecular Weight (Mw) and Molecular Weight Distribution (Mw / Mn) of Ethylene / α-Olefin Copolymer (F)>
Mass average molecular weight in terms of polystyrene using GPC (GPC: “GPC / V2000” manufactured by Waters, column: “Shodex AT-G + AT-806MS” manufactured by Showa Denko KK) and o-dichlorobenzene (145 ° C.) as a solvent. (Mw), number average molecular weight (Mn) were measured, and molecular weight distribution (Mw / Mn) was calculated.

<架橋エチレン・α−オレフィン共重合体(H)のゲル含有率の測定方法>
架橋エチレン・α−オレフィン共重合体(H)の水性または溶媒分散体を希硫酸にて凝固させ、水洗、乾燥して得られる凝固粉試料[h1]0.5gを、200mL、110℃のトルエン中に5時間浸漬し、次いで、200メッシュ金網にて濾過し、残渣を乾燥し、その乾燥物[h2]の質量を測定し、下記式(1)から、架橋エチレン・α−オレフィン共重合体(H)のゲル含有率を求めた。
ゲル含有率(%)=乾燥物質量[h2](g)/凝固粉試料質量[h1](g)×100 ・・・(1)
<Method for measuring gel content of crosslinked ethylene / α-olefin copolymer (H)>
An aqueous or solvent dispersion of the crosslinked ethylene / α-olefin copolymer (H) is coagulated with dilute sulfuric acid, washed with water and dried to obtain 0.5 g of a coagulated powder sample [h1], 200 mL of 110 ° C. toluene. It was immersed in 5 hours, then filtered through a 200 mesh wire net, the residue was dried, the mass of the dried product [h2] was measured, and from the following formula (1), a crosslinked ethylene / α-olefin copolymer The gel content of (H) was determined.
Gel content rate (%) = dry substance amount [h2] (g) / coagulated powder sample mass [h1] (g) × 100 (1)

<グラフト共重合体(I)のグラフト率の測定方法>
グラフト共重合体(I)1gを80mLのアセトンに添加し、65〜70℃にて3時間加熱還流し、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶成分)とアセトン溶液(アセトン可溶成分)を分取した。そして、沈殿成分(アセトン不溶成分)を乾燥させてその質量(Y(g))を測定し、下記式(2)からグラフト率を算出した。なお、式(2)におけるYは、グラフト共重合体(I)のアセトン不溶成分の質量(g)、Xは、Yを求める際に用いたグラフト共重合体(I)の全質量(g)で、ゴム分率は、グラフト共重合体(I)のオレフィン系共重合体の固形分の含有割合である。
グラフト率(%)={(Y−X×ゴム分率)/X×ゴム分率}×100 ・・・(2)
<Method for measuring graft ratio of graft copolymer (I)>
1 g of the graft copolymer (I) is added to 80 mL of acetone and heated to reflux at 65 to 70 ° C. for 3 hours. The resulting suspension acetone solution is added to a centrifuge (“CR21E” manufactured by Hitachi Koki Co., Ltd.). The mixture was centrifuged at 14,000 rpm for 30 minutes to separate a precipitation component (acetone insoluble component) and an acetone solution (acetone soluble component). And the precipitation component (acetone insoluble component) was dried, the mass (Y (g)) was measured, and the graft ratio was computed from following formula (2). In Formula (2), Y is the mass (g) of the acetone-insoluble component of the graft copolymer (I), and X is the total mass (g) of the graft copolymer (I) used when Y is determined. The rubber fraction is the solid content of the olefin copolymer of the graft copolymer (I).
Graft rate (%) = {(Y-X × rubber fraction) / X × rubber fraction} × 100 (2)

<溶融混練1>
実施例および比較例それぞれの配合処方に従ってグラフト共重合体(B)、(メタ)アクリル酸エステル樹脂(C)などを混合した混合物を、30mmφの真空ベント付き2軸押出機(池貝社製「PCM30」)で、シリンダー温度200〜260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物(1)を得た。さらに溶融混練後に、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
<Melt-kneading 1>
A mixture obtained by mixing the graft copolymer (B), the (meth) acrylic ester resin (C) and the like in accordance with the formulation of each of the examples and comparative examples was used as a twin screw extruder with a 30 mmφ vacuum vent ("PCM30" manufactured by Ikegai Co., Ltd.). )) Was melt kneaded at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa to obtain a thermoplastic resin composition (1). Further, after melt-kneading, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).

<溶融混練2>
実施例および比較例それぞれの配合処方に従ってグラフト共重合体(B)、(メタ)アクリル酸エステル樹脂(C)などを混合した混合物と、前記混合物のうち樹脂成分の合計量100部に対して0.8部のカーボンブラック(三菱化学社製「♯966」)とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製「PCM30」)で、シリンダー温度200〜260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物(2)を得た。さらに溶融混練後に、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
<Melting and kneading 2>
According to the formulation of each of the examples and comparative examples, the mixture obtained by mixing the graft copolymer (B), the (meth) acrylic ester resin (C) and the like, and 0 in the total amount of the resin component in the mixture is 100 parts. 8 parts of carbon black (“# 966” manufactured by Mitsubishi Chemical Co., Ltd.) was mixed, and the cylinder temperature was 200 to 260 ° C. and 93.325 kPa in a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.). Melt kneading was performed under vacuum to obtain a thermoplastic resin composition (2). Further, after melt-kneading, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).

<メルトボリュームレート(MVR)の測定>
熱可塑性樹脂組成物(1)について、ISO 1133:1997にしたがい、230℃におけるMVRを、98N(10kg)の荷重で測定した。なお、MVRは熱可塑性樹脂組成物の流動性の目安となる。
<Measurement of melt volume rate (MVR)>
About the thermoplastic resin composition (1), according to ISO 1133: 1997, MVR in 230 degreeC was measured with the load of 98 N (10 kg). In addition, MVR becomes a standard of the fluidity | liquidity of a thermoplastic resin composition.

<成形方法A:ヒートサイクル射出成形>
(1.成形品(Ma1)の成形)
発色性、耐候性、耐熱老化性、耐引っ掻き傷性および表面外観の評価用の成形品(成形品(Ma1))として、図1に示す様な4点ゲート成形品1を以下の手順で成形した。成形品1は、縦60mm×横90mm×厚さ10mmの板状であり、中央部に上面視長方形(縦25mm×横30mm)の開口部2、図中(製品)左上の角の部分に上面視長方形の開口部3(縦25mm×横30mm)、図中左下の角の部分に上面視円形の開口部4(直径10mm)がそれぞれ、成形品1を貫通して形成されている。成形品1の一方の表面上、開口部2を囲む4辺それぞれの4ヶ所には、開口部2の中心方向に延出するゲート2Aが形成されている。
溶融混練して得られた熱可塑性樹脂組成物(2)のペレットを、小野産業(株)製「高速ヒートサイクル成形ユニット」を取り付けた「東芝機械(株)製「IS55FP−1.5A成形機」に投入し、シリンダー温度(射出時の樹脂温度)は260℃、金型への樹脂充填時の金型温度は110℃、冷却時の金型温度は40℃の条件でヒートサイクル射出成形を実施し、成形品(Ma1)を得た。
<Molding method A: heat cycle injection molding>
(1. Molding of molded product (Ma1))
As a molded product (molded product (Ma1)) for evaluation of color development, weather resistance, heat aging resistance, scratch resistance and surface appearance, a four-point gate molded product 1 as shown in FIG. 1 is molded by the following procedure. did. The molded product 1 is a plate having a length of 60 mm × width of 90 mm × thickness of 10 mm, an opening 2 having a rectangular shape (25 mm in length × 30 mm in width) in the center, and an upper surface in the upper left corner in the figure (product). A rectangular opening 3 (length: 25 mm × width: 30 mm), and a circular opening 4 (diameter: 10 mm) as viewed from above are formed in the lower left corner of the figure so as to penetrate the molded product 1. On one surface of the molded article 1, gates 2 </ b> A extending in the center direction of the opening 2 are formed at four locations on each of the four sides surrounding the opening 2.
“IS55FP-1.5A molding machine manufactured by Toshiba Machine Co., Ltd.” equipped with “high-speed heat cycle molding unit” manufactured by Ono Sangyo Co., Ltd. was obtained by pelletizing the thermoplastic resin composition (2) obtained by melt-kneading. , And the cylinder temperature (resin temperature during injection) is 260 ° C, the mold temperature when filling the mold with resin is 110 ° C, and the mold temperature during cooling is 40 ° C. It implemented and obtained the molded article (Ma1).

(2.成形品(Ma2)の成形)
耐衝撃性および耐熱性の評価用の成形品(成形品(Ma2))として、縦80mm、横10mm、厚さ4mmの板状の成形品を以下の手順で成形した。
溶融混練して得られた熱可塑性樹脂組成物(1)のペレットを、小野産業(株)製「高速ヒートサイクル成形ユニット」を取り付けた東芝機械(株)製「IS55FP−1.5A成形機」に投入し、シリンダー温度(射出時の樹脂温度)260℃、金型への樹脂充填時の金型温度は110℃、冷却時の金型温度は40℃の条件でヒートサイクル射出成形を実施し、成形品(Ma2)を得た。
(2. Molding of molded product (Ma2))
As a molded product for evaluation of impact resistance and heat resistance (molded product (Ma2)), a plate-shaped molded product having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was molded according to the following procedure.
“IS55FP-1.5A molding machine” manufactured by Toshiba Machine Co., Ltd., equipped with a “high-speed heat cycle molding unit” manufactured by Ono Sangyo Co., Ltd. was obtained by pelletizing the thermoplastic resin composition (1) obtained by melt kneading. The heat cycle injection molding was carried out under the conditions of cylinder temperature (resin temperature during injection) 260 ° C, mold temperature when filling resin into the mold was 110 ° C, and mold temperature during cooling was 40 ° C. A molded product (Ma2) was obtained.

<成形方法B:一般成形(金型のキャビティ表面温度を上下させない射出成形)>
(1.成形品(Ma3)の成形)
発色性、耐候性、耐熱老化性、耐引っ掻き傷性および表面外観の評価用の成形品(成形品(Ma3))として、前述の図1に示す様な4点ゲート成形品1を以下の手順で成形した。
溶融混練して得られた熱可塑性樹脂組成物(2)のペレットを東芝機械(株)製「IS55FP−1.5A成形機」に投入し、シリンダー温度200〜270℃、金型温度60℃の条件で射出成形を実施し、成形品(Ma3)を得た。
<Molding method B: General molding (injection molding that does not raise or lower the cavity surface temperature of the mold)>
(1. Molding of molded product (Ma3))
As a molded product (molded product (Ma3)) for evaluation of color development, weather resistance, heat aging resistance, scratch resistance and surface appearance, a four-point gate molded product 1 as shown in FIG. Molded with
The pellets of the thermoplastic resin composition (2) obtained by melt-kneading are put into an “IS55FP-1.5A molding machine” manufactured by Toshiba Machine Co., Ltd. Injection molding was performed under conditions to obtain a molded product (Ma3).

(2.成形品(Ma4)の成形)
耐衝撃性および耐熱性の評価用の成形品(成形品(Ma4))として、縦80mm、横10mm、厚さ4mmの板状の成形品を以下の手順で成形した。
溶融混練して得られた熱可塑性樹脂組成物(1)のペレットを東芝機械(株)製「IS55FP−1.5A成形機」に投入し、シリンダー温度200〜270℃、金型温度60℃の条件で射出成形を実施し、成形品(Ma4)を得た。
(2. Molding of molded product (Ma4))
As a molded product for evaluation of impact resistance and heat resistance (molded product (Ma4)), a plate-shaped molded product having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was molded according to the following procedure.
The pellets of the thermoplastic resin composition (1) obtained by melt-kneading are put into an “IS55FP-1.5A molding machine” manufactured by Toshiba Machine Co., Ltd., with a cylinder temperature of 200-270 ° C. and a mold temperature of 60 ° C. Injection molding was performed under conditions to obtain a molded product (Ma4).

<耐衝撃性の評価:シャルピー衝撃試験>
成形品(Ma2)または(Ma4)について、ISO 179−1:2000にしたがい、23℃の条件でシャルピー衝撃試験(ノッチ付)を行い、シャルピー衝撃強度を測定した。
<Evaluation of impact resistance: Charpy impact test>
The molded product (Ma2) or (Ma4) was subjected to a Charpy impact test (notched) at 23 ° C. in accordance with ISO 179-1: 2000, and the Charpy impact strength was measured.

<耐熱性の評価>
成形品(Ma2)または(Ma4)について、ISO 75−1:2004に準拠し、1.83MPa、4mm、フラットワイズ法で荷重たわみ温度(℃)を測定した。
<Evaluation of heat resistance>
With respect to the molded product (Ma2) or (Ma4), the deflection temperature under load (° C.) was measured by the flatwise method in accordance with ISO 75-1: 2004 according to 1.83 MPa.

<発色性の評価>
成形品(Ma1)または(Ma3)について、分光測色計(コニカミノルタオプティプス社製「CM−3500d」)を用いて明度Lを、SCE方式にて測定した。こうして測定されたLを「L(ma)」とする。Lが低いほど黒色となり、発色性が良好と判定した。
<Evaluation of color development>
For the molded product (Ma1) or (Ma3), the lightness L * was measured by the SCE method using a spectrocolorimeter (“CM-3500d” manufactured by Konica Minolta Optips). The L * measured in this way is referred to as “L * (ma)”. The lower L * was, the more black the color was determined.

本明細書において、「明度(L)」とは、JIS Z 8729:2004において採用されているL表色系における色彩値のうちの明度の値(L)を意味する。
「SCE方式」とは、JIS Z 8722:2009に準拠した分光測色計を用い、光トラップによって正反射光を除去して色を測る方法を意味する。
In this specification, “lightness (L * )” means a lightness value (L * ) among color values in the L * a * b * color system adopted in JIS Z 8729: 2004. .
The “SCE method” means a method of measuring a color by using a spectrocolorimeter compliant with JIS Z 8722: 2009 and removing specularly reflected light with an optical trap.

<耐候性の評価>
成形品(Ma1)または(Ma3)を、サンシャインウェザーメーター(スガ試験機(株)製)を用い、ブラックパネル温度63℃、サイクル条件60分(降雨12分)の条件で1000時間処理した。そして、その処理前後の変色の度合い(ΔE)を分光測色計を用いて、SCE方式にて測定して評価した。ΔEが小さいほど耐候性が良好である。
<Evaluation of weather resistance>
The molded product (Ma1) or (Ma3) was treated for 1000 hours under conditions of a black panel temperature of 63 ° C. and a cycle condition of 60 minutes (rainfall of 12 minutes) using a sunshine weather meter (manufactured by Suga Test Instruments Co., Ltd.). Then, the degree of color change (ΔE) before and after the treatment was measured and evaluated by the SCE method using a spectrocolorimeter. The smaller the ΔE, the better the weather resistance.

<耐熱老化性の評価>
成形品(Ma1)または(Ma3)を、恒温器(エスペック(株)製)を用い、温度90℃、湿度30%の条件で500時間処理した。そして、その処理前後の変色の度合い(ΔE)を分光測色計を用いて、SCE方式にて測定して評価した。ΔEが小さいほど熱老化性が良好である。
<Evaluation of heat aging resistance>
The molded product (Ma1) or (Ma3) was treated for 500 hours under the conditions of a temperature of 90 ° C. and a humidity of 30% using a thermostat (manufactured by ESPEC Corporation). Then, the degree of color change (ΔE) before and after the treatment was measured and evaluated by the SCE method using a spectrocolorimeter. The smaller the ΔE, the better the heat aging property.

<耐引っ掻き傷性の評価>
鉛筆硬度試験機を用い、7.35N(750g)の荷重で、3Hの硬度の鉛筆を成形品(Ma1)または(Ma3)の表面に押しつけ、その状態で成形品(Ma1)または(Ma3)を5cmほど移動させることによって、成形品(Ma1)または(Ma3)の表面を鉛筆で引っ掻き、成形品(Ma1)または(Ma3)に傷を付けた。傷を付けた成形品(Mb)の表面の明度Lを、分光測色計を用いて、SCE方式にて測定した。こうして測定されたLを「L(mb)」とする。
<Evaluation of scratch resistance>
Using a pencil hardness tester, a pencil with a hardness of 3H is pressed against the surface of the molded product (Ma1) or (Ma3) under a load of 7.35 N (750 g), and the molded product (Ma1) or (Ma3) is pressed in this state. By moving about 5 cm, the surface of the molded product (Ma1) or (Ma3) was scratched with a pencil, and the molded product (Ma1) or (Ma3) was scratched. The brightness L * of the surface of the scratched molded article (Mb) was measured by the SCE method using a spectrocolorimeter. The L * measured in this way is referred to as “L * (mb)”.

(耐引っ掻き傷性の判定)
成形品(Mb)の傷の目立ちやすさの判定指標ΔL(mb−ma)を下記式(3)から算出した。ΔL(mb−ma)の絶対値が大きいほど傷が目立ちやすい。
ΔL(mb−ma)=L(mb)−L(ma) ・・・(3)
ΔL(mb−ma)の絶対値が3.0以下のとき、傷が目立たず、成形品の意匠性を損なわない。
ΔL(mb−ma)の絶対値が3.0超〜7.0以下のとき、傷は目立ちにくく、成形品の意匠性を損なわない。
ΔL(mb−ma)の絶対値が7.0超のとき、傷が目立ち、成形品の意匠性を損なう。
(Determination of scratch resistance)
A determination index ΔL * (mb−ma) for the visibility of scratches on the molded article (Mb) was calculated from the following formula (3). As the absolute value of ΔL * (mb−ma) is larger, the scratches are more conspicuous.
ΔL * (mb−ma) = L * (mb) −L * (ma) (3)
When the absolute value of ΔL * (mb−ma) is 3.0 or less, the scratches are not noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * (mb−ma) is more than 3.0 to 7.0 or less, scratches are hardly noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * (mb−ma) is more than 7.0, scratches are conspicuous and the design of the molded product is impaired.

<表面外観の評価>
成形品(Ma1)または(Ma3)の表面を目視で観察し、下記基準で判定した。
○ : 表面光沢があり、ウエルド部の色むらが無い。
△ : 表面光沢はあるが、ウエルド部の色むらが若干ある。
× : 表面光沢が無く、ウエルド部の色むらがある。
<Evaluation of surface appearance>
The surface of the molded product (Ma1) or (Ma3) was visually observed and judged according to the following criteria.
○: There is surface gloss and there is no uneven color in the weld.
Δ: There is surface gloss, but there is some uneven color at the weld.
X: No surface gloss and uneven color in the weld.

≪各成分≫
以下の例では、下記の複合ゴム状重合体(A)、グラフト共重合体(B)、(メタ)アクリル酸エステル樹脂(C)、シリコーンオイル(D)、スチレン系樹脂(E)、グラフト共重合体(I)を用いた。
≪Each ingredient≫
In the following examples, the following composite rubber-like polymer (A), graft copolymer (B), (meth) acrylic ester resin (C), silicone oil (D), styrene resin (E), graft copolymer Polymer (I) was used.

<グラフト共重合体(B)およびその比較品>
(ポリオルガノシロキサン(Aa1)の製造)
オクタメチルテトラシクロシロキサン96部、γ−メタクリロイルオキシプロピルジメトキシメチルシラン2部およびテトラエトキシシラン2部を混合してシロキサン系混合物100部を得た。これにドデシルベンゼンスルホン酸ナトリウム8部を溶解したイオン交換水300部を添加し、ホモミキサーにて10000回転/2分間撹拌した後、ホモジナイザーに30MPaの圧力で1回通し、安定な予備混合オルガノシロキサン水性分散体を得た。
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸2部とイオン交換水98部を注入し、2%のドデシルベンゼンスルホン酸水溶液を調製した。この水溶液を85℃に加熱した状態で、予備混合オルガノシロキサン水性分散体を4時間にわたって滴下し、滴下終了後1時間温度を維持し、冷却した。この反応液を室温で48時間放置した後、水酸化ナトリウム水溶液で中和して、ポリオルガノシロキサン(Aa1)の水性分散体を得た。
ポリオルガノシロキサン(Aa1)水性分散体の一部を170℃で30分間乾燥して固形分濃度を求めたところ、17.3%であった。また、水性分散体に分散しているポリオルガノシロキサン(Aa1)の体積平均粒子径は0.034μmであった。
<Graft copolymer (B) and its comparison product>
(Production of polyorganosiloxane (Aa1))
96 parts of octamethyltetracyclosiloxane, 2 parts of γ-methacryloyloxypropyldimethoxymethylsilane and 2 parts of tetraethoxysilane were mixed to obtain 100 parts of a siloxane-based mixture. To this was added 300 parts of ion-exchanged water in which 8 parts of sodium dodecylbenzenesulfonate was dissolved, and the mixture was stirred at 10000 rpm / 2 minutes with a homomixer, and then passed once through a homogenizer at a pressure of 30 MPa to provide stable premixed organosiloxane. An aqueous dispersion was obtained.
2 parts of dodecylbenzenesulfonic acid and 98 parts of ion-exchanged water were injected into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer to prepare a 2% aqueous solution of dodecylbenzenesulfonic acid. With this aqueous solution heated to 85 ° C., the premixed organosiloxane aqueous dispersion was added dropwise over 4 hours, and the temperature was maintained for 1 hour after the completion of the addition, followed by cooling. The reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain an aqueous dispersion of polyorganosiloxane (Aa1).
A part of the aqueous polyorganosiloxane (Aa1) dispersion was dried at 170 ° C. for 30 minutes and the solid content concentration was determined to be 17.3%. The volume average particle diameter of the polyorganosiloxane (Aa1) dispersed in the aqueous dispersion was 0.034 μm.

(ポリオルガノシロキサン(Aa2)の製造)
オクタメチルテトラシクロシロキサン96部、γ−メタクリルオキシプロピルジメトキシメチルシラン2部およびテトラエトキシシラン2部を混合してシロキサン系混合物100部を得た。これにドデシルベンゼンスルホン酸ナトリウム0.67部を溶解したイオン交換水300部を添加し、ホモミキサーにて10000回転で2分間撹拌した後、ホモジナイザーに30MPaの圧力で1回通し、安定な予備混合オルガノシロキサン水性分散体を得た。
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸2部、イオン交換水98部を注入し、2%のドデシルベンゼンスルホン酸水溶液を調製した。この水溶液を85℃に加熱した状態で、予備混合オルガノシロキサン水性分散体を4時間にわたって滴下し、滴下終了後1時間温度を維持し、冷却した。この反応液を室温で48時間放置した後、水酸化ナトリウム水溶液で中和して、ポリオルガノシロキサン(Aa2)の水性分散体を得た。
ポリオルガノシロキサン(Aa2)水性分散体の一部を170℃で30分間乾燥して固形分濃度を求めたところ、17.3%であった。また、水性分散体に分散しているポリオルガノシロキサン(Aa2)の体積平均粒子径は0.05μmであった。
(Production of polyorganosiloxane (Aa2))
96 parts of octamethyltetracyclosiloxane, 2 parts of γ-methacryloxypropyldimethoxymethylsilane and 2 parts of tetraethoxysilane were mixed to obtain 100 parts of a siloxane-based mixture. To this was added 300 parts of ion-exchanged water in which 0.67 parts of sodium dodecylbenzenesulfonate was dissolved, and the mixture was stirred at 10000 rpm for 2 minutes with a homomixer. An aqueous organosiloxane dispersion was obtained.
2 parts of dodecylbenzenesulfonic acid and 98 parts of ion-exchanged water were injected into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer to prepare a 2% aqueous solution of dodecylbenzenesulfonic acid. With this aqueous solution heated to 85 ° C., the premixed organosiloxane aqueous dispersion was added dropwise over 4 hours, and the temperature was maintained for 1 hour after the completion of the addition, followed by cooling. The reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain an aqueous dispersion of polyorganosiloxane (Aa2).
A part of the polyorganosiloxane (Aa2) aqueous dispersion was dried at 170 ° C. for 30 minutes to obtain a solid content concentration of 17.3%. The volume average particle diameter of the polyorganosiloxane (Aa2) dispersed in the aqueous dispersion was 0.05 μm.

(複合ゴム状重合体(A−1)の調製)
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(Aa1)水性分散体68.3部、乳化剤(ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム)0.94部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n−ブチル61.8部、メタクリル酸アリル0.21部、1,3−ブチレングリコールジメタクリレート0.11部およびターシャリーブチルハイドロパーオキサイド0.13部からなる混合物を添加した(ポリオルガノシロキサン(Aa1)/アクリル酸n−ブチルの質量比率は16/84)。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(A−1)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(A−1)の体積平均粒子径は0.041μmであった。複合ゴム状重合体(A−1)の体積平均粒子径を表1に示す。
(Preparation of composite rubber-like polymer (A-1))
In a reactor equipped with a reagent injection container, a condenser, a jacket heater and a stirrer, 68.3 parts of an aqueous dispersion of polyorganosiloxane (Aa1) and 0.94 part of emulsifier (sodium polyoxyethylene alkylphenyl ether sulfate) Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 61.8 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of tertiary butyl hydroperoxide was added ( The mass ratio of polyorganosiloxane (Aa1) / n-butyl acrylate is 16/84). The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of the composite rubber-like polymer (A-1). The volume average particle diameter of the composite rubber-like polymer (A-1) dispersed in the aqueous dispersion was 0.041 μm. Table 1 shows the volume average particle diameter of the composite rubber-like polymer (A-1).

(複合ゴム状重合体(A−2)の調製)
表1に示すように、乳化剤量(部)を変更した以外は、複合ゴム状重合体(A−1)の調製と同様にして、複合ゴム状重合体(A−2)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(A−2)の体積平均粒子径を表1に示す。
(Preparation of composite rubbery polymer (A-2))
As shown in Table 1, an aqueous dispersion of the composite rubber-like polymer (A-2) was prepared in the same manner as the preparation of the composite rubber-like polymer (A-1) except that the amount of emulsifier (parts) was changed. Obtained. Table 1 shows the volume average particle diameter of the composite rubber-like polymer (A-2) dispersed in the aqueous dispersion.

(複合ゴム状重合体(A−3)の調製)
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(Aa2)水性分散体68.3部、乳化剤(ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム)0.85部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n−ブチル61.8部、メタクリル酸アリル0.21部、1,3−ブチレングリコールジメタクリレート0.11部およびターシャリーブチルハイドロパーオキサイド0.13部からなる混合物を添加した(ポリオルガノシロキサン(Aa2)/アクリル酸n−ブチルの質量比率は16/84)。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(A−3)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(A−3)の体積平均粒子径は0.071μmであった。複合ゴム状重合体(A−3)の体積平均粒子径を表1に示す。
(Preparation of composite rubber-like polymer (A-3))
In a reactor equipped with a reagent injection vessel, a condenser, a jacket heater and a stirrer, 68.3 parts of an aqueous dispersion of polyorganosiloxane (Aa2), 0.85 part of emulsifier (sodium polyoxyethylene alkylphenyl ether sulfate) Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 61.8 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of tertiary butyl hydroperoxide was added ( The mass ratio of polyorganosiloxane (Aa2) / n-butyl acrylate is 16/84). The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of the composite rubber-like polymer (A-3). The volume average particle diameter of the composite rubber-like polymer (A-3) dispersed in the aqueous dispersion was 0.071 μm. Table 1 shows the volume average particle diameter of the composite rubber-like polymer (A-3).

(複合ゴム状重合体(A−4)〜(A−7)の調製)
表1に示すように、乳化剤量(部)を変更した以外は、複合ゴム状重合体(A−3)の調製と同様にして、複合ゴム状重合体(A−4)〜(A−7)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(A−4)〜(A−7)の体積平均粒子径を表1に示す。
(Preparation of composite rubbery polymers (A-4) to (A-7))
As shown in Table 1, the composite rubber-like polymers (A-4) to (A-7) were prepared in the same manner as the preparation of the composite rubber-like polymer (A-3) except that the amount (parts) of the emulsifier was changed. ) Was obtained. Table 1 shows the volume average particle diameters of the composite rubber-like polymers (A-4) to (A-7) dispersed in the aqueous dispersion.

(複合ゴム状重合体(A−8)の調製)
アルケニルコハク酸ジカリウム0.7部、イオン交換水175部、アクリル酸n−ブチル100部、メタクリル酸アリル0.26部、1,3−ブチレングリコールジメタクリレート0.14部、およびt−ブチルヒドロペルオキシド0.2部の混合物を反応器に投入した。反応器に窒素気流を通じることによって、反応器内を窒素置換し、60℃まで昇温した。内温が50℃となった時点で、硫酸第一鉄0.00026部、エチレンジアミン四酢酸二ナトリウム塩0.0008部、ロンガリット0.45部、およびイオン交換水10部からなる水溶液を添加して重合を開始させ、内温を75℃に上昇させた。さらにこの状態を1時間維持して、複合ゴム状重合体(A−8)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(A−8)の体積平均粒子径は0.096μmであった。複合ゴム状重合体(A−8)の体積平均粒子径を表2に示す。
(Preparation of composite rubbery polymer (A-8))
0.7 parts of dipotassium alkenyl succinate, 175 parts of ion-exchanged water, 100 parts of n-butyl acrylate, 0.26 parts of allyl methacrylate, 0.14 parts of 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.2 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C. When the internal temperature reached 50 ° C., an aqueous solution consisting of 0.00026 parts of ferrous sulfate, 0.0008 parts of disodium ethylenediaminetetraacetate, 0.45 parts of Rongalite, and 10 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a composite rubber-like polymer (A-8). The volume average particle diameter of the composite rubber-like polymer (A-8) dispersed in the aqueous dispersion was 0.096 μm. Table 2 shows the volume average particle diameter of the composite rubber-like polymer (A-8).

(複合ゴム状重合体(A−9)〜(A−13)の調製)
表2に示すように、ポリオルガノシロキサン(Aa2)とアクリル酸n−ブチルの質量比率および乳化剤量(部)を変更した以外は、複合ゴム状重合体(A−3)の調製と同様にして、複合ゴム状重合体(A−9)〜(A−13)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(A−9)〜(A−13)の体積平均粒子径を表2に示す。
(Preparation of composite rubbery polymers (A-9) to (A-13))
As shown in Table 2, except that the mass ratio of polyorganosiloxane (Aa2) and n-butyl acrylate and the amount of emulsifier (parts) were changed, it was the same as the preparation of the composite rubber-like polymer (A-3). An aqueous dispersion of composite rubber-like polymers (A-9) to (A-13) was obtained. Table 2 shows the volume average particle diameters of the composite rubber-like polymers (A-9) to (A-13) dispersed in the aqueous dispersion.

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

(グラフト共重合体(B−1)の調製)
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、複合ゴム状重合体(A−1)の水性分散体(固形分として50部)を入れ、反応器内部の液温を60℃にした後、ロンガリット0.4部をイオン交換水10部に溶解した水溶液を添加した。次いで、アクリロニトリル7.5部、スチレン22.5部およびターシャリーブチルハイドロパーオキサイド0.18部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリット0.25部をイオン交換水10部に溶解させた水溶液を添加した。次いで、アクリロニトリル5部、スチレン15部およびターシャリーブチルハイドロパーオキサイド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、複合ゴム状重合体(A−1)にアクリロニトリル−スチレン共重合体をグラフトさせたグラフト共重合体(B−1)の水性分散体を得た。
次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体(B−1)の水性分散体100部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、グラフト共重合体(B−1)の乾燥粉末を得た。複合ゴム状重合体(A−1)とスチレンとアクリロニトリルとの使用比率を表3に示した。
(Preparation of graft copolymer (B-1))
An aqueous dispersion (50 parts as a solid content) of the composite rubber-like polymer (A-1) is placed in a reactor equipped with a reagent injection container, a cooling tube, a jacket heater, and a stirrer. After the temperature was adjusted to 60 ° C., an aqueous solution in which 0.4 part of Rongalite was dissolved in 10 parts of ion-exchanged water was added. Next, a mixed liquid of 7.5 parts of acrylonitrile, 22.5 parts of styrene and 0.18 part of tertiary butyl hydroperoxide was dropped over about 1 hour to polymerize. After holding for 1 hour after the completion of dropping, an aqueous solution in which 0.0002 part of ferrous sulfate, 0.0006 part of ethylenediaminetetraacetic acid disodium salt and 0.25 part of Rongalite were dissolved in 10 parts of ion-exchanged water was added. Subsequently, a mixed solution of 5 parts of acrylonitrile, 15 parts of styrene and 0.1 part of tertiary butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was held for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (B-1) obtained by grafting an acrylonitrile-styrene copolymer onto the composite rubber-like polymer (A-1). .
Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (B-1) was gradually dropped into the calcium acetate aqueous solution to be solidified. The obtained solidified product was separated, washed, and dried to obtain a dry powder of the graft copolymer (B-1). Table 3 shows the use ratio of the composite rubber-like polymer (A-1), styrene and acrylonitrile.

(グラフト共重合体(B−2)〜(B−7)の調製)
表3に示すように、複合ゴム状重合体(A)の水性分散体の種類を変更した以外は、グラフト共重合体(B−1)の調製と同様にして、グラフト共重合体(B−2)〜(B−7)を得た。
(Preparation of graft copolymers (B-2) to (B-7))
As shown in Table 3, the graft copolymer (B-) was prepared in the same manner as the preparation of the graft copolymer (B-1) except that the type of the aqueous dispersion of the composite rubber-like polymer (A) was changed. 2) to (B-7) were obtained.

(グラフト共重合体(B−8)の調製)
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、複合ゴム状重合体(A−8)の水性分散体(固形分として50部)を入れ、反応器内部の液温を60℃にした後、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加し、次いで、アクリロニトリル6.3部、スチレン18.7部、およびt−ブチルヒドロペルオキシド0.11部からなる混合液を1時間にわたって滴下し、グラフト重合させた。滴下終了から5分後に、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、およびイオン交換水5部からなる水溶液を添加し、ついで、アクリロニトリル6.2部、スチレン18.8部、t−ブチルヒドロペルオキシド0.19部、およびn−オクチルメルカプタン0.014部からなる混合液を1時間にわたって滴下しグラフト重合させた。滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(B−8)を得た。複合ゴム状重合体(A−8)とスチレンとアクリロニトリルとの使用比率を表4に示した。
(Preparation of graft copolymer (B-8))
An aqueous dispersion (50 parts as a solid content) of the composite rubber-like polymer (A-8) is placed in a reactor equipped with a reagent injection container, a cooling tube, a jacket heater, and a stirrer. After bringing the temperature to 60 ° C., an aqueous solution consisting of 0.15 parts Rongalite, 0.65 parts dipotassium alkenyl succinate and 10 parts ion-exchanged water was added, then 6.3 parts acrylonitrile, 18.7 parts styrene, Then, a mixed solution consisting of 0.11 part of t-butyl hydroperoxide was dropped over 1 hour to cause graft polymerization. Five minutes after the completion of the dropping, an aqueous solution comprising 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.15 part of Rongalite, and 5 parts of ion-exchanged water was added, and then acrylonitrile 6 A mixture of .2 parts, 18.8 parts of styrene, 0.19 parts of t-butyl hydroperoxide, and 0.014 part of n-octyl mercaptan was added dropwise over 1 hour for graft polymerization. After completion of the dropwise addition, the internal temperature was kept at 75 ° C. for 10 minutes and then cooled. When the internal temperature reached 60 ° C., 0.2 parts of antioxidant (Yantomi Pharmaceutical Co., Ltd., Antage W500) and alkenyl succinic acid were added. An aqueous solution in which 0.2 part of dipotassium acid was dissolved in 5 parts of ion-exchanged water was added. Subsequently, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a graft copolymer (B-8). Table 4 shows the use ratio of the composite rubber-like polymer (A-8), styrene, and acrylonitrile.

(グラフト共重合体(B−9)〜(B−13)の調製)
表4に示すように、複合ゴム状重合体(A)の水性分散体の種類を変更した以外は、グラフト共重合体(B−1)の調製と同様にして、グラフト共重合体(B−9)〜(B−13)を得た。
(Preparation of graft copolymers (B-9) to (B-13))
As shown in Table 4, the graft copolymer (B-) was prepared in the same manner as the preparation of the graft copolymer (B-1) except that the type of the aqueous dispersion of the composite rubber-like polymer (A) was changed. 9) to (B-13) were obtained.

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

<(メタ)アクリル酸エステル樹脂(C)およびその比較品>
((メタ)アクリル酸エステル樹脂(C−1)の調製)
撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル99部、アクリル酸メチル1部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃に昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状の(メタ)アクリル酸エステル樹脂(C−1)を得た。(メタ)アクリル酸エステル樹脂(C−1)の質量平均分子量(Mw)を表5に示す。
<(Meth) acrylic ester resin (C) and its comparison product>
(Preparation of (meth) acrylic ester resin (C-1))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 99 parts of methyl methacrylate, 1 part of methyl acrylate, 0.2 part of 2,2′-azobis (isobutyronitrile), 0.25 part of n-octyl mercaptan , 0.47 part of calcium hydroxyapatite and 0.003 part of potassium alkenyl succinate were charged. The internal temperature of the polymerization tank was set to 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery (meth) acrylic ester resin (C-1). Table 5 shows the mass average molecular weight (Mw) of the (meth) acrylic acid ester resin (C-1).

((メタ)アクリル酸エステル樹脂(C−2)の調製)
撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル98部、N−フェニルマレイミド2部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状の(メタ)アクリル酸エステル樹脂(C−2)を得た。(メタ)アクリル酸エステル樹脂(C−2)の質量平均分子量(Mw)を表5に示す。
(Preparation of (meth) acrylic ester resin (C-2))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 98 parts of methyl methacrylate, 2 parts of N-phenylmaleimide, 0.2 part of 2,2′-azobis (isobutyronitrile), 0.25 of n-octyl mercaptan Part, 0.7 parts of polyvinyl alcohol were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery (meth) acrylic ester resin (C-2). Table 5 shows the mass average molecular weight (Mw) of the (meth) acrylic acid ester resin (C-2).

((メタ)アクリル酸エステル樹脂(C−3)の調製)
撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル82部、N−フェニルマレイミド12部、スチレン6部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状の(メタ)アクリル酸エステル樹脂(C−3)を得た。(メタ)アクリル酸エステル樹脂(C−3)の質量平均分子量(Mw)を表5に示す。
(Preparation of (meth) acrylic ester resin (C-3))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 82 parts of methyl methacrylate, 12 parts of N-phenylmaleimide, 6 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl Mercaptan (0.25 part) and polyvinyl alcohol (0.7 part) were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery (meth) acrylic ester resin (C-3). Table 5 shows the mass average molecular weight (Mw) of the (meth) acrylic ester resin (C-3).

((メタ)アクリル酸エステル樹脂(C−4)の調製)
撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル56部、N−フェニルマレイミド29部、スチレン15部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状の(メタ)アクリル酸エステル樹脂(C−4)を得た。(メタ)アクリル酸エステル樹脂(C−4)の質量平均分子量(Mw)を表5に示す。
(Preparation of (meth) acrylic ester resin (C-4))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 56 parts of methyl methacrylate, 29 parts of N-phenylmaleimide, 15 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl Mercaptan (0.25 part) and polyvinyl alcohol (0.7 part) were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery (meth) acrylic ester resin (C-4). Table 5 shows the mass average molecular weight (Mw) of the (meth) acrylic acid ester resin (C-4).

((メタ)アクリル酸エステル樹脂(C−5)の調製)
撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル53部、N−フェニルマレイミド31部、スチレン16部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状の(メタ)アクリル酸エステル樹脂(C−5)を得た。(メタ)アクリル酸エステル樹脂(C−5)の質量平均分子量(Mw)を表5に示す。
(Preparation of (meth) acrylic ester resin (C-5))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 53 parts of methyl methacrylate, 31 parts of N-phenylmaleimide, 16 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl Mercaptan (0.25 part) and polyvinyl alcohol (0.7 part) were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdered (meth) acrylic ester resin (C-5). Table 5 shows the mass average molecular weight (Mw) of the (meth) acrylic ester resin (C-5).

((メタ)アクリル酸エステル樹脂(C−6)の調製)
撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル82部、N−フェニルマレイミド6部、N−シクロヘキシルマレイミド6部、スチレン6部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.19部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状の(メタ)アクリル酸エステル樹脂(C−6)を得た。(メタ)アクリル酸エステル樹脂(C−6)の質量平均分子量(Mw)を表5に示す。
(Preparation of (meth) acrylic ester resin (C-6))
150 parts of ion-exchanged water, 82 parts of methyl methacrylate, 6 parts of N-phenylmaleimide, 6 parts of N-cyclohexylmaleimide, 6 parts of styrene, 2,2′-azobis (isobutyronitrile) 0 in a stainless polymerization tank equipped with a stirrer .2 parts, 0.19 parts of n-octyl mercaptan, and 0.7 parts of polyvinyl alcohol were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery (meth) acrylic ester resin (C-6). Table 5 shows the mass average molecular weight (Mw) of the (meth) acrylic acid ester resin (C-6).

Figure 2017114990
Figure 2017114990

<シリコーンオイル(D)>
シリコーンオイル(D)として、東レ・ダウコーニング(株)製「SH200−100cs」を使用した。
<Silicone oil (D)>
As the silicone oil (D), “SH200-100cs” manufactured by Toray Dow Corning Co., Ltd. was used.

<スチレン系樹脂(E)>
(スチレン系樹脂(E−1)の調製)
窒素置換した撹拌機付きステンレス重合槽に、イオン交換水120部、ポリビニルアルコール0.1部、2,2’−アゾビス(イソブチロニトリル)0.3部、アクリロニトリル25部、スチレン75部、t−ドデシルメルカプタン0.35部を仕込み、開始温度60℃として5時間反応させた。120℃に昇温し、4時間反応させた。内容物を取り出し、スチレン系樹脂(E−1)を得た。スチレン系樹脂(E−1)の質量平均分子量(Mw)を表6に示す。
<Styrene resin (E)>
(Preparation of styrene resin (E-1))
In a stainless steel polymerization tank equipped with a stirrer substituted with nitrogen, 120 parts of ion exchange water, 0.1 part of polyvinyl alcohol, 0.3 part of 2,2′-azobis (isobutyronitrile), 25 parts of acrylonitrile, 75 parts of styrene, t -0.35 part of dodecyl mercaptan was charged and reacted at an initial temperature of 60 ° C for 5 hours. The temperature was raised to 120 ° C. and reacted for 4 hours. The contents were taken out to obtain a styrene resin (E-1). Table 6 shows the mass average molecular weight (Mw) of the styrene resin (E-1).

(スチレン系樹脂(E−2)の調製)
撹拌機付きステンレス重合槽に、イオン交換水150部、メタクリル酸メチル10部、アクリロニトリル22部、スチレン68部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応させた。90℃まで昇温し、60分間保持することで反応を完結させた。内容物を取り出し、遠心脱水機での洗浄、脱水を繰り返し、乾燥させてスチレン系樹脂(E−2)を得た。スチレン系樹脂(E−2)の質量平均分子量(Mw)を表6に示す。
(Preparation of styrene resin (E-2))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 10 parts of methyl methacrylate, 22 parts of acrylonitrile, 68 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl mercaptan 0 .25 parts, calcium hydroxyapatite 0.47 part, and potassium alkenyl succinate 0.003 part were charged, the internal temperature was raised to 75 ° C., and the reaction was performed for 3 hours. The reaction was completed by raising the temperature to 90 ° C. and holding for 60 minutes. The contents were taken out, repeatedly washed with a centrifugal dehydrator and dehydrated, and dried to obtain a styrene resin (E-2). Table 6 shows the mass average molecular weight (Mw) of the styrene resin (E-2).

(スチレン系樹脂(E−3)の調製)
撹拌機付きステンレス重合槽に、イオン交換水150部、N−フェニルマレイミド30部、アクリロニトリル15部、スチレン55部、2,2’−アゾビス(イソブチロニトリル)0.2部、n−オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応させた。90℃まで昇温し、60分間保持することで反応を完結させた。内容物を取り出し、遠心脱水機での洗浄、脱水を繰り返し、乾燥させてスチレン系樹脂(E−3)を得た。スチレン系樹脂(E−3)の質量平均分子量(Mw)を表6に示す。
(Preparation of styrene resin (E-3))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 30 parts of N-phenylmaleimide, 15 parts of acrylonitrile, 55 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl mercaptan 0.25 part, 0.47 part of calcium hydroxyapatite and 0.003 part of potassium alkenyl succinate were charged, the internal temperature was raised to 75 ° C., and the reaction was performed for 3 hours. The reaction was completed by raising the temperature to 90 ° C. and holding for 60 minutes. The contents were taken out, repeatedly washed with a centrifugal dehydrator and dehydrated, and dried to obtain a styrene resin (E-3). Table 6 shows the mass average molecular weight (Mw) of the styrene resin (E-3).

Figure 2017114990
Figure 2017114990

<エチレン・α−オレフィン共重合体(F)>
(エチレン・プロピレン共重合体(F−1)の調製)
20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、8.0mmol/Lに調製したエチルアルミニウムセスキクロリド(Al(C1.5・Cl1.5)のヘキサン溶液を、5L/hの量で連続的に1時間供給した後、さらに触媒として0.8mmol/Lに調整したVOClのヘキサン溶液を5L/hの量で、ヘキサンを5L/hの量で連続的に供給した。一方、重合槽上部から、重合槽内の重合液が常に10Lになるように重合液を連続的に抜き出した。バブリング管を用いてエチレンを2300L/hの量で、プロピレンを600L/hの量で、水素を400L/hの量で供給し、同時に5−エチリデン−2−ノルボルネンを100L/hの量で供給し、重合反応を35℃で行った。
前記条件で重合反応を行い、エチレン・プロピレン共重合体(F−1)を含む重合溶液を得た。得られた重合溶液を、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(F−1)を得た。エチレン・プロピレン共重合体(F−1)のポリマー性状(質量平均分子量および分子量分布)を表7に示す。
<Ethylene / α-olefin copolymer (F)>
(Preparation of ethylene / propylene copolymer (F-1))
After fully substituting the stainless polymerization tank equipped with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and ethylaluminum sesquichloride (Al (C 2 H 5 ) 1.5 · Cl 1 prepared to 8.0 mmol / L was added. 5 ) a hexane solution of 5 L / h continuously for 1 hour, and then a VOCl 3 hexane solution adjusted to 0.8 mmol / L as a catalyst in an amount of 5 L / h and 5 L of hexane. / H continuously. On the other hand, from the upper part of the polymerization tank, the polymerization liquid was continuously extracted so that the polymerization liquid in the polymerization tank was always 10 L. Using a bubbling tube, ethylene is supplied in an amount of 2300 L / h, propylene is supplied in an amount of 600 L / h, hydrogen is supplied in an amount of 400 L / h, and 5-ethylidene-2-norbornene is supplied in an amount of 100 L / h at the same time. The polymerization reaction was conducted at 35 ° C.
A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (F-1). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (F-1). Table 7 shows the polymer properties (mass average molecular weight and molecular weight distribution) of the ethylene / propylene copolymer (F-1).

(エチレン・プロピレン共重合体(F−2)〜(F−4)の調製)
表7に示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(F−1)の調製と同様にして、エチレン・プロピレン共重合体(F−2)〜(F−4)を得た。エチレン・プロピレン共重合体(F−2)〜(F−4)のポリマー性状を表7に示す。
(Preparation of ethylene / propylene copolymers (F-2) to (F-4))
As shown in Table 7, except that the amount of hydrogen supply was changed, the ethylene / propylene copolymers (F-2) to (F-4) were prepared in the same manner as the preparation of the ethylene / propylene copolymers (F-1). ) Table 7 shows the polymer properties of the ethylene / propylene copolymers (F-2) to (F-4).

Figure 2017114990
Figure 2017114990

<オレフィン樹脂水性分散体(G)>
(オレフィン樹脂水性分散体(G−1)の調製)
エチレン・プロピレン共重合体(F−1)100部と、酸変性オレフィン重合体として無水マレイン酸変性ポリエチレン(三井化学社製、「三井ハイワックス 2203A」、質量平均分子量:2,700、酸価:30mg/g)20部と、乳化剤としてオレイン酸カリウム(花王社製、「KSソープ」)5部とを混合した。
この混合物を2軸スクリュー押出機(池貝社製、「PCM30」、L/D=40)のホッパーから4kg/hで供給し、該2軸スクリュー押出機のベント部に設けた供給口より、水酸化カリウム0.5部とイオン交換水2.4部を混合した水溶液を連続的に供給しながら、220℃に加熱して溶融混練して押出した。溶融混練物を2軸スクリュー押出機の先端に取り付けた冷却装置に連続的に供給し、90℃まで冷却した。そして、2軸スクリュー押出機先端より吐出させた固体を、80℃の温水中に投入し、連続的に分散させて、固形分濃度40質量%付近まで希釈して、オレフィン樹脂水性分散体(G−1)を得た。オレフィン樹脂水性分散体(G−1)に分散しているエチレン・α−オレフィン共重合体(F)の体積平均粒子径を表8に示す。
<Olefin resin aqueous dispersion (G)>
(Preparation of aqueous dispersion of olefin resin (G-1))
100 parts of ethylene / propylene copolymer (F-1) and maleic anhydride-modified polyethylene (Mitsui Chemicals, “Mitsui High Wax 2203A”, mass average molecular weight: 2,700, acid value: 30 parts of 30 mg / g) and 5 parts of potassium oleate (manufactured by Kao Corporation, “KS Soap”) were mixed as an emulsifier.
This mixture is supplied at 4 kg / h from a hopper of a twin screw extruder (Ikegai, “PCM30”, L / D = 40), and water is supplied from a supply port provided in a vent portion of the twin screw extruder. While continuously supplying an aqueous solution obtained by mixing 0.5 part of potassium oxide and 2.4 parts of ion-exchanged water, it was heated to 220 ° C., melt-kneaded and extruded. The melt-kneaded product was continuously supplied to a cooling device attached to the tip of the twin screw extruder and cooled to 90 ° C. Then, the solid discharged from the tip of the twin screw extruder is poured into warm water at 80 ° C., continuously dispersed, diluted to a solid content concentration of around 40% by mass, and an aqueous olefin resin dispersion (G -1) was obtained. Table 8 shows the volume average particle diameter of the ethylene / α-olefin copolymer (F) dispersed in the aqueous olefin resin dispersion (G-1).

(オレフィン樹脂水性分散体(G−2)〜(G−4)の調製)
表8に示すように、エチレン・α−オレフィン共重合体(F)を、エチレン・プロピレン共重合体(F−1)からエチレン・プロピレン共重合体(F−2)〜(A−4)へ変更した以外は、オレフィン樹脂水性分散体(G−1)の調製と同様にして、オレフィン樹脂水性分散体(G−2)〜(G−4)を得た。
各オレフィン樹脂水性分散体(G−2)〜(G−4)に分散しているエチレン・α−オレフィン共重合体(F)の体積平均粒子径を表8に示す。
(Preparation of aqueous olefin resin dispersions (G-2) to (G-4))
As shown in Table 8, the ethylene / α-olefin copolymer (F) is changed from the ethylene / propylene copolymer (F-1) to the ethylene / propylene copolymers (F-2) to (A-4). Except having changed, it carried out similarly to preparation of olefin resin aqueous dispersion (G-1), and obtained olefin resin aqueous dispersion (G-2)-(G-4).
Table 8 shows the volume average particle diameter of the ethylene / α-olefin copolymer (F) dispersed in each of the olefin resin aqueous dispersions (G-2) to (G-4).

Figure 2017114990
Figure 2017114990

<架橋エチレン・α−オレフィン共重合体(H)>
(架橋エチレン・α−オレフィン共重合体(H−1)の調製)
オレフィン樹脂水性分散体(G−1)(固形分として100部)に固形分濃度が35%になるようにイオン交換水を加え、有機過酸化物としてt−ブチルクミルペルオキシド1.2部、多官能性化合物としてジビニルベンゼン1部を添加し、130℃で5時間反応させて、架橋エチレン・α−オレフィン共重合体(H−1)を調製した。架橋エチレン・α−オレフィン共重合体(H−1)のゲル含有率、体積平均粒子径を表9に示す。
<Crosslinked ethylene / α-olefin copolymer (H)>
(Preparation of crosslinked ethylene / α-olefin copolymer (H-1))
Ion exchange water was added to the olefin resin aqueous dispersion (G-1) (100 parts as a solid content) to a solid content concentration of 35%, and 1.2 parts of t-butylcumyl peroxide as an organic peroxide, As a polyfunctional compound, 1 part of divinylbenzene was added and reacted at 130 ° C. for 5 hours to prepare a crosslinked ethylene / α-olefin copolymer (H-1). Table 9 shows the gel content and volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (H-1).

(架橋エチレン・α−オレフィン共重合体(H−2)〜(H−4)の調製)
表9に示すようにオレフィン樹脂水性分散体(G)の種類とt−ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α−オレフィン共重合体(H−1)の調製と同様にして、架橋エチレン・α−オレフィン共重合体(H−2)〜(H−4)を得た。架橋エチレン・α−オレフィン共重合体(H−2)〜(H−4)のゲル含有率、体積平均粒子径を表9に示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (H-2) to (H-4))
As shown in Table 9, except that the type of the olefin resin aqueous dispersion (G) and the amount of t-butylcumyl peroxide added were changed, the same as the preparation of the crosslinked ethylene / α-olefin copolymer (H-1). Thus, crosslinked ethylene / α-olefin copolymers (H-2) to (H-4) were obtained. Table 9 shows the gel content and volume average particle diameter of the crosslinked ethylene / α-olefin copolymers (H-2) to (H-4).

(架橋エチレン・α−オレフィン共重合体(H−5)の調製)
エチレン・α−オレフィン共重合体(F−2)100部に対し、有機過酸化物としてα,α’−ビス(t−ブチルペルオキシ)ジイソプロピルベンゼン1.0部と、ジビニルベンゼン1.0部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM‐30」)で、220℃、93.325kPa真空にて溶融混練を行った後、細かく粉砕することで、架橋エチレン・α−オレフィン共重合体(H−5)を得た。架橋エチレン・α−オレフィン共重合体(H−5)のゲル含有率、体積平均粒子径を表9に示す。
(Preparation of cross-linked ethylene / α-olefin copolymer (H-5))
With respect to 100 parts of the ethylene / α-olefin copolymer (F-2), 1.0 part of α, α′-bis (t-butylperoxy) diisopropylbenzene and 1.0 part of divinylbenzene are used as the organic peroxide. Are mixed and melt-kneaded at 220 ° C. and 93.325 kPa vacuum in a twin screw extruder with a 30 mmφ vacuum vent (“Ikegai Co., Ltd.,“ PCM-30 ”), and then finely pulverized to form crosslinked ethylene. -The alpha-olefin copolymer (H-5) was obtained. Table 9 shows the gel content and volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (H-5).

Figure 2017114990
Figure 2017114990

<グラフト共重合体(I)>
(グラフト共重合体(I−1)の調製)
撹拌機付きステンレス重合槽に、架橋エチレン・α−オレフィン共重合体(H−1)(エチレン・プロピレン共重合体(F−1)の固形分として70部)を入れ、架橋エチレン・α−オレフィン共重合体(H−1)に固形分濃度が30%になるようにイオン交換水を加え、硫酸第一鉄0.006部、ピロリン酸ナトリウム0.3部およびフラクトース0.35部を仕込み、温度を80℃とした。スチレン19.8部、アクリロニトリル10.2部およびクメンヒドロペルオキシド0.6部を150分間連続的に添加し、重合温度を80℃に保ち乳化重合を行い、平均粒子径0.41μmのグラフト共重合体(I−1)を含む水性分散体を得た。
グラフト共重合体(I−1)を含む水性分散体に酸化防止剤を添加し、硫酸にて固形分の析出を行い、洗浄、脱水、乾燥の工程を経て、粉状のグラフト共重合体(I−1)を得た。グラフト共重合体(I−1)のグラフト率を測定したところ30%であった。また、グラフト共重合体(I−1)とスチレン系樹脂(E−1)を20質量%と80質量%の比率で溶融混練して作成した熱可塑性樹脂組成物をルテニウムで染色したのち、超薄片を作成して電子顕微鏡により、熱可塑性樹脂組成物中のエチレン・α−オレフィン共重合体(F)の体積平均粒子径を確認したところ、0.41μmであった。
<Graft copolymer (I)>
(Preparation of graft copolymer (I-1))
In a stainless steel polymerization tank equipped with a stirrer, a crosslinked ethylene / α-olefin copolymer (H-1) (70 parts as a solid content of the ethylene / propylene copolymer (F-1)) is placed, and the crosslinked ethylene / α-olefin is added. Add ion-exchanged water to the copolymer (H-1) so that the solid concentration is 30%, and charge 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose, The temperature was 80 ° C. 19.8 parts of styrene, 10.2 parts of acrylonitrile and 0.6 parts of cumene hydroperoxide are continuously added for 150 minutes, emulsion polymerization is carried out while maintaining the polymerization temperature at 80 ° C., and graft copolymer weight having an average particle size of 0.41 μm An aqueous dispersion containing the union (I-1) was obtained.
An antioxidant is added to the aqueous dispersion containing the graft copolymer (I-1), solids are precipitated with sulfuric acid, and after washing, dehydration and drying steps, the powdered graft copolymer ( I-1) was obtained. When the graft ratio of the graft copolymer (I-1) was measured, it was 30%. In addition, after dyeing a thermoplastic resin composition prepared by melt-kneading the graft copolymer (I-1) and the styrene resin (E-1) at a ratio of 20% by mass to 80% by mass with ruthenium, A thin piece was prepared and the volume average particle diameter of the ethylene / α-olefin copolymer (F) in the thermoplastic resin composition was confirmed by an electron microscope and found to be 0.41 μm.

(グラフト共重合体(I−2)〜(I−4)の調製)
表10に示すように架橋エチレン・α−オレフィン共重合体(H)の種類を変更した以外は、グラフト共重合体(I−1)の調製と同様にして、グラフト共重合体(I−2)〜(I−4)を得た。グラフト共重合体(I−2)〜(I−4)のグラフト率を表10に示す。
(Preparation of graft copolymers (I-2) to (I-4))
As shown in Table 10, the graft copolymer (I-2) was prepared in the same manner as in the preparation of the graft copolymer (I-1) except that the type of the crosslinked ethylene / α-olefin copolymer (H) was changed. ) To (I-4) were obtained. Table 10 shows the graft ratios of the graft copolymers (I-2) to (I-4).

(グラフト共重合体(I−5)の調製)
撹拌機付きステンレス重合槽に、架橋エチレン・α−オレフィン共重合体(H−5)70部、トルエン300部を仕込み、内容物を70℃で1時間撹拌して均一に溶解した。十分に窒素置換を行った後、スチレン19.8部、アクリロニトリル10.2部、t−ドデシルメルカプタン0.24部、t−ブチルペルオキシイソプロピルモノカーボネート0.22部を添加し、内温を110℃まで昇温し、4時間反応させた。内温を120℃に昇温し、2時間反応させた。重合後、内温を100℃まで冷却し、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)−プロピオネート0.2部を添加した。反応混合物を抜き出し、水蒸気蒸留によって未反応物と溶媒を留去した。30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で220℃、93.325kPa真空にて、揮発分を実質的に脱揮させ、ペレット化し、グラフト共重合体(I−5)を得た。グラフト共重合体(I−5)のグラフト率を測定したところ30%であった。また、グラフト共重合体(I−5)とスチレン系樹脂(E−1)を20質量%と80質量%の比率で溶融混練して作成した熱可塑性樹脂組成物をルテニウムで染色したのち、超薄片を作成して、電子顕微鏡により、熱可塑性樹脂組成物中のエチレン・α−オレフィン共重合体(F)の体積平均粒子径を確認したところ、0.40μmであった。
(Preparation of graft copolymer (I-5))
In a stainless steel polymerization tank equipped with a stirrer, 70 parts of a crosslinked ethylene / α-olefin copolymer (H-5) and 300 parts of toluene were charged, and the contents were stirred and stirred uniformly at 70 ° C. for 1 hour. After sufficient nitrogen substitution, 19.8 parts of styrene, 10.2 parts of acrylonitrile, 0.24 parts of t-dodecyl mercaptan and 0.22 parts of t-butylperoxyisopropyl monocarbonate were added, and the internal temperature was 110 ° C. The mixture was heated up to react for 4 hours. The internal temperature was raised to 120 ° C. and reacted for 2 hours. After the polymerization, the internal temperature was cooled to 100 ° C., and 0.2 part of octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenol) -propionate was added. The reaction mixture was extracted, and unreacted substances and the solvent were distilled off by steam distillation. The volatile matter was substantially devolatilized at 220 ° C. and 93.325 kPa vacuum in a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.), pelletized, and graft copolymer (I-5 ) When the graft ratio of the graft copolymer (I-5) was measured, it was 30%. In addition, after dyeing the thermoplastic resin composition prepared by melt-kneading the graft copolymer (I-5) and the styrene resin (E-1) at a ratio of 20% by mass to 80% by mass with ruthenium, A thin piece was prepared, and the volume average particle diameter of the ethylene / α-olefin copolymer (F) in the thermoplastic resin composition was confirmed by an electron microscope and found to be 0.40 μm.

(グラフト共重合体(I−6)の調製)
表10に示すように架橋エチレン・α−オレフィン共重合体(H−1)をオレフィン樹脂水性分散体(G−2)に変更した以外は、グラフト共重合体(I−1)の調製と同様にして、グラフト共重合体(I−6)を得た。グラフト共重合体(I−6)のグラフト率を表10に示す。
(Preparation of graft copolymer (I-6))
As shown in Table 10, except that the cross-linked ethylene / α-olefin copolymer (H-1) was changed to an aqueous olefin resin dispersion (G-2), it was the same as the preparation of the graft copolymer (I-1). Thus, a graft copolymer (I-6) was obtained. Table 10 shows the graft ratio of the graft copolymer (I-6).

Figure 2017114990
Figure 2017114990

〔実施例1〕
グラフト共重合体(B−2)40部、(メタ)アクリル酸エステル樹脂(C−3)60部、シリコーンオイル(D−1)0.3部を混合し、30mmφの真空ベント付き2軸押出機(池貝社製「PCM30」)で240℃、93.325kPa真空にて溶融混練し、熱可塑性樹脂組成物を調製した。熱可塑性樹脂組成物のMVRを表11に示す。
得られた熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、耐熱性、発色性、耐候性、耐熱老化性、耐引っ掻き傷性、表面外観を評価した。結果を表11に示す。
[Example 1]
40 parts of graft copolymer (B-2), 60 parts of (meth) acrylic ester resin (C-3) and 0.3 part of silicone oil (D-1) are mixed and biaxial extrusion with 30 mmφ vacuum vent A thermoplastic resin composition was prepared by melting and kneading at 240 ° C. and 93.325 kPa vacuum using a machine (“PCM30” manufactured by Ikegai Co., Ltd.). Table 11 shows the MVR of the thermoplastic resin composition.
The obtained thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, heat resistance, color development, weather resistance, heat aging resistance, scratch resistance, and surface appearance were evaluated. The results are shown in Table 11.

〔実施例2〜35〕
表11〜14に示す配合処方に変更した以外は、実施例1と同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、耐熱性、発色性、耐候性、耐熱老化性、耐引っ掻き傷性、表面外観性を評価した。結果を表11〜14に示す。
[Examples 2-35]
A thermoplastic resin composition was prepared in the same manner as in Example 1 except that the formulation was changed to the formulation shown in Tables 11 to 14, and MVR was measured.
The thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, heat resistance, color development, weather resistance, heat aging resistance, scratch resistance, and surface appearance were evaluated. The results are shown in Tables 11-14.

〔比較例1〜12〕
表15〜16に示す配合処方に変更した以外は、実施例1と同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、耐熱性、発色性、耐候性、耐熱老化性、耐引っ掻き傷性、表面外観性を評価した。結果を表15〜16に示す。
[Comparative Examples 1 to 12]
A thermoplastic resin composition was prepared in the same manner as in Example 1 except that the formulation was changed to the formulation shown in Tables 15 to 16, and MVR was measured.
The thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, heat resistance, color development, weather resistance, heat aging resistance, scratch resistance, and surface appearance were evaluated. The results are shown in Tables 15-16.

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

Figure 2017114990
Figure 2017114990

実施例1〜35の熱可塑性樹脂組成物は流動性に優れていた。また、実施例1〜35の成形品に関しては、耐衝撃性、耐熱性、発色性、耐候性、耐熱老化性、耐引っ掻き傷性、表面外観が優れていた。特に、実施例27〜35に関しては、耐引っ掻き傷性がさらに優れていた。
一方、比較例1〜12の成形品に関しては、耐衝撃性、耐熱性、発色性、耐候性、耐熱老化性、耐引っ掻き傷性、表面外観のいずれか1以上の特性が不充分であった。特に、熱可塑性樹脂組成物は実施例3および28と同じであるが、成形をヒートサイクル射出成形ではなく一般成形で行った比較例10および11の成形品に関しては、表面外観および耐引っ掻き傷性が劣っていた。
The thermoplastic resin compositions of Examples 1 to 35 were excellent in fluidity. In addition, the molded articles of Examples 1 to 35 were excellent in impact resistance, heat resistance, color development, weather resistance, heat aging resistance, scratch resistance, and surface appearance. In particular, in Examples 27 to 35, the scratch resistance was further excellent.
On the other hand, for the molded products of Comparative Examples 1 to 12, any one or more of impact resistance, heat resistance, color development, weather resistance, heat aging resistance, scratch resistance, and surface appearance was insufficient. . In particular, the thermoplastic resin composition is the same as in Examples 3 and 28, but the surface appearance and scratch resistance of the molded articles of Comparative Examples 10 and 11 in which molding was performed by general molding instead of heat cycle injection molding. Was inferior.

したがって、本発明の熱可塑性樹脂組成物は流動性が優れていること、本発明の熱可塑性樹脂組成物をヒートサイクル射出成形したときに、表面外観、耐引っ掻き傷性、耐衝撃性、発色性、耐熱性、耐熱老化性に優れた成形品が得られること、が確認できた。   Therefore, the thermoplastic resin composition of the present invention has excellent fluidity, and when the thermoplastic resin composition of the present invention is heat cycle injection molded, the surface appearance, scratch resistance, impact resistance, color developability It was confirmed that a molded product excellent in heat resistance and heat aging resistance was obtained.

本発明の熱可塑性樹脂組成物を用いた成形品は、車輌内外装部品、事務機器、家電、建材等として有用である。   A molded article using the thermoplastic resin composition of the present invention is useful as a vehicle interior / exterior part, office equipment, home appliance, building material and the like.

1 4点ゲート成形品
2,3,4 開口部
2A ゲート
1 Four-point gate molded product 2, 3, 4 Opening 2A Gate

Claims (6)

金型のキャビティ表面が交互に加熱冷却される射出成形金型を用いて、金型のキャビティ表面温度を繰り返し上下させるヒートサイクル射出成形法により成形される熱可塑性樹脂組成物であって、
ポリオルガノシロキサン(Aa)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Ab)からなる複合ゴム状重合体(A)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体成分(m1)を重合して得られたグラフト共重合体(B)と、
(メタ)アクリル酸エステル、マレイミド系化合物および芳香族ビニル化合物を含むビニル系単量体成分(m2)を重合して得られた(メタ)アクリル酸エステル樹脂(C)と、を含み、
前記複合ゴム状重合体(A)(100質量%)中の前記ポリオルガノシロキサン(Aa)の含有率が1〜20質量%であり、
前記複合ゴム状重合体(A)の体積平均粒子径が0.05〜0.15μmであり、
前記ビニル系単量体成分(m2)(100質量%)中の前記マレイミド系化合物の含有率が1〜30質量%で、前記芳香族ビニル化合物の含有率が5.5〜15質量%である、ヒートサイクル射出成形用熱可塑性樹脂組成物。
A thermoplastic resin composition molded by a heat cycle injection molding method in which the cavity surface temperature of the mold is repeatedly raised and lowered using an injection mold in which the cavity surface of the mold is alternately heated and cooled,
Poly (meth) acrylate ester having units derived from polyorganosiloxane (Aa) and (meth) acrylate, and one or both of a unit derived from a crosslinking agent and a unit derived from a graft crossing agent A graft copolymer obtained by polymerizing a vinyl monomer component (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the composite rubber-like polymer (A) comprising (Ab) ( B) and
A (meth) acrylic ester resin (C) obtained by polymerizing a vinyl monomer component (m2) containing a (meth) acrylic ester, a maleimide compound and an aromatic vinyl compound,
The content of the polyorganosiloxane (Aa) in the composite rubber-like polymer (A) (100% by mass) is 1 to 20% by mass,
The composite rubber-like polymer (A) has a volume average particle diameter of 0.05 to 0.15 μm,
The content of the maleimide compound in the vinyl monomer component (m2) (100% by mass) is 1 to 30% by mass, and the content of the aromatic vinyl compound is 5.5 to 15% by mass. A thermoplastic resin composition for heat cycle injection molding.
シリコーンオイル(D)をさらに含む、請求項1に記載のヒートサイクル射出成形用熱可塑性樹脂組成物。   The thermoplastic resin composition for heat cycle injection molding according to claim 1, further comprising silicone oil (D). スチレン系樹脂(E)をさらに含む、請求項1または2に記載のヒートサイクル射出成形用熱可塑性樹脂組成物。   The thermoplastic resin composition for heat cycle injection molding according to claim 1 or 2, further comprising a styrene resin (E). オレフィン系共重合体の存在下にビニル系単量体成分(m4)を重合して得られたグラフト共重合体(I)をさらに含む、請求項1〜3のいずれか一項に記載のヒートサイクル射出成形用熱可塑性樹脂組成物。   The heat according to any one of claims 1 to 3, further comprising a graft copolymer (I) obtained by polymerizing the vinyl monomer component (m4) in the presence of an olefin copolymer. Thermoplastic resin composition for cycle injection molding. 請求項1〜4のいずれか一項に記載のヒートサイクル射出成形用熱可塑性樹脂組成物を成形してなる成形品。   The molded article formed by shape | molding the thermoplastic resin composition for heat cycle injection molding as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載のヒートサイクル射出成形用熱可塑性樹脂組成物を、金型のキャビティ表面が交互に加熱冷却される射出成形金型を用いて、金型のキャビティ表面温度を繰り返し上下させるヒートサイクル射出成形法により成形して成形品を得る、成形品の製造方法。   The thermoplastic resin composition for heat cycle injection molding according to any one of claims 1 to 4, wherein the mold cavity surface is used by using an injection mold in which the mold cavity surface is alternately heated and cooled. A method for producing a molded product, wherein a molded product is obtained by molding by a heat cycle injection molding method in which the temperature is repeatedly raised and lowered.
JP2015250417A 2015-12-22 2015-12-22 Thermoplastic resin composition for heat cycle injection molding, molded article, and method for producing molded article Active JP6678449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015250417A JP6678449B2 (en) 2015-12-22 2015-12-22 Thermoplastic resin composition for heat cycle injection molding, molded article, and method for producing molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015250417A JP6678449B2 (en) 2015-12-22 2015-12-22 Thermoplastic resin composition for heat cycle injection molding, molded article, and method for producing molded article

Publications (2)

Publication Number Publication Date
JP2017114990A true JP2017114990A (en) 2017-06-29
JP6678449B2 JP6678449B2 (en) 2020-04-08

Family

ID=59231490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015250417A Active JP6678449B2 (en) 2015-12-22 2015-12-22 Thermoplastic resin composition for heat cycle injection molding, molded article, and method for producing molded article

Country Status (1)

Country Link
JP (1) JP6678449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019235A (en) * 2017-07-18 2019-02-07 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and its molded article
US20230039123A1 (en) * 2019-10-31 2023-02-09 Lotte Chemical Corporation Thermoplastic Resin Composition and Molded Product Manufactured Therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277567A (en) * 2002-03-20 2003-10-02 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JP2005220265A (en) * 2004-02-06 2005-08-18 Ono Sangyo Kk Thermoplastic resin composition and molded article thereof
JP2007153920A (en) * 2005-11-30 2007-06-21 Nippon A & L Kk Transparent injection molding
JP2014177623A (en) * 2013-02-15 2014-09-25 Umg Abs Ltd Thermoplastic resin composition and its molded article
WO2014189121A1 (en) * 2013-05-23 2014-11-27 旭化成ケミカルズ株式会社 Thermoplastic resin composition and molded article of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277567A (en) * 2002-03-20 2003-10-02 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JP2005220265A (en) * 2004-02-06 2005-08-18 Ono Sangyo Kk Thermoplastic resin composition and molded article thereof
JP2007153920A (en) * 2005-11-30 2007-06-21 Nippon A & L Kk Transparent injection molding
JP2014177623A (en) * 2013-02-15 2014-09-25 Umg Abs Ltd Thermoplastic resin composition and its molded article
WO2014189121A1 (en) * 2013-05-23 2014-11-27 旭化成ケミカルズ株式会社 Thermoplastic resin composition and molded article of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019235A (en) * 2017-07-18 2019-02-07 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and its molded article
US20230039123A1 (en) * 2019-10-31 2023-02-09 Lotte Chemical Corporation Thermoplastic Resin Composition and Molded Product Manufactured Therefrom
EP4053212A4 (en) * 2019-10-31 2023-12-06 Lotte Chemical Corporation Thermoplastic resin composition and molded product manufactured therefrom

Also Published As

Publication number Publication date
JP6678449B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6155340B2 (en) Thermoplastic resin composition and molded article thereof
CN111303334B (en) Graft copolymer, rubbery polymer, process for producing the same, thermoplastic resin composition, and molded article
CN105008420B (en) Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition
JP6291702B2 (en) Thermoplastic resin composition and molded article thereof
JP2018095722A (en) Thermoplastic resin composition and method for producing the same, and molded article
JP6393947B2 (en) Thermoplastic resin composition and molded article thereof
JP2019167534A (en) Thermoplastic resin composition and molded article
JP6678449B2 (en) Thermoplastic resin composition for heat cycle injection molding, molded article, and method for producing molded article
JP2019108425A (en) Thermoplastic resin composition and molded article thereof
JP4346956B2 (en) Thermoplastic resin composition and molded article
JP2014177622A (en) Thermoplastic resin composition and its molded article
JP6827876B2 (en) Thermoplastic resin composition and its molded product
JP6418954B2 (en) Thermoplastic resin composition and molded article thereof
JP6351152B2 (en) Thermoplastic resin composition and molded article thereof
JP6954727B2 (en) Thermoplastic resin composition, its manufacturing method and molded product
JP2019167533A (en) Thermoplastic resin composition and molded article
JP2016135846A (en) Thermoplastic resin composition and molded article
JP6541254B2 (en) Thermoplastic resin composition and molded article thereof
JP7049100B2 (en) Thermoplastic resin composition and its molded product
JP6891663B2 (en) Thermoplastic resin composition and its molded product
JP2016074756A (en) Thermoplastic resin composition and molded product thereof
JP2021031569A (en) Thermoplastic resin composition and molded article thereof
JP2024175500A (en) Thermoplastic resin composition and resin molded article using same
JP2019099735A (en) Thermoplastic resin composition and molded article thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250