JP2017171990A - Martensitic stainless steel sheet and metal gasket manufacturing method - Google Patents
Martensitic stainless steel sheet and metal gasket manufacturing method Download PDFInfo
- Publication number
- JP2017171990A JP2017171990A JP2016059295A JP2016059295A JP2017171990A JP 2017171990 A JP2017171990 A JP 2017171990A JP 2016059295 A JP2016059295 A JP 2016059295A JP 2016059295 A JP2016059295 A JP 2016059295A JP 2017171990 A JP2017171990 A JP 2017171990A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- stainless steel
- content
- martensitic stainless
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 title claims description 25
- 239000002184 metal Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 76
- 239000010959 steel Substances 0.000 claims description 76
- 238000001816 cooling Methods 0.000 claims description 56
- 238000000137 annealing Methods 0.000 claims description 34
- 229910001566 austenite Inorganic materials 0.000 claims description 32
- 229910000734 martensite Inorganic materials 0.000 claims description 32
- 238000005554 pickling Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 19
- 239000011324 bead Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 229910000859 α-Fe Inorganic materials 0.000 claims description 12
- 230000003746 surface roughness Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000013067 intermediate product Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 241000428199 Mustelinae Species 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 206010070834 Sensitisation Diseases 0.000 abstract description 10
- 230000007423 decrease Effects 0.000 abstract description 10
- 230000008313 sensitization Effects 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 9
- 230000009467 reduction Effects 0.000 abstract description 4
- 238000005496 tempering Methods 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 238000010791 quenching Methods 0.000 description 12
- 230000000171 quenching effect Effects 0.000 description 12
- 238000005728 strengthening Methods 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、メタルガスケットに好適なマルテンサイト系ステンレス鋼板およびその製造法、並びにそれを用いたメタルガスケットの製造法に関する。 The present invention relates to a martensitic stainless steel plate suitable for a metal gasket, a method for producing the same, and a method for producing a metal gasket using the same.
自動車、オートバイ等におけるエンジンのシリンダヘッドガスケットやエキゾーストマニホールドガスケットは、エンジン特有の高温、高圧、高振動下での繰り返しの圧力変動に曝される。なかでも自動車エンジンのシリンダガスケットでは圧縮時に高圧が加わるので、シール性を維持するためには双方の接触相手材と高い接触圧力(面圧)で接している必要がある。エンジンや排ガス経路に使用されるメタルガスケットには、十分な接触圧力を確保するために、一定高さのビード(連続する隆起部)が形成されるのが一般的である。ビードは通常、プレスによるビード成形によって形成される。この種のメタルガスケットには、高強度および高耐食性が要求される。 Engine cylinder head gaskets and exhaust manifold gaskets in automobiles, motorcycles, and the like are exposed to repeated pressure fluctuations under the high temperature, high pressure, and high vibration specific to the engine. In particular, since a cylinder gasket of an automobile engine is subjected to a high pressure during compression, it needs to be in contact with both contact counterparts with a high contact pressure (surface pressure) in order to maintain the sealing performance. A metal gasket used for an engine or an exhaust gas path is generally formed with a bead (continuous raised portion) having a certain height in order to ensure a sufficient contact pressure. The bead is usually formed by bead molding by a press. This type of metal gasket is required to have high strength and high corrosion resistance.
従来、自動車エンジンやその排ガス経路に適用するガスケットには加工硬化型の準安定オーステナイト系ステンレス鋼(SUS301系など)が多用されている。この種の鋼は冷間圧延で加工誘起マルテンサイトを生成させることによって高強度化を図るものである。ただし、強度レベルを引き上げるためには冷間圧延率を高める必要がある。冷間圧延率の増大は、靭性、耐疲労特性および加工性を低下させる要因となる。 Conventionally, work-hardening type metastable austenitic stainless steel (SUS301 series or the like) is frequently used for gaskets applied to automobile engines and exhaust gas paths thereof. This type of steel is intended to increase strength by generating work-induced martensite by cold rolling. However, it is necessary to increase the cold rolling rate in order to raise the strength level. An increase in the cold rolling rate is a factor that decreases toughness, fatigue resistance, and workability.
また、工業用の配管などには、塗装を施したメタルガスケットが使用される場合がある。この種のメタルガスケットには、塗膜密着性も要求される。 In addition, a painted metal gasket may be used for industrial piping or the like. This type of metal gasket also requires coating film adhesion.
一方、冷間圧延率の増大に頼らずに高強度化を図る素材としてマルテンサイト系ステンレス鋼がある。特許文献1には、マルテンサイト系ステンレス鋼をガスケットに適用することが記載されている。特許文献2には、介在物組成を適正化することによってマルテンサイト系ステンレス鋼を用いたガスケットの疲労特性を改善する技術が記載されている。 On the other hand, there is martensitic stainless steel as a material for increasing the strength without depending on the increase in the cold rolling rate. Patent Document 1 describes that martensitic stainless steel is applied to a gasket. Patent Document 2 describes a technique for improving the fatigue characteristics of a gasket using martensitic stainless steel by optimizing the inclusion composition.
マルテンサイト系ステンレス鋼は高価なNiを多量に含有する準安定オーステナイト系ステンレス鋼よりも原料コストが安価である。また、高い冷間圧延率を付与して加工硬化させる必要もないので、加工硬化に伴う靭性低下や集合組織による異方性の問題も生じにくい。特許文献2の技術に従えば、疲労特性も改善する。しかしながら、マルテンサイト系ステンレス鋼板は高強度を得るための熱処理において冷却速度の影響を強く受けるため、鋼板全体について材質を均一化することは容易でない。発明者らの調査によれば、厳しい評価基準で見た場合、焼戻し軟化や鋭敏化による固溶C、Nの減少に起因すると考えられる、強度低下、機械的性質の変化、および耐食性の低下が問題となりうることがわかった。これらの特性はメタルガスケットの性能に影響を及ぼす。 Martensitic stainless steel has a lower raw material cost than metastable austenitic stainless steel containing a large amount of expensive Ni. Further, since there is no need to impart a high cold rolling rate and work hardening, problems of toughness reduction due to work hardening and anisotropy due to texture are unlikely to occur. According to the technique of Patent Document 2, fatigue characteristics are also improved. However, since the martensitic stainless steel plate is strongly influenced by the cooling rate in the heat treatment for obtaining high strength, it is not easy to make the material uniform for the entire steel plate. According to the inventors' investigation, when viewed under strict evaluation criteria, there is a decrease in strength, a change in mechanical properties, and a decrease in corrosion resistance, which are thought to be due to a decrease in solid solution C and N due to temper softening and sensitization. I found it could be a problem. These characteristics affect the performance of the metal gasket.
メタルガスケットにおいて、ビードの硬さ(強度)分布を均一化することは、安定した面圧の維持に寄与するため、リーク特性等の改善につながる。また、メタルガスケット製品間での特性のバラツキを低減することも安定な品質を確保するうえで重要である。これらの要求に対応するためには、素材である鋼板において、その鋼帯の幅方向および長手方向での素材特性を均一化することが極めて有利となる。しかし、従来の開示技術では、広幅の鋼帯を連続生産する際に、幅方向および長手方向での素材特性を十分に均一化することが難しかった。 In the metal gasket, making the hardness (strength) distribution of the beads uniform contributes to the maintenance of a stable surface pressure, which leads to improvement of leak characteristics and the like. In addition, reducing the variation in characteristics among metal gasket products is also important for ensuring stable quality. In order to meet these requirements, it is extremely advantageous to make the material properties uniform in the width direction and the longitudinal direction of the steel strip in the steel plate as the material. However, in the conventional disclosed technique, it has been difficult to sufficiently uniform the material characteristics in the width direction and the longitudinal direction when continuously producing a wide steel strip.
本発明は、マルテンサイト系ステンレス鋼板において、焼戻し軟化や鋭敏化による強度、耐食性の低下を低減させることを目的とする。また、塗膜密着性の改善を図る。 An object of this invention is to reduce the fall of the intensity | strength by a temper softening and sensitization, and corrosion resistance in a martensitic stainless steel plate. In addition, the coating film adhesion is improved.
マルテンサイト相の強度は、成分と熱処理条件の影響を強く受ける。
〔成分の影響〕
侵入型元素であるC、Nの量が多いほど高強度が得られる。しかし、過剰のC、Nの含有は靭性低下を招く要因となるので、それらの含有量には制約がある。また、鋼中に存在するC、Nのうち強度に寄与するのは、マルテンサイト相中に固溶しているC、Nである。炭窒化物の過度の生成は鋼中のC、Nを過剰に消費し、強度低下を招く。
〔熱処理の影響〕
マルテンサイト系ステンレス鋼では、Ac1点以上に加熱したのち冷却することによってオーステナイト相をマルテンサイト相へ変態させ、高強度を得ている(焼入れ)。この焼入れによる強化の程度は、加熱温度および冷却速度に影響される。焼入れ性が悪い(すなわち冷却速度が遅くなると硬質なマルテンサイトが生成しにくい)鋼では、鋼帯を生産する際に操業条件のわずかな変動が特性のバラツキにつながりやすい。
これらのことが鋼帯内における材質の均一化を難しくする要因となっている。
The strength of the martensite phase is strongly influenced by the components and heat treatment conditions.
[Influence of ingredients]
The higher the amount of interstitial elements C and N, the higher the strength. However, since excessive C and N contents cause a decrease in toughness, their contents are limited. Further, among C and N present in the steel, it is C and N dissolved in the martensite phase that contribute to the strength. Excessive formation of carbonitrides consumes C and N in steel excessively and causes strength reduction.
[Effect of heat treatment]
In martensitic stainless steel, the austenite phase is transformed into a martensite phase by cooling after heating to Ac 1 point or higher, and high strength is obtained (quenching). The degree of strengthening by quenching is affected by the heating temperature and the cooling rate. In steels with poor hardenability (that is, hard martensite is less likely to be produced when the cooling rate is slow), slight fluctuations in operating conditions tend to lead to variations in properties when producing steel strips.
These are factors that make it difficult to make the material uniform in the steel strip.
ステンレス鋼中にはCr、Feなど、CやNと結びつきやすい金属元素が多量に存在する。これらの金属元素が炭化物を形成する場合と窒化物を形成する場合とを比べると、炭化物を形成する場合の方が冷却速度の影響を大きく受けることがわかった。すなわち冷却速度が同じであれば、炭化物生成反応は、窒化物生成反応よりも迅速に進行する。そのため、鋼帯内で冷却速度が比較的遅い箇所では、固溶Cが炭化物形成に消費されやすく、固溶Cによる強化への寄与が低減する。これが鋼帯内での特性のバラツキを生じさせる要因となっている。一方、窒化物生成反応は炭化物生成反応ほど迅速に進行しないので、冷却速度が比較的遅い箇所でも固溶Nの存在量は維持されやすく、固溶Nによる強化への寄与は失われにくい。そこで本発明では、マルテンサイト相の強化への寄与をできるだけNに負担させるという思想により、成分設計を行って、素材特性の均一性が高い鋼板を実現している。その成分設計においてはC/N含有量比を制限し、かつCr、Mn、Cu等の合金元素含有量を適正化してNの固溶限を十分に確保することが重要である。 In stainless steel, there are a large amount of metal elements such as Cr and Fe, which are easily combined with C and N. Comparing the case where these metal elements form carbide and the case where nitride is formed, it has been found that the case where carbide is formed is greatly affected by the cooling rate. That is, if the cooling rate is the same, the carbide forming reaction proceeds more rapidly than the nitride forming reaction. Therefore, at a location where the cooling rate is relatively slow in the steel strip, the solid solution C is easily consumed for carbide formation, and the contribution to strengthening by the solid solution C is reduced. This is a factor causing variations in characteristics within the steel strip. On the other hand, since the nitride formation reaction does not proceed as rapidly as the carbide formation reaction, the abundance of solid solution N is easily maintained even at locations where the cooling rate is relatively slow, and the contribution to strengthening by solid solution N is unlikely to be lost. Therefore, in the present invention, a component design is performed based on the idea of making N contribute as much as possible to the strengthening of the martensite phase, thereby realizing a steel sheet with high uniformity of material characteristics. In the component design, it is important to limit the C / N content ratio and to optimize the content of alloy elements such as Cr, Mn, Cu, etc. to ensure a sufficient solid solubility limit of N.
すなわち本発明では、質量%で、C:0.100〜0.180%、Si:0.20〜1.50%、Mn:0.10〜2.00%、Ni:0.01〜1.00%、Cr:11.00〜18.00%、Cu:0.20〜1.60%、Mo:0〜0.50%、N:0.030〜0.100%、V:0〜0.50%、Nb:0〜0.50%、Ti:0〜0.50%、B:0〜0.020%、残部Feおよび不可避的不純物からなり、CとNの合計含有量が0.130質量%以上、C/N含有量比(質量%比)が5.0以下、かつ下記(1)式により定まるγmax値が80.0以上である化学組成を有するマルテンサイト系ステンレス鋼板が提供される。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入される。
That is, in the present invention, by mass%, C: 0.10 to 0.180%, Si: 0.20 to 1.50%, Mn: 0.10 to 2.00%, Ni: 0.01 to 1. 00%, Cr: 11.00 to 18.00%, Cu: 0.20 to 1.60%, Mo: 0 to 0.50%, N: 0.030 to 0.100%, V: 0 to 0 .50%, Nb: 0 to 0.50%, Ti: 0 to 0.50%, B: 0 to 0.020%, remaining Fe and inevitable impurities, and the total content of C and N is 0.5. Provided is a martensitic stainless steel sheet having a chemical composition of 130% by mass or more, a C / N content ratio (mass% ratio) of 5.0 or less, and a γmax value determined by the following formula (1) of 80.0 or more. Is done.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the content of the element represented by mass% is substituted for the element symbol in the formula (1).
上記鋼成分元素のうちMo、V、Nb、Ti、Bは任意添加元素である。この鋼板の板面(圧延面)の硬さは例えば400〜570HVである。その板厚は例えば0.05〜0.5mmとすることができ、0.1〜0.3mmに管理することもできる。この鋼板は、ビード頭頂部を接触相手材に押し当てて使用するメタルガスケットに好適である。「ビード頭頂部」は接触相手材と接触するビード凸部の頂上部を意味する。 Of the steel component elements, Mo, V, Nb, Ti, and B are arbitrarily added elements. The hardness of the plate surface (rolled surface) of this steel plate is, for example, 400 to 570 HV. The plate thickness can be set to 0.05 to 0.5 mm, for example, and can be controlled to 0.1 to 0.3 mm. This steel plate is suitable for a metal gasket that is used by pressing the top of the bead against a contact partner material. "Bead head top" means the top of the bead convex portion in contact with the contact partner material.
上記鋼板において、特に塗膜密着性の良好なものとして、開口径1.0μm以上のピットを10個/0.01mm2以上の個数密度で表面に有し、圧延直角方向の表面粗さRaが0.500μm以下である鋼板が提供される。 The steel sheet has particularly good coating film adhesion, and has pits with an opening diameter of 1.0 μm or more on the surface with a number density of 10 pieces / 0.01 mm 2 or more, and a surface roughness Ra in the direction perpendicular to the rolling direction. A steel sheet having a thickness of 0.5 μm or less is provided.
上記ピットは、仕上焼鈍後の酸洗処理で析出粒子が脱落することにより形成されたものである。前記析出粒子は主としてM23C6(MはCrなどの遷移金属元素)型の炭化物粒子である。炭窒化物が形成されることもあるが、本明細書では炭窒化物を含めて炭化物と呼んでいる。表面粗さRaはJIS B0601:2013に規定の算術平均粗さRaである。圧延直角方向とは、圧延方向に対して直角の方向を意味する。ピットの開口径は、鋼板表面を板厚方向に見たSEM(走査型電子顕微鏡)画像において、当該ピットの輪郭で囲まれる開口部の最も長い部分の径(長径)を意味する。 The pits are formed by the precipitation particles falling off during the pickling treatment after finish annealing. The precipitated particles are mainly M 23 C 6 (M is a transition metal element such as Cr) type carbide particles. Although carbonitride may be formed, in this specification, carbonitride including carbonitride is called. The surface roughness Ra is an arithmetic average roughness Ra defined in JIS B0601: 2013. The rolling perpendicular direction means a direction perpendicular to the rolling direction. The opening diameter of a pit means the diameter (major diameter) of the longest part of the opening surrounded by the outline of the pit in an SEM (scanning electron microscope) image in which the steel plate surface is viewed in the plate thickness direction.
上記鋼板の製造法として、前記の化学組成を有する中間製品鋼板を、800〜1100℃の範囲にある、オーステナイト単相温度域またはオーステナイト相+20体積%以下のフェライト相となる2相温度域に加熱した後、冷却して、前記オーステナイト相をマルテンサイト相に変態させる工程(仕上焼鈍工程)を有する製造法が提供される。前記の冷却は、800℃から200℃までの平均冷却速度が1〜150℃/secとなる条件とすることがより好ましい。 As a manufacturing method of the steel sheet, the intermediate product steel sheet having the above chemical composition is heated to a two-phase temperature range in which the austenite single-phase temperature range or the austenite phase + 20 vol% or less ferrite phase is in the range of 800 to 1100 ° C. After that, a manufacturing method is provided which includes cooling and transforming the austenite phase into a martensite phase (finish annealing step). More preferably, the cooling is performed under the condition that the average cooling rate from 800 ° C. to 200 ° C. is 1 to 150 ° C./sec.
特に塗膜密着性の良好な鋼板を得る手法として、上記の仕上焼鈍工程における加熱を酸化性雰囲気で行い、さらに、仕上焼鈍工程後の鋼板を酸洗処理することにより表面の酸化スケールを除去するとともに、表面に存在する炭化物粒子を脱落させて表面にピットを形成する工程(酸洗工程)を有する鋼板の製造法が提供される。 In particular, as a technique for obtaining a steel sheet having good coating film adhesion, heating in the finish annealing step is performed in an oxidizing atmosphere, and further, the surface oxidized scale is removed by pickling the steel plate after the finish annealing step. In addition, there is provided a method for producing a steel sheet having a step (pickling step) in which carbide particles present on the surface are dropped to form pits on the surface.
本発明によれば、Cより冷却速度の影響を受けにくいNを十分に活用してマルテンサイト相を強化することにより、焼入れ安定性の向上による材質の均一化、並びに耐焼戻し軟化性および耐鋭敏化性の向上による材質変化の低減が可能となった。その結果、この鋼板を素材とするメタルガスケットの使用時においては、ビード頭頂部に負荷される接触面圧がより均一に維持され、耐リーク性に優れたメタルガスケットが実現される。 According to the present invention, by making full use of N, which is less susceptible to the cooling rate than C, and strengthening the martensite phase, it is possible to make the material uniform by improving the quenching stability, as well as tempering softening resistance and sharpness resistance. It has become possible to reduce material changes due to improved chemical properties. As a result, when a metal gasket made of this steel plate is used, the contact surface pressure applied to the top of the bead is more uniformly maintained, and a metal gasket excellent in leak resistance is realized.
〔化学組成〕
本発明の対象となる鋼の化学組成について説明する。以下、鋼組成における「%」は特に断らない限り「質量%」を意味する。
Cは、オーステナイト生成元素であり、フェライト相およびマルテンサイト相の強化に有効な元素である。C含有量が少なすぎると上記の強化作用が十分に発揮されず、また、Ac1点以上の温度でのオーステナイト生成量を適正範囲にコントロールする成分調整(γmaxの適正化)が難しくなり、所定のマルテンサイト量を確保するうえで不利となる。種々検討の結果、C含有量は0.100%以上とする必要がある。ただし、過剰のC含有はオーステナイト生成温度域からの冷却過程でCr系炭化物の粒界析出を招きやすく、耐食性低下の要因となる。また、鋼帯内強度バラツキに及ぼす冷却速度変動の影響が大きくなる。C含有量は0.180%以下の範囲で調整する。
[Chemical composition]
The chemical composition of the steel that is the subject of the present invention will be described. Hereinafter, “%” in the steel composition means “% by mass” unless otherwise specified.
C is an austenite forming element and is an element effective for strengthening the ferrite phase and the martensite phase. If the C content is too small, the above-described strengthening effect cannot be fully exhibited, and it is difficult to adjust the component (optimization of γmax) for controlling the austenite generation amount at a temperature of Ac 1 point or higher to an appropriate range. This is disadvantageous in securing the amount of martensite. As a result of various studies, the C content needs to be 0.100% or more. However, excessive C content tends to cause grain boundary precipitation of Cr-based carbides in the cooling process from the austenite generation temperature range, and causes a decrease in corrosion resistance. In addition, the influence of the cooling rate fluctuation on the strength variation in the steel strip increases. The C content is adjusted in the range of 0.180% or less.
Nは、オーステナイト生成元素であり、Cと同様にフェライト相およびマルテンサイト相の強化に有効である。上述のようにNは、Cと比べ、仕上焼鈍時の冷却速度が比較的緩やかになった場合でもマトリックス中に固溶した状態でとどまりやすい。そのため、鋼帯中の強度バラツキを抑制する上で、本発明ではNによる焼入れ強化作用を活用する。この場合、N含有量は0.030%以上を必要とする。過剰のN含有は焼鈍後の冷却過程で窒化物を形成させ、耐食性や耐疲労特性の低下要因となる。N含有量は0.100%以下に制限される。 N is an austenite-forming element and is effective for strengthening the ferrite phase and the martensite phase in the same manner as C. As described above, N is likely to remain in a solid solution state in the matrix even when the cooling rate during finish annealing is relatively slow as compared to C. Therefore, in order to suppress the strength variation in the steel strip, the present invention utilizes the quenching strengthening action by N. In this case, the N content needs to be 0.030% or more. Excessive N content causes nitrides to form during the cooling process after annealing, which causes a decrease in corrosion resistance and fatigue resistance. N content is limited to 0.100% or less.
メタルガスケットに要求される強度を安定して確保するためには、CとNの合計含有量を0.13%以上確保する必要がある。その上で、冷却速度による強度バラツキに影響を及ぼしやすいCの含有量上限を上述のように厳しく制限し、かつ、Nの含有量を十分に確保する。種々検討の結果、質量%におけるC/N含有量比を5.0以下とすることが、焼入れ安定性の向上に極めて有効であることがわかった。C/N含有量比を4.0以下とすることがより効果的である。 In order to stably secure the strength required for the metal gasket, it is necessary to secure a total content of C and N of 0.13% or more. In addition, the upper limit of the C content that easily affects the variation in strength due to the cooling rate is strictly limited as described above, and the N content is sufficiently secured. As a result of various studies, it was found that setting the C / N content ratio in mass% to 5.0 or less is extremely effective for improving the quenching stability. It is more effective to set the C / N content ratio to 4.0 or less.
Siは、製鋼時に脱酸剤として添加される。Si含有量が0.20%以上となるようにSiを添加する必要がある。ただし、Siはフェライト相およびマルテンサイト相に固溶し、特にマルテンサイト相を硬質化する作用が大きい。適度な硬質化はガスケットの高強度化に有効であるが、過度の硬質化は加工性や靭性の低下要因となる。また、過剰なSi含有は高温割れを誘発する。Si含有量は1.50%以下の範囲に制限される。 Si is added as a deoxidizer during steelmaking. It is necessary to add Si so that the Si content is 0.20% or more. However, Si dissolves in the ferrite phase and the martensite phase, and has a particularly large effect of hardening the martensite phase. Moderate hardening is effective for increasing the strength of the gasket, but excessive hardening is a factor that reduces workability and toughness. Further, excessive Si content induces hot cracking. The Si content is limited to a range of 1.50% or less.
Mnは、オーステナイト生成元素であり、高温でのオーステナイト相域を拡大する。マルテンサイト量の増大にはMn含有量を高めることが有効である。また、Nの固溶限を確保するためにも有効である。Mn含有量は0.10%以上とする。ただし、Mn含有量が多くなると高温で生成したオーステナイト相が安定となり、常温までの冷却過程でマルテンサイト変態しきれなかったオーステナイト相が残存するようになる。種々検討の結果、Mn含有量は2.00%以下の範囲とする。1.00%未満に管理してもよい。 Mn is an austenite generating element and expands the austenite phase region at high temperatures. Increasing the Mn content is effective for increasing the martensite content. It is also effective for securing the solid solubility limit of N. The Mn content is 0.10% or more. However, when the Mn content increases, the austenite phase generated at a high temperature becomes stable, and the austenite phase that cannot be fully martensitic transformed during the cooling process to room temperature remains. As a result of various studies, the Mn content is set to a range of 2.00% or less. You may manage to less than 1.00%.
Niは、オーステナイト生成元素であり、マルテンサイト量を十分に確保する上で有である。Ni含有量は0.01%以上とすることが効果的である。ただし、Ni含有が過大になると残留オーステナイト相が存在しやすくなり、強度向上に不利となる。Ni含有量は1.00%以下に制限され、0.65%以下とすることがより好ましい。 Ni is an austenite-forming element and is effective in securing a sufficient amount of martensite. It is effective that the Ni content is 0.01% or more. However, if the Ni content is excessive, a residual austenite phase tends to exist, which is disadvantageous for improving the strength. The Ni content is limited to 1.00% or less, and more preferably 0.65% or less.
Crは、ステンレス鋼として必要な耐食性を付与するうえで必須の元素である。また、Nの固溶限を確保するためにも有効である。ただしマルテンサイト生成量を十分に確保するためにはCr含有量の増大に応じてC、N、Ni、Mn等のオーステナイト形成元素の含有量を増大させる必要が生じ、鋼材コストの上昇を招く。靭性低下の要因になもる。本発明ではCr含有量が11.00〜18.00%である鋼を対象とする。 Cr is an essential element for imparting the necessary corrosion resistance as stainless steel. It is also effective for securing the solid solubility limit of N. However, in order to secure a sufficient amount of martensite, it is necessary to increase the content of austenite forming elements such as C, N, Ni and Mn as the Cr content increases, resulting in an increase in steel material costs. It becomes a factor of toughness fall. In the present invention, steel with a Cr content of 11.00 to 18.00% is targeted.
Cuは、オーステナイト生成元素であり、マルテンサイト量を十分に確保する上で有効である。また、Nの固溶限を確保するためにも有効である。Cu含有量は0.20%以上とすることが効果的である。ただし、Cu含有量が過大になると残留オーステナイト相が存在しやすくなり、強度向上や熱間加工性確保に不利となる。Cu含有量は1.60%以下とする。 Cu is an austenite generating element and is effective in securing a sufficient amount of martensite. It is also effective for securing the solid solubility limit of N. It is effective that the Cu content is 0.20% or more. However, if the Cu content is excessive, a residual austenite phase is likely to be present, which is disadvantageous for improving the strength and ensuring hot workability. The Cu content is 1.60% or less.
Moは、耐食性の向上に有効であり、必要に応じて添加することができる。その場合、0.10%以上の添加量とすることがより効果的である。過剰のMo添加はコスト増となる。Moを添加する場合は0.50%以下の範囲で行う。 Mo is effective in improving the corrosion resistance, and can be added as necessary. In that case, it is more effective to set the addition amount to 0.10% or more. Excessive Mo addition increases costs. When adding Mo, it is performed within a range of 0.50% or less.
V、Nb、Ti、Bは、製造性、強度、耐疲労特性などを改善するうえで有効な元素である。必要に応じてこれらの1種以上を添加することができる。Vは0.50%以下、Nbは0.50%以下、Tiは0.50%以下、Bは0.020%以下の含有量範囲とする。より効果的な含有量範囲は、V:0.01〜0.50%、Nb:0.01〜0.50%、Ti:0.01〜0.50%、B:0.0005〜0.020%である。 V, Nb, Ti, and B are effective elements for improving manufacturability, strength, fatigue resistance, and the like. One or more of these may be added as necessary. V is 0.50% or less, Nb is 0.50% or less, Ti is 0.50% or less, and B is 0.020% or less. More effective content ranges are: V: 0.01 to 0.50%, Nb: 0.01 to 0.50%, Ti: 0.01 to 0.50%, B: 0.0005 to 0.5. 020%.
下記(1)式により定まるγmax値が80.0以上となるように各元素含有量を調整する。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には当該元素の質量%の値が代入される。
上記γmaxは、Ac1点以上の温度域に昇温したときに生成する最大オーステナイト量(体積%)を表す指標である。各元素の含有量が上述の範囲にある鋼では、高温でのオーステナイト相は常温への冷却過程でほぼ全部がマルテンサイト相に変態すると見てよい。従って、本発明で対象とする冷延焼鈍材の鋼素地(マトリックス)は、マルテンサイト量がほぼγmaxに等しい量(体積%)であり、残部がフェライト相である。γmaxが100を超える場合は鋼素地がほぼ100%マルテンサイト組織となる。
The content of each element is adjusted so that the γmax value determined by the following equation (1) is 80.0 or more.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the value of mass% of the element is substituted for the element symbol in the formula (1).
The γmax is an index representing the maximum amount of austenite (volume%) generated when the temperature is raised to a temperature range of Ac 1 point or higher. In the steel in which the content of each element is in the above-described range, it can be seen that almost all of the austenite phase at a high temperature is transformed into a martensite phase in the course of cooling to room temperature. Therefore, the steel base (matrix) of the cold-rolled annealed material that is the subject of the present invention is an amount (volume%) in which the martensite amount is substantially equal to γmax, and the balance is the ferrite phase. When γmax exceeds 100, the steel substrate has an almost 100% martensite structure.
鋼素地に占めるフェライト相の割合が多くなりすぎると、メタルガスケットに適した高強度を安定して実現することが難しくなる。またフェライト相とマルテンサイト相の強度差により相界面からの割れが生じやすくなり、加工性および耐疲労特性の異方性が大きくなる。種々検討の結果、本発明ではγmaxが80.0以上となる鋼組成を採用する。 If the proportion of the ferrite phase in the steel substrate is too large, it will be difficult to stably realize high strength suitable for a metal gasket. In addition, the strength difference between the ferrite phase and the martensite phase tends to cause cracks from the phase interface, increasing the anisotropy of workability and fatigue resistance. As a result of various studies, the present invention employs a steel composition in which γmax is 80.0 or more.
〔製造方法〕
代表的な製造方法を以下に例示する。上述の化学組成に調整された鋼を通常のステンレス鋼の製鋼設備によって溶製し、鋳片を得る。鋳片に通常のマルテンサイト系ステンレス鋼板の製造と同様に熱間圧延を施し、熱延鋼板を得る。
〔Production method〕
A typical manufacturing method is illustrated below. The steel adjusted to the above-mentioned chemical composition is melted by normal stainless steel making equipment to obtain a slab. The slab is hot-rolled in the same manner as in the production of a normal martensitic stainless steel plate to obtain a hot-rolled steel plate.
熱延鋼板に焼鈍を施し、その後、冷間圧延を施して板厚を減じる。必要に応じて冷間圧延の途中で中間焼鈍を施す。最終的な製品板厚は例えば0.05〜0.5mmとすればよい。所定の最終製品板厚となった冷延鋼板に仕上焼鈍を施す。仕上焼鈍温度はAc1点以上のオーステナイト生成温度域とする。具体的には、800〜1100℃の範囲にある、「オーステナイト単相温度域」または「オーステナイト相+20体積%以下のフェライト相となる2相温度域」に加熱することが好ましい。本発明で規定する鋼組成範囲であれば、通常900〜1050℃の範囲の温度域でγmaxに対応した量のオーステナイト相を生成させることができる。仕上焼鈍温度での保持時間は0〜60秒の範囲で設定すればよい。 The hot-rolled steel sheet is annealed, and then cold-rolled to reduce the sheet thickness. If necessary, intermediate annealing is performed during cold rolling. The final product plate thickness may be, for example, 0.05 to 0.5 mm. Finish annealing is performed on the cold-rolled steel sheet having a predetermined final product thickness. The finish annealing temperature is an austenite generation temperature range of Ac 1 point or higher. Specifically, it is preferable to heat to an “austenite single-phase temperature range” or “two-phase temperature range in which an austenite phase + 20 vol% or less ferrite phase” in the range of 800 to 1100 ° C. If it is the steel composition range prescribed | regulated by this invention, the austenite phase of the quantity corresponding to (gamma) max can be normally produced | generated in the temperature range of 900-1050 degreeC. The holding time at the finish annealing temperature may be set in the range of 0 to 60 seconds.
仕上焼鈍後、常温までの冷却過程でオーステナイト相はほぼ全量がマルテンサイト相に変態する。一般にマルテンサイト相は、C、Nが過飽和に固溶していること、および多量の転位を内在することによって硬質化する。マルテンサイト変態時の冷却速度が大きいほど硬質化の程度も大きくなり、高強度が得られる。しかし、急冷時に生成したマルテンサイト相は靭性に乏しく、焼戻し熱処理などの後処理を必要とする。発明者らの検討によれば、焼戻し等の後処理を行うことなく、靭性の良好なマルテンサイト組織を得るためには、「オーステナイト単相温度域」または「オーステナイト相+20体積%以下のフェライト相となる2相温度域」に加熱した後、比較的緩やかな(急冷ではない)冷却速度で冷却することが有効である。ただし、冷却速度が過剰に遅くなるとC、Nの固溶量が減少し、マルテンサイト相の強度低下を招く。また、オーステナイト生成元素であるC、Nの固溶量が減少すると、フェライト相の生成量が増大しやすくなり、それによる強度低下も加わる。種々検討の結果、800℃から200℃までの平均冷却速度が1〜150℃/sとなるように冷却速度を調整することが好ましい。この範囲の冷却速度は、空冷によって実現しやすいが、水冷を採用することも可能である。なお、上記の比較的緩やかな冷却速度での冷却は、マルテンサイト相への靭性付与に加えて、後述のピット形成源となる炭化物生成にも有効である。 After the finish annealing, almost all of the austenite phase is transformed into the martensite phase during the cooling process to room temperature. In general, the martensite phase is hardened by the solid solution of C and N in supersaturation and the presence of a large amount of dislocations. The greater the cooling rate during the martensitic transformation, the greater the degree of hardening and the higher the strength. However, the martensite phase produced during quenching has poor toughness and requires post-treatment such as tempering heat treatment. According to the study by the inventors, in order to obtain a martensitic structure with good toughness without performing post-treatment such as tempering, the “austenite single phase temperature range” or “the austenite phase + 20% by volume or less of ferrite phase” After heating to a “two-phase temperature range”, it is effective to cool at a relatively slow (not rapid) cooling rate. However, when the cooling rate is excessively slow, the solid solution amount of C and N decreases and the strength of the martensite phase is reduced. Further, when the amount of C and N, which are austenite-generating elements, decreases, the amount of ferrite phase generated easily increases, and the strength is thereby reduced. As a result of various studies, it is preferable to adjust the cooling rate so that the average cooling rate from 800 ° C. to 200 ° C. is 1 to 150 ° C./s. The cooling rate in this range is easily realized by air cooling, but water cooling can also be adopted. The cooling at the relatively slow cooling rate described above is effective not only for imparting toughness to the martensite phase, but also for the generation of carbides that will be the pit formation source described later.
塗膜密着性を改善するためには、(i)仕上焼鈍を大気中などの酸化性雰囲気で行い、(ii)800℃から200℃までの平均冷却速度を1〜150℃/sとし、(iii)その後の酸洗において脱スケールを行う、という焼鈍酸洗工程が極めて有効である。
酸化性雰囲気下での加熱により鋼板表面に酸化スケールが形成される。この状態の鋼板を、800℃から200℃までの平均冷却速度が1〜150℃/sである冷却速度で冷却すると、その冷却過程で炭化物が析出成長する時間的余裕が大きくなり、マトリックス(金属素地)中に球状の炭化物粒子が分散した組織状態が得られる。球状の炭化物粒子が分散した焼鈍鋼板に対して脱スケールを主目的とする酸洗を施すと、鋼板表面のスケール直下に存在する球状の炭化物粒子は、スケール除去に伴って鋼板表面から脱落しやすいことがわかった。酸洗により球状の炭化物粒子が脱落した部分には脱落痕として円形状のピットが形成される。その円形状のピットが塗膜に対するアンカー効果を発揮し、塗膜密着性が向上する。
In order to improve coating film adhesion, (i) finish annealing is performed in an oxidizing atmosphere such as in the air, and (ii) the average cooling rate from 800 ° C. to 200 ° C. is 1 to 150 ° C./s, iii) An annealing pickling process in which descaling is performed in the subsequent pickling is extremely effective.
An oxide scale is formed on the surface of the steel sheet by heating in an oxidizing atmosphere. When the steel plate in this state is cooled at a cooling rate of 1 to 150 ° C./s from 800 ° C. to 200 ° C., the time margin for precipitation of carbides during the cooling process increases, and the matrix (metal A textured state in which spherical carbide particles are dispersed in the substrate is obtained. When pickling for the purpose of descaling is applied to an annealed steel sheet in which spherical carbide particles are dispersed, the spherical carbide particles that exist directly under the scale on the steel sheet surface are likely to fall off the steel sheet surface as the scale is removed. I understood it. A circular pit is formed as a drop mark at a portion where the spherical carbide particles are dropped by pickling. The circular pits exert an anchor effect on the coating film, and the coating film adhesion is improved.
炭化物粒子の脱落痕を形成させるための酸洗は、脱スケールを目的とする酸洗と同様の過程とすればよい。例えば、(a)中性塩、硫酸、硝酸などを用いた電解、(b)フッ酸と硝酸との混酸浴への浸漬、といった代表的な酸洗手法が挙げられる。上記(a)、(b)のいずれか一方、または双方を採用することができる。酸洗条件を強めると、いわゆる過酸洗となり、マトリックス(金属素地)が溶解することに起因して表面粗さが大きくなる。塗膜密着性に関して言えば、一般的に表面粗さが大きい方が有利である。しかし、表面粗さが過大であると、ガスケット用材料に要求される特性(加工性、耐疲労特性、シール性)が低下する要因となる。そこで本発明では、平滑性の高い金属素地を有する表面内に、上述のピット(脱落痕)が分散している表面形態とすることにより、ガスケット材料に要求される特性と塗膜密着性の両立を図る。具体的には、仕上焼鈍後の酸洗処理で析出粒子が脱落することにより形成された開口径1.0μm以上のピットを10個/0.01mm2以上の個数密度で表面に有し、圧延直角方向の表面粗さRaが0.500μm以下である表面形態とすることが望ましい。圧延直角方向Raが0.200〜0.500μmであることがより好ましい。
酸洗処理で析出粒子が脱落することにより形成された開口径1.0μm以上のピットの個数密度は以下のようにして測定することができる。
The pickling for forming the falling marks of the carbide particles may be performed in the same manner as the pickling for descaling. For example, typical pickling techniques such as (a) electrolysis using a neutral salt, sulfuric acid, nitric acid, etc. and (b) immersion in a mixed acid bath of hydrofluoric acid and nitric acid can be mentioned. Either one or both of the above (a) and (b) can be employed. When the pickling conditions are increased, so-called peracid cleaning is performed, and the surface roughness increases due to dissolution of the matrix (metal substrate). In terms of coating film adhesion, it is generally advantageous that the surface roughness is large. However, if the surface roughness is excessive, the characteristics (workability, fatigue resistance, sealability) required for the gasket material are reduced. Therefore, in the present invention, by making the surface form in which the above-mentioned pits (drop-off marks) are dispersed in the surface having a metal substrate with high smoothness, both the characteristics required for the gasket material and the coating film adhesion can be achieved. Plan. Specifically, it has pits with an opening diameter of 1.0 μm or more formed on the surface at a number density of 10 / 0.01 mm 2 or more formed by dropping the precipitated particles in the pickling treatment after finish annealing, and rolling. It is desirable to have a surface form in which the surface roughness Ra in the perpendicular direction is 0.500 μm or less. The rolling perpendicular direction Ra is more preferably 0.200 to 0.500 μm.
The number density of pits having an opening diameter of 1.0 μm or more formed by dropping the precipitated particles by pickling treatment can be measured as follows.
〔ピット個数密度の測定方法〕
鋼板表面上に無作為に定めた1または2以上の観察視野において総面積0.1mm2以上の観察領域内に存在する開口径1.0μm以上の脱落痕の数をカウントし、そのカウント総数を観察領域の総面積で除して0.01mm2あたりの個数に換算する。設定した観察領域の境界線上に存在するピットについては、観察領域側の開口部輪郭と境界線とに囲まれた形状のピットであるとして開口径1.0μm以上の脱落痕に該当するか否かを判定する。
[Measurement method of pit number density]
Count the number of omission marks with an opening diameter of 1.0 μm or more present in an observation area with a total area of 0.1 mm 2 or more in one or more observation fields randomly defined on the surface of the steel sheet. Divide by the total area of the observation area and convert to the number per 0.01 mm 2 . Whether or not a pit existing on the boundary line of the set observation area falls into a drop mark having an opening diameter of 1.0 μm or more because the pit is surrounded by the opening outline and the boundary line on the observation area side. Determine.
上述のように、ピットの開口径は、当該ピットの輪郭で囲まれる開口部の最も長い部分の径(長径)を意味するが、球状の炭化物粒子が脱落して形成されたピットの開口部は円形状を呈するという特徴がある。ピット開口部において、上記長径に対して直角方向に測定した開口部の最も長い部分の径を「短径」と呼び、長径/短径の比を当該ピット開口部のアスペクト比と呼ぶとき、球状の炭化物粒子が脱落して形成されたピットは、開口部のアスペクト比が概ね2.0以下の円形状の形態を呈する。
仕上焼鈍後の酸洗処理で炭化物粒子が脱落することにより形成された開口径1.0μm以上、かつ開口部のアスペクト比2.0以下のピットを10個/0.01mm2以上の個数密度で表面に有する鋼板が、本発明において、より好適な対象となる。
As described above, the opening diameter of the pit means the diameter (long diameter) of the longest portion of the opening surrounded by the outline of the pit, but the opening of the pit formed by dropping the spherical carbide particles is It is characterized by a circular shape. In the pit opening, the diameter of the longest part of the opening measured in a direction perpendicular to the long diameter is called “short diameter”, and the ratio of the long diameter / short diameter is called the aspect ratio of the pit opening. The pits formed by dropping off the carbide particles have a circular shape with an opening aspect ratio of approximately 2.0 or less.
With a number density of 10 / 0.01 mm 2 or more of pits having an opening diameter of 1.0 μm or more and an aspect ratio of 2.0 or less formed by the removal of carbide particles by pickling after finish annealing. The steel plate on the surface is a more suitable target in the present invention.
このようにして得られた冷延焼鈍鋼板は、焼戻し軟化や鋭敏化に起因していた強度低下が解消しており、メタルガスケットをはじめとする各種プレス加工用途に適している。また、表面に上述の析出粒子脱落痕が分散している冷延焼鈍鋼板は、塗膜密着性にも優れる。メタルガスケットを製造する過程ではビードプレス成形により一定高さのビードが形成される。得られたプレス加工品に対して、必要に応じて100〜500℃で時効処理を施すことができる。 The cold-rolled annealed steel sheet thus obtained is free from strength reduction caused by temper softening and sensitization, and is suitable for various press working applications including metal gaskets. Moreover, the cold-rolled annealed steel sheet in which the above-mentioned precipitate particle drop marks are dispersed on the surface is excellent in coating film adhesion. In the process of manufacturing the metal gasket, a bead having a certain height is formed by bead press molding. The obtained pressed product can be subjected to an aging treatment at 100 to 500 ° C. as necessary.
《実施例1》
表1に示す化学組成の鋼を溶製し、鋳片を得た。鋳片に熱間圧延を施して板厚3.0mmの熱延鋼板を得た。各熱延鋼板に800℃×24時間、炉冷の熱処理を施したのち、冷間圧延により板厚を減じた。冷間圧延の途中で800℃×均熱60秒の中間焼鈍を1回または複数回入れて、最終板厚0.2mmの冷延鋼板とした。各冷延鋼板から切り出した試料について、表2に示す温度で均熱60秒の加熱を施したのち、800℃から200℃までの平均冷却速度を表2に示すように150℃/sまたは5℃/sコントロールして常温まで冷却し、各焼鈍温度につき冷却速度の異なる2種類の冷延焼鈍鋼板を得た。
Example 1
Steel having the chemical composition shown in Table 1 was melted to obtain a slab. The slab was hot-rolled to obtain a hot-rolled steel plate having a thickness of 3.0 mm. Each hot-rolled steel sheet was subjected to furnace-cooled heat treatment at 800 ° C. for 24 hours, and then the sheet thickness was reduced by cold rolling. During the cold rolling, intermediate annealing at 800 ° C. × soaking for 60 seconds was performed once or a plurality of times to obtain a cold rolled steel sheet having a final thickness of 0.2 mm. Samples cut from each cold-rolled steel sheet were heated for 60 seconds at a temperature shown in Table 2, and then the average cooling rate from 800 ° C. to 200 ° C. was 150 ° C./s or 5 as shown in Table 2. It was cooled to room temperature under the control of ° C./s to obtain two types of cold-rolled annealed steel sheets having different cooling rates for each annealing temperature.
上記の冷延焼鈍鋼板の板面(圧延面)について、JIS Z2244:2009に従い試験力9.8N(硬さ記号HV1)にてビッカース硬さを測定した。そして、平均冷却速度5℃/sの硬さと平均冷却速度150℃/sの硬さの差を、硬さ変化量ΔHとして求めた。このΔHの絶対値が10HV以下であれば、実操業で冷却速度が比較的遅くなった箇所でも所定の強度が維持され、鋼帯内の特性バラツキが非常に小さく抑えられる性質を有していると評価できる。従ってΔHの絶対値が10以下であるものを○(焼入れ安定性;顕著に改善)、それ以外を×(焼入れ安定性;改善不十分)と評価し、○評価を合格と判定した。結果を表2に示す。 About the plate | board surface (rolling surface) of said cold-rolled annealing steel plate, Vickers hardness was measured by test force 9.8N (hardness symbol HV1) according to JISZ2244: 2009. And the difference of the hardness of average cooling rate 5 degree-C / s and the hardness of average cooling rate 150 degree-C / s was calculated | required as hardness variation | change_quantity (DELTA) H. If the absolute value of ΔH is 10 HV or less, a predetermined strength is maintained even at a location where the cooling rate is relatively slow in actual operation, and the characteristic variation in the steel strip is extremely small. Can be evaluated. Therefore, a case where the absolute value of ΔH was 10 or less was evaluated as ◯ (quenching stability; remarkably improved), and other cases were evaluated as x (quenching stability; insufficient improvement), and a ◯ evaluation was determined as acceptable. The results are shown in Table 2.
発明対象鋼のものはいずれも焼入れ安定性が顕著に改善されていた。
これに対し、比較鋼である鋼No.1、No.2はN含有量が低く、CとNの合計含有量が低く、かつC/N含有量比が高いので、焼き入れ安定性が悪かった。鋼No.3は、C含有量が高く、N含有量が低く、かつC/N含有量比が高いので、焼き入れ安定性が更に悪かった。
In all the steels of the invention, the quenching stability was remarkably improved.
In contrast, steels No. 1 and No. 2, which are comparative steels, have a low N content, a low total content of C and N, and a high C / N content ratio, so the quenching stability is poor. It was. Steel No. 3 had a higher C content, a lower N content, and a higher C / N content ratio, and therefore the quenching stability was even worse.
図1に、これらの例について、C/N含有量比と硬さ変化量ΔHの関係を示す。C/N含有量比が5.0以下である場合に、ΔHが−10以上となり、仕上焼鈍での冷却速度が低下した際の焼入れ安定性が顕著に改善されることがわかる。 FIG. 1 shows the relationship between the C / N content ratio and the hardness change ΔH for these examples. It can be seen that when the C / N content ratio is 5.0 or less, ΔH is −10 or more, and the quenching stability is significantly improved when the cooling rate in the finish annealing is lowered.
《実施例2》
実施例1で作成した冷延鋼板(仕上焼鈍前のもの)から試料を切り出し、1050℃で均熱60秒の加熱を施したのち、800℃から200℃までの平均冷却速度を表3に示すようにコントロールして、冷延焼鈍鋼板を得た。仕上焼鈍後の冷却は空冷とし、炉温あるいは空気吹き付け量の調整により冷却速度をコントロールした。試料表面に取り付けた熱電対により冷却時の温度変化を測定し、その冷却曲線に基づき800℃から200℃までの平均冷却速度を求めた。板温が常温付近まで下がったのち、3質量%フッ酸+12質量%硝酸、60℃の酸洗液に試料を浸漬する方法で酸洗処理を施した。酸化スケールが除去できた時点で酸洗を終了し、通常の水洗を経て供試材(酸洗材)とした。各供試材について圧延方向および板厚方向に平行な断面(L断面)を鏡面研磨し、10質量%シュウ酸水溶液中で6V、15秒の電解エッチングを施して調製した観察面について光学顕微鏡で組織観察を行い、鋭敏化の有無を調べた。鋭敏化が認められなかったものを○(鋭敏化;なし)、認められたものを×(鋭敏化;あり)と評価し、○を合格と判定した。結果を表3に示す。
Example 2
Table 3 shows the average cooling rate from 800 ° C. to 200 ° C. after cutting out a sample from the cold-rolled steel sheet (before finish annealing) prepared in Example 1 and heating at 1050 ° C. for 60 seconds. Thus, a cold-rolled annealed steel sheet was obtained. Cooling after the finish annealing was air cooling, and the cooling rate was controlled by adjusting the furnace temperature or the air blowing amount. The temperature change at the time of cooling was measured with the thermocouple attached to the sample surface, and the average cooling rate from 800 ° C. to 200 ° C. was determined based on the cooling curve. After the plate temperature dropped to near room temperature, pickling treatment was performed by dipping the sample in a pickling solution of 3% by mass hydrofluoric acid + 12% by mass nitric acid and 60 ° C. When the oxide scale could be removed, the pickling was finished, and the sample material (pickling material) was obtained through normal water washing. Each specimen was mirror-polished on a cross section (L cross section) parallel to the rolling direction and the plate thickness direction, and subjected to electrolytic etching in a 10% by mass oxalic acid aqueous solution for 6 V for 15 seconds using an optical microscope. Tissue observation was performed to examine the presence or absence of sensitization. The case where no sensitization was observed was evaluated as ◯ (sensitization; none), and the case where sensitization was observed was evaluated as x (sensitization; present). The results are shown in Table 3.
発明対象鋼のものは冷却速度が遅い場合の耐鋭敏化性が改善されていた。これに対し、比較鋼のものは冷却速度が遅い場合に鋭敏化が生じた。本発明に従えば、仕上焼鈍の冷却速度が遅い場合も粒界へのCr炭化物の析出が抑制され、粒界腐食が抑止されたと考えられる。 The steels of the invention had improved sensitization resistance when the cooling rate was slow. In contrast, the comparative steels were sensitized when the cooling rate was slow. According to the present invention, it is considered that the precipitation of Cr carbide at the grain boundaries is suppressed even when the cooling rate of the finish annealing is slow, and the intergranular corrosion is suppressed.
《実施例3》
表1のNo.4の鋼を用いて、実施例1と同様に最終板厚0.2mmの冷延鋼板を得た。この冷延鋼板に表4に示す条件で仕上焼鈍を施した。実施例2と同様の手法で、仕上焼鈍後の800℃から200℃までの平均冷却速度をコントロールし、冷延焼鈍鋼板を得た。得られた冷延焼鈍鋼板に3質量%フッ酸+12質量%硝酸、60℃の酸洗液に浸漬する方法で酸洗処理を施した。酸化スケールが除去できた時点で酸洗を終了し、通常の水洗を経て供試材(酸洗材)とした。比較のために還元雰囲気で仕上焼鈍を施したままのBA処理材も用意した。各供試材について鋼板表面の圧延直角方向の表面粗さRaを触針式の表面粗さ計により測定した。酸洗材についてSEMで鋼板表面を観察することにより、上掲の「ピット個数密度の測定方法」に従い、酸洗処理で析出粒子が脱落することにより形成された開口径1.0μm以上のピットの個数密度を求めた。その際、各供試材につき12視野のSEM画像を調べた。
Example 3
A cold-rolled steel sheet having a final thickness of 0.2 mm was obtained in the same manner as in Example 1 using No. 4 steel in Table 1. The cold-rolled steel sheet was subjected to finish annealing under the conditions shown in Table 4. In the same manner as in Example 2, the average cooling rate from 800 ° C. to 200 ° C. after finish annealing was controlled to obtain a cold-rolled annealed steel plate. The obtained cold-rolled annealed steel sheet was pickled by a method of dipping in 3% by mass hydrofluoric acid + 12% by mass nitric acid and 60 ° C. pickling solution. When the oxide scale could be removed, the pickling was finished, and the sample material (pickling material) was obtained through normal water washing. For comparison, a BA-treated material that was subjected to finish annealing in a reducing atmosphere was also prepared. For each specimen, the surface roughness Ra in the direction perpendicular to the rolling direction of the steel sheet surface was measured with a stylus type surface roughness meter. By observing the steel plate surface with an SEM for the pickling material, in accordance with the above-mentioned “Method for measuring the number density of pits”, pits having an opening diameter of 1.0 μm or more formed by the precipitation particles dropping out by pickling treatment are used. The number density was determined. At that time, SEM images of 12 visual fields were examined for each specimen.
各供試材の鋼板表面にエポキシ系プライマーを塗布して200℃で40sec焼付け乾燥したのち、その上にポリエステル系塗料を塗布して215℃で50sec焼付け乾燥し、塗装鋼板試料を得た。各塗装鋼板試料について、JIS 3320:1999に規定される曲げ試験を施した。曲げ試験片は長手方向が圧延方向となるように採取し、曲げ軸が圧延直角方向、曲げの外側表面が塗装面となるように常温で180°曲げを行った。曲げ試験後の曲げ稜線における塗膜剥離の有無を観察し、塗膜剥離が認められなかったものを○評価(塗膜密着性;良好)、塗膜剥離が認められたものを×評価(塗膜密着性;不良)と判定した。結果を表4に示す。 An epoxy-based primer was applied to the surface of each steel plate and baked and dried at 200 ° C. for 40 seconds, and then a polyester-based paint was applied thereon and baked and dried at 215 ° C. for 50 seconds to obtain a coated steel plate sample. Each coated steel plate sample was subjected to a bending test specified in JIS 3320: 1999. The bending test piece was sampled so that the longitudinal direction was the rolling direction, and was bent 180 ° at room temperature so that the bending axis was the direction perpendicular to the rolling direction and the outer surface of the bending was the painted surface. Observe the presence or absence of coating film peeling at the bending ridge line after the bending test, evaluate ○ for coating film peeling (good adhesion); evaluate x for coating film peeling observed (coating Film adhesion; poor). The results are shown in Table 4.
仕上焼鈍の雰囲気を酸化性雰囲気(大気)とし、仕上焼鈍後の800℃から200℃までの平均冷却速度を1〜150℃/secとしたもの(No.4−2、4−3、4−4)は、酸洗処理で析出粒子が脱落することにより形成された開口径1.0μm以上のピットの個数密度が10個/0.01mm2以上であり、塗膜密着性が良好であった。圧延直角方向の表面粗さRaは0.500μm以下であり、シール性の高いガスケットを得ることができる。 The atmosphere of finish annealing is an oxidizing atmosphere (atmosphere), and the average cooling rate from 800 ° C. to 200 ° C. after finish annealing is 1 to 150 ° C./sec (No. 4-2, 4-3, 4- In 4), the number density of pits having an opening diameter of 1.0 μm or more formed by dropping the precipitated particles by pickling treatment was 10 / 0.01 mm 2 or more, and the coating film adhesion was good. . The surface roughness Ra in the direction perpendicular to rolling is 0.500 μm or less, and a gasket with high sealing properties can be obtained.
これに対し、No.4−1は仕上焼鈍後の冷却速度が大きかったのでマルテンサイト相が過度に硬質化し、曲げ試験で180°まで曲げる加工ができなかった。また、炭化物の析出成長が不十分であり、開口径1.0μm以上のピットの個数密度が少なかった。No.4−5は仕上焼鈍後の冷却速度を極端に遅くした例であり、硬さが低かった。また、酸洗では酸化スケールが除去された段階で過酸洗となり、圧延直角方向の表面粗さRaが0.500μmを超えて大きくなった。No.4−6は仕上焼鈍を還元性雰囲気で行った例であり、酸洗を行っていないので表面の平滑性が高く、塗膜密着性に劣った。 On the other hand, in No. 4-1, since the cooling rate after the finish annealing was large, the martensite phase became excessively hard, and the bending test could not be performed up to 180 °. Further, precipitation growth of carbide was insufficient, and the number density of pits having an opening diameter of 1.0 μm or more was small. No. 4-5 was an example in which the cooling rate after finish annealing was extremely slow, and the hardness was low. Further, in pickling, peroxidation was performed at the stage where the oxide scale was removed, and the surface roughness Ra in the direction perpendicular to the rolling increased beyond 0.500 μm. No. 4-6 was an example in which finish annealing was performed in a reducing atmosphere, and since pickling was not performed, the surface smoothness was high and the coating film adhesion was inferior.
すなわち本発明では、質量%で、C:0.100〜0.180%、Si:0.20〜1.50%、Mn:0.10〜2.00%、Ni:0.01〜1.00%、Cr:11.00〜18.00%、Cu:0.18〜1.60%、Mo:0〜0.50%、N:0.030〜0.100%、V:0〜0.50%、Nb:0〜0.50%、Ti:0〜0.50%、B:0〜0.020%、残部Feおよび不可避的不純物からなり、CとNの合計含有量が0.130質量%以上、C/N含有量比(質量%比)が5.0以下、かつ下記(1)式により定まるγmax値が80.0以上である化学組成を有するマルテンサイト系ステンレス鋼板が提供される。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入される。
That is, in the present invention, by mass%, C: 0.10 to 0.180%, Si: 0.20 to 1.50%, Mn: 0.10 to 2.00%, Ni: 0.01 to 1. 00%, Cr: 11.00 to 18.00%, Cu: 0.18 to 1.60%, Mo: 0 to 0.50%, N: 0.030 to 0.100%, V: 0 to 0 .50%, Nb: 0 to 0.50%, Ti: 0 to 0.50%, B: 0 to 0.020%, remaining Fe and inevitable impurities, and the total content of C and N is 0.5. Provided is a martensitic stainless steel sheet having a chemical composition of 130% by mass or more, a C / N content ratio (mass% ratio) of 5.0 or less, and a γmax value determined by the following formula (1) of 80.0 or more. Is done.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the content of the element represented by mass% is substituted for the element symbol in the formula (1).
Cuは、オーステナイト生成元素であり、マルテンサイト量を十分に確保する上で有効である。また、Nの固溶限を確保するためにも有効である。ただし、Cu含有量が過大になると残留オーステナイト相が存在しやすくなり、強度向上や熱間加工性確保に不利となる。Cu含有量は0.18%以上1.60%以下とする。 Cu is an austenite generating element and is effective in securing a sufficient amount of martensite. Further, it is also effective to ensure the solid solubility limit of N. However, it is retained austenite phase content of Cu becomes excessive is easily exist, which is disadvantageous for improving the strength and hot workability ensured. The Cu content is 0.18% or more and 1.60% or less.
Claims (10)
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入される。 In mass%, C: 0.100 to 0.180%, Si: 0.20 to 1.50%, Mn: 0.10 to 2.00%, Ni: 0.01 to 1.00%, Cr: 11.0 to 18.00%, Cu: 0.20 to 1.60%, Mo: 0 to 0.50%, N: 0.030 to 0.100%, V: 0 to 0.50%, Nb : 0 to 0.50%, Ti: 0 to 0.50%, B: 0 to 0.020%, balance Fe and inevitable impurities, the total content of C and N is 0.130% or more, C A martensitic stainless steel sheet having a chemical composition having a / N content ratio of 5.0 or less and a γmax value determined by the following formula (1) of 80.0 or more.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the content of the element represented by mass% is substituted for the element symbol in the formula (1).
を有するマルテンサイト系ステンレス鋼板の製造法。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入される。 In mass%, C: 0.100 to 0.180%, Si: 0.20 to 1.50%, Mn: 0.10 to 2.00%, Ni: 0.01 to 1.00%, Cr: 11.0 to 18.00%, Cu: 0.20 to 1.60%, Mo: 0 to 0.50%, N: 0.030 to 0.100%, V: 0 to 0.50%, Nb : 0 to 0.50%, Ti: 0 to 0.50%, B: 0 to 0.020%, balance Fe and inevitable impurities, the total content of C and N is 0.130% or more, C An austenite single-phase temperature of an intermediate product steel sheet having a chemical composition having a / N content ratio of 5.0 or less and a γmax value determined by the following formula (1) of 80.0 or more in a range of 800 to 1100 ° C. Or austenite phase + 20 volume% or less of the two-phase temperature range, which is a ferrite phase, and then cooled to cool the austenite phase to martensite. Step of transformation to (finish annealing process),
Method for producing martensitic stainless steel sheet having
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the content of the element represented by mass% is substituted for the element symbol in the formula (1).
を有するマルテンサイト系ステンレス鋼板の製造法。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入される。 In mass%, C: 0.100 to 0.180%, Si: 0.20 to 1.50%, Mn: 0.10 to 2.00%, Ni: 0.01 to 1.00%, Cr: 11.0 to 18.00%, Cu: 0.20 to 1.60%, Mo: 0 to 0.50%, N: 0.030 to 0.100%, V: 0 to 0.50%, Nb : 0 to 0.50%, Ti: 0 to 0.50%, B: 0 to 0.020%, balance Fe and inevitable impurities, the total content of C and N is 0.130% or more, C An austenite single-phase temperature of an intermediate product steel sheet having a chemical composition having a / N content ratio of 5.0 or less and a γmax value determined by the following formula (1) of 80.0 or more in a range of 800 to 1100 ° C. The average cooling rate from 800 ° C to 200 ° C is 1-1 to Step of cooling such that 0 ° C. / sec (final annealing step),
Method for producing martensitic stainless steel sheet having
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the content of the element represented by mass% is substituted for the element symbol in the formula (1).
仕上焼鈍工程後の鋼板を酸洗処理することにより表面の酸化スケールを除去するとともに、表面に存在する炭化物粒子を脱落させて表面にピットを形成する工程(酸洗工程)、
を有するマルテンサイト系ステンレス鋼板の製造法。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49(Ti+Nb+V)+470N+189 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入される。 In mass%, C: 0.100 to 0.180%, Si: 0.20 to 1.50%, Mn: 0.10 to 2.00%, Ni: 0.01 to 1.00%, Cr: 11.0 to 18.00%, Cu: 0.20 to 1.60%, Mo: 0 to 0.50%, N: 0.030 to 0.100%, V: 0 to 0.50%, Nb : 0 to 0.50%, Ti: 0 to 0.50%, B: 0 to 0.020%, balance Fe and inevitable impurities, the total content of C and N is 0.130% or more, C An intermediate product steel sheet having a chemical composition having a / N content ratio of 5.0 or less and a γmax value determined by the following formula (1) of 80.0 or more is in the range of 800 to 1100 ° C. in an oxidizing atmosphere. After heating to an austenite single phase temperature range or a two-phase temperature range that becomes an austenite phase + 20% by volume or less ferrite phase, the temperature ranges from 800 ° C. to 200 ° C. Step of precipitating carbide particles by cooling as average cooling rate is 1 to 150 ° C. / sec (final annealing step),
Removing the surface oxide scale by pickling the steel plate after the finish annealing step, dropping the carbide particles present on the surface to form pits on the surface (pickling step),
Method for producing martensitic stainless steel sheet having
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49 (Ti + Nb + V) + 470N + 189 (1)
Here, the content of the element represented by mass% is substituted for the element symbol in the formula (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059295A JP6095822B1 (en) | 2016-03-23 | 2016-03-23 | Martensitic stainless steel sheet and metal gasket manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059295A JP6095822B1 (en) | 2016-03-23 | 2016-03-23 | Martensitic stainless steel sheet and metal gasket manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6095822B1 JP6095822B1 (en) | 2017-03-15 |
JP2017171990A true JP2017171990A (en) | 2017-09-28 |
Family
ID=58281098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016059295A Active JP6095822B1 (en) | 2016-03-23 | 2016-03-23 | Martensitic stainless steel sheet and metal gasket manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6095822B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021149601A1 (en) * | 2020-01-22 | 2021-07-29 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet and martensitic stainless steel member |
JP7570858B2 (en) | 2020-09-11 | 2024-10-22 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet and method for producing same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278758A (en) * | 1994-04-13 | 1995-10-24 | Nippon Steel Corp | Stainless steel for engine gasket and its production |
JP2001140017A (en) * | 1999-11-12 | 2001-05-22 | Kawasaki Steel Corp | Method for producing martensitic stainless steel hot rolled steel sheet |
JP2002105601A (en) * | 2000-09-27 | 2002-04-10 | Nisshin Steel Co Ltd | High strength dual phase stainless steel and its production method |
JP2003105502A (en) * | 2001-09-25 | 2003-04-09 | Nisshin Steel Co Ltd | Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket |
JP2008163452A (en) * | 2006-12-08 | 2008-07-17 | Nippon Steel & Sumikin Stainless Steel Corp | Martensitic stainless steel excellent in corrosion resistance |
JP2016006222A (en) * | 2014-05-02 | 2016-01-14 | 日新製鋼株式会社 | Martensitic stainless steel sheet and metal gasket |
JP2016166385A (en) * | 2015-03-09 | 2016-09-15 | 新日鐵住金株式会社 | Stainless steel for surface modified spring and production method therefor |
-
2016
- 2016-03-23 JP JP2016059295A patent/JP6095822B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278758A (en) * | 1994-04-13 | 1995-10-24 | Nippon Steel Corp | Stainless steel for engine gasket and its production |
JP2001140017A (en) * | 1999-11-12 | 2001-05-22 | Kawasaki Steel Corp | Method for producing martensitic stainless steel hot rolled steel sheet |
JP2002105601A (en) * | 2000-09-27 | 2002-04-10 | Nisshin Steel Co Ltd | High strength dual phase stainless steel and its production method |
JP2003105502A (en) * | 2001-09-25 | 2003-04-09 | Nisshin Steel Co Ltd | Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket |
JP2008163452A (en) * | 2006-12-08 | 2008-07-17 | Nippon Steel & Sumikin Stainless Steel Corp | Martensitic stainless steel excellent in corrosion resistance |
JP2016006222A (en) * | 2014-05-02 | 2016-01-14 | 日新製鋼株式会社 | Martensitic stainless steel sheet and metal gasket |
JP2016166385A (en) * | 2015-03-09 | 2016-09-15 | 新日鐵住金株式会社 | Stainless steel for surface modified spring and production method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021149601A1 (en) * | 2020-01-22 | 2021-07-29 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet and martensitic stainless steel member |
JP7570858B2 (en) | 2020-09-11 | 2024-10-22 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP6095822B1 (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6124930B2 (en) | Martensitic stainless steel sheet and metal gasket | |
RU2552817C1 (en) | Steel plate of hot-stamped product and method of its manufacturing | |
CN109536827B (en) | Steel sheet having improved resistance to acid dew point corrosion, method for producing same, and exhaust gas flow path component | |
JP5156293B2 (en) | Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof | |
JP6095619B2 (en) | Austenitic stainless steel sheet and metal gasket | |
CN111575588B (en) | Martensite precipitation hardening stainless steel and preparation method and application thereof | |
KR102504491B1 (en) | Steel and enamel products | |
CN107709592B (en) | Ferrite series stainless steel plate and its manufacturing method | |
JP6196453B2 (en) | Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same | |
JP2002256397A (en) | High hardness martensitic stainless steel having excellent corrosion resistance | |
WO2013122191A1 (en) | Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same | |
JP2007239060A (en) | Surface hardened ferritic stainless steel sheet | |
JP2014201764A (en) | Steel sheet for nitriding treatment and manufacturing method therefor | |
JP6095822B1 (en) | Martensitic stainless steel sheet and metal gasket manufacturing method | |
JP2018159119A (en) | Two-phase stainless steel-shaped steel and method for producing the same | |
JPH10176249A (en) | Ferritic stainless steel material and its production | |
JP2000212706A (en) | Cr STAINLESS STEEL SHEET AND ITS PRODUCTION | |
JP4034129B2 (en) | High-strength, high-thermal-expansion austenitic stainless steel material excellent in high-temperature sag resistance and corrosion resistance and method for producing the same | |
WO2022114145A1 (en) | Dual phase stainless steel plate and dual phase stainless hot-rolled plate, and method for manufacturing dual phase stainless steel plate | |
JP2005307293A (en) | Ba-finished material of ferritic stainless steel superior in fingerprint resistance, scratch resistance and workability, and manufacturing method therefor | |
JP2001279394A (en) | Martensitic stainless steel sheet and its production method | |
JP3559938B2 (en) | Stainless steel for gas burner | |
JP2024522170A (en) | Austenitic stainless steel and its manufacturing method | |
CN116670313A (en) | Austenitic stainless steel and heat exchanger plates and chimney tubes made of such steel | |
JP2007031764A (en) | Austenitic heat-resistant material with excellent high-temperature durability, heat-resistant parts and heat-resistant parts concerned with engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6095822 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |