Nothing Special   »   [go: up one dir, main page]

JP2017184278A - User terminal, processor, and method - Google Patents

User terminal, processor, and method Download PDF

Info

Publication number
JP2017184278A
JP2017184278A JP2017113521A JP2017113521A JP2017184278A JP 2017184278 A JP2017184278 A JP 2017184278A JP 2017113521 A JP2017113521 A JP 2017113521A JP 2017113521 A JP2017113521 A JP 2017113521A JP 2017184278 A JP2017184278 A JP 2017184278A
Authority
JP
Japan
Prior art keywords
communication
information
resource
user terminal
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017113521A
Other languages
Japanese (ja)
Other versions
JP6253833B2 (en
Inventor
憲由 福田
Noriyoshi Fukuda
憲由 福田
空悟 守田
Kugo Morita
空悟 守田
真人 藤代
Masato Fujishiro
真人 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2017184278A publication Critical patent/JP2017184278A/en
Application granted granted Critical
Publication of JP6253833B2 publication Critical patent/JP6253833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mobile communication system capable of suppressing an increase in a network load and signaling associated with D2D communication, and a user terminal.SOLUTION: A user terminal with a function of direct communication which is direct inter-terminal communication and a function of cellular communication with a network comprises a storage unit which stores predefined resource information and power information, and a control unit which performs processing for directly transmitting communication data to other user terminals on the basis of the resource information and the power information. The resource information is information indicating a radio resource permitted to be used in direct communication, and the power information is information for controlling transmission power in direct communication. If the user terminal exists outside a network coverage, the control unit senses the radio signal transmitted from other user terminals, and determines the radio resource used to transmit communication data from among the radio resources indicated by the resource information on the basis of the sensing results.SELECTED DRAWING: Figure 1

Description

本発明は、D2D通信をサポートする移動通信システム、ユーザ端末及び基地局に関する。   The present invention relates to a mobile communication system, a user terminal, and a base station that support D2D communication.

移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。   In 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, introduction of inter-terminal (Device to Device: D2D) communication is being studied as a new function after Release 12 (see Non-Patent Document 1).

D2D通信では、近接する複数のユーザ端末が、ネットワークを介さずに直接的な通信を行う。すなわち、D2D通信のデータパスはネットワークを経由しない。一方、移動通信システムの通常の通信(セルラ通信)のデータパスはネットワークを経由する。   In D2D communication, a plurality of adjacent user terminals perform direct communication without going through a network. That is, the data path of D2D communication does not go through the network. On the other hand, the data path of normal communication (cellular communication) of the mobile communication system passes through the network.

3GPP技術報告 「TR 22.803 V2.0.0」 2012年11月3GPP Technical Report “TR 22.803 V2.0.0” November 2012

D2D通信の制御は、ネットワーク主導で行われることが想定されている。よって、ユーザ端末は、ネットワークとの接続を確立した状態(接続状態)でD2D通信を行うと考えられる。しかしながら、そのような方法では、D2D通信の制御に伴うネットワークの負荷及びシグナリングが増加する問題がある。   It is assumed that control of D2D communication is performed by a network. Therefore, it is considered that the user terminal performs D2D communication in a state where the connection with the network is established (connection state). However, in such a method, there is a problem that the network load and signaling accompanying the control of D2D communication increase.

そこで、本発明は、D2D通信の制御に伴うネットワークの負荷及びシグナリングの増加を抑制できる移動通信システム、ユーザ端末及び基地局を提供する。   Therefore, the present invention provides a mobile communication system, a user terminal, and a base station that can suppress an increase in network load and signaling accompanying control of D2D communication.

実施形態に係る移動通信システムは、データパスがネットワークを経由するセルラ通信と、データパスが前記ネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする。前記移動通信システムは、前記ネットワークに含まれ、かつブロードキャスト情報を送信する基地局と、前記基地局から前記ブロードキャスト情報を受信した後、前記D2D通信を行うユーザ端末と、を有する。前記ブロードキャスト情報は、前記ユーザ端末が前記ネットワークとの接続を確立していない特定状態であっても前記D2D通信を可能にする情報である。前記ユーザ端末は、前記ブロードキャスト情報に基づいて、前記特定状態において前記D2D通信を行う。   The mobile communication system according to the embodiment supports cellular communication in which a data path passes through a network and D2D communication that is direct terminal-to-terminal communication in which a data path does not pass through the network. The mobile communication system includes a base station that is included in the network and transmits broadcast information, and a user terminal that performs the D2D communication after receiving the broadcast information from the base station. The broadcast information is information that enables the D2D communication even in a specific state in which the user terminal has not established a connection with the network. The user terminal performs the D2D communication in the specific state based on the broadcast information.

図1は、LTEシステムの構成図である。FIG. 1 is a configuration diagram of an LTE system. 図2は、UEのブロック図である。FIG. 2 is a block diagram of the UE. 図3は、eNBのブロック図である。FIG. 3 is a block diagram of the eNB. 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. 図5は、LTEシステムで使用される無線フレームの構成図である。FIG. 5 is a configuration diagram of a radio frame used in the LTE system. 図6は、第1実施形態に係る動作環境を説明するための図である。FIG. 6 is a diagram for explaining the operating environment according to the first embodiment. 図7は、第1実施形態に係るD2D無線リソースを説明するための図である。FIG. 7 is a diagram for explaining the D2D radio resource according to the first embodiment. 図8は、干渉回避動作パターン2の具体例1を説明するための図である。FIG. 8 is a diagram for explaining a specific example 1 of the interference avoidance operation pattern 2. 図9は、干渉回避動作パターン2の具体例2を説明するための図である。FIG. 9 is a diagram for explaining a specific example 2 of the interference avoidance operation pattern 2. 図10は、ホッピングパターンの候補の具体例を示す図である。FIG. 10 is a diagram illustrating a specific example of hopping pattern candidates.

[実施形態の概要]
第1実施形態及び第2実施形態に係る移動通信システムは、データパスがネットワークを経由するセルラ通信と、データパスが前記ネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする。前記移動通信システムは、前記ネットワークに含まれ、かつブロードキャスト情報を送信する基地局と、前記基地局から前記ブロードキャスト情報を受信した後、前記D2D通信を行うユーザ端末と、を有する。前記ブロードキャスト情報は、前記ユーザ端末が前記ネットワークとの接続を確立していない特定状態であっても前記D2D通信を可能にする情報である。前記ユーザ端末は、前記ブロードキャスト情報に基づいて、前記特定状態において前記D2D通信を行う。
[Outline of Embodiment]
The mobile communication system according to the first embodiment and the second embodiment supports cellular communication in which a data path passes through a network and D2D communication that is direct inter-terminal communication in which a data path does not pass through the network. . The mobile communication system includes a base station that is included in the network and transmits broadcast information, and a user terminal that performs the D2D communication after receiving the broadcast information from the base station. The broadcast information is information that enables the D2D communication even in a specific state in which the user terminal has not established a connection with the network. The user terminal performs the D2D communication in the specific state based on the broadcast information.

第1実施形態では、前記特定状態は、前記ネットワークのカバレッジ内で前記ユーザ端末が前記接続を確立していない状態を示すアイドル状態である。   In the first embodiment, the specific state is an idle state indicating a state in which the user terminal has not established the connection within the coverage of the network.

第2実施形態では、前記特定状態は、前記ネットワークのカバレッジ外に前記ユーザ端末が存在する状態である。   In the second embodiment, the specific state is a state where the user terminal exists outside the coverage of the network.

第2実施形態では、前記基地局は、前記カバレッジの終端領域に含まれる終端セルを管理する基地局である。   In 2nd Embodiment, the said base station is a base station which manages the termination | terminus cell contained in the termination | terminus area | region of the said coverage.

第1実施形態及び第2実施形態では、前記ブロードキャスト情報は、前記D2D通信又は前記D2D通信を開始するための端末発見処理において使用が許容される無線リソースを示すリソース情報を含む。   In the first embodiment and the second embodiment, the broadcast information includes resource information indicating radio resources permitted to be used in the terminal discovery process for starting the D2D communication or the D2D communication.

第1実施形態及び第2実施形態では、前記ブロードキャスト情報は、前記D2D通信又は前記D2D通信を開始するための端末発見処理において許容される最大送信電力を示す電力情報を含む。   In the first and second embodiments, the broadcast information includes power information indicating the maximum transmission power allowed in the terminal discovery process for starting the D2D communication or the D2D communication.

第1実施形態では、前記基地局は、前記D2D通信又は前記端末発見処理において使用が許容される前記無線リソースを、前記セルラ通信に使用しない。   In the first embodiment, the base station does not use the radio resource permitted to be used in the D2D communication or the terminal discovery process for the cellular communication.

第1実施形態では、前記ユーザ端末は、前記D2D通信を行う前において前記接続を確立している場合に、前記ブロードキャスト情報に基づいて、前記接続を切断した上で前記D2D通信を行う。   In the first embodiment, when the connection is established before performing the D2D communication, the user terminal performs the D2D communication after disconnecting the connection based on the broadcast information.

第1実施形態では、前記D2D通信を行っている前記ユーザ端末は、他のユーザ端末から当該D2D通信への干渉が検出されたことに応じて、前記接続を確立した上で、又は前記接続を確立する過程で、前記干渉の回避要求を示す情報を前記ネットワークに送信する。   In 1st Embodiment, the said user terminal which is performing the said D2D communication establishes the said connection according to having detected the interference to the said D2D communication from the other user terminal, or the said connection In the process of establishment, information indicating the interference avoidance request is transmitted to the network.

第2実施形態では、前記D2D通信を行っている前記ユーザ端末は、他のユーザ端末から当該D2D通信への干渉が検出されたことに応じて、前記D2D通信を停止すると判断して、前記D2D通信を停止することを示す情報を前記ユーザ端末の通信先端末に送信する。   In the second embodiment, the user terminal performing the D2D communication determines to stop the D2D communication in response to detection of interference from the other user terminal to the D2D communication, and the D2D communication is performed. Information indicating that communication is to be stopped is transmitted to the communication destination terminal of the user terminal.

第1実施形態及び第2実施形態では、前記D2D通信を行っている前記ユーザ端末は、他のユーザ端末から当該D2D通信への干渉が検出されたことに応じて、前記ユーザ端末が属するD2D端末群と前記他のユーザ端末が属するD2D端末群とで使用する無線リソースを異ならせるための端末間ネゴシエーションを行う。   In the first embodiment and the second embodiment, the user terminal that performs the D2D communication is a D2D terminal to which the user terminal belongs in response to detection of interference from the other user terminal to the D2D communication. Inter-terminal negotiation is performed for different radio resources to be used between the group and the D2D terminal group to which the other user terminal belongs.

第1実施形態及び第2実施形態では、前記D2D通信を行っている前記ユーザ端末は、他のユーザ端末から当該D2D通信への干渉が検出されたことに応じて、当該D2D通信に使用する無線リソースを他の無線リソースに変更する。   In 1st Embodiment and 2nd Embodiment, the said user terminal which is performing the said D2D communication is the radio | wireless used for the said D2D communication according to the interference to the said D2D communication being detected from another user terminal. Change the resource to another radio resource.

第1実施形態及び第2実施形態では、前記D2D通信に使用する無線リソースを前記他の無線リソースに変更する前記ユーザ端末は、前記他の無線リソースに変更することを示す変更情報を前記他の無線リソースを使用してブロードキャストする。   In 1st Embodiment and 2nd Embodiment, the said user terminal which changes the radio | wireless resource used for the said D2D communication to the said other radio | wireless resource changes the other information which shows changing to the said other radio | wireless resource Broadcast using radio resources.

第2実施形態では、前記ユーザ端末が属するD2D端末群とは異なるD2D端末群に属する他のユーザ端末が、前記他の無線リソースを使用中に前記変更情報を受信した場合に、前記変更情報を受信した旨を前記他のユーザ端末のサービングセルに通知する。   In the second embodiment, when another user terminal belonging to a D2D terminal group different from the D2D terminal group to which the user terminal belongs receives the change information while using the other radio resource, the change information is The fact that it has been received is notified to the serving cell of the other user terminal.

第1実施形態及び第2実施形態では、前記ユーザ端末が属するD2D端末群とは異なるD2D端末群に属する他のユーザ端末が、前記他の無線リソースを使用中に前記変更情報を受信した場合に、前記他の無線リソースを使用中である旨を前記ユーザ端末に通知する。   In the first embodiment and the second embodiment, when another user terminal belonging to a D2D terminal group different from the D2D terminal group to which the user terminal belongs receives the change information while using the other radio resource. The user terminal is notified that the other radio resource is being used.

第2実施形態の変更例では、前記ユーザ端末は、周波数ホッピング方式を使用して前記D2D通信を行う。前記ブロードキャスト情報は、前記D2D通信において使用が許容されるホッピングパターンを示す情報を含む。   In a modification of the second embodiment, the user terminal performs the D2D communication using a frequency hopping method. The broadcast information includes information indicating a hopping pattern that is allowed to be used in the D2D communication.

第1実施形態及び第2実施形態に係るユーザ端末は、データパスがネットワークを経由するセルラ通信と、データパスがネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる。前記ユーザ端末は、前記ネットワークに含まれる基地局から、ブロードキャスト情報を受信する受信部と、前記受信部が前記ブロードキャスト情報を受信した後、前記D2D通信を行う制御部と、を有する。前記ブロードキャスト情報は、前記ユーザ端末が前記ネットワークとの接続を確立していない特定状態であっても前記D2D通信を可能にする情報である。前記制御部は、前記ブロードキャスト情報に基づいて、前記特定状態において前記D2D通信を行う。   The user terminal according to the first embodiment and the second embodiment provides mobile communication that supports cellular communication in which the data path passes through the network and D2D communication that is direct inter-terminal communication in which the data path does not pass through the network. Used in the system. The user terminal includes a receiving unit that receives broadcast information from a base station included in the network, and a control unit that performs the D2D communication after the receiving unit receives the broadcast information. The broadcast information is information that enables the D2D communication even in a specific state in which the user terminal has not established a connection with the network. The control unit performs the D2D communication in the specific state based on the broadcast information.

第1実施形態及び第2実施形態に係る基地局は、データパスがネットワークを経由するセルラ通信と、データパスがネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて、前記ネットワークに含まれる。前記基地局は、ユーザ端末が前記ネットワークとの接続を確立していない特定状態であっても前記D2D通信を可能にするブロードキャスト情報を送信する送信部を有する。   The base station according to the first embodiment and the second embodiment provides mobile communication that supports cellular communication in which the data path passes through the network and D2D communication that is direct inter-terminal communication in which the data path does not pass through the network. In the system, it is included in the network. The base station includes a transmission unit that transmits broadcast information that enables the D2D communication even in a specific state in which a user terminal has not established a connection with the network.

[第1実施形態]
以下、図面を参照して、3GPP規格に準拠して構成される移動通信システムの一つであるLTEシステムにD2D通信を導入する場合の実施形態を説明する。
[First Embodiment]
Hereinafter, an embodiment in which D2D communication is introduced into an LTE system, which is one of mobile communication systems configured in accordance with the 3GPP standard, will be described with reference to the drawings.

(LTEシステム)
図1は、第1実施形態に係るLTEシステムの構成図である。図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E−UTRAN(Evolved−UMTS Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E−UTRAN10は無線アクセスネットワークに相当し、EPC20はコアネットワークに相当する。E−UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
(LTE system)
FIG. 1 is a configuration diagram of an LTE system according to the first embodiment. As shown in FIG. 1, the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20. The E-UTRAN 10 corresponds to a radio access network, and the EPC 20 corresponds to a core network. The E-UTRAN 10 and the EPC 20 constitute an LTE system network.

UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。   The UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell). UE100 is corresponded to a user terminal.

E−UTRAN10は、複数のeNB200(evolved Node−B)を含む。eNB200は基地局に相当する。eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。   The E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B). The eNB 200 corresponds to a base station. The eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that has established a connection with the own cell. Note that “cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.

eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。   The eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.

EPC20は、複数のMME(Mobility Management Entity)/S−GW(Serving−Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S−GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。MME/S−GW300により構成されるEPC20は、eNB200を収容する。   The EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300. The MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station. The S-GW is a network node that performs transfer control of user data, and corresponds to an exchange. EPC20 comprised by MME / S-GW300 accommodates eNB200.

eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S−GW300と接続される。   The eNB 200 is connected to each other via the X2 interface. Moreover, eNB200 is connected with MME / S-GW300 via S1 interface.

次に、UE100及びeNB200の構成を説明する。   Next, configurations of the UE 100 and the eNB 200 will be described.

図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。   FIG. 2 is a block diagram of the UE 100. As shown in FIG. 2, the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160. Have. The memory 150 and the processor 160 constitute a control unit. The UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.

アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。   The antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals. The antenna 101 includes a plurality of antenna elements. The radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.

ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。   The user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons. The user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160. The GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100. The battery 140 stores power to be supplied to each block of the UE 100.

メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。   The memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160. The processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. . The processor 160 may further include a codec that performs encoding / decoding of an audio / video signal. The processor 160 executes various processes and various communication protocols described later.

図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。   FIG. 3 is a block diagram of the eNB 200. As illustrated in FIG. 3, the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240. The memory 230 and the processor 240 constitute a control unit.

アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。   The antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals. The antenna 201 includes a plurality of antenna elements. The wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201. In addition, the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.

ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S−GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。   The network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface. The network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.

メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。   The memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240. The processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes. The processor 240 executes various processes and various communication protocols described later.

図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。   FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer. Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. Layer 3 includes an RRC (Radio Resource Control) layer.

物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。   The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.

MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及び割当リソースブロックを決定するスケジューラを含む。   The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200. The MAC layer of the eNB 200 includes a scheduler that determines uplink / downlink transport formats (transport block size, modulation / coding scheme (MCS)) and allocated resource blocks.

RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。   The RLC layer transmits data to the RLC layer on the receiving side using functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.

PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。   The PDCP layer performs header compression / decompression and encryption / decryption.

RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態(RRC connected state)であり、そうでない場合、UE100はアイドル状態(RRC idle state)である。   The RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state), and otherwise, the UE 100 is in an idle state (RRC idle state).

RRCレイヤの上位に位置するNAS(Non−Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。   A NAS (Non-Access Stratum) layer located above the RRC layer performs session management, mobility management, and the like.

図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC−FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。   FIG. 5 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiplexing Access) is applied to the downlink and SC-FDMA (Single Carrier Frequency Multiple Access) is applied to the uplink.

図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。リソースブロックは、周波数方向に複数個のサブキャリアを含む。UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。   As shown in FIG. 5, the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. The resource block includes a plurality of subcarriers in the frequency direction. Among radio resources allocated to the UE 100, a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).

下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。   In the downlink, the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH) for transmitting a control signal. The remaining section of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) mainly for transmitting user data.

上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。   In the uplink, both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH) for transmitting a control signal. Further, the central portion in the frequency direction in each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting user data.

(D2D通信)
第1実施形態に係るLTEシステムは、直接的なUE間通信であるD2D通信をサポートする。ここでは、D2D通信を、LTEシステムの通常の通信(セルラ通信)と比較して説明する。
(D2D communication)
The LTE system according to the first embodiment supports D2D communication that is direct UE-to-UE communication. Here, D2D communication will be described in comparison with normal communication (cellular communication) of the LTE system.

セルラ通信は、コアネットワークであるEPC20をデータパスが経由する。データパスとは、ユーザデータ(ユーザプレーン)の通信経路である。これに対し、D2D通信は、UE間に設定されるデータパスがEPC20を経由しない。よって、EPC20のトラフィック負荷を削減できる。   In the cellular communication, the data path passes through the EPC 20 which is a core network. A data path is a communication path for user data (user plane). On the other hand, in D2D communication, a data path set between UEs does not pass through the EPC 20. Therefore, the traffic load of the EPC 20 can be reduced.

UE100は、近傍UE発見(Discovery)処理により、近傍に存在する他のUE100を発見し、D2D通信を開始する。D2D通信は、例えばLTEシステムに割り当てられた周波数帯域(いわゆる、ライセンスバンド)内で行われる。   The UE 100 discovers another UE 100 existing in the vicinity by the nearby UE discovery (Discovery) process, and starts D2D communication. D2D communication is performed, for example, in a frequency band (so-called license band) allocated to the LTE system.

D2D通信には、直接通信モード及び局所中継(Locally Routed)モードが存在する。直接通信モードは、データパスがeNB200を経由しない。相互に近接する複数のUE100からなるUE群(D2D UE群)は、eNB200のセルにおいて、低送信電力で直接的に無線通信を行う。よって、UE100の消費電力の削減、及び隣接セルへの干渉の低減といったメリットを得られる。これに対し、局所中継モードは、データパスがeNB200を経由するもののEPC20を経由しない。局所中継モードは、EPC20のトラフィック負荷を削減できるものの、直接通信モードに比べてメリットが少ない。よって、第1実施形態では、直接通信モードを主として想定する。   In D2D communication, there are a direct communication mode and a locally routed mode. In the direct communication mode, the data path does not pass through the eNB 200. A UE group (D2D UE group) composed of a plurality of UEs 100 that are close to each other directly performs radio communication with low transmission power in a cell of the eNB 200. Therefore, advantages such as a reduction in power consumption of the UE 100 and a reduction in interference with adjacent cells can be obtained. On the other hand, in the local relay mode, the data path passes through the eNB 200 but does not pass through the EPC 20. The local relay mode can reduce the traffic load of the EPC 20, but has less merit than the direct communication mode. Therefore, in the first embodiment, the direct communication mode is mainly assumed.

(第1実施形態に係る動作)
次に、第1実施形態に係る動作について説明する。図6は、第1実施形態に係る動作環境を説明するための図である。図6に示すように、eNB200のセルには、UE100−1D、UE100−2D、及びUE100−Cが在圏している。第1実施形態では、UE100−1D及び100−2Dは、eNB200のセルにおいてD2D通信を行う。UE100−Cは、eNB200のセルにおいてセルラ通信を行う。ここで、UE100−1D及び100−2DがD2D通信を行うための動作を説明する。なお、以下において、UE100−1D及びUE100−2Dを特に区別しない場合は単に「UE100−D」と表記する。
(Operation according to the first embodiment)
Next, an operation according to the first embodiment will be described. FIG. 6 is a diagram for explaining the operating environment according to the first embodiment. As shown in FIG. 6, UE100-1D, UE100-2D, and UE100-C are located in the cell of eNB200. In 1st Embodiment, UE100-1D and 100-2D perform D2D communication in the cell of eNB200. UE100-C performs cellular communication in the cell of eNB200. Here, the operation for the UEs 100-1D and 100-2D to perform D2D communication will be described. In the following description, UE 100-1D and UE 100-2D are simply referred to as “UE 100-D” unless otherwise distinguished.

第1に、eNB200は、D2D通信において使用が許容される無線リソース(以下、「D2D無線リソース」)を確保する。D2D無線リソースは、時間リソース及び/又は周波数リソースにより特定される。時間リソースとは、例えばサブフレームである。周波数リソースとは、例えばリソースブロック及び/又は周波数帯(バンド)である。第1実施形態では、D2D無線リソースは、セルラ通信のためのセルラ無線リソースと共用しない専用無線リソースである。図7は、第1実施形態に係るD2D無線リソースを説明するための図である。図7に示すように、3サブフレーム分の無線リソースのうち、中央のサブフレームにおける中央の数リソースブロックがD2D無線リソースとして確保されている。すなわち、eNB200は、D2D無線リソースをセルラ通信に使用しない。   First, the eNB 200 reserves radio resources that are allowed to be used in D2D communication (hereinafter, “D2D radio resources”). The D2D radio resource is specified by a time resource and / or a frequency resource. The time resource is, for example, a subframe. The frequency resource is, for example, a resource block and / or a frequency band (band). In the first embodiment, the D2D radio resource is a dedicated radio resource that is not shared with the cellular radio resource for cellular communication. FIG. 7 is a diagram for explaining the D2D radio resource according to the first embodiment. As shown in FIG. 7, among the radio resources for three subframes, the center several resource blocks in the center subframe are secured as D2D radio resources. That is, the eNB 200 does not use D2D radio resources for cellular communication.

第2に、eNB200は、UE100−DがネットワークとのRRC接続を確立していない特定状態であってもD2D通信を可能にするブロードキャスト情報(以下、D2Dブロードキャスト情報)を送信する。第1実施形態では、特定状態とは、ネットワークのカバレッジ内でUE100−DがRRC接続を確立していない状態を示すアイドル状態である。eNB200は、D2Dブロードキャスト情報を定期的に送信してもよく、所定のトリガでD2Dブロードキャスト情報を送信してもよい。D2Dブロードキャスト情報は、システム情報ブロック(SIB)又はマスタ情報ブロック(MIB)に含まれてもよい。SIB及びMIBは、アイドル状態のUE100が受信可能な情報である。D2Dブロードキャスト情報は、D2D無線リソース示すリソース情報と、D2D通信において許容される最大送信電力を示す電力情報を含む。D2Dブロードキャスト情報は、Discovery処理において送受信される信号に関する情報を含んでもよい(詳細については後述する)。   2ndly, eNB200 transmits the broadcast information (henceforth D2D broadcast information) which enables D2D communication, even if UE100-D is the specific state which has not established the RRC connection with a network. In the first embodiment, the specific state is an idle state indicating a state in which the UE 100-D has not established an RRC connection within the coverage of the network. The eNB 200 may periodically transmit the D2D broadcast information or may transmit the D2D broadcast information with a predetermined trigger. The D2D broadcast information may be included in a system information block (SIB) or a master information block (MIB). SIB and MIB are information that can be received by UE 100 in an idle state. The D2D broadcast information includes resource information indicating D2D radio resources and power information indicating the maximum transmission power allowed in D2D communication. The D2D broadcast information may include information related to signals transmitted and received in the Discovery process (details will be described later).

第3に、eNB200セルにおいて接続状態又はアイドル状態にあるUE100−Dは、eNB200からD2Dブロードキャスト情報を受信し、D2Dブロードキャスト情報に含まれるリソース情報及び電力情報を取得する。UE100−Dは、Discovery処理の前にD2Dブロードキャスト情報を受信してもよく、Discovery処理の後にD2Dブロードキャスト情報を受信してもよい。   3rdly, UE100-D which is in a connection state or an idle state in eNB200 cell receives D2D broadcast information from eNB200, and acquires the resource information and electric power information which are contained in D2D broadcast information. The UE 100-D may receive D2D broadcast information before the Discovery process, or may receive D2D broadcast information after the Discovery process.

第4に、アイドル状態にあるUE100−Dは、D2Dブロードキャスト情報に基づいてD2D通信を開始する。UE100−Dは、D2D通信を行う前において接続状態にある場合には、eNB200からの指示により又は自発的に、RRC接続を切断した上でアイドル状態においてD2D通信を行う。UE100−Dは、リソース情報により示されるD2D無線リソースの中から、D2D通信に使用する無線リソースを決定し、決定した無線リソースを使用してD2D通信を行う。また、UE100−Dは、電力情報により示される最大送信電力の範囲内で、D2D通信に使用する送信電力を決定し、決定した送信電力を使用してD2D通信を行う。   Fourth, the UE 100-D in the idle state starts D2D communication based on the D2D broadcast information. When the UE 100-D is in the connected state before performing the D2D communication, the UE 100-D performs the D2D communication in the idle state after disconnecting the RRC connection by an instruction from the eNB 200 or voluntarily. UE100-D determines the radio | wireless resource used for D2D communication from D2D radio | wireless resources shown by resource information, and performs D2D communication using the determined radio | wireless resource. Moreover, UE100-D determines the transmission power used for D2D communication within the range of the maximum transmission power shown by electric power information, and performs D2D communication using the determined transmission power.

このように、UE100−Dがアイドル状態においてD2D通信を行うことにより、D2D通信の制御に伴うネットワークの負荷及びシグナリングの増加を抑制できる。   Thus, when UE100-D performs D2D communication in an idle state, the increase in the network load and signaling accompanying control of D2D communication can be suppressed.

ただし、UE100−Dは、D2D通信中に、自身の通信先ではないUE100−X(セルラUE、又は、別のD2D UE群に属するD2D UE)から干渉を受けることがある。以下において、D2D通信中の干渉を回避するための動作パターン1乃至3について説明する。   However, UE100-D may receive interference from UE100-X (cellular UE or D2D UE which belongs to another D2D UE group) which is not its communication destination during D2D communication. Hereinafter, operation patterns 1 to 3 for avoiding interference during D2D communication will be described.

(1)干渉回避動作パターン1
D2D通信を行っているUE100−Dは、自身の通信先ではないUE100−Xから当該D2D通信への干渉(干渉電力)を検出する。UE100−Dは、干渉を検出すると、RRC接続を確立した上で、又はRRC接続を確立する過程で、干渉の回避要求を示す情報をeNB200に送信する。すなわち、UE100−Dは、接続状態に移行して、干渉の回避処理をeNB200に要求する。UE100−Dは、干渉の回避処理を要求するためだけにRRC接続を確立する場合、RRC接続を確立する過程でその旨をeNB200に通知してもよい。eNB200は、干渉の回避処理として、例えば、他のUE100−Xが使用する無線リソースとUE100−Dが使用する無線リソースとを異ならせる。或いは、eNB200は、他のUE100−Xの送信電力を低下させる。
(1) Interference avoidance operation pattern 1
UE100-D which is performing D2D communication detects the interference (interference power) to the said D2D communication from UE100-X which is not its communication destination. When detecting the interference, the UE 100-D transmits information indicating an interference avoidance request to the eNB 200 after establishing the RRC connection or in the process of establishing the RRC connection. That is, UE100-D transfers to a connection state and requests | requires the interference avoidance process from eNB200. When the UE 100-D establishes the RRC connection only for requesting the interference avoidance process, the UE 100-D may notify the eNB 200 to that effect in the process of establishing the RRC connection. For example, the eNB 200 makes the radio resource used by another UE 100-X different from the radio resource used by the UE 100-D as the interference avoidance process. Or eNB200 reduces the transmission power of other UE100-X.

(2)干渉回避動作パターン2
D2D通信を行っているUE100−Dは、自身の通信先ではないUE100−Xから当該D2D通信への干渉(干渉電力)を検出する。UE100−Dは、干渉を検出すると、アイドル状態を維持しながら、干渉を回避するためのUE間ネゴシエーションを行う。例えば、UE100−Dは、自身が属するD2D UE群とUE100−Xが属するD2D UE群とで使用する無線リソースを異ならせるように、UE100−Xとのネゴシエーションを行う。
(2) Interference avoidance operation pattern 2
UE100-D which is performing D2D communication detects the interference (interference power) to the said D2D communication from UE100-X which is not its communication destination. When detecting the interference, the UE 100-D performs an inter-UE negotiation for avoiding the interference while maintaining the idle state. For example, UE100-D negotiates with UE100-X so that the radio | wireless resource used may differ between D2D UE group to which self belongs, and D2D UE group to which UE100-X belongs.

(3)干渉回避動作パターン3
D2D無線リソースに含まれる無線リソース(以下、「無線リソースA」)を使用してD2D通信を行っているUE100−Dは、自身の通信先ではないUE100−Xから当該D2D通信への干渉(干渉電力)を検出する。UE100−Dは、干渉を検出すると、当該D2D通信に使用する無線リソースを、D2D無線リソースに含まれる他の無線リソース(以下、「無線リソースB」)に変更する。そして、UE100−Dは、無線リソースBに変更することを示す変更情報を、無線リソースBを使用してブロードキャストする。
(3) Interference avoidance operation pattern 3
The UE 100-D performing D2D communication using a radio resource included in the D2D radio resource (hereinafter, “radio resource A”) causes interference (interference) from the UE 100-X that is not its communication destination to the D2D communication. Power). When detecting the interference, the UE 100-D changes the radio resource used for the D2D communication to another radio resource (hereinafter, “radio resource B”) included in the D2D radio resource. And UE100-D broadcasts the change information which shows changing to the radio | wireless resource B using the radio | wireless resource B. FIG.

ここで、無線リソースBを使用中のUE100−Yが変更情報を受信した場合、UE100−Yは、変更情報を受信した旨を自身のサービングセル(eNB200)に通知する。また、UE100−Yは、無線リソースBを使用中であることを示す使用中情報を、無線リソースBを使用してブロードキャストする。UE100−Dは、UE100−Yからの使用中情報を受信すると、以下の何れかの処理を行う。   Here, when the UE 100-Y using the radio resource B receives the change information, the UE 100-Y notifies the own serving cell (eNB 200) that the change information has been received. Further, the UE 100-Y broadcasts in-use information indicating that the radio resource B is being used using the radio resource B. When the UE 100-D receives the busy information from the UE 100-Y, the UE 100-D performs one of the following processes.

・UE100−Dは、UE100−Xからの干渉が低減していれば、無線リソースBへの変更を中止して無線リソースAを使用する。   -UE100-D will stop the change to the radio | wireless resource B, and will use the radio | wireless resource A, if the interference from UE100-X has reduced.

・UE100−Dは、UE100−Xからの干渉が低減していなければ、干渉回避動作パターン1又は2の処理を行う。   -UE100-D will perform the process of the interference avoidance operation | movement pattern 1 or 2, if the interference from UE100-X is not reducing.

一方、UE100−Dは、UE100−Yからの使用中情報を受信しない場合には、無線リソースBに変更する旨を自身の通信先UEに通知する。そして、UE100−D及び通信先UEは、無線リソースBを使用してD2D通信を行う。   On the other hand, when the UE 100-D does not receive the busy information from the UE 100-Y, the UE 100-D notifies its own communication destination UE that the radio resource B is changed. Then, the UE 100-D and the communication destination UE perform D2D communication using the radio resource B.

図8は、干渉回避動作パターン2の具体例1を説明するための図である。図8において、セルAは、D2D無線リソースに含まれる周波数帯Aに属するセルであり、セルBは、D2D無線リソースに含まれる周波数帯Bに属するセルである。   FIG. 8 is a diagram for explaining a specific example 1 of the interference avoidance operation pattern 2. In FIG. 8, cell A is a cell belonging to frequency band A included in the D2D radio resource, and cell B is a cell belonging to frequency band B included in the D2D radio resource.

図8(A)に示すように、UE100−1及びUE100−2はD2D UE群を構成し、UE100−3及びUE100−4は別のD2D UE群を構成する。これら2つのD2D UE群が近接し、かつ、当該2つのD2D UE群で同一の周波数帯を使用することにより、D2D通信間の干渉が生じる。ここでは、UE100−4がUE100−1からの干渉を検知した場合を想定する。   As illustrated in FIG. 8A, the UE 100-1 and the UE 100-2 configure a D2D UE group, and the UE 100-3 and the UE 100-4 configure another D2D UE group. When these two D2D UE groups are close to each other and the same frequency band is used in the two D2D UE groups, interference between D2D communications occurs. Here, it is assumed that the UE 100-4 detects interference from the UE 100-1.

図8(B)に示すように、UE100−4は、干渉を検出すると、D2D通信を行う周波数帯(セル)を、周波数帯A(セルA)から周波数帯B(セルB)に変更する。そして、UE100−4は、周波数帯B(セルB)に変更することを示す変更情報を、周波数帯B(セルB)においてブロードキャストする。   As shown in FIG. 8B, when detecting interference, the UE 100-4 changes the frequency band (cell) for performing D2D communication from the frequency band A (cell A) to the frequency band B (cell B). And UE100-4 broadcasts the change information which shows changing to the frequency band B (cell B) in the frequency band B (cell B).

図8(C)に示すように、UE100−4は、使用中情報を受信しないため、周波数帯B(セルB)に変更する旨をUE100−3に通知する。そして、UE100−3及び100−4は、周波数帯B(セルB)においてD2D通信を行う。   As illustrated in FIG. 8C, the UE 100-4 notifies the UE 100-3 that the frequency band B (cell B) is changed because the UE 100-4 does not receive the in-use information. And UE100-3 and 100-4 perform D2D communication in the frequency band B (cell B).

図9は、干渉回避動作パターン2の具体例2を説明するための図である。ここでは、具体例1との相違点を説明する。   FIG. 9 is a diagram for explaining a specific example 2 of the interference avoidance operation pattern 2. Here, differences from the first specific example will be described.

図9(A)に示すように、UE100−4は、周波数帯A(セルA)においてUE100−1からの干渉を検知する。一方、UE100−5及び100−6は、周波数帯B(セルB)においてD2D通信を行っている。   As illustrated in FIG. 9A, the UE 100-4 detects interference from the UE 100-1 in the frequency band A (cell A). On the other hand, UE100-5 and 100-6 are performing D2D communication in the frequency band B (cell B).

図9(B)に示すように、UE100−4は、周波数帯B(セルB)に変更することを示す変更情報を、周波数帯B(セルB)においてブロードキャストする。UE100−6は、UE100−4からの変更情報を受信し、周波数帯B(セルB)を使用中であることを示す使用中情報を、周波数帯B(セルB)においてブロードキャスト(或いは通知)する。UE100−4は、UE100−6からの使用中情報を受信する。   As illustrated in FIG. 9B, the UE 100-4 broadcasts the change information indicating the change to the frequency band B (cell B) in the frequency band B (cell B). The UE 100-6 receives the change information from the UE 100-4, and broadcasts (or notifies) in-use information indicating that the frequency band B (cell B) is being used in the frequency band B (cell B). . The UE 100-4 receives the busy information from the UE 100-6.

図9(C)に示すように、使用中情報を受信したUE100−4は、UE100−1からの干渉が低減していないため、干渉回避動作パターン1又は2の処理を行う。   As illustrated in FIG. 9C, the UE 100-4 that has received the in-use information performs the process of the interference avoidance operation pattern 1 or 2 because the interference from the UE 100-1 has not been reduced.

[第2実施形態]
次に、第2実施形態について説明する。第2実施形態では、特定状態は、ネットワークのカバレッジ外にUE100−Dが存在する状態(以下、「圏外状態」)である。カバレッジとは、LTEネットワークのカバレッジに限らず、同一の通信事業者が運用する全ネットワークのカバレッジであってもよい。また、カバレッジ外とは、ネットワークからの電波が到達しない領域だけでなく、ネットワークからの電波が非常に弱い領域も含む。カバレッジ外の領域を「圏外領域」と称する。
[Second Embodiment]
Next, a second embodiment will be described. In the second embodiment, the specific state is a state in which the UE 100-D exists outside the network coverage (hereinafter, “out-of-service state”). The coverage is not limited to the coverage of the LTE network, but may be the coverage of all networks operated by the same carrier. The term “out of coverage” includes not only a region where radio waves from the network do not reach but also a region where radio waves from the network are very weak. An area outside the coverage is referred to as an “out-of-service area”.

第2実施形態では、D2Dブロードキャスト情報を送信するeNB200は、eNB200は、カバレッジの終端領域に含まれる終端セルを管理する。終端セルとは、その周辺の少なくとも一部が圏外領域であるセルである。すなわち、eNB200は、終端セルにおいてD2Dブロードキャスト情報を送信する。eNB200は、自セルが終端セルであるか否かについての情報をEPC20から通知されてもよい。   In the second embodiment, the eNB 200 that transmits the D2D broadcast information manages the termination cell included in the termination region of the coverage. A terminal cell is a cell in which at least a part of its periphery is an out-of-service area. That is, the eNB 200 transmits D2D broadcast information in the terminal cell. The ePC 200 may be notified from the EPC 20 of information about whether or not the own cell is a terminal cell.

以下において、第2実施形態に係る動作について、第1実施形態との相違点を説明する。   In the following, the operation according to the second embodiment will be described with respect to differences from the first embodiment.

eNB200は、UE100−Dが圏外状態であってもD2D通信を可能にするD2Dブロードキャスト情報を送信する。D2Dブロードキャスト情報は、D2D無線リソース示すリソース情報、及びD2D通信において許容される最大送信電力を示す電力情報に加えて、圏外領域でD2D通信が許容されることを示す情報(終端セル情報)を含む。   The eNB 200 transmits D2D broadcast information that enables D2D communication even when the UE 100-D is out of service. The D2D broadcast information includes information (terminal cell information) indicating that D2D communication is allowed in the out-of-service area in addition to resource information indicating D2D radio resources and power information indicating the maximum transmission power allowed in D2D communication. .

eNB200セルにおいて接続状態又はアイドル状態にあるUE100−Dは、eNB200からD2Dブロードキャスト情報を受信する。そして、圏外状態に移行したUE100−Dは、D2Dブロードキャスト情報に基づいて、Discovery処理を行った後、D2D通信を行う。   UE100-D which is in a connection state or an idle state in eNB200 cell receives D2D broadcast information from eNB200. And UE100-D which transfered to the out-of-service state performs D2D communication, after performing a Discovery process based on D2D broadcast information.

このように、UE100−Dが圏外状態においてD2D通信を行うことにより、D2D通信を有効に活用し、圏外状態においても通信を可能とすることができる。   Thus, when UE100-D performs D2D communication in an out-of-service state, D2D communication can be used effectively and communication can be performed even in an out-of-service state.

また、第2実施形態では、第1実施形態に係る干渉回避動作のうち、eNB200に干渉の回避を要求する動作(すなわち、干渉回避動作パターン1)以外の干渉回避動作が適用できる。   Moreover, in 2nd Embodiment, interference avoidance operation | movement other than the operation | movement (namely, interference avoidance operation | movement pattern 1) which requests | requires avoidance of interference to eNB200 among the interference avoidance operations which concern on 1st Embodiment is applicable.

さらに、第2実施形態では、上述した干渉回避動作パターン1に代えて、干渉回避動作として、D2D通信を中止する動作を適用してもよい。この場合、UE100−Dは、UE100−XからD2D通信への干渉が検出されたことに応じて、D2D通信を停止すると判断して、D2D通信を停止することを示す情報を通信先UEに送信する。   Furthermore, in 2nd Embodiment, it may replace with the interference avoidance operation | movement pattern 1 mentioned above, and may apply the operation | movement which stops D2D communication as interference avoidance operation | movement. In this case, the UE 100-D determines to stop the D2D communication in response to detection of interference from the UE 100-X to the D2D communication, and transmits information indicating that the D2D communication is stopped to the communication destination UE. To do.

[第2実施形態の変更例]
第2実施形態では、eNB200に干渉の回避を要求することが困難であることから、干渉の影響を緩和するために、周波数ホッピング方式を使用してD2D通信を行ってもよい。
[Modification Example of Second Embodiment]
In the second embodiment, since it is difficult to request the eNB 200 to avoid interference, D2D communication may be performed using a frequency hopping method in order to reduce the influence of interference.

本変更例では、D2Dブロードキャスト情報は、D2D通信において使用が許容されるホッピングパターン(ホッピングパターンの候補)の情報を含む。ただし、UE100−Dは、ホッピングパターンの候補を予め保持していてもよい。図10は、ホッピングパターンの候補の具体例を示す図である。図10において、横軸は時間軸であり、1無線フレーム分の10個のサブフレームを示す。縦軸は周波数軸であり、6個のリソースブロック分の帯域幅を示す。   In this modification, the D2D broadcast information includes information on hopping patterns (hopping pattern candidates) that are allowed to be used in D2D communication. However, the UE 100-D may hold a hopping pattern candidate in advance. FIG. 10 is a diagram illustrating a specific example of hopping pattern candidates. In FIG. 10, the horizontal axis is a time axis and shows 10 subframes for one radio frame. The vertical axis is the frequency axis and indicates the bandwidth for six resource blocks.

UE100−Dは、ホッピングパターンの候補の中から、D2D通信に使用するホッピングパターンを選択し、選択したホッピングパターンを通信先UEに通知する。UE100−Dは、選択したホッピングパターンを使用してD2D通信を行う。   UE100-D selects the hopping pattern used for D2D communication from the hopping pattern candidates, and notifies the communication destination UE of the selected hopping pattern. UE100-D performs D2D communication using the selected hopping pattern.

UE100−Dは、同じホッピングパターンを使用するUE100−Xからの干渉を検知した場合に、UE間ネゴシエーションにより当該ホッピングパターンの使用権を決定してもよい。UE100−Dは、選択したホッピングパターンが使用できなくなった場合に、ホッピングパターンの候補の中から他のホッピングパターンを再選択し、選択したホッピングパターンを通信先UEに通知する。UE100−Dは、再選択したホッピングパターンを使用してD2D通信を行う。   When detecting interference from the UE 100-X using the same hopping pattern, the UE 100-D may determine the right to use the hopping pattern by negotiation between UEs. When the selected hopping pattern cannot be used, the UE 100-D reselects another hopping pattern from the hopping pattern candidates, and notifies the communication destination UE of the selected hopping pattern. The UE 100-D performs D2D communication using the reselected hopping pattern.

なお、ホッピングパターンの候補の中からホッピングパターンを選択(又は再選択)する場合に限らず、UE固有のホッピングパターンを当該UEで保持し、UE固有のホッピングパターンを使用してD2D通信を行ってもよい。ホッピングパターンは、UE固有のID、UEが在圏するセルのID、当該セルからUEに割り当てられる一時的なID(C−RNTI)などから算出されてもよい。   In addition, not only when selecting (or reselecting) a hopping pattern from hopping pattern candidates, but also holding a UE-specific hopping pattern in the UE and performing D2D communication using the UE-specific hopping pattern Also good. The hopping pattern may be calculated from an ID unique to the UE, an ID of a cell where the UE is located, a temporary ID (C-RNTI) assigned to the UE from the cell.

[その他の実施形態]
上述した各実施形態において、D2Dブロードキャスト情報は、Discovery処理において送受信される信号(Discovery信号)に関する情報を含んでもよい。Discovery信号とは、近傍UEを発見するための信号、又は近傍UEから発見されるための信号である。Discovery信号に関する情報は、Discovery処理において使用が許容される無線リソース(Discovery無線リソース)を示すリソース情報と、Discovery処理において許容される最大送信電力(Discovery最大送信電力)を示す電力情報と、を含む。この場合、UE100−Dは、リソース情報により示されるDiscovery無線リソースの中から、Discovery信号の送信に使用する無線リソースを決定し、決定した無線リソースを使用してDiscovery信号を送信する。また、UE100−Dは、電力情報により示されるDiscovery最大送信電力の範囲内で、Discovery信号の送信電力を決定し、決定した送信電力を使用してDiscovery信号を送信する。
[Other Embodiments]
In each embodiment mentioned above, D2D broadcast information may also contain the information regarding the signal (Discovery signal) transmitted / received in a Discovery process. The Discovery signal is a signal for discovering a neighboring UE or a signal for discovering from a neighboring UE. The information related to the Discovery signal includes resource information indicating a radio resource (Discovery radio resource) permitted to be used in the Discovery process and power information indicating a maximum transmission power (Discovery maximum transmission power) allowed in the Discovery process. . In this case, UE100-D determines the radio | wireless resource used for transmission of a Discovery signal from the Discovery radio | wireless resources shown by resource information, and transmits a Discovery signal using the determined radio | wireless resource. Further, the UE 100-D determines the transmission power of the Discovery signal within the range of the Discovery maximum transmission power indicated by the power information, and transmits the Discovery signal using the determined transmission power.

上述した各実施形態及びその変更例は、別個独立に実施する場合に限らず、2以上を組み合わせて実施してもよい。   Each embodiment mentioned above and its modification example may be implemented not only in the case of carrying out separately independently, but combining two or more.

上述した第2実施形態及びその変更例において、D2D通信に必要なパラメータ(無線リソース、最大送信電力など)が静的に決められており、かつ、UE100−Dがその情報(パラメータ)を保持していてもよい。この場合、UE100−Dは、D2Dブロードキャスト情報(及び終端セル情報)が無くても、保持しているパラメータを用いてD2D通信を行うことが可能である。   In the above-described second embodiment and modifications thereof, parameters (radio resources, maximum transmission power, etc.) necessary for D2D communication are statically determined, and the UE 100-D holds the information (parameters). It may be. In this case, the UE 100-D can perform D2D communication using the held parameters without the D2D broadcast information (and the terminal cell information).

上述した各実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。   In each of the above-described embodiments, an example in which the present invention is applied to the LTE system has been described. However, the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.

このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。また、上述した実施形態及び変更例は、組み合わせることが可能である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められる。   As described above, the present invention naturally includes various embodiments that are not described herein. Further, the above-described embodiments and modification examples can be combined. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.

なお、米国仮特許出願第61/766548号(2013年2月19日出願)の全内容が、参照により、本願に組み込まれている。   The entire contents of US Provisional Patent Application No. 61/766548 (filed on Feb. 19, 2013) are incorporated herein by reference.

本発明によれば、D2D通信の制御に伴うネットワークの負荷及びシグナリングの増加を抑制できる移動通信システム、ユーザ端末及び基地局を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the mobile communication system, the user terminal, and base station which can suppress the increase in the network load and signaling accompanying control of D2D communication can be provided.

Claims (3)

直接的な端末間通信である直接通信の機能とネットワークとのセルラ通信の機能とを有するユーザ端末であって、
予め定義されたリソース情報及び電力情報を記憶する記憶部と、
ネットワークのカバレッジ外に前記ユーザ端末が存在する状態において、前記リソース情報及び前記電力情報に基づいて、他のユーザ端末に直接的に通信データを送信する処理を行う制御部と、を有し、
前記リソース情報は、前記直接通信において使用が許容される無線リソースを示す情報であり、
前記電力情報は、前記直接通信における送信電力を制御するための情報であり、
前記制御部は、前記リソース情報に基づいて、前記通信データの送信に使用する無線リソースを決定し、
前記制御部は、前記電力情報に基づいて、前記通信データの送信に使用する送信電力を決定し、
前記制御部は、ネットワークのカバレッジ外に前記ユーザ端末が存在する状態において、他のユーザ端末から送信される無線信号のセンシングを行い、前記センシングの結果に基づいて、前記リソース情報が示す無線リソースの中から前記通信データの送信に使用する無線リソースを決定する
ユーザ端末。
A user terminal having a function of direct communication that is direct inter-terminal communication and a function of cellular communication with a network,
A storage unit for storing predefined resource information and power information;
A control unit that performs processing for transmitting communication data directly to another user terminal based on the resource information and the power information in a state where the user terminal exists outside a network coverage;
The resource information is information indicating a radio resource allowed to be used in the direct communication,
The power information is information for controlling transmission power in the direct communication,
The control unit determines a radio resource to be used for transmission of the communication data based on the resource information,
The control unit determines transmission power to be used for transmission of the communication data based on the power information,
The control unit performs sensing of a radio signal transmitted from another user terminal in a state where the user terminal exists outside the coverage of a network, and based on a result of the sensing, a radio resource indicated by the resource information A user terminal that determines a radio resource to be used for transmission of the communication data.
直接的な端末間通信である直接通信の機能とネットワークとのセルラ通信の機能とを有するユーザ端末に備えられるプロセッサであって、
ネットワークのカバレッジ外に前記ユーザ端末が存在する状態において、予め定義されたリソース情報及び電力情報に基づいて、他のユーザ端末に直接的に通信データを送信する処理を実行し、
前記リソース情報は、前記直接通信において使用が許容される無線リソースを示す情報であり、
前記電力情報は、前記直接通信における送信電力を制御するための情報であり、
前記プロセッサは、前記リソース情報に基づいて、前記通信データの送信に使用する無線リソースを決定し、
前記プロセッサは、前記電力情報に基づいて、前記通信データの送信に使用する送信電力を決定し、
前記プロセッサは、ネットワークのカバレッジ外に前記ユーザ端末が存在する状態において、他のユーザ端末から送信される無線信号のセンシングを行い、前記センシングの結果に基づいて、前記リソース情報が示す無線リソースの中から前記通信データの送信に使用する無線リソースを決定する
プロセッサ。
A processor provided in a user terminal having a function of direct communication that is direct communication between terminals and a function of cellular communication with a network,
In a state where the user terminal exists outside the coverage of the network, based on the resource information and power information defined in advance, a process of directly transmitting communication data to other user terminals,
The resource information is information indicating a radio resource allowed to be used in the direct communication,
The power information is information for controlling transmission power in the direct communication,
The processor determines a radio resource to be used for transmission of the communication data based on the resource information,
The processor determines transmission power to be used for transmission of the communication data based on the power information,
The processor performs sensing of a radio signal transmitted from another user terminal in a state where the user terminal exists outside the coverage of the network, and based on the sensing result, among the radio resources indicated by the resource information A processor that determines a radio resource to be used for transmitting the communication data from the processor.
直接的な端末間通信である直接通信の機能とネットワークとのセルラ通信の機能とを有するユーザ端末における方法であって、
ネットワークのカバレッジ外に前記ユーザ端末が存在する状態において、予め定義されたリソース情報及び電力情報に基づいて、他のユーザ端末に直接的に通信データを送信するステップを含み、
前記リソース情報は、前記直接通信において使用が許容される無線リソースを示す情報であり、
前記電力情報は、前記直接通信における送信電力を制御するための情報であり、
前記方法は、
前記リソース情報に基づいて、前記通信データの送信に使用する無線リソースを決定するステップと、
前記電力情報に基づいて、前記通信データの送信に使用する送信電力を決定するステップと、を含み、
前記無線リソースを決定するステップは、ネットワークのカバレッジ外に前記ユーザ端末が存在する状態において、他のユーザ端末から送信される無線信号のセンシングを行い、前記センシングの結果に基づいて、前記リソース情報が示す無線リソースの中から前記通信データの送信に使用する無線リソースを決定するステップを含む
方法。
A method in a user terminal having a function of direct communication that is direct inter-terminal communication and a function of cellular communication with a network,
Including the step of transmitting communication data directly to other user terminals based on predefined resource information and power information in a state where the user terminals exist outside the coverage of the network,
The resource information is information indicating a radio resource allowed to be used in the direct communication,
The power information is information for controlling transmission power in the direct communication,
The method
Determining a radio resource to be used for transmission of the communication data based on the resource information;
Determining transmission power to be used for transmission of the communication data based on the power information,
The step of determining the radio resource performs sensing of a radio signal transmitted from another user terminal in a state where the user terminal exists outside the coverage of the network, and the resource information is determined based on the sensing result. Determining a radio resource to be used for transmission of the communication data from among the indicated radio resources.
JP2017113521A 2013-02-19 2017-06-08 User terminal, processor, and method Active JP6253833B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361766548P 2013-02-19 2013-02-19
US61/766,548 2013-02-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015226150A Division JP6158899B2 (en) 2013-02-19 2015-11-19 User terminal, processor, and base station

Publications (2)

Publication Number Publication Date
JP2017184278A true JP2017184278A (en) 2017-10-05
JP6253833B2 JP6253833B2 (en) 2017-12-27

Family

ID=51391242

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015501455A Active JP5844937B2 (en) 2013-02-19 2014-02-18 Mobile communication system, user terminal, base station, processor, and base station control method
JP2015226150A Active JP6158899B2 (en) 2013-02-19 2015-11-19 User terminal, processor, and base station
JP2017113521A Active JP6253833B2 (en) 2013-02-19 2017-06-08 User terminal, processor, and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015501455A Active JP5844937B2 (en) 2013-02-19 2014-02-18 Mobile communication system, user terminal, base station, processor, and base station control method
JP2015226150A Active JP6158899B2 (en) 2013-02-19 2015-11-19 User terminal, processor, and base station

Country Status (4)

Country Link
US (7) US20160007336A1 (en)
EP (3) EP2961242B1 (en)
JP (3) JP5844937B2 (en)
WO (1) WO2014129452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229907A1 (en) * 2018-05-30 2019-12-05 株式会社Nttドコモ Communication device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150208383A1 (en) * 2012-07-27 2015-07-23 Kyocera Corporation Mobile communication system and mobile communication method used in a mobile communication system
JP5844937B2 (en) * 2013-02-19 2016-01-20 京セラ株式会社 Mobile communication system, user terminal, base station, processor, and base station control method
EP2986051B1 (en) * 2013-04-08 2018-05-30 LG Electronics Inc. Group membership assessment for a proximity-based service in wireless communication system
US10602554B2 (en) * 2013-04-10 2020-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and wireless device for managing resources for D2D communication
WO2015020736A1 (en) * 2013-08-08 2015-02-12 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US10117224B2 (en) * 2013-09-20 2018-10-30 Qualcomm Incorporated MAC subheader for D2D broadcast communication for public safety
EP3039931B1 (en) * 2013-10-31 2018-10-17 Sony Corporation Communications system, communications device and method of communicating
WO2015063106A1 (en) * 2013-10-31 2015-05-07 Sony Corporation Communications system, communications device, infrastructure equipment and method of communicating
GB201402308D0 (en) * 2014-02-11 2014-03-26 Nec Corp Communication system
TWI612837B (en) * 2014-03-11 2018-01-21 財團法人資訊工業策進會 Direct mode communication system and communication resource scheduling method thereof
CN106105345B (en) * 2014-03-19 2019-08-06 Lg电子株式会社 In a wireless communication system by terminal D2D (device to the device) signaling method implemented and the terminal of use this method
CN106416388B (en) * 2014-08-07 2020-01-03 太阳专利信托公司 Power control method and user equipment in device-to-device communication in serving cell
KR102183333B1 (en) * 2014-08-08 2020-11-26 주식회사 아이티엘 Method and apparatus for transmitting buffer status report in wireless communication system supporting device to device communication
US10033577B2 (en) * 2014-10-27 2018-07-24 Qualcomm Incorporated Dynamically reconfigurable radio air interface for communicating over a mesh network and a wide area network
WO2016126135A1 (en) * 2015-02-06 2016-08-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in communication system supporting device to device scheme
JP6627889B2 (en) * 2016-01-08 2020-01-08 富士通株式会社 Wireless communication device, wireless communication system and processing method
JP6763404B2 (en) 2016-01-08 2020-09-30 富士通株式会社 Wireless communication devices, wireless communication systems and processing methods
US10728727B2 (en) * 2016-03-04 2020-07-28 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Systems and methods for reducing interference in wireless communication among computing devices
CN108124310B (en) 2016-11-29 2020-04-14 华为技术有限公司 Frequency hopping communication method and device
WO2020067818A1 (en) * 2018-09-27 2020-04-02 엘지전자 주식회사 Method and apparatus for transmitting or receiving ul data on pur in idle mode in wireless communication system
EP3911100A4 (en) * 2019-01-10 2022-01-19 Sony Group Corporation Communication device, communication method, and communication program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061383A1 (en) * 2010-11-01 2012-05-10 Interdigital Patent Holdings, Inc. Dynamic spectrum management
JP2013005283A (en) * 2011-06-17 2013-01-07 Hitachi Kokusai Electric Inc Wireless device
JP2016054525A (en) * 2013-02-19 2016-04-14 京セラ株式会社 Mobile communication system, user terminal, and base station

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735224A (en) * 2004-08-10 2006-02-15 皇家飞利浦电子股份有限公司 Method and device for limiting P2P communication interfere
US8737920B2 (en) 2004-11-10 2014-05-27 Interdigital Technology Corporation Method and apparatus for managing wireless communication network radio resources
KR101498968B1 (en) * 2007-07-05 2015-03-12 삼성전자주식회사 Apparatus and method for determining communication resource of peer to peer in a communication system
US20090122753A1 (en) * 2007-10-01 2009-05-14 Hughes Timothy J Dynamic data link segmentation and reassembly
US8068454B2 (en) * 2007-11-07 2011-11-29 Motorola Solutions, Inc. System for enabling mobile coverage extension and peer-to-peer communications in an ad hoc network and method of operation therefor
JP4948431B2 (en) * 2008-01-18 2012-06-06 パナソニック株式会社 Wireless communication terminal and wireless communication method
US9320067B2 (en) * 2008-11-24 2016-04-19 Qualcomm Incorporated Configuration of user equipment for peer-to-peer communication
US8213951B2 (en) * 2008-12-23 2012-07-03 At & T Mobility Ii Llc Using mobile communication devices to facilitate coordinating use of resources
US8493887B2 (en) * 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
WO2010082114A1 (en) * 2009-01-16 2010-07-22 Nokia Corporation Enabling device-to-device communication in cellular networks
US8666403B2 (en) * 2009-10-23 2014-03-04 Nokia Solutions And Networks Oy Systems, methods, and apparatuses for facilitating device-to-device connection establishment
US20110103319A1 (en) * 2009-10-29 2011-05-05 Qualcomm Incorporated Access point scheduled peer-to-peer communication
US9066325B2 (en) * 2010-05-28 2015-06-23 Nokia Solutions And Networks Oy Methods and apparatus for controlling quality of service parameters in a radio network
US8913579B2 (en) * 2010-08-04 2014-12-16 Nokia Corporation Resolution method and apparatus for simultaneous transmission and receiving contention in a device-to-device cellular reuse system
US9072110B2 (en) * 2010-11-08 2015-06-30 Mediatek Inc. Method for UE pattern indication and measurement for interference coordination
WO2012127440A1 (en) * 2011-03-23 2012-09-27 Renesas Mobile Corporation Method and apparatus for facilitating machine-type communication
US20120250601A1 (en) * 2011-03-28 2012-10-04 Hyung-Nam Choi Communication terminal, method for exchanging data, communication device and method for establishing a communication connection
WO2013048296A1 (en) * 2011-09-30 2013-04-04 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for handling device-to-device communication in a wireless communications network
GB2497741A (en) * 2011-12-19 2013-06-26 Renesas Mobile Corp A verification system for use in requesting access to a D2D communication service
GB2497745B (en) * 2011-12-19 2014-11-05 Broadcom Corp Improvements to wireless communication systems and methods
US20140342747A1 (en) * 2012-01-18 2014-11-20 Lg Electronics Inc. Device-to-device communication method and a device therefor
EP2862377B1 (en) * 2012-06-19 2016-04-06 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for d2d discovery
US9154267B2 (en) * 2012-07-02 2015-10-06 Intel Corporation Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
CN103686676A (en) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 Communication method and device of device-to-device communication system and system
EP2901778A1 (en) * 2012-09-28 2015-08-05 Nokia Solutions and Networks Oy Location registration for a device - to - device d2d communication user equipment being in idle mode mobility management
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9143291B2 (en) * 2012-12-27 2015-09-22 Google Technology Holdings LLC Method and apparatus for device-to-device communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061383A1 (en) * 2010-11-01 2012-05-10 Interdigital Patent Holdings, Inc. Dynamic spectrum management
JP2013543349A (en) * 2010-11-01 2013-11-28 インターデイジタル パテント ホールディングス インコーポレイテッド Dynamic spectrum management
JP2013005283A (en) * 2011-06-17 2013-01-07 Hitachi Kokusai Electric Inc Wireless device
JP2016054525A (en) * 2013-02-19 2016-04-14 京セラ株式会社 Mobile communication system, user terminal, and base station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229907A1 (en) * 2018-05-30 2019-12-05 株式会社Nttドコモ Communication device

Also Published As

Publication number Publication date
US20220046743A1 (en) 2022-02-10
JP5844937B2 (en) 2016-01-20
US10129923B2 (en) 2018-11-13
JP2016054525A (en) 2016-04-14
JPWO2014129452A1 (en) 2017-02-02
EP2961242B1 (en) 2018-11-21
EP2961242A4 (en) 2016-10-12
US9913312B2 (en) 2018-03-06
US12004252B2 (en) 2024-06-04
US20180160468A1 (en) 2018-06-07
EP3668268B1 (en) 2021-06-02
EP3445133B1 (en) 2020-04-01
US20190075612A1 (en) 2019-03-07
US10602566B2 (en) 2020-03-24
WO2014129452A1 (en) 2014-08-28
EP2961242A1 (en) 2015-12-30
US11178721B2 (en) 2021-11-16
US20160007336A1 (en) 2016-01-07
EP3445133A1 (en) 2019-02-20
US9769864B2 (en) 2017-09-19
US20170367135A1 (en) 2017-12-21
US20160278155A1 (en) 2016-09-22
JP6253833B2 (en) 2017-12-27
EP3668268A1 (en) 2020-06-17
JP6158899B2 (en) 2017-07-05
US20200214074A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP6253833B2 (en) User terminal, processor, and method
JP6475885B2 (en) Radio base station, user terminal and processor
JP6328132B2 (en) Mobile communication system and user terminal
JP6687452B2 (en) Mobile communication system, user terminal, processor, storage medium and program
JP6147848B2 (en) Communication control method and processor
JP6140180B2 (en) Mobile communication system, user terminal, base station, processor, and communication control method
WO2015046268A1 (en) User terminal, base station, and server device
JP6302129B1 (en) Base station and processor
JP6140270B2 (en) Mobile communication system, base station, and user terminal

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150