Nothing Special   »   [go: up one dir, main page]

JP2017183092A - Voltage detector - Google Patents

Voltage detector Download PDF

Info

Publication number
JP2017183092A
JP2017183092A JP2016068972A JP2016068972A JP2017183092A JP 2017183092 A JP2017183092 A JP 2017183092A JP 2016068972 A JP2016068972 A JP 2016068972A JP 2016068972 A JP2016068972 A JP 2016068972A JP 2017183092 A JP2017183092 A JP 2017183092A
Authority
JP
Japan
Prior art keywords
cell
battery cells
voltage
battery
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016068972A
Other languages
Japanese (ja)
Inventor
真吾 槌矢
Shingo Tsuchiya
真吾 槌矢
鎌田 誠二
Seiji Kamata
誠二 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016068972A priority Critical patent/JP2017183092A/en
Publication of JP2017183092A publication Critical patent/JP2017183092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To identify a disconnected wiring for cell voltage detection.SOLUTION: A voltage detector including a plurality of discharge circuits connected in parallel with multiple battery cells, respectively, multiple transmission lines for transmitting the terminal voltages of respective terminals of the multiple battery cells, and a cell voltage detector for detecting a terminal voltage inputted from the transmission line as the cell voltage of battery cell, is further provided with a disconnection determination unit for determining a disconnected transmission line by evaluating the difference of a pair of cell voltages related to a pair of battery cells adjoining each other, including the sign thereof, when the discharge circuits thereof are brought into discharge state with different duty ratios.SELECTED DRAWING: Figure 1

Description

本発明は、電圧検出装置に関する。   The present invention relates to a voltage detection device.

下記特許文献1には、バイパス抵抗とスイッチング素子との直列回路からなり、バッテリを構成する複数の電池セルの各々に並列接続された放電回路と、電池セルの各々の電圧を検出する電圧検出回路と、電圧検出回路から得られる各電池セルの電圧検出結果に基づいて各電池セルの電圧が均一となるように各スイッチング素子を制御する制御部とを備えたセルバランス制御装置において、制御部は、隣り合う電池セルに接続された放電回路のスイッチング素子をそれぞれ異なるデューティ比で制御すると共に、隣り合う一対の電池セルの電位差に基づいて各電池セルの各端子から引き出されたセル電圧検出用配線の断線を検出するセルバランス制御装置が開示されている。   The following Patent Document 1 includes a discharge circuit that includes a series circuit of a bypass resistor and a switching element and is connected in parallel to each of a plurality of battery cells that form a battery, and a voltage detection circuit that detects each voltage of the battery cells. And a control unit that controls each switching element so that the voltage of each battery cell becomes uniform based on the voltage detection result of each battery cell obtained from the voltage detection circuit, the control unit includes: The switching element of the discharge circuit connected to the adjacent battery cell is controlled with different duty ratios, and the cell voltage detection wiring drawn from each terminal of each battery cell based on the potential difference between the pair of adjacent battery cells A cell balance control device for detecting disconnection of a cell is disclosed.

このセルバランス制御装置では、特許文献1の図2に記載されているように、互いに直列接続された電池セルのうち、奇数番目の電池セルの放電回路を4%のデューティ比で放電させ、また偶数番目の電池セルの放電回路を96%のデューティ比で放電させる。例えば、1番目の電池セルのマイナス端子と2番目の電池セルのプラス端子との接点に接続されたセル電圧検出用配線に断線が発生すると、1番目の電池セルに対応するセル電圧は上昇し、かつ、2番目の電池セルに対応するセル電圧は下降し、この結果として1番目と2番目の電池セルに対応する一対のセル電圧の電位差が徐々に増大する。このセルバランス制御装置では、上記一対のセル電圧の電位差が所定のしきい位置を越えた場合にセル電圧検出用配線に断線が発生したと判定する。   In this cell balance control device, as described in FIG. 2 of Patent Document 1, among the battery cells connected in series with each other, the discharge circuit of the odd-numbered battery cell is discharged at a duty ratio of 4%. The discharge circuit of the even-numbered battery cell is discharged with a duty ratio of 96%. For example, when a disconnection occurs in the cell voltage detection wiring connected to the contact point between the negative terminal of the first battery cell and the positive terminal of the second battery cell, the cell voltage corresponding to the first battery cell increases. In addition, the cell voltage corresponding to the second battery cell decreases, and as a result, the potential difference between the pair of cell voltages corresponding to the first and second battery cells gradually increases. In this cell balance control device, it is determined that a disconnection has occurred in the cell voltage detection wiring when the potential difference between the pair of cell voltages exceeds a predetermined threshold position.

特開2013−085354号公報JP 2013-085354 A

しかしながら、上記背景技術では、セル電圧検出用配線の断線発生を検知することができるが、複数存在するセル電圧検出用配線のうち何れのセル電圧検出用配線が断線したのかを絞り込むことができない。すなわち、2番目の電池セルに対応するセル電圧が下降することによって、2番目と3番目の電池セルに対応する一対のセル電圧の電位差も最終的に所定のしきい位置を越えるので、セル電圧検出用配線に断線が発生したことを検知することができるものの、断線したセル電圧検出用配線を特定することができない。   However, in the above background art, it is possible to detect the occurrence of disconnection of the cell voltage detection wiring, but it is not possible to narrow down which of the plurality of cell voltage detection wirings is disconnected. That is, since the cell voltage corresponding to the second battery cell falls, the potential difference between the pair of cell voltages corresponding to the second and third battery cells eventually exceeds the predetermined threshold position. Although it can be detected that a disconnection has occurred in the detection wiring, the disconnected cell voltage detection wiring cannot be specified.

本発明は、上述した事情に鑑みてなされたものであり、断線したセル電圧検出用配線を特定することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to specify a disconnected cell voltage detection wiring.

上記目的を達成するために、本発明では、電圧検出装置に係る解決手段として、複数の電池セルに各々並列接続された複数の放電回路と、複数の前記電池セルの各端子の端子電圧を伝送する複数の伝送線路と、該伝送線路から入力された前記端子電圧を前記電池セルのセル電圧として検出するセル電圧検出部とを備えた電圧検出装置において、互いに隣り合う一対の前記電池セルの前記放電回路を異なるデューティ比で放電状態とした場合に、前記一対の前記電池セルに関する一対の前記セル電圧の差分を符号を含めて評価することによって、断線した伝送線路を判定する断線判定部を備える、という手段を採用する。   In order to achieve the above object, in the present invention, as means for solving the voltage detection device, a plurality of discharge circuits connected in parallel to a plurality of battery cells and a terminal voltage of each terminal of the plurality of battery cells are transmitted. And a cell voltage detector that detects the terminal voltage input from the transmission line as a cell voltage of the battery cell. In the voltage detection device, the pair of battery cells adjacent to each other When the discharge circuit is in a discharge state with a different duty ratio, a disconnection determination unit is provided that determines a disconnected transmission line by evaluating a difference between the pair of cell voltages with respect to the pair of battery cells including a sign. , Is adopted.

本発明によれば、互いに隣り合う一対の前記電池セルの前記放電回路を異なるデューティ比で放電状態とした場合に、前記一対の前記電池セルに関する一対の前記セル電圧の差分を符号を含めて評価することによって、断線したセル電圧検出用配線を特定することができる。  According to the present invention, when the discharge circuits of the pair of battery cells adjacent to each other are discharged at different duty ratios, the difference between the pair of cell voltages related to the pair of battery cells is evaluated including a sign. By doing so, the disconnected cell voltage detection wiring can be specified.

本発明の一実施形態に係る電圧検出装置Aの構成を示す回路図である。It is a circuit diagram which shows the structure of the voltage detection apparatus A which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電圧検出装置Aにおけるセル電圧の変化傾向を示す特性図である。It is a characteristic view which shows the change tendency of the cell voltage in the voltage detection apparatus A which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る電圧検出装置Aは、図1に示すように、組電池Xを構成する複数(n個)の電池セルC1〜Cnの電圧(セル電圧)を検出する装置であり、所定サイズのプリント基板上に実装された複数(n個)の放電回路B1〜Bn、複数(n+1本)の伝送線路S1〜Sn+1、複数(n+1個)のCRフィルタF1〜Fn+1、複数(n個)のセル電圧検出部D1〜Dn及びマイコンM(断線判定部)を備えている。なお、上記「n」は2以上の自然数である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the voltage detection device A according to the present embodiment is a device that detects voltages (cell voltages) of a plurality (n) of battery cells C1 to Cn constituting the assembled battery X, and has a predetermined size. A plurality (n) of discharge circuits B1 to Bn, a plurality (n + 1) of transmission lines S1 to Sn + 1, a plurality (n + 1) of CR filters F1 to Fn + 1, and a plurality (n) of discharge circuits B1 to Bn mounted on the printed circuit board. Cell voltage detection units D1 to Dn and a microcomputer M (disconnection determination unit) are provided. The “n” is a natural number of 2 or more.

なお、図1では、作図スペースの制約からn個(複数)の電池セルC1〜Cnの電圧、n個の放電回路B1〜Bn、n+1本の伝送線路S1〜Sn+1、n+1個のCRフィルタF1〜Fn+1及びn個のセル電圧検出部D1〜Dnのうち、4個の電池セルC1〜C4の電圧、4個の放電回路B1〜B4、5本の伝送線路S1〜S5、5個のCRフィルタF1〜F5及び4個のセル電圧検出部D1〜D4のみを示している。   In FIG. 1, the voltage of n (plural) battery cells C1 to Cn, n discharge circuits B1 to Bn, n + 1 transmission lines S1 to Sn + 1, n + 1 CR filters F1 to F1 due to drawing space restrictions. Among Fn + 1 and n cell voltage detectors D1 to Dn, voltages of four battery cells C1 to C4, four discharge circuits B1 to B4, five transmission lines S1 to S5, and five CR filters F1 Only F5 and four cell voltage detectors D1 to D4 are shown.

n個の電池セルC1〜Cnは、一列に直列接続されており、電池セルC1のプラス端子が組電池Xのプラス端子であり、電池セルCnのマイナス端子が組電池Xのマイナス端子である。すなわち、n個の電池セルC1〜Cnは、電池セルC1→電池セルC2→電池セルC3→電池セルC4→(中略)→電池セルCnの順に直列接続されており、各電池セルC1〜Cnのセル電圧の合計値が組電池Xの出力電圧となる。   The n battery cells C1 to Cn are connected in series in a line, the plus terminal of the battery cell C1 is the plus terminal of the assembled battery X, and the minus terminal of the battery cell Cn is the minus terminal of the assembled battery X. That is, n battery cells C1 to Cn are connected in series in the order of battery cell C1, battery cell C2, battery cell C3, battery cell C4, (omitted), and battery cell Cn. The total value of the cell voltages is the output voltage of the battery pack X.

n個の放電回路B1〜Bnは、上記n個の電池セルC1〜Cnに各々並列接続されており、各々にバイパス抵抗とスイッチング素子との直列回路である。これら放電回路B1〜Bnは、スイッチング素子がON状態になると放電状態となり、スイッチング素子がOFF状態になると非放電状態となる。すなわち、放電回路B1は電池セルC1に並列接続され、放電回路B2は電池セルC2に並列接続され、放電回路B3は電池セルC3に並列接続され、放電回路B4は電池セルC4に並列接続されている。(中略)放電回路Bnは電池セルCnに並列接続されている。   The n discharge circuits B1 to Bn are respectively connected in parallel to the n battery cells C1 to Cn, and are each a series circuit of a bypass resistor and a switching element. The discharge circuits B1 to Bn are in a discharge state when the switching element is turned on, and are in a non-discharge state when the switching element is turned off. That is, the discharge circuit B1 is connected in parallel to the battery cell C1, the discharge circuit B2 is connected in parallel to the battery cell C2, the discharge circuit B3 is connected in parallel to the battery cell C3, and the discharge circuit B4 is connected in parallel to the battery cell C4. Yes. (Omitted) The discharge circuit Bn is connected in parallel to the battery cell Cn.

n+1本の伝送線路S1〜Sn+1は、n個の電池セルC1〜Cnの各端子の端子電圧をn個のセル電圧検出部D1〜Dnに伝送する配線(セル電圧検出用配線)であり、n個の電池セルC1〜Cnの各端子(合計n+1個)とn個のセル電圧検出部D1〜Dnの各入力端(合計n+1個)とを相互に接続する。   The n + 1 transmission lines S1 to Sn + 1 are wirings (cell voltage detection wirings) that transmit the terminal voltages of the n battery cells C1 to Cn to the n cell voltage detection units D1 to Dn. The terminals (total n + 1) of the battery cells C1 to Cn and the input terminals (total n + 1) of the n cell voltage detectors D1 to Dn are connected to each other.

すなわち、伝送線路S1は電池セルC1のプラス端子とセル電圧検出部D1の一方の入力端1aとを接続し、伝送線路S2は電池セルC1のマイナス端子と電池セルC2のプラス端子との接続点とセル電圧検出部D1の他方の入力端1b及びセル電圧検出部D2の一方の入力端2aとを接続する。また、伝送線路S3は、電池セルC2のマイナス端子と電池セルC3のプラス端子との接続点とセル電圧検出部D2の他方の入力端2b及びセル電圧検出部D3の一方の入力端3aとを接続し、伝送線路S4は、電池セルC3のマイナス端子と電池セルC4のプラス端子との接続点とセル電圧検出部D3の他方の入力端3b及び図示しないセル電圧検出部D4の一方の入力端4aとを接続する。   That is, the transmission line S1 connects the positive terminal of the battery cell C1 and one input end 1a of the cell voltage detector D1, and the transmission line S2 is a connection point between the negative terminal of the battery cell C1 and the positive terminal of the battery cell C2. And the other input terminal 1b of the cell voltage detection unit D1 and one input terminal 2a of the cell voltage detection unit D2. The transmission line S3 includes a connection point between the negative terminal of the battery cell C2 and the positive terminal of the battery cell C3, the other input end 2b of the cell voltage detection unit D2, and one input end 3a of the cell voltage detection unit D3. The transmission line S4 is connected to a connection point between the negative terminal of the battery cell C3 and the positive terminal of the battery cell C4, the other input terminal 3b of the cell voltage detector D3, and one input terminal of the cell voltage detector D4 (not shown). 4a is connected.

また、伝送線路S5は、電池セルC4のマイナス端子と電池セルC5のプラス端子との接続点とセル電圧検出部D4の他方の入力端3b及び図示しないセル電圧検出部D5の一方の入力端4aとを接続し、(中略)、図示しない伝送線路Snは、電池セルCnのプラス端子とセル電圧検出部Dnの一方の入力端naとを接続し、同じく図示しない伝送線路Sn+1は、電池セルCnのマイナス端子とセル電圧検出部Dnの他方の入力端nbとを接続する。   The transmission line S5 includes a connection point between the negative terminal of the battery cell C4 and the positive terminal of the battery cell C5, the other input terminal 3b of the cell voltage detection unit D4, and one input terminal 4a of the cell voltage detection unit D5 (not shown). (Not shown), the transmission line Sn (not shown) connects the positive terminal of the battery cell Cn and one input end na of the cell voltage detector Dn, and the transmission line Sn + 1 (not shown) is connected to the battery cell Cn. Are connected to the other input terminal nb of the cell voltage detector Dn.

n+1個のCRフィルタF1〜Fn+1は、n+1本の伝送線路S1〜Sn+1に各々設けられたノイズ除去用のローパスフィルタであり、フィルタ抵抗及びフィルタコンデンサから構成されている。上記フィルタ抵抗は、n+1本の伝送線路S1〜Sn+1の各々に直列に接続されており、また上記フィルタコンデンサは、一端がn+1本の伝送線路S1〜Sn+1の各々に、また他端がGND(接地電位)に接続されている。   The n + 1 CR filters F1 to Fn + 1 are noise-removing low-pass filters provided in n + 1 transmission lines S1 to Sn + 1, respectively, and include a filter resistor and a filter capacitor. The filter resistor is connected in series to each of n + 1 transmission lines S1 to Sn + 1, and the filter capacitor has one end connected to each of n + 1 transmission lines S1 to Sn + 1 and the other end connected to GND (ground). Potential).

すなわち、CRフィルタF1は伝送線路S1に設けられており、CRフィルタF2は伝送線路S2に設けられており、CRフィルタF3は伝送線路S3に設けられており、CRフィルタF4は伝送線路S4に設けられており、CRフィルタF5は伝送線路S5に設けられており、(中略)、CRフィルタFnは伝送線路Snに設けられており、またCRフィルタFn+1は伝送線路Sn+1に設けられている。   That is, the CR filter F1 is provided on the transmission line S1, the CR filter F2 is provided on the transmission line S2, the CR filter F3 is provided on the transmission line S3, and the CR filter F4 is provided on the transmission line S4. The CR filter F5 is provided in the transmission line S5 (omitted), the CR filter Fn is provided in the transmission line Sn, and the CR filter Fn + 1 is provided in the transmission line Sn + 1.

n個のセル電圧検出部D1〜Dnは、n個の電池セルC1〜Cnに対応して設けられており、各伝送線路S1〜Sn+1及び各CRフィルタF1〜Fn+1を介して入力された各電池セルC1〜Cnの端子電圧に基づいてセル電圧V1〜Vnを検出する。すなわち、各セル電圧検出部D1〜Dnは、互いに隣り合う電池セルC1〜Cnの一対の端子電圧の差分をセル電圧V1〜Vnとして検出する。   The n cell voltage detection units D1 to Dn are provided corresponding to the n battery cells C1 to Cn, and each battery input via each transmission line S1 to Sn + 1 and each CR filter F1 to Fn + 1. Cell voltages V1 to Vn are detected based on the terminal voltages of the cells C1 to Cn. That is, each cell voltage detection part D1-Dn detects the difference of a pair of terminal voltage of the mutually adjacent battery cells C1-Cn as cell voltage V1-Vn.

例えば、セル電圧検出部D1は、伝送線路S1及び伝送線路S2を介して入力される一対の端子電圧の差分を電池セルC1のセル電圧V1を検出する。セル電圧検出部D2は、伝送線路S2及び伝送線路S3を介して入力される一対の端子電圧の差分を電池セルC2のセル電圧V2を検出する。セル電圧検出部D3は、伝送線路S3及び伝送線路S4を介して入力される一対の端子電圧の差分を電池セルC3のセル電圧V3を検出する。セル電圧検出部D4は、伝送線路S4及び伝送線路S5を介して入力される一対の端子電圧の差分を電池セルC4のセル電圧V4を検出する。(中略)。また、セル電圧検出部Dnは、伝送線路Sn及び伝送線路Sn+1を介して入力される一対の端子電圧の差分を電池セルCnのセル電圧Vnを検出する。   For example, the cell voltage detector D1 detects the cell voltage V1 of the battery cell C1 from the difference between a pair of terminal voltages input via the transmission line S1 and the transmission line S2. The cell voltage detector D2 detects the cell voltage V2 of the battery cell C2 from the difference between a pair of terminal voltages input via the transmission line S2 and the transmission line S3. The cell voltage detector D3 detects the cell voltage V3 of the battery cell C3 based on the difference between the pair of terminal voltages input via the transmission line S3 and the transmission line S4. The cell voltage detector D4 detects the cell voltage V4 of the battery cell C4 from the difference between a pair of terminal voltages input via the transmission line S4 and the transmission line S5. (Omitted). In addition, the cell voltage detection unit Dn detects the cell voltage Vn of the battery cell Cn from the difference between a pair of terminal voltages input via the transmission line Sn and the transmission line Sn + 1.

マイコンMは、CPU(Central Processing Unit)やメモリ、入出力インターフェイス等が一体的に組み込まれた所謂ワンチップマイコンであり、各セル電圧検出部D1〜Dnから入力されるセル電圧V1〜VnをA/D変換することによりサンプル値(セル電圧データV1〜Vn)を取得し、当該セル電圧データV1〜VnをバッテリECUに出力する。このバッテリECUは、組電池Xの充放電を制御する電子制御装置である。本実施形態に係る電圧検出装置Aは、このバッテリECUに対して制御情報の1つであるセル電圧データV1〜Vnを提供するものである。   The microcomputer M is a so-called one-chip microcomputer in which a CPU (Central Processing Unit), a memory, an input / output interface, and the like are integrated, and the cell voltages V1 to Vn input from the cell voltage detection units D1 to Dn are represented by A. Sample values (cell voltage data V1 to Vn) are acquired by / D conversion, and the cell voltage data V1 to Vn are output to the battery ECU. The battery ECU is an electronic control device that controls charging / discharging of the assembled battery X. The voltage detection apparatus A according to the present embodiment provides cell voltage data V1 to Vn, which is one of control information, to the battery ECU.

また、このマイコンMは、所定の断線検知プログラムに基づいてセル電圧V1〜Vnを処理することにより各伝送線路S1〜Sn+1の断線診断処理を行う。すなわち、マイコンMは、各放電回路B1〜Bnに開閉信号(パルス信号)を出力することにより互いに隣り合う電池セルの放電回路を異なるデューティ比で放電状態とし、この状態における各電池セルC1〜Cnのセル電圧V1〜Vnの変化傾向に基づいて、n個の伝送線路S1〜Sn+1のうち奇数番目あるいは偶数番目の何れが断線したかを判定する断線判定部として機能する。   Moreover, this microcomputer M performs the disconnection diagnosis process of each transmission line S1-Sn + 1 by processing the cell voltages V1-Vn based on a predetermined disconnection detection program. That is, the microcomputer M outputs an open / close signal (pulse signal) to each of the discharge circuits B1 to Bn to place the discharge circuits of the battery cells adjacent to each other in a discharge state with different duty ratios, and each of the battery cells C1 to Cn in this state. Based on the change tendency of the cell voltages V1 to Vn, it functions as a disconnection determination unit that determines which of the n transmission lines S1 to Sn + 1 is disconnected.

次に、本実施形態に係る電圧検出装置Aの動作、特にマイコンMが行う断線診断処理について詳しく説明する。   Next, the operation of the voltage detection apparatus A according to the present embodiment, particularly the disconnection diagnosis process performed by the microcomputer M will be described in detail.

電圧検出装置Aの基本動作は、マイコンMでセル電圧V1〜Vnを検出してバッテリECUに提供する動作である。すなわち、セル電圧検出部D1〜Dnは、伝送線路S1〜Sn+1を介して入力される一対の端子電圧の差分をそれぞれ演算することによりn個の電池セルC1〜Cnのセル電圧V1〜Vnを検出する。そして、マイコンMは、このようなセル電圧検出部D1〜Dnから入力されるn個のセル電圧V1〜Vnをセル電圧データV1〜Vnに順次変換し、当該セル電圧データV1〜VnをバッテリECUの要求に応じて提供する。   The basic operation of the voltage detection device A is an operation in which the microcomputer M detects the cell voltages V1 to Vn and provides them to the battery ECU. That is, the cell voltage detectors D1 to Dn detect cell voltages V1 to Vn of n battery cells C1 to Cn by calculating differences between a pair of terminal voltages input via the transmission lines S1 to Sn + 1, respectively. To do. The microcomputer M sequentially converts the n cell voltages V1 to Vn input from the cell voltage detectors D1 to Dn into cell voltage data V1 to Vn, and converts the cell voltage data V1 to Vn into the battery ECU. Provide upon request.

電圧検出装置Aは、このような基本動作に加えて、各伝送線路S1〜Sn+1の断線診断処理を行う。すなわち、マイコンMは、各放電回路B1〜Bnに開閉信号を出力することにより互いに隣り合う電池セルの放電回路を異なるデューティ比(例えば96%と4%)で放電状態とする。この結果、n個のセル電圧V1〜Vnは、伝送線路S1〜Sn+1に断線故障が発生しているか否かに応じて異なる変化を呈する。   In addition to such basic operations, the voltage detection device A performs a disconnection diagnosis process for each of the transmission lines S1 to Sn + 1. That is, the microcomputer M outputs an open / close signal to each of the discharge circuits B1 to Bn, thereby causing the discharge circuits of the battery cells adjacent to each other to be discharged at different duty ratios (for example, 96% and 4%). As a result, the n cell voltages V1 to Vn exhibit different changes depending on whether or not a disconnection failure has occurred in the transmission lines S1 to Sn + 1.

例えば各放電回路B1〜Bnのうち、奇数番目の各電池セルC1,C3,……に対応する放電回路B1,B3,……を96%のデューティ比の開閉信号で放電させ、また偶数番目の各電池セルC2,C4,……に対応する放電回路B2,B4,……を4%のデューティ比の開閉信号で放電させた場合において、例えば偶数番目の電池セルC2のマイナス端子と奇数番目の電池セルC3のプラス端子との接続点に接続された伝送線路S3に断線故障が発生した場合、図2(a)に示すように偶数番目の電池セルC2に対応するセル電圧V2は診断開始時刻t1から徐々に電圧上昇し、奇数番目の電池セルC3に対応するセル電圧V3は診断開始時刻t1から徐々に電圧降下する。   For example, among the discharge circuits B1 to Bn, the discharge circuits B1, B3,... Corresponding to the odd-numbered battery cells C1, C3,. When the discharge circuits B2, B4,... Corresponding to the battery cells C2, C4,... Are discharged with an open / close signal having a duty ratio of 4%, for example, the negative terminals of the even-numbered battery cells C2 and the odd-numbered terminals When a disconnection failure occurs in the transmission line S3 connected to the connection point with the positive terminal of the battery cell C3, as shown in FIG. 2A, the cell voltage V2 corresponding to the even-numbered battery cell C2 is the diagnosis start time. The voltage gradually increases from t1, and the cell voltage V3 corresponding to the odd-numbered battery cell C3 gradually decreases from the diagnosis start time t1.

互いに隣り合う一対の電池セルに対応する一対のセル電圧の差分(差電圧)、例えば図2(a)に示すように一対の電池セルC1,C2に対応する一対のセル電圧V1,V2の差電圧(V1−V2)、一対の電池セルC2,C3に対応する一対のセル電圧V2,V3の差電圧(V2−V3)、また一対の電池セルC3,C4に対応する一対のセル電圧V3,V4の差電圧(V3−V4)に着目すると、差電圧(V1−V2)及び差電圧(V3−V4)は減少するものの、差電圧(V2−V3)は上昇する。そして、診断開始時刻t1以降の時刻t2において、差電圧(V1−V2)及び差電圧(V3−V4)は、診断開始時刻t1におけるセル電圧Vaから変化量ΔVだけ減少し、差電圧(V2−V3)はセル電圧Vaから変化量2ΔVだけ上昇する。   A difference (difference voltage) between a pair of cell voltages corresponding to a pair of adjacent battery cells, for example, a difference between a pair of cell voltages V1, V2 corresponding to a pair of battery cells C1, C2 as shown in FIG. Voltage (V1-V2), differential voltage (V2-V3) between a pair of cell voltages V2, V3 corresponding to a pair of battery cells C2, C3, and a pair of cell voltages V3, corresponding to a pair of battery cells C3, C4 Focusing on the difference voltage V4 (V3-V4), the difference voltage (V1-V2) and the difference voltage (V3-V4) decrease, but the difference voltage (V2-V3) increases. Then, at time t2 after the diagnosis start time t1, the difference voltage (V1-V2) and the difference voltage (V3-V4) are reduced by the change amount ΔV from the cell voltage Va at the diagnosis start time t1, and the difference voltage (V2- V3) rises from the cell voltage Va by an amount of change 2ΔV.

したがって、互いに隣り合う一対の電池セルに対応する一対のセル電圧の差分(差電圧)、つまり差電圧(V1−V2)、差電圧(V2−V3)及び差電圧(V3−V4)が診断開始時刻t1から徐々に上昇して所定のしきい値を越えたのかあるいは徐々に減少して所定のしきい値を越えたのか、つまり互いに隣り合う一対の電池セルに対応する一対のセル電圧の差分(差電圧)を符号(変化の方向)を含めて評価することによって、断線した伝送線路S3を特定することができる。   Therefore, the difference (difference voltage) between a pair of cell voltages corresponding to a pair of adjacent battery cells, that is, the difference voltage (V1-V2), the difference voltage (V2-V3), and the difference voltage (V3-V4) starts diagnosis. Whether the voltage gradually increases from time t1 and exceeds a predetermined threshold value or decreases and exceeds a predetermined threshold value, that is, a difference between a pair of cell voltages corresponding to a pair of battery cells adjacent to each other By evaluating (difference voltage) including the sign (direction of change), the disconnected transmission line S3 can be identified.

なお、奇数番目の各電池セルC1,C3,……に対応する放電回路B1,B3,……を4%のデューティ比の開閉信号で放電させ、また偶数番目の各電池セルC2,C4,……に対応する放電回路B2,B4,……を96%のデューティ比の開閉信号で放電させた場合において、伝送線路S3に断線故障が発生した場合には、図2(b)に示すように偶数番目の電池セルC2に対応するセル電圧V2は診断開始時刻t1から徐々に電圧降下し、奇数番目の電池セルC3に対応するセル電圧V3は診断開始時刻t1から徐々に電圧上昇する。   The discharge circuits B1, B3,... Corresponding to the odd-numbered battery cells C1, C3,... Are discharged with an open / close signal having a duty ratio of 4%, and the even-numbered battery cells C2, C4,. When the discharge circuits B2, B4,... Corresponding to... Are discharged with an open / close signal having a duty ratio of 96%, when a disconnection failure occurs in the transmission line S3, as shown in FIG. The cell voltage V2 corresponding to the even-numbered battery cell C2 gradually decreases from the diagnosis start time t1, and the cell voltage V3 corresponding to the odd-numbered battery cell C3 gradually increases from the diagnosis start time t1.

この場合には、差電圧(V1−V2)及び差電圧(V3−V4)は上昇するものの、差電圧(V2−V3)は減少する。そして、診断開始時刻t1以降の時刻t2において、差電圧(V1−V2)及び差電圧(V3−V4)は、診断開始時刻t1におけるセル電圧Vaから変化量ΔVだけ上昇し、差電圧(V2−V3)はセル電圧Vaから変化量2ΔVだけ減少する。したがって、この場合においても、互いに隣り合う一対の電池セルに対応する一対のセル電圧の差分(差電圧)、つまり差電圧(V1−V2)、差電圧(V2−V3)及び差電圧(V3−V4)を符号(変化の方向)を含めて評価することによって、断線した伝送線路S3を特定することができる。   In this case, the difference voltage (V1-V2) and the difference voltage (V3-V4) increase, but the difference voltage (V2-V3) decreases. Then, at time t2 after the diagnosis start time t1, the difference voltage (V1-V2) and the difference voltage (V3-V4) are increased by a change amount ΔV from the cell voltage Va at the diagnosis start time t1, and the difference voltage (V2- V3) decreases from the cell voltage Va by the amount of change 2ΔV. Therefore, also in this case, a difference (difference voltage) between a pair of cell voltages corresponding to a pair of adjacent battery cells, that is, a difference voltage (V1-V2), a difference voltage (V2-V3), and a difference voltage (V3- By evaluating V4) including the sign (direction of change), the disconnected transmission line S3 can be identified.

このような本実施形態によれば、互いに隣り合う一対の電池セルに関する一対のセル電圧の差分を符号(変化の方向)を含めて評価することによって、上述した伝送線路S3のみならず他の伝送線路S1,S2,S4〜Snについて、断線した伝送線路を特定することができる。   According to the present embodiment, by evaluating the difference between a pair of cell voltages regarding a pair of adjacent battery cells including a sign (direction of change), not only the transmission line S3 described above but also other transmissions. With respect to the lines S1, S2, and S4 to Sn, a disconnected transmission line can be specified.

X 組電池
A 電圧検出装置
C1〜C4 電池セル
B1〜B4 放電回路
S1〜S5 伝送線路
F1〜F5 CRフィルタ
D1〜D4 セル電圧検出部
M マイコンM(断線判定部)
X assembled battery A voltage detection device C1 to C4 battery cell B1 to B4 discharge circuit S1 to S5 transmission line F1 to F5 CR filter D1 to D4 cell voltage detection unit M microcomputer M (disconnection determination unit)

Claims (1)

複数の電池セルに各々並列接続された複数の放電回路と、複数の前記電池セルの各端子の端子電圧を伝送する複数の伝送線路と、該伝送線路から入力された前記端子電圧を前記電池セルのセル電圧として検出するセル電圧検出部とを備えた電圧検出装置において、
互いに隣り合う一対の前記電池セルの前記放電回路を異なるデューティ比で放電状態とした場合に、前記一対の前記電池セルに関する一対の前記セル電圧の差分を符号を含めて評価することによって、断線した伝送線路を判定する断線判定部を備えることを特徴とする電圧検出装置。
A plurality of discharge circuits each connected in parallel to a plurality of battery cells; a plurality of transmission lines for transmitting terminal voltages of terminals of the plurality of battery cells; and the terminal cells input from the transmission lines as the battery cells. In a voltage detection apparatus comprising a cell voltage detection unit that detects a cell voltage of
When the discharge circuits of the pair of battery cells adjacent to each other are in a discharge state with different duty ratios, a disconnection was made by evaluating a difference between the pair of cell voltages related to the pair of battery cells including a sign. The voltage detection apparatus provided with the disconnection determination part which determines a transmission line.
JP2016068972A 2016-03-30 2016-03-30 Voltage detector Pending JP2017183092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068972A JP2017183092A (en) 2016-03-30 2016-03-30 Voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068972A JP2017183092A (en) 2016-03-30 2016-03-30 Voltage detector

Publications (1)

Publication Number Publication Date
JP2017183092A true JP2017183092A (en) 2017-10-05

Family

ID=60006239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068972A Pending JP2017183092A (en) 2016-03-30 2016-03-30 Voltage detector

Country Status (1)

Country Link
JP (1) JP2017183092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261596A1 (en) * 2019-06-28 2020-12-30 株式会社デンソーテン Disconnection detection device and disconnection detection method
JP2021061717A (en) * 2019-10-09 2021-04-15 株式会社ケーヒン Cell balance control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261596A1 (en) * 2019-06-28 2020-12-30 株式会社デンソーテン Disconnection detection device and disconnection detection method
JP2021009032A (en) * 2019-06-28 2021-01-28 株式会社デンソーテン Disconnection detection device and disconnection detection method
CN113015919A (en) * 2019-06-28 2021-06-22 株式会社电装天 Wire breakage sensing device and wire breakage sensing method
JP7240972B2 (en) 2019-06-28 2023-03-16 株式会社デンソーテン Disconnection detection device and disconnection detection method
US11909233B2 (en) 2019-06-28 2024-02-20 Denso Ten Limited Disconnection detection device and disconnection detection method
JP2021061717A (en) * 2019-10-09 2021-04-15 株式会社ケーヒン Cell balance control device
JP7154201B2 (en) 2019-10-09 2022-10-17 日立Astemo株式会社 Cell balance controller

Similar Documents

Publication Publication Date Title
JP6228865B2 (en) Sensor device inspection method and sensor device
US20180316197A1 (en) Open cell detection method and open cell recovery detection method in a battery management system
US20080164881A1 (en) Battery voltage monitoring apparatus
JP2013036975A (en) Detecting disconnected wire to connect battery cell and external circuit
JP6477593B2 (en) Battery pack monitoring system
JP6630151B2 (en) Semiconductor device, battery monitoring system, and method of diagnosing semiconductor device
JP4693761B2 (en) Assembled battery system
JPWO2017047084A1 (en) Voltage detection circuit, abnormality detection device, and battery system
US20210208201A1 (en) Battery monitoring device
JP2017183092A (en) Voltage detector
JP2006197790A (en) Power supply apparatus
JP6598209B2 (en) Voltage detector
CN112997057B (en) Method and sensor system with integrated calibration mechanism
CN1610833A (en) Test machine for testing an integrated circuit with a comparator
JP2017167050A (en) Voltage detector
JP6544681B2 (en) Battery voltage detector
JP6554748B2 (en) Voltage detector
CN114236240A (en) Liquid inlet detection circuit and electronic equipment
JP2018078748A (en) Voltage detector
CN109964135A (en) Wiring Abnormality Detection Device
JP2007181365A (en) Ac voltage applying circuit and method to battery group
CN111406219B (en) Voltage detection circuit
JP6507989B2 (en) Battery monitoring device
JP3975485B2 (en) Disconnection / failure detection device
JPWO2015162937A1 (en) Power supply device including a voltage detection unit