Nothing Special   »   [go: up one dir, main page]

JP2017199688A - Negative electrode active material for sodium ion secondary battery, and method for manufacturing the same - Google Patents

Negative electrode active material for sodium ion secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2017199688A
JP2017199688A JP2017119316A JP2017119316A JP2017199688A JP 2017199688 A JP2017199688 A JP 2017199688A JP 2017119316 A JP2017119316 A JP 2017119316A JP 2017119316 A JP2017119316 A JP 2017119316A JP 2017199688 A JP2017199688 A JP 2017199688A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
ion secondary
sodium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017119316A
Other languages
Japanese (ja)
Other versions
JP6443701B2 (en
Inventor
英郎 山内
Hideo Yamauchi
英郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017119316A priority Critical patent/JP6443701B2/en
Publication of JP2017199688A publication Critical patent/JP2017199688A/en
Application granted granted Critical
Publication of JP6443701B2 publication Critical patent/JP6443701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for an electric power storage device which has a high discharge capacity-keeping ratio, and a method for manufacturing the negative electrode active material.SOLUTION: A negative electrode active material for an electric power storage device comprises TiO, NaO and a net-forming oxide.SELECTED DRAWING: Figure 1

Description

本発明は、携帯電子機器や電気自動車等に用いられる蓄電デバイス用負極活物質およびその製造方法に関する。   The present invention relates to a negative electrode active material for an electricity storage device used for portable electronic devices, electric vehicles and the like, and a method for producing the same.

近年、携帯用パソコンや携帯電話の普及に伴い、リチウムイオン二次電池等の蓄電デバイスの高容量化と小サイズ化に対する要望が高まっている。蓄電デバイスの高容量化が進めば、電池の小サイズ化も容易となるため、蓄電デバイスの高容量化へ向けての開発が急務となっている。   In recent years, with the spread of portable personal computers and mobile phones, there is an increasing demand for higher capacity and smaller size of power storage devices such as lithium ion secondary batteries. If the capacity of the electricity storage device is increased, it will be easy to reduce the size of the battery. Therefore, there is an urgent need to develop the capacity of the electricity storage device.

リチウムイオン二次電池やナトリウムイオン二次電池等の蓄電デバイス用負極活物質には、一般に黒鉛質炭素材料、ハードカーボンなどの炭素材料が用いられている。   Carbon materials such as graphitic carbon materials and hard carbon are generally used for negative electrode active materials for power storage devices such as lithium ion secondary batteries and sodium ion secondary batteries.

さらに、リチウムイオンやナトリウムイオンを吸蔵および放出することが可能な負極活物質として、層状ナトリウムチタン酸化物NaTiが提案されている(特許文献1参照)。 Furthermore, layered sodium titanium oxide Na 2 Ti 3 O 7 has been proposed as a negative electrode active material capable of inserting and extracting lithium ions and sodium ions (see Patent Document 1).

特開2007−234233号公報JP 2007-234233 A

しかしながら、層状ナトリウムチタン酸化物NaTi負極活物質は、放電容量維持率(サイクル特性)が低いという問題があった。 However, the layered sodium titanium oxide Na 2 Ti 3 O 7 negative electrode active material has a problem that the discharge capacity retention rate (cycle characteristics) is low.

したがって、本発明の課題は、放電容量維持率が高い蓄電デバイス用負極活物質およびその製造方法を提供することである。   Therefore, the subject of this invention is providing the negative electrode active material for electrical storage devices with a high discharge capacity maintenance factor, and its manufacturing method.

本発明の蓄電デバイス用負極活物質は、TiO、NaO、及び網目形成酸化物を含有することを特徴とする。 The negative electrode active material for an electricity storage device of the present invention is characterized by containing TiO 2 , Na 2 O, and a network forming oxide.

前記網目形成酸化物が、Bであることが好ましい。 The network forming oxide is preferably B 2 O 3 .

本発明の蓄電デバイス用負極活物質は、Na、TiおよびOを含む単斜晶系結晶を含有することが好ましい。   The negative electrode active material for an electricity storage device of the present invention preferably contains a monoclinic crystal containing Na, Ti and O.

さらに、前記単斜晶系結晶が、空間群P2/mに属する結晶であることが好ましい。 Further, the monoclinic crystal is preferably a crystal belonging to the space group P2 1 / m.

本発明の蓄電デバイス用負極活物質は、非晶質相を含むことが好ましい。   The negative electrode active material for an electricity storage device of the present invention preferably contains an amorphous phase.

本発明の蓄電デバイス用負極活物質は、酸化物換算のモル%表示で、TiO 10〜75%、NaO 10〜50%、網目形成酸化物 0.1〜50%を含有することが好ましい。 The negative electrode active material for an electricity storage device of the present invention contains TiO 2 10 to 75%, Na 2 O 10 to 50%, and network-forming oxide 0.1 to 50% in terms of oxide-based mol%. preferable.

さらに、ZnO+SnO+MnO+Nb+Sb+Bi 0.1〜25%を含有することが好ましい。 Further, it preferably contains ZnO + SnO + MnO 2 + Nb 2 O 5 + Sb 2 O 3 + Bi 2 O 3 0.1~25%.

本発明の蓄電デバイス用負極活物質は、粒子状であり、粒子表面が導電性炭素で被覆されていることが好ましい。   The negative electrode active material for an electricity storage device of the present invention is in the form of particles, and the particle surface is preferably coated with conductive carbon.

本発明の蓄電デバイス用負極活物質の製造方法は、(1)TiO、NaO、及び網目形成酸化物を含むバッチを調合する工程、(2)バッチを溶融し、溶融ガラスを得る工程、および(3)溶融ガラスを冷却し溶融固化体を得る工程を含むことを特徴とする。 The method for producing a negative electrode active material for an electricity storage device of the present invention includes (1) a step of preparing a batch containing TiO 2 , Na 2 O, and a network-forming oxide, and (2) a step of melting the batch to obtain molten glass. And (3) a step of cooling the molten glass to obtain a molten solidified product.

さらに、(4)得られた溶融固化体を粉砕し、溶融固化体粉末を得る工程、および(5)溶融固化体粉末を500〜1000℃で焼成し結晶化ガラス粉末を得る工程を含むことが好ましい。   Furthermore, (4) pulverizing the obtained molten solidified body to obtain a molten solidified powder, and (5) firing the molten solidified powder at 500 to 1000 ° C. to obtain a crystallized glass powder. preferable.

さらに、工程(5)において、溶融固化体粉末に有機化合物または導電性カーボン、あるいはその両方を添加し、不活性または還元雰囲気にて焼成を行うことが好ましい。   Furthermore, in the step (5), it is preferable to add an organic compound or conductive carbon or both to the melt-solidified powder, and perform firing in an inert or reducing atmosphere.

本発明によれば、放電容量維持率が高い蓄電デバイス用負極活物質およびその製造方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the negative electrode active material for electrical storage devices with a high discharge capacity maintenance factor, and its manufacturing method.

実施例1の負極活物質のX線回折パターン。2 is an X-ray diffraction pattern of the negative electrode active material of Example 1. FIG.

本発明の蓄電デバイス用負極活物質は、TiO、NaO、及び網目形成酸化物を含有することを特徴とする。 The negative electrode active material for an electricity storage device of the present invention is characterized by containing TiO 2 , Na 2 O, and a network forming oxide.

TiOは、充放電の駆動力となるレドックス成分である。TiOの含有量は10〜75%であることが好ましく、20〜70%であることがより好ましく、30〜65%であることがさらに好ましく、40〜60%であることが特に好ましい。TiOの含有量が少なすぎると、負極活物質の放電容量が低下する傾向がある。一方、TiOの含有量が多すぎると、Na、TiおよびOを含む単斜晶系結晶以外の異種結晶が析出しやすくなり、負極活物質の電極電位が高くなる。 TiO 2 is a redox component that becomes a driving force for charging and discharging. The content of TiO 2 is preferably 10 to 75%, more preferably 20 to 70%, still more preferably 30 to 65%, and particularly preferably 40 to 60%. When the content of TiO 2 is too small, the discharge capacity of the negative electrode active material tends to decrease. On the other hand, when the content of TiO 2 is too large, different types of crystals other than monoclinic crystals containing Na, Ti and O are likely to be precipitated, and the electrode potential of the negative electrode active material is increased.

NaOは、リチウムイオンおよびナトリウムイオン伝導性を向上させる成分である。NaOの含有量は10〜50%であることが好ましく、15〜45%であることがより好ましく、20〜42%であることがさらに好ましく、25〜40%であることが特に好ましい。NaOの含有量が少なすぎると、負極活物質の放電容量が低下したり、高速充放電特性が低下したりする傾向がある。一方、NaOの含有量が多すぎると、化学的耐久性が低下しやすくなる。 Na 2 O is a component that improves lithium ion and sodium ion conductivity. The content of Na 2 O is preferably 10 to 50%, more preferably 15 to 45%, still more preferably 20 to 42%, and particularly preferably 25 to 40%. When the Na 2 O content is too small, the discharge capacity is lowered in the negative electrode active material, high-speed charge-discharge characteristics tend to be lowered. On the other hand, when the content of Na 2 O is too large, chemical durability tends to decrease.

網目形成酸化物とは、その酸化物単独で三次元の不規則網目構造、すなわち非晶質相を形成しうる酸化物であり、具体的には、B、SiO、P、GeO等が挙げられる。網目形成酸化物は、負極活物質中に非晶質相を含有させやすくし、リチウムイオンおよびナトリウムイオン伝導性を向上させる効果を有する。網目形成酸化物の含有量は0.1〜50%であることが好ましく、1〜40%であることがより好ましく、3〜30%であることがさらに好ましく、5〜20%であることが特に好ましい。網目形成酸化物の含有量が少なすぎると、リチウムイオンおよびナトリウムイオン伝導性が低下しやすくなる。一方、網目形成酸化物の含有量が多すぎると、負極活物質の放電容量が低下する傾向がある。 The network-forming oxide is an oxide that can form a three-dimensional irregular network structure, that is, an amorphous phase, by itself, specifically, B 2 O 3 , SiO 2 , P 2 O. 5 , GeO 2 and the like. The network-forming oxide has an effect of facilitating inclusion of an amorphous phase in the negative electrode active material and improving lithium ion and sodium ion conductivity. The content of the network-forming oxide is preferably 0.1 to 50%, more preferably 1 to 40%, further preferably 3 to 30%, and 5 to 20%. Particularly preferred. When there is too little content of a network formation oxide, lithium ion and sodium ion conductivity will fall easily. On the other hand, when there is too much content of network formation oxide, there exists a tendency for the discharge capacity of a negative electrode active material to fall.

の含有量は0.1〜50%であることが好ましく、1〜40%であることがより好ましく、3〜30%であることが特に好ましい。Bの含有量が少なすぎると、リチウムイオンおよびナトリウムイオン伝導性が低下しやすくなる。一方、Bの含有量が多すぎると、化学的耐久性が低下する傾向がある。 The content of B 2 O 3 is preferably 0.1 to 50%, more preferably 1 to 40%, and particularly preferably 3 to 30%. If the content of B 2 O 3 is too small, a lithium ion and sodium ion conductivity tends to decrease. On the other hand, when the content of B 2 O 3 is too large, the chemical durability tends to decrease.

SiOの含有量は0〜40%であることが好ましく、1〜30%であることがより好ましく、3〜20%であることが特に好ましい。SiOの含有量が多すぎると、負極活物質の放電容量が低下する傾向がある。 The content of SiO 2 is preferably 0 to 40%, more preferably 1 to 30%, and particularly preferably 3 to 20%. When the content of SiO 2 is too large, the discharge capacity of the negative electrode active material tends to decrease.

の含有量は0〜25%であることが好ましく、1〜20%であることがより好ましく、3〜15%であることが特に好ましい。Pの含有量が少なすぎると、リチウムイオンおよびナトリウムイオン伝導性が低下し、高速充放電特性が低下しやすくなる。一方、Pの含有量が多すぎると、化学的耐久性が低下しやすくなる。 The content of P 2 O 5 is preferably 0 to 25%, more preferably 1 to 20%, and particularly preferably 3 to 15%. When the content of P 2 O 5 is too small, it reduces the lithium ion and sodium ion conductivity, charge and discharge characteristics tends to decrease rapidly. On the other hand, when the content of P 2 O 5 is too large, chemical durability tends to decrease.

GeOの含有量は0〜40%であることが好ましく、1〜30%であることがより好ましく、3〜20%であることが特に好ましい。GeOの含有量が多すぎると、負極活物質の放電容量が低下する傾向がある。 The content of GeO 2 is preferably 0 to 40%, more preferably 1 to 30%, and particularly preferably 3 to 20%. When the content of GeO 2 is too large, the discharge capacity of the negative electrode active material tends to decrease.

また、本発明の蓄電デバイス用負極活物質は、ZnO、SnO、MnO、Nb、SbまたはBiを含有していてもよい。これらの成分を含有することにより、電子伝導度性が高くなり、高速充放電特性が向上しやすくなる。上記成分の含有量の合計は0.1〜25%であることが好ましく、0.2〜10%であることが特に好ましい。上記成分の含有量の合計が多すぎると、蓄電デバイスの充放電に関与しない異種結晶が生じ、負極活物質の放電容量が低下しやすくなる。 Moreover, the negative electrode active material for an electricity storage device of the present invention may contain ZnO, SnO, MnO 2 , Nb 2 O 5 , Sb 2 O 3 or Bi 2 O 3 . By containing these components, electron conductivity becomes high and high-speed charge / discharge characteristics are easily improved. The total content of the above components is preferably 0.1 to 25%, particularly preferably 0.2 to 10%. If the total content of the above components is too large, different crystals that do not participate in charge / discharge of the electricity storage device are generated, and the discharge capacity of the negative electrode active material tends to decrease.

本発明の蓄電デバイス用負極活物質は、Na、TiおよびOを含む単斜晶系結晶を含有することが好ましい。Na、TiおよびOを含む単斜晶系結晶を含有することにより、負極活物質の電極電位が低くなるとともに、放電容量が高くなる傾向がある。Na、TiおよびOを含む単斜晶系結晶は、空間群P2/mに属する結晶であることが好ましく、一般式NaTi(x/2+2y)(1≦x≦3、2≦y≦4)で表される結晶であることがより好ましく、NaTi結晶であることが特に好ましい。 The negative electrode active material for an electricity storage device of the present invention preferably contains a monoclinic crystal containing Na, Ti and O. By containing a monoclinic crystal containing Na, Ti and O, the electrode potential of the negative electrode active material tends to decrease and the discharge capacity tends to increase. The monoclinic crystal containing Na, Ti and O is preferably a crystal belonging to the space group P2 1 / m, and has the general formula Na x Ti y O (x / 2 + 2y) (1 ≦ x ≦ 3, 2 ≦ A crystal represented by y ≦ 4) is more preferable, and a Na 2 Ti 3 O 7 crystal is particularly preferable.

本発明の蓄電デバイス用負極活物質は、非晶質相を含むことが好ましい。非晶質相を含むことにより、負極活物質のリチウムイオンおよびナトリウムイオン伝導性が向上するため、高速充放電特性が向上しやすくなる。   The negative electrode active material for an electricity storage device of the present invention preferably contains an amorphous phase. By including an amorphous phase, the lithium ion and sodium ion conductivity of the negative electrode active material is improved, and thus high-speed charge / discharge characteristics are easily improved.

さらに、本発明の蓄電デバイス用負極活物質は、結晶化ガラスからなることが好ましい。結晶化ガラスであれば、Na、TiおよびOを含む単斜晶系結晶と非晶質相との両方を容易に複合化できるので、負極活物質の放電容量と高速充放電特性の両方が向上する傾向がある。   Furthermore, the negative electrode active material for an electricity storage device of the present invention is preferably made of crystallized glass. With crystallized glass, both the monoclinic crystal containing Na, Ti and O and the amorphous phase can be easily combined, improving both the discharge capacity and high-speed charge / discharge characteristics of the negative electrode active material. Tend to.

負極活物質におけるNa、TiおよびOを含む単斜晶系結晶の結晶化度は30質量%以上、40質量%以上、特に50質量%以上であることが好ましい。Na、TiおよびOを含む単斜晶系結晶の結晶化度が低すぎると、放電容量が低下する傾向がある。なお、上限については特に限定されないが、現実的には99質量%以下である。   The crystallinity of the monoclinic crystal containing Na, Ti and O in the negative electrode active material is preferably 30% by mass or more, 40% by mass or more, and particularly preferably 50% by mass or more. When the crystallinity of the monoclinic crystal containing Na, Ti and O is too low, the discharge capacity tends to decrease. In addition, although it does not specifically limit about an upper limit, In reality, it is 99 mass% or less.

Na、TiおよびOを含む単斜晶系結晶の結晶化度は、CuKα線を用いた粉末X線回折測定によって得られる2θ値で10〜60°の回折線プロファイルにおいて、結晶性回折線と非晶質ハローにピーク分離することで求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10〜45°におけるブロードな回折線(非晶質ハロー)をピーク分離して求めた積分強度をIa、10〜60°において検出されるNa、TiおよびOを含む単斜晶系結晶由来の結晶性回折線をピーク分離して求めた積分強度の総和をIc、その他の結晶性回折線から求めた積分強度の総和をIoとした場合、結晶の含有量Xcは次式から求められる。   The crystallinity of the monoclinic crystal containing Na, Ti and O is the same as that of the crystalline diffraction line in the diffraction line profile of 10-60 ° in 2θ value obtained by powder X-ray diffraction measurement using CuKα ray. It is calculated | required by carrying out peak separation to a crystalline halo. Specifically, the integrated intensity obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 45 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile is Ia, 10 Integral intensity obtained from peak separation of crystalline diffraction lines derived from monoclinic crystals containing Na, Ti and O detected at ˜60 ° is Ic, and integrated intensity obtained from other crystalline diffraction lines In the case where the total sum of I is Io, the crystal content Xc is obtained from the following equation.

Xc=[Ic/(Ic+Ia+Io)]×100(%)     Xc = [Ic / (Ic + Ia + Io)] × 100 (%)

Na、TiおよびOを含む単斜晶系結晶の結晶子サイズが小さいほど、負極活物質粒子の平均粒子径を小さくすることが可能となり、電気伝導性を向上させることができる。具体的には、Na、TiおよびOを含む単斜晶系結晶の結晶子サイズは100nm以下、特に80nm以下であることが好ましい。下限については特に限定されないが、現実的には1nm以上、さらには10nm以上である。結晶子サイズは、粉末X線回折の解析結果からシェラーの式に従って求められる。   The smaller the crystallite size of the monoclinic crystal containing Na, Ti and O, the smaller the average particle diameter of the negative electrode active material particles can be, and the electrical conductivity can be improved. Specifically, the crystallite size of the monoclinic crystal containing Na, Ti and O is preferably 100 nm or less, particularly preferably 80 nm or less. The lower limit is not particularly limited, but is actually 1 nm or more, and further 10 nm or more. The crystallite size is determined according to Scherrer's equation from the analysis result of powder X-ray diffraction.

さらに、本発明の蓄電デバイス用負極活物質は、粒子状であり、粒子表面が導電性炭素で被覆されていることが好ましい。粒子表面が導電性炭素で被覆されていることにより、電子伝導度性が高くなり、高速充放電特性が向上しやすくなる。   Furthermore, it is preferable that the negative electrode active material for an electricity storage device of the present invention is in the form of particles and the particle surfaces are coated with conductive carbon. When the particle surface is coated with conductive carbon, the electron conductivity is increased and the high-speed charge / discharge characteristics are easily improved.

負極活物質の平均粒子径は0.1〜20μm、0.3〜15μm、特に0.5〜10μmであることが好ましい。負極活物質の平均粒子径が小さすぎると、負極活物質粒子同士の凝集力が強くなり、ペースト化した際に分散しにくくなる。その結果、電池の内部抵抗が高くなり放電電圧が低下しやすくなる。また、電極密度が低下して電池の単位体積あたりの放電容量が低下する傾向がある。一方、負極活物質の平均粒子径が大きすぎると、負極活物質の比表面積が小さくなりやすく、負極活物質と電解質との界面におけるリチウムイオンおよびナトリウムイオン伝導性が低下する傾向がある。また、電極の表面平滑性に劣る傾向がある。   The average particle diameter of the negative electrode active material is preferably 0.1 to 20 μm, 0.3 to 15 μm, particularly preferably 0.5 to 10 μm. When the average particle diameter of the negative electrode active material is too small, the cohesive force between the negative electrode active material particles becomes strong and is difficult to disperse when formed into a paste. As a result, the internal resistance of the battery increases and the discharge voltage tends to decrease. In addition, the electrode density tends to decrease and the discharge capacity per unit volume of the battery tends to decrease. On the other hand, if the average particle diameter of the negative electrode active material is too large, the specific surface area of the negative electrode active material tends to be small, and lithium ion and sodium ion conductivity at the interface between the negative electrode active material and the electrolyte tends to decrease. Moreover, there exists a tendency to be inferior to the surface smoothness of an electrode.

なお、本発明において、平均粒子径はD50(体積基準の平均粒子径)を意味し、レーザー回折散乱法により測定された値をさすものとする。   In addition, in this invention, an average particle diameter means D50 (volume basis average particle diameter), and shall mean the value measured by the laser diffraction scattering method.

本発明の蓄電デバイス用負極活物質は、炭素の含有量が0.01〜20質量%、0.05〜20質量%、1〜20質量%、2〜15質量%、特に3〜12質量%であることが好ましい。炭素の含有量が少なすぎると、カーボン含有層による被覆が不十分となり、電子の伝導性に劣る傾向がある。一方、炭素の含有量が多すぎると、相対的に負極活物質粒子の含有量が小さくなり、負極活物質単位質量当たりの放電容量が小さくなる傾向がある。   The negative electrode active material for an electricity storage device of the present invention has a carbon content of 0.01 to 20% by mass, 0.05 to 20% by mass, 1 to 20% by mass, 2 to 15% by mass, particularly 3 to 12% by mass. It is preferable that When the carbon content is too small, the coating with the carbon-containing layer becomes insufficient, and the electron conductivity tends to be inferior. On the other hand, when the carbon content is too large, the content of the negative electrode active material particles is relatively small, and the discharge capacity per unit mass of the negative electrode active material tends to be small.

本発明の蓄電デバイス用負極活物質は、ラマン分光法における1550〜1650cm−1のピーク強度Gに対する1300〜1400cm−1のピーク強度Dの比(D/G)が1以下、特に0.8以下であり、かつ、ピーク強度Gに対する800〜1100cm−1のピーク強度Fの比(F/G)が0.5以下、特に0.1以下であることが好ましい。これらのピーク強度比が上記範囲を満たすことにより、負極活物質の電子伝導性が高くなる傾向がある。 Negative electrode active material for an electricity storage device of the present invention, the ratio of the peak intensity D of 1300~1400Cm -1 to the peak intensity G of 1550~1650Cm -1 in Raman spectroscopy (D / G) is 1 or less, especially 0.8 or less And the ratio (F / G) of the peak intensity F of 800 to 1100 cm −1 with respect to the peak intensity G is preferably 0.5 or less, particularly preferably 0.1 or less. When these peak intensity ratios satisfy the above range, the electronic conductivity of the negative electrode active material tends to increase.

本発明の蓄電デバイス用負極活物質の製造方法は、(1)TiO、NaO、及び網目形成酸化物を含むバッチを調合する工程、(2)バッチを溶融し、溶融ガラスを得る工程、および(3)溶融ガラスを冷却し溶融固化体を得る工程を含むことを特徴とする。このような溶融法により負極活物質を製造することにより、各構成成分が均質に分散された負極活物質が得られやすくなる。 The method for producing a negative electrode active material for an electricity storage device of the present invention includes (1) a step of preparing a batch containing TiO 2 , Na 2 O, and a network-forming oxide, and (2) a step of melting the batch to obtain molten glass. And (3) a step of cooling the molten glass to obtain a molten solidified product. By producing the negative electrode active material by such a melting method, it is easy to obtain a negative electrode active material in which each component is uniformly dispersed.

溶融温度は原料バッチが均質に溶融されるよう適宜調整すればよい。具体的には、700℃以上、特に900℃以上であることが好ましい。上限は特に限定されないが、高すぎるとエネルギーロスにつながるため、1500℃以下、特に1400℃以下であることが好ましい。   What is necessary is just to adjust a melting temperature suitably so that a raw material batch may be fuse | melted uniformly. Specifically, it is preferably 700 ° C. or higher, particularly 900 ° C. or higher. Although an upper limit is not specifically limited, Since it will lead to an energy loss when too high, it is preferable that it is 1500 degrees C or less, especially 1400 degrees C or less.

また、溶融固化体を得る工程としては、上記以外にゾル−ゲルプロセス、溶液ミストの火炎中への噴霧などの化学気相合成プロセス、メカノケミカルプロセス等も適用可能である。   In addition to the steps described above, a sol-gel process, a chemical vapor synthesis process such as spraying a solution mist into a flame, a mechanochemical process, and the like can also be applied as a step for obtaining a melt-solidified body.

さらに、本発明の蓄電デバイス用負極活物質の製造方法は、(4)得られた溶融固化体を粉砕し、溶融固化体粉末を得る工程、および(5)溶融固化体粉末を500〜1000℃で焼成し結晶化ガラス粉末を得る工程を含むことが好ましい。   Furthermore, the method for producing a negative electrode active material for an electricity storage device of the present invention includes (4) a step of pulverizing the obtained molten solidified body to obtain a molten solidified powder, and (5) 500 to 1000 ° C. of the molten solidified powder. It is preferable to include a step of baking to obtain crystallized glass powder.

溶融固化体の粉砕方法は特に限定されず、ボールミル、ビーズミル、アトライター等の一般的な粉砕装置を用いることできる。   A method for pulverizing the melt-solidified body is not particularly limited, and a general pulverizing apparatus such as a ball mill, a bead mill, or an attritor can be used.

溶融固化体粉末の平均粒子径は小さいほど負極活物質全体としての比表面積が大きくなり、イオンや電子の交換が行いやすくなるため好ましい。   The smaller the average particle size of the melt-solidified powder, the larger the specific surface area of the negative electrode active material as a whole, which is preferable because it facilitates the exchange of ions and electrons.

溶融固化体粉末の熱処理温度は、溶融固化体の組成によって異なるため特に限定されるものではない。熱処理温度の下限は500℃、550℃、特に600℃以上であることが好ましい。熱処理温度が低すぎると、Na、TiおよびOを含む単斜晶系結晶の析出が不十分になり、放電容量が低下するおそれがある。一方、熱処理温度の上限は1000℃、950℃、特に900℃であることが好ましい。熱処理温度が高すぎると、Na、TiおよびOを含む単斜晶系結晶が溶解するおそれがあるため好ましくない。   The heat treatment temperature of the melt-solidified powder is not particularly limited because it varies depending on the composition of the melt-solidified body. The lower limit of the heat treatment temperature is preferably 500 ° C, 550 ° C, particularly 600 ° C or higher. If the heat treatment temperature is too low, precipitation of monoclinic crystals containing Na, Ti and O becomes insufficient, and the discharge capacity may be reduced. On the other hand, the upper limit of the heat treatment temperature is preferably 1000 ° C., 950 ° C., particularly 900 ° C. If the heat treatment temperature is too high, monoclinic crystals containing Na, Ti and O may be dissolved, which is not preferable.

熱処理時間は、Na、TiおよびOを含む単斜晶系結晶の析出が十分に進行するよう適宜調整される。具体的には、0.5〜20時間、1〜15時間、特に8〜12時間であることが好ましい。   The heat treatment time is appropriately adjusted so that precipitation of monoclinic crystals containing Na, Ti and O sufficiently proceeds. Specifically, it is preferably 0.5 to 20 hours, 1 to 15 hours, particularly 8 to 12 hours.

さらに、工程(5)において、溶融固化体粉末に有機化合物または導電性カーボン、あるいはその両方を添加し、不活性または還元雰囲気にて焼成を行うことが好ましい。これにより、負極活物質粒子表面をカーボン含有層により被覆することができる。   Furthermore, in the step (5), it is preferable to add an organic compound or conductive carbon or both to the melt-solidified powder, and perform firing in an inert or reducing atmosphere. Thereby, the negative electrode active material particle surface can be coat | covered with a carbon containing layer.

導電性カーボンとしては、グラファイト、アセチレンブラック、アモルファスカーボン等が挙げられる。なお、アモルファスカーボンは、FT−IR分析において、負極活物質の導電性低下の原因となるC−O結合ピークやC−H結合ピークが実質的に検出されないことが好ましい。有機化合物としては、脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸、グルコースおよび有機バインダー、界面活性剤等が挙げられる。   Examples of the conductive carbon include graphite, acetylene black, and amorphous carbon. Note that it is preferable that amorphous carbon does not substantially detect a C—O bond peak or a C—H bond peak that causes a decrease in conductivity of the negative electrode active material in the FT-IR analysis. Examples of the organic compound include carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids, glucose and organic binders, surfactants, and the like.

有機化合物または導電性カーボン、あるいはその両方の添加量は、前駆体ガラス粉末100質量部に対して、0.01〜50質量部であることが好ましく、0.1〜50質量部であることがより好ましく、1〜30質量部であることがさらに好ましく、5〜20質量部であることが特に好ましい。有機化合物または導電性カーボン、あるいはその両方の添加量が少なすぎると、負極活物質粒子表面を十分にカーボン含有層で被覆することが困難になる。有機化合物または導電性カーボン、あるいはその両方の添加量が多すぎると、カーボン含有層の厚みが大きくなってリチウムイオンおよびナトリウムイオンの移動が妨げられ、放電容量が低下する傾向がある。   The amount of the organic compound and / or conductive carbon added is preferably 0.01 to 50 parts by mass, and 0.1 to 50 parts by mass with respect to 100 parts by mass of the precursor glass powder. More preferably, it is 1-30 mass parts, More preferably, it is 5-20 mass parts. When the addition amount of the organic compound and / or the conductive carbon is too small, it becomes difficult to sufficiently cover the surface of the negative electrode active material particles with the carbon-containing layer. When the addition amount of the organic compound and / or the conductive carbon is too large, the thickness of the carbon-containing layer is increased, the movement of lithium ions and sodium ions is hindered, and the discharge capacity tends to decrease.

本発明の蓄電デバイス用負極は、上述した負極活物質に対し、導電助剤および結着剤を添加し、これらを水や、N−メチルピロリドン等の溶媒に懸濁させてスラリー化し、このスラリーをアルミニウム箔、銅箔等の集電体に塗布、乾燥、プレスして帯状にすることにより作製する。   The negative electrode for an electricity storage device of the present invention is a slurry obtained by adding a conductive additive and a binder to the negative electrode active material described above, and suspending them in a solvent such as water or N-methylpyrrolidone. Is applied to a current collector such as an aluminum foil or a copper foil, dried and pressed to form a strip.

導電助剤は、急速充放電を達成するために添加される成分である。具体例としては、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、黒鉛、コークス等が挙げられる。なかでも、極少量の添加で優れた導電性を発揮する高導電性カーボンブラックを用いることが好ましい。   A conductive support agent is a component added in order to achieve rapid charging / discharging. Specific examples include highly conductive carbon black such as acetylene black and ketjen black, graphite, coke and the like. Among them, it is preferable to use highly conductive carbon black that exhibits excellent conductivity when added in a very small amount.

結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素系ゴム、スチレンーブタンジエンゴム(SBR)等の熱可塑性直鎖状高分子;熱硬化性ポリイミド、ポリアミドイミド、ポリアミド、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;カルボキシメチルセルロース(カルボキシメチルセルロースナトリム等のカルボキシメチルセルロース塩も含む。以下同様)、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロースおよびヒドロキシメチルセルロース等のセルロース誘導体、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドンおよびその共重合体等の水溶性高分子が挙げられる。   Examples of the binder include thermoplastic linear polymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-based rubber, and styrene-butanediene rubber (SBR); thermosetting polyimide, polyamide Thermosetting resins such as imide, polyamide, phenolic resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane; carboxymethylcellulose (including carboxymethylcellulose salts such as carboxymethylcellulose sodium; the same shall apply hereinafter), hydroxypropylmethylcellulose , Cellulose derivatives such as hydroxypropyl cellulose, hydroxyethyl cellulose, ethyl cellulose and hydroxymethyl cellulose, polyvinyl alcohol, polyacrylamide, polyvinyl pyro It includes pyrrolidone and water-soluble polymers of the copolymers.

負極活物質、導電助剤および結着剤の配合比は、負極活物質 70〜95重量%、導電助剤 3〜20重量%、結着剤 2〜20重量%の範囲にすることが好ましい。   The compounding ratio of the negative electrode active material, the conductive assistant and the binder is preferably in the range of 70 to 95% by weight of the negative electrode active material, 3 to 20% by weight of the conductive assistant and 2 to 20% by weight of the binder.

集電体としては、例えばアルミニウム箔やアルミニウム合金箔や銅箔を用いることができる。アルミニウム合金としては、アルミニウムと、マグネシウム、亜鉛、ケイ素等の元素とからなる合金が挙げられる。   As the current collector, for example, an aluminum foil, an aluminum alloy foil, or a copper foil can be used. Examples of the aluminum alloy include alloys made of aluminum and elements such as magnesium, zinc, and silicon.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this Example.

実施例1、2の負極活物質は、次のとおり作製した。炭酸ナトリウム(NaCO)、酸化チタン(TiO)、及び無水ホウ酸(B)を原料とし、表1に記載の組成となるように原料粉末を調合し、1300℃にて1時間、大気雰囲気中にて溶融を行った。その後、一対のロールに溶融ガラスを流し込み、急冷しながらフィルム状に成形することにより溶融固化体を作製した。 The negative electrode active materials of Examples 1 and 2 were produced as follows. Sodium carbonate (Na 2 CO 3 ), titanium oxide (TiO 2 ), and boric anhydride (B 2 O 3 ) are used as raw materials, and raw material powders are prepared so as to have the composition shown in Table 1, at 1300 ° C. Melting was performed in an air atmosphere for 1 hour. Then, molten glass was poured into a pair of rolls, and a molten solidified body was produced by forming into a film shape while rapidly cooling.

得られた溶融固化体をボールミルで20時間粉砕し、空気分級することにより、平均粒子径2μmの溶融固化体粉末を得た。   The obtained melt-solidified product was pulverized with a ball mill for 20 hours, and air classified to obtain a melt-solidified powder having an average particle size of 2 μm.

得られた溶融固化体粉末を、大気雰囲気中800℃にて1時間熱処理を行うことにより、負極活物質を得た。粉末X線回折パターンを確認したところ、表1に記載の結晶に由来する回折線が確認された。実施例1の負極活物質のX線回折パターンを図1に示す。   The obtained melt-solidified powder was heat-treated at 800 ° C. for 1 hour in an air atmosphere to obtain a negative electrode active material. When the powder X-ray diffraction pattern was confirmed, diffraction lines derived from the crystals described in Table 1 were confirmed. The X-ray diffraction pattern of the negative electrode active material of Example 1 is shown in FIG.

実施例3の負極活物質は、次のとおり作製した。炭酸ナトリウム(NaCO)、酸化チタン(TiO)、及び無水ホウ酸(B)を原料とし、表1に記載の組成となるように原料粉末を調合し、1300℃にて1時間、大気雰囲気中にて溶融を行った。その後、一対のロールに溶融ガラスを流し込み、急冷しながらフィルム状に成形することにより溶融固化体を作製した。 The negative electrode active material of Example 3 was produced as follows. Sodium carbonate (Na 2 CO 3 ), titanium oxide (TiO 2 ), and boric anhydride (B 2 O 3 ) are used as raw materials, and raw material powders are prepared so as to have the composition shown in Table 1, at 1300 ° C. Melting was performed in an air atmosphere for 1 hour. Then, molten glass was poured into a pair of rolls, and a molten solidified body was produced by forming into a film shape while rapidly cooling.

得られた溶融固化体をボールミルで20時間粉砕し、空気分級することにより、平均粒子径2μmの負極活物質を得た。粉末X線回折パターンを確認したところ、結晶に由来する回折線が確認されず、非晶質であった。   The obtained melt-solidified product was pulverized with a ball mill for 20 hours and air classified to obtain a negative electrode active material having an average particle size of 2 μm. When the powder X-ray diffraction pattern was confirmed, the diffraction line derived from a crystal | crystallization was not confirmed but it was amorphous.

比較例1の負極活物質は、次のように作製した。炭酸ナトリウム(NaCO)、及び酸化チタン(TiO)を原料とし、表1に記載の組成となるように原料粉末を調合し、ボールミルで粉砕混合してペレット化した後、大気雰囲気中800℃で20時間固相反応させた。その後、ボールミルによる粉砕、ペレット化、大気雰囲気中800℃で20時間固相反応の各処理を再度行うことにより、負極活物質を得た。粉末X線回折パターンを確認したところ、表1に記載の結晶に由来する回折線が確認された。 The negative electrode active material of Comparative Example 1 was produced as follows. Sodium carbonate (Na 2 CO 3 ) and titanium oxide (TiO 2 ) are used as raw materials, and raw material powders are prepared so as to have the composition shown in Table 1, pulverized and mixed by a ball mill, and then pelletized. The solid phase reaction was carried out at 800 ° C. for 20 hours. Then, the negative electrode active material was obtained by performing each process of the grinding | pulverization by a ball mill, pelletization, and solid-phase reaction for 20 hours at 800 degreeC in air | atmosphere again. When the powder X-ray diffraction pattern was confirmed, diffraction lines derived from the crystals described in Table 1 were confirmed.

蓄電デバイス用負極活物質に対し、結着剤としてPVDF、導電助剤としてケッチェンブラックを、負極活物質:結着剤:導電助剤=80:15:5(質量比)となるように秤量し、これらをN−メチルピロリドン(NMP)に分散したあと、自転・公転ミキサーで十分に攪拌してスラリー化した。次に、隙間100μmのドクターブレードを用いて、負極集電体である厚さ20μmの銅箔上に、得られたスラリーをコートし、乾燥機にて80℃で乾燥後、一対の回転ローラー間に通し、1t/cmでプレスすることにより、電極シートを得た。電極シートを電極打ち抜き機で直径11mmに打ち抜き、140℃で6時間乾燥させ、円形の作用極を得た。 Weigh PVDF as a binder and Ketjen black as a conductive additive, and negative electrode active material: binder: conductive auxiliary = 80: 15: 5 (mass ratio) with respect to the negative electrode active material for the electricity storage device. These were dispersed in N-methylpyrrolidone (NMP), and then sufficiently stirred with a rotation / revolution mixer to form a slurry. Next, using a doctor blade with a gap of 100 μm, the obtained slurry was coated on a copper foil having a thickness of 20 μm as a negative electrode current collector, dried at 80 ° C. with a dryer, and then between a pair of rotating rollers. The electrode sheet was obtained by pressing at 1 t / cm 2 . The electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and dried at 140 ° C. for 6 hours to obtain a circular working electrode.

次に、コインセルの下蓋に、得られた作用極を銅箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜からなるセパレータ(ヘキストセラニーズ社製 セルガード#2400)および対極である金属ナトリウムを積層し、ナトリウムイオン二次電池を作製した。電解液としては、1M NaPF溶液/EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1(体積比)を用いた。なお、試験電池の組み立ては露点温度−70℃以下の環境で行った。 Next, a separator made of a polypropylene porous film having a diameter of 16 mm (Hoechst) was placed on the lower lid of the coin cell, and the obtained working electrode was placed with the copper foil surface facing down and dried under reduced pressure at 60 ° C. for 8 hours. Celagard's Celgard # 2400) and metallic sodium as a counter electrode were laminated to produce a sodium ion secondary battery. As the electrolytic solution, 1M NaPF 6 solution / EC (ethylene carbonate): DEC (diethyl carbonate) = 1: 1 (volume ratio) was used. The test battery was assembled in an environment with a dew point temperature of −70 ° C. or lower.

得られた電池を用いて30℃で充放電試験を行い、放電容量及び放電容量維持率を測定した。結果を表1に示す。   A charge / discharge test was performed at 30 ° C. using the obtained battery, and a discharge capacity and a discharge capacity retention rate were measured. The results are shown in Table 1.

なお、充放電試験において、充電(負極活物質へのナトリウムイオンの吸蔵)は、2Vから0VまでのCC(定電流)充電により行い、放電(負極活物質からのナトリウムイオンの放出)は、0Vから2VまでCC放電により行った。Cレートは0.1Cとした。ナトリウムイオン二次電池における放電容量維持率は、初回放電容量に対する20サイクル目の放電容量の比率をいう。   In the charge / discharge test, charging (occluding sodium ions in the negative electrode active material) is performed by CC (constant current) charging from 2 V to 0 V, and discharging (release of sodium ions from the negative electrode active material) is 0 V. To 2 V by CC discharge. The C rate was 0.1C. The discharge capacity maintenance rate in a sodium ion secondary battery refers to the ratio of the discharge capacity at the 20th cycle to the initial discharge capacity.

また、コインセルの下蓋に、得られた作用極を銅箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜からなるセパレータおよび対極である金属リチウムを積層し、リチウムイオン二次電池も作製した。電解液としては、1M LiPF溶液/EC:DEC=1:1(体積比)を用いた。なお、試験電池の組み立ては露点温度−40℃以下の環境で行った。 In addition, a separator and a counter electrode made of a polypropylene porous film having a diameter of 16 mm, which was placed on the lower lid of the coin cell with the obtained working electrode facing the copper foil surface and dried under reduced pressure at 60 ° C. for 8 hours. A certain lithium metal was laminated to produce a lithium ion secondary battery. As the electrolytic solution, 1M LiPF 6 solution / EC: DEC = 1: 1 (volume ratio) was used. The test battery was assembled in an environment with a dew point temperature of −40 ° C. or lower.

得られた電池を用いて30℃で充放電試験を行い、放電容量及び放電容量維持率を測定した。結果を表1に示す。   A charge / discharge test was performed at 30 ° C. using the obtained battery, and a discharge capacity and a discharge capacity retention rate were measured. The results are shown in Table 1.

なお、充放電試験において、充電(負極活物質へのリチウムイオンの吸蔵)は、2.5Vから1.2VまでのCC(定電流)充電により行い、放電(負極活物質からのナトリウムイオンの放出)は、1.2Vから2.5VまでCC放電により行った。Cレートは0.1Cとした。リチウムイオン二次電池における放電容量維持率は、初回放電容量に対する10サイクル目の放電容量の比率をいう。   In the charge / discharge test, charging (occlusion of lithium ions into the negative electrode active material) is performed by CC (constant current) charging from 2.5 V to 1.2 V, and discharging (release of sodium ions from the negative electrode active material). ) Was performed by CC discharge from 1.2V to 2.5V. The C rate was 0.1C. The discharge capacity maintenance rate in a lithium ion secondary battery refers to the ratio of the discharge capacity at the 10th cycle to the initial discharge capacity.

以上のように、実施例1〜3において作製された負極活物質は、網目形成酸化物であるBを含有するため、ナトリウムイオン二次電池における放電容量は87〜122mAhg−1と高く、放電容量維持率も72〜92%と高かった。また、リチウムイオン二次電池における放電容量は48〜51mAhg−1であり、放電容量維持率は96〜98%と高かった。一方、比較例1において作製された負極活物質は、Bを含有しないため、ナトリウムイオン二次電池における放電容量は112mAhg−1と高かったものの、放電容量維持率が25%と低かった。また、リチウムイオン二次電池における放電容量は45mAhg−1であり、放電容量維持率は75%であり、いずれも低かった。 As described above, the negative electrode active material produced in Example 1 to 3, for containing B 2 O 3 is a network forming oxide, the discharge capacity in the sodium ion secondary battery as high as 87~122MAhg -1 Also, the discharge capacity maintenance rate was as high as 72 to 92%. Moreover, the discharge capacity in a lithium ion secondary battery was 48-51 mAhg- 1 , and the discharge capacity maintenance factor was as high as 96-98%. On the other hand, since the negative electrode active material produced in Comparative Example 1 did not contain B 2 O 3 , the discharge capacity in the sodium ion secondary battery was as high as 112 mAhg −1 , but the discharge capacity maintenance rate was as low as 25%. . Moreover, the discharge capacity | capacitance in a lithium ion secondary battery was 45 mAhg- 1 , the discharge capacity maintenance factor was 75%, and all were low.

Claims (9)

酸化物換算のモル%表示で、TiO 10〜75%、NaO 10〜50%、及び網目形成酸化物 0.1〜50%を含有することを特徴とするナトリウムイオン二次電池用負極活物質であって、前記網目形成酸化物がB、SiO、PまたはGeOであるナトリウムイオン二次電池用負極活物質。 A negative electrode for a sodium ion secondary battery characterized by containing 10 to 75% of TiO 2 , 10 to 50% of Na 2 O, and 0.1 to 50% of a network forming oxide in terms of mol% in terms of oxide. A negative electrode active material for a sodium ion secondary battery, which is an active material, wherein the network-forming oxide is B 2 O 3 , SiO 2 , P 2 O 5 or GeO 2 . Na、TiおよびOを含む単斜晶系結晶を含有することを特徴とする請求項1に記載のナトリウムイオン二次電池用負極活物質。   2. The negative electrode active material for a sodium ion secondary battery according to claim 1, comprising a monoclinic crystal containing Na, Ti and O. 3. 前記単斜晶系結晶が、空間群P2/mに属する結晶であることを特徴とする請求項2に記載のナトリウムイオン二次電池用負極活物質。 The negative electrode active material for a sodium ion secondary battery according to claim 2, wherein the monoclinic crystal is a crystal belonging to a space group P2 1 / m. 非晶質相を含むことを特徴とする請求項1〜3のいずれかに記載のナトリウムイオン二次電池用負極活物質。   The negative electrode active material for sodium ion secondary batteries according to claim 1, comprising an amorphous phase. さらに、ZnO+SnO+MnO+Nb+Sb+Bi 0.1〜25%を含有することを特徴とする請求項1〜4のいずれかに記載のナトリウムイオン二次電池用負極活物質。 5. The negative electrode active material for a sodium ion secondary battery according to claim 1, further comprising 0.1 to 25% of ZnO + SnO + MnO 2 + Nb 2 O 5 + Sb 2 O 3 + Bi 2 O 3. . 粒子状であり、粒子表面が導電性炭素で被覆されていることを特徴とする請求項1〜5のいずれかに記載のナトリウムイオン二次電池用負極活物質。   The negative electrode active material for a sodium ion secondary battery according to any one of claims 1 to 5, wherein the negative electrode active material is in the form of particles and the particle surface is coated with conductive carbon. (1)TiO、NaO、及び網目形成酸化物を含むバッチを調合する工程、(2)バッチを溶融し、溶融ガラスを得る工程、および(3)溶融ガラスを冷却し溶融固化体を得る工程を含むことを特徴とするナトリウムイオン二次電池用負極活物質の製造方法。 (1) a step of preparing a batch containing TiO 2 , Na 2 O, and a network-forming oxide, (2) a step of melting the batch to obtain a molten glass, and (3) cooling the molten glass to obtain a molten solidified body. The manufacturing method of the negative electrode active material for sodium ion secondary batteries characterized by including the process to obtain. さらに、(4)得られた溶融固化体を粉砕し、溶融固化体粉末を得る工程、および(5)溶融固化体粉末を500〜1000℃で焼成し結晶化ガラス粉末を得る工程を含むことを特徴とする請求項7に記載のナトリウムイオン二次電池用負極活物質の製造方法。   And (4) pulverizing the obtained melt-solidified material to obtain a melt-solidified powder, and (5) firing the melt-solidified powder at 500 to 1000 ° C. to obtain a crystallized glass powder. The manufacturing method of the negative electrode active material for sodium ion secondary batteries of Claim 7 characterized by the above-mentioned. 工程(5)において、溶融固化体粉末に有機化合物または導電性カーボン、あるいはその両方を添加し、不活性または還元雰囲気にて焼成を行うことを特徴とする請求項8に記載のナトリウムイオン二次電池用負極活物質の製造方法。   9. The sodium ion secondary according to claim 8, wherein in the step (5), an organic compound and / or conductive carbon is added to the melt-solidified powder, and firing is performed in an inert or reducing atmosphere. The manufacturing method of the negative electrode active material for batteries.
JP2017119316A 2017-06-19 2017-06-19 Negative electrode active material for sodium ion secondary battery and method for producing the same Active JP6443701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017119316A JP6443701B2 (en) 2017-06-19 2017-06-19 Negative electrode active material for sodium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119316A JP6443701B2 (en) 2017-06-19 2017-06-19 Negative electrode active material for sodium ion secondary battery and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013164717A Division JP6222433B2 (en) 2013-08-08 2013-08-08 Method for producing negative electrode active material for power storage device

Publications (2)

Publication Number Publication Date
JP2017199688A true JP2017199688A (en) 2017-11-02
JP6443701B2 JP6443701B2 (en) 2018-12-26

Family

ID=60238074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119316A Active JP6443701B2 (en) 2017-06-19 2017-06-19 Negative electrode active material for sodium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6443701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454299B1 (en) 2023-03-10 2024-03-22 哲也 伊藤 footwear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140150A (en) * 1997-07-17 1999-02-12 Sanyo Electric Co Ltd Lithium secondary battery
JP2009129741A (en) * 2007-11-26 2009-06-11 Kyushu Univ Sodium ion secondary battery and negative electrode active material using for the same
WO2013004957A1 (en) * 2011-07-04 2013-01-10 Universite De Picardie Jules Verne Active substance for electrode for a sodium ion battery
WO2013069597A1 (en) * 2011-11-10 2013-05-16 住友電気工業株式会社 Anode active material for sodium battery, anode, and sodium battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140150A (en) * 1997-07-17 1999-02-12 Sanyo Electric Co Ltd Lithium secondary battery
JP2009129741A (en) * 2007-11-26 2009-06-11 Kyushu Univ Sodium ion secondary battery and negative electrode active material using for the same
WO2013004957A1 (en) * 2011-07-04 2013-01-10 Universite De Picardie Jules Verne Active substance for electrode for a sodium ion battery
WO2013069597A1 (en) * 2011-11-10 2013-05-16 住友電気工業株式会社 Anode active material for sodium battery, anode, and sodium battery

Also Published As

Publication number Publication date
JP6443701B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6222433B2 (en) Method for producing negative electrode active material for power storage device
JP6384661B2 (en) Positive electrode active material for sodium ion secondary battery and method for producing the same
JP2016062683A (en) Lithium ion secondary battery
JP2021132047A (en) All-solid lithium ion secondary battery
CN108923061B (en) Solid electrolyte material and all-solid-state lithium battery
JP2011192453A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
JP2016162733A (en) Method of manufacturing electrode body
JP6300176B2 (en) Negative electrode active material for sodium secondary battery
JP2015011943A (en) Positive electrode material for electric power storage device, and method for manufacturing the same
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
WO2016147853A1 (en) Positive electrode active material powder for sodium ion secondary cells
JP6674072B1 (en) Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material
JP2014123559A (en) Cathode active material for lithium ion secondary battery and method of manufacturing the same
JP2014207157A (en) Positive electrode material for electricity storage device and method for producing the same
KR100753921B1 (en) Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery
JP2013225495A (en) Positive active material for lithium ion secondary battery, and method of manufacturing the same
JP2013191297A (en) Positive electrode material for power storage device
JP2014232569A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing the same
JP6443701B2 (en) Negative electrode active material for sodium ion secondary battery and method for producing the same
JP2015198000A (en) Negative electrode active material for power storage device, negative electrode material for power storage device, and power storage device
JP2012204266A (en) Negative electrode active material for electricity storage device, negative electrode material for electricity storage device containing the same, and negative electrode for electricity storage device
JP2014146431A (en) Positive electrode material for electric power storage devices
JP6135156B2 (en) Negative electrode active material powder for power storage device, negative electrode material for power storage device and negative electrode for power storage device using the same
CN106414324B (en) The cathode of silicon materials and secondary cell
JP5597015B2 (en) Negative electrode material for electricity storage device and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6443701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150