Nothing Special   »   [go: up one dir, main page]

JP2017169735A - Balloon catheter, and production method and treatment method therefor - Google Patents

Balloon catheter, and production method and treatment method therefor Download PDF

Info

Publication number
JP2017169735A
JP2017169735A JP2016058037A JP2016058037A JP2017169735A JP 2017169735 A JP2017169735 A JP 2017169735A JP 2016058037 A JP2016058037 A JP 2016058037A JP 2016058037 A JP2016058037 A JP 2016058037A JP 2017169735 A JP2017169735 A JP 2017169735A
Authority
JP
Japan
Prior art keywords
balloon
blade
axial direction
catheter
elongated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016058037A
Other languages
Japanese (ja)
Other versions
JP6704273B2 (en
Inventor
亮佑 鈴木
Ryosuke Suzuki
亮佑 鈴木
靖夫 黒崎
Yasuo Kurosaki
靖夫 黒崎
後藤 博
Hiroshi Goto
博 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2016058037A priority Critical patent/JP6704273B2/en
Publication of JP2017169735A publication Critical patent/JP2017169735A/en
Application granted granted Critical
Publication of JP6704273B2 publication Critical patent/JP6704273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a balloon catheter capable of effectively delivering a medicament to a biological tissue, and a production method and a treatment method therefor.SOLUTION: A balloon catheter 10 comprises a balloon 12 on a tip end part of a catheter shaft 11, in which plural long bodies 33 which have an independent long axis and extend, and which are crystals of a water-insoluble medicament, are provided on the surface of the balloon 12. The surface of the balloon 12 has an area where 50 volume% or more of the long bodies 33 are tilted to be along an axial direction side relative to a peripheral direction side of the balloon 12.SELECTED DRAWING: Figure 5

Description

本発明は、表面に薬剤がコーティングされたバルーンを有するバルーンカテーテル及びその製造方法並びに処置方法に関する。   The present invention relates to a balloon catheter having a balloon whose surface is coated with a drug, a method for manufacturing the same, and a treatment method.

生体管腔内に生じた病変部(狭窄部)改善のため、バルーンカテーテルが広く用いられている。バルーンカテーテルは、通常、長尺なカテーテルシャフトと、このカテーテルシャフトの先端側に設けられて径方向に拡張可能なバルーンとを備えている。収縮されているバルーンを、細い生体管腔を経由して体内の目的場所まで到達させた後に拡張させることで、病変部を押し広げることができる。   A balloon catheter is widely used to improve a lesion (stenosis) occurring in a living body lumen. The balloon catheter usually includes a long catheter shaft and a balloon that is provided on the distal end side of the catheter shaft and is expandable in the radial direction. By expanding the deflated balloon after reaching a target location in the body via a thin living body lumen, the lesioned part can be expanded.

一方、病変部をバルーンにより強制的に押し広げると、内皮細胞が過剰に増殖して病変部に新たな狭窄(再狭窄)を発症する場合がある。このため、最近では、バルーンの表面に狭窄を抑制するための薬剤をコーティングした薬剤溶出性バルーン(Drug Eluting Balloon;DEB)が用いられている。薬剤溶出性バルーンは、拡張することで表面にコーティングされている薬剤を病変部に放出し、薬剤を生体組織へ移行させることができ、これにより、再狭窄を抑制することができる。   On the other hand, if the lesioned part is forcibly expanded by a balloon, the endothelial cells may proliferate excessively and may cause new stenosis (restenosis) in the lesioned part. For this reason, recently, a drug eluting balloon (DEB) in which a balloon surface is coated with a drug for suppressing stenosis has been used. By expanding the drug-eluting balloon, the drug coated on the surface can be released to the lesioned part, and the drug can be transferred to the living tissue, thereby suppressing restenosis.

近年では、バルーンの表面にコーティングされる薬剤の形態型(morphological form)が、病変部におけるバルーン表面からの薬剤の放出性や組織移行性に影響を及ぼすことが明らかになりつつある。例えば特許文献1には、バルーンの表面に、薬剤の結晶が長尺に形成されたバルーンカテーテルが記載されている。   In recent years, it has become clear that the morphological form of the drug coated on the surface of the balloon affects the drug release from the balloon surface and the tissue transferability at the lesion. For example, Patent Document 1 describes a balloon catheter in which drug crystals are formed in a long shape on the surface of a balloon.

米国特許出願公開第2014/0271775号明細書US Patent Application Publication No. 2014/0271775

薬剤を溶出するバルーンカテーテルは、治療における効果を高めるため、バルーン表面の薬剤の生体組織への送達性が高いことが望まれる。   A balloon catheter that elutes a drug is desired to have high drug deliverability to the living tissue of the balloon surface in order to enhance the effect in the treatment.

本発明は、上述した課題を解決するためになされたものであり、薬剤を生体組織へ効果的に送達できるバルーンカテーテル及びその製造方法並びに処置方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a balloon catheter capable of effectively delivering a drug to a living tissue, a manufacturing method thereof, and a treatment method.

上記目的を達成する本発明に係るバルーンカテーテルは、カテーテルシャフトの先端部にバルーンを有し、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体が前記バルーンの表面に設けられているバルーンカテーテルであって、
前記バルーンの表面は、50体積%以上の前記長尺体が前記バルーンの周方向側より軸方向側に沿うように傾倒している領域を有する。
The balloon catheter according to the present invention that achieves the above object has a balloon at the distal end portion of the catheter shaft, and a plurality of elongated bodies that are crystals of a water-insoluble drug extending with an independent long axis. A balloon catheter provided on the surface of
The surface of the balloon has a region where the elongated body of 50% by volume or more is inclined so as to be along the axial direction side from the circumferential direction side of the balloon.

また、上記目的を達成する本発明に係るバルーンカテーテルの製造方法は、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体がバルーンの表面に設けられているバルーンカテーテルの製造方法において、
前記バルーンの表面に前記長尺体を形成するステップと、
前記バルーンに径方向に突出する羽根部を形成するステップと、
前記バルーンに形成された羽根部を周方向に沿って寝かせるステップと、を有し、
前記バルーンに羽根部を形成するステップ、または前記バルーンの羽根部を寝かせるステップのいずれかにおいて、前記バルーンを変形させるために作用させる力によって、前記バルーンの表面を軸方向に沿って押圧することにより、前記バルーンの表面の長尺体を傾倒させ、少なくとも50体積%以上の前記長尺体が、前記バルーンの周方向側より軸方向側に沿うように傾倒している領域を形成する。
In the balloon catheter manufacturing method according to the present invention that achieves the above object, a plurality of elongated bodies that are crystals of a water-insoluble drug extending with independent long axes are provided on the surface of the balloon. In the method of manufacturing a balloon catheter,
Forming the elongated body on the surface of the balloon;
Forming a radially projecting wing on the balloon;
Laying the wings formed on the balloon along the circumferential direction,
By pressing the surface of the balloon along the axial direction by a force that acts to deform the balloon in either the step of forming the blade on the balloon or the step of laying down the blade of the balloon The elongated body on the surface of the balloon is tilted to form a region in which at least 50% by volume or more of the elongated body is tilted so as to be along the axial direction side from the circumferential direction side of the balloon.

また、上記目的を達成する本発明に係る処置方法は、バルーンカテーテルを使用して生体管腔内の病変部に薬剤を送達する処置方法であって、
前記バルーンを生体管腔内に挿入して病変部へ到達させるステップと、
前記バルーンを拡張させて前記長尺体を生体組織に押し付けるステップと、
前記バルーンを収縮させて生体管腔から抜去するステップと、を有する。
The treatment method according to the present invention for achieving the above object is a treatment method for delivering a drug to a lesion in a living body lumen using a balloon catheter,
Inserting the balloon into the body lumen to reach the lesion;
Expanding the balloon and pressing the elongated body against the living tissue;
Deflating the balloon and removing it from the body lumen.

上記のように構成したバルーンカテーテルは、折り畳まれたバルーンが生体管腔を移動する際に、長尺体が軸方向に沿って傾倒した状態となっているので、バルーンからの剥離が抑制されると共に、摩擦力も小さくすることができる。これにより、バルーンが生体管腔内を移動する際における薬剤の逸失を抑えて、目的の位置まで薬剤を効果的に送達させることができ、また、バルーンの通過性も良好にすることができる。   In the balloon catheter configured as described above, since the elongated body is tilted along the axial direction when the folded balloon moves through the living body lumen, peeling from the balloon is suppressed. At the same time, the frictional force can be reduced. Thereby, the loss of the drug when the balloon moves in the living body lumen can be suppressed, the drug can be effectively delivered to the target position, and the passage of the balloon can be improved.

前記バルーンの周方向側より軸方向側に沿うように傾倒している前記長尺体は、前記バルーンの表面に対してなす角度が30度以下であるようにすれば、軸方向に沿って傾倒した状態の長尺体が、バルーンの表面に対して寝た状態となって、バルーンの移動時に生体管腔の内壁などと接触しても、剥離することを効果的に抑制することができる。   The elongated body tilted so as to extend along the axial direction from the circumferential side of the balloon is tilted along the axial direction if the angle formed with respect to the surface of the balloon is 30 degrees or less. Even if the elongated body in a state of being in a state of lying on the surface of the balloon comes into contact with the inner wall of the living body lumen when the balloon moves, it can be effectively prevented from peeling.

傾倒している前記長尺体は、前記バルーンの先端側から基端側に向かって傾倒しているようにすれば、バルーンの挿入時に、長尺体の先端が生体管腔の内壁面に引っ掛からないようにすることができるので、長尺体の剥離をより効果的に抑制でき、また、バルーン挿入時の摩擦抵抗を低減できる。   If the elongated body that is tilted is tilted from the distal end side to the proximal end side of the balloon, the distal end of the elongated body is caught from the inner wall surface of the living body lumen when the balloon is inserted. Therefore, peeling of the long body can be more effectively suppressed, and the frictional resistance when inserting the balloon can be reduced.

傾倒している前記長尺体は、前記バルーンの基端側から先端側に向かって傾倒しているようにすれば、バルーンを引き抜く際に、長尺体の先端が生体管腔の内壁面に引っ掛からないようにすることができるので、長尺体の剥離をより効果的に抑制でき、また、バルーン引き抜き時の摩擦抵抗を低減できる。   If the elongated body that is tilted is tilted from the proximal end side to the distal end side of the balloon, the distal end of the elongated body is brought into contact with the inner wall surface of the living body lumen when the balloon is pulled out. Since it can be prevented from being caught, peeling of the long body can be more effectively suppressed, and the frictional resistance when the balloon is pulled out can be reduced.

前記水不溶性薬剤は、ラパマイシン、パクリタキセル、ドセタキセル、またはエベロリムスであるようにすれば、血管内の狭窄部の再狭窄を良好に抑制できる。   If the water-insoluble drug is rapamycin, paclitaxel, docetaxel, or everolimus, restenosis of the stenosis in the blood vessel can be satisfactorily suppressed.

上記のように構成したバルーンカテーテルの製造方法は、バルーンに羽根部を形成するステップ、または羽根部を折り畳むステップにおいてバルーンに作用する力を利用して、バルーンの表面において長尺体を軸方向に沿って傾倒させることができる。   The method for manufacturing a balloon catheter configured as described above uses a force acting on the balloon in the step of forming the wing portion on the balloon or the step of folding the wing portion, so that the long body is axially formed on the surface of the balloon. Can be tilted along.

前記バルーンの表面を押圧する際に、前記バルーンを軸方向に移動させることにより、前記バルーンの表面を軸方向に沿って押圧するようにすれば、バルーンの軸方向の移動に伴って長尺体を軸方向に沿って傾倒させることができる。   When the surface of the balloon is pressed, the balloon is moved in the axial direction so that the surface of the balloon is pressed along the axial direction. Can be tilted along the axial direction.

上記のように構成した処置方法は、折り畳まれた状態のバルーンを血管内で移動させる際に、バルーンの表面において薬剤結晶の長尺体が軸方向に沿って傾倒しているので、長尺体の剥離を抑制でき、また、生体管腔の内壁面との間の摩擦抵抗が小さいので、バルーンを円滑に移動させることができる。これにより、薬剤を病変部に効果的に送達させることができる。   In the treatment method configured as described above, when the balloon in a folded state is moved in the blood vessel, the long body of the drug crystal is tilted along the axial direction on the surface of the balloon. Can be suppressed, and since the frictional resistance between the inner wall surface of the living body lumen is small, the balloon can be moved smoothly. Thereby, a chemical | medical agent can be effectively delivered to a lesioned part.

本実施形態に係るバルーンカテーテルを示す正面図である。It is a front view which shows the balloon catheter which concerns on this embodiment. バルーンカテーテルの先端部の断面図である。It is sectional drawing of the front-end | tip part of a balloon catheter. バルーンの表面の薬剤結晶からなる長尺体を示す概略斜視図である。It is a schematic perspective view which shows the elongate body which consists of a drug crystal | crystallization of the surface of a balloon. バルーンの表面の薬剤結晶からなる長尺体及び基層を示す概略図である。It is the schematic which shows the elongate body and base layer which consist of a drug crystal | crystallization of the surface of a balloon. バルーンの軸方向に沿って傾倒した状態の薬剤結晶からなる長尺体を示す概略斜視図である。It is a schematic perspective view which shows the elongate body which consists of a drug crystal in the state inclined along the axial direction of the balloon. バルーンの折り畳み前状態(図6(a))、バルーンに羽根部を形成した状態(図6(b))、バルーンを折り畳んだ状態(図6(c))の断面図である。FIG. 7 is a cross-sectional view of a state before the balloon is folded (FIG. 6A), a state in which blades are formed on the balloon (FIG. 6B), and a state in which the balloon is folded (FIG. 6C). バルーンコーティング装置を示す概略図である。It is the schematic which shows a balloon coating apparatus. バルーンに接触したディスペンシングチューブを示す断面図である。It is sectional drawing which shows the dispensing tube which contacted the balloon. バルーン折り畳み装置を示す斜視図である。It is a perspective view which shows a balloon folding apparatus. プリーティング部のブレードの配置及びフィルム供給部を示す正面図である。It is a front view which shows arrangement | positioning of the braid | blade of a pleating part, and a film supply part. プリーティング部のブレードを示す正面図である。It is a front view which shows the braid | blade of a pleating part. フォールディング部のブレードの配置及びフィルム供給部を示す正面図である。It is a front view which shows arrangement | positioning of the braid | blade of a folding part, and a film supply part. フォールディング部のブレードを示す正面図である。It is a front view which shows the braid | blade of a folding part. プリーティング部に配置したバルーンカテーテルを示す断面図である。It is sectional drawing which shows the balloon catheter arrange | positioned at a pleating part. プリーティング部のブレードを回動させてバルーンに羽根部を形成した状態のブレードを示す正面図である。It is a front view which shows the braid | blade of the state which rotated the braid | blade of the pleating part and formed the blade | wing part in the balloon. 薬剤結晶の長尺体を立った状態から傾倒した状態とするまでの過程を表した概略斜視図である。It is the schematic perspective view showing the process from making the elongate body of a drug crystal into the state inclined from the standing state. フォールディング部に配置したバルーンカテーテルを示す断面図である。It is sectional drawing which shows the balloon catheter arrange | positioned at the folding part. フォールディング部のブレードを回動させバルーンの羽根部を畳んだ状態のブレードを示す正面図である。It is a front view which shows the braid | blade of the state which rotated the braid | blade of the folding part and folded the blade | wing part of the balloon. 本実施形態に係るバルーンカテーテルにより血管の狭窄部を押し広げた状態を示す断面図である。It is sectional drawing which shows the state which expanded the stenosis part of the blood vessel with the balloon catheter which concerns on this embodiment. 基層がフィルム状アモルファスである場合の長尺体及び基層を示す概略図である。It is the schematic which shows a elongate body and base layer in case a base layer is film-form amorphous. 異なる形態の羽根部を有する折り畳み状態のバルーンの断面図である。It is sectional drawing of the balloon of the folded state which has a blade | wing part of a different form.

以下、図面を参照して、本発明の実施の形態を説明する。図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、本明細書では、バルーンカテーテル10の生体管腔に挿入する側を「先端」若しくは「先端側」、操作する手元側を「基端」若しくは「基端側」と称することとする。   Embodiments of the present invention will be described below with reference to the drawings. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. Further, in this specification, the side of the balloon catheter 10 that is inserted into the living body lumen is referred to as “tip” or “tip side”, and the proximal side for operation is referred to as “base end” or “base end side”.

まず、本実施形態のバルーンカテーテルについて説明する。バルーンカテーテル10は、図1に示すように、長尺で中空状のカテーテルシャフト11と、カテーテルシャフト11の先端側端部に設けられるバルーン12と、バルーン12の表面に設けられている薬剤を含むコート層30と、カテーテルシャフト11の基端側端部に固着されたハブ13とを有している。コート層30が設けられたバルーン12は、使用されるまで、保護シース15により覆われて保護される。   First, the balloon catheter of this embodiment is demonstrated. As shown in FIG. 1, the balloon catheter 10 includes a long and hollow catheter shaft 11, a balloon 12 provided at the distal end portion of the catheter shaft 11, and a drug provided on the surface of the balloon 12. The coating layer 30 and the hub 13 fixed to the proximal end portion of the catheter shaft 11 are provided. The balloon 12 provided with the coat layer 30 is covered and protected by the protective sheath 15 until it is used.

バルーン12の軸心方向の長さは特に限定されないが、好ましくは5〜500mm、より好ましくは10〜300mm、さらに好ましくは20〜200mmである。   The length of the balloon 12 in the axial direction is not particularly limited, but is preferably 5 to 500 mm, more preferably 10 to 300 mm, and still more preferably 20 to 200 mm.

バルーン12の拡張時の外径は、特に限定されないが、好ましくは1〜10mm、より好ましくは2〜8mmである。   Although the outer diameter at the time of expansion | swelling of the balloon 12 is not specifically limited, Preferably it is 1-10 mm, More preferably, it is 2-8 mm.

バルーン12のコート層30が形成される前の表面は、平滑であり、非多孔質であるが、膜を貫通しない微小な孔があってもよい。微小な孔のサイズは、例えば、直径が0.1〜5μm、深さが0.1〜10μmであり、1つの結晶に対して、1つまたは複数の孔を有してもよい。また、微小な孔のサイズは、例えば、直径が5〜500μm、深さが0.1〜50μmであり、1つの孔に対して、1つまたは複数の結晶を有してもよい。   The surface of the balloon 12 before the coating layer 30 is formed is smooth and non-porous, but may have minute holes that do not penetrate the membrane. The size of the minute holes is, for example, 0.1 to 5 μm in diameter and 0.1 to 10 μm in depth, and may have one or a plurality of holes for one crystal. Further, the size of the minute holes is, for example, a diameter of 5 to 500 μm and a depth of 0.1 to 50 μm, and one hole or a plurality of crystals may be included for one hole.

このバルーンカテーテル10は、長尺なカテーテルシャフト11を生体器官内に挿通させ、その遠位側に設けられたバルーン12を病変部で拡張させることで、病変部を押し広げて治療を行うことができるものである。   This balloon catheter 10 allows a long catheter shaft 11 to be inserted into a living organ and a balloon 12 provided on the distal side of the balloon catheter 10 is expanded at the lesioned part to expand and spread the lesioned part. It can be done.

次に、カテーテルシャフト11の先端部及びバルーン12の構造について説明する。図2に示すように、カテーテルシャフト11は、中空状の外管20と、中空状の内部支持体である内管21とを有している。内管21は、外管20の中空内部に納められており、カテーテルシャフト11は、先端部において二重管構造となっている。内管21の中空内部は、ガイドワイヤ14を挿通させるガイドワイヤルーメン23を形成する。また、外管20の中空内部であって、内管21の外側には、バルーン12の拡張用流体を流通させる拡張ルーメン22が形成される。内管21は、開口部24において外部に開口している。内管21は、外管20の先端よりもさらに先端側まで突出している。   Next, the structure of the distal end portion of the catheter shaft 11 and the balloon 12 will be described. As shown in FIG. 2, the catheter shaft 11 has a hollow outer tube 20 and an inner tube 21 that is a hollow inner support. The inner tube 21 is housed in the hollow interior of the outer tube 20, and the catheter shaft 11 has a double tube structure at the tip. The hollow interior of the inner tube 21 forms a guide wire lumen 23 through which the guide wire 14 is inserted. Further, an expansion lumen 22 through which the expansion fluid of the balloon 12 is circulated is formed inside the hollow of the outer tube 20 and outside the inner tube 21. The inner tube 21 opens to the outside at the opening 24. The inner tube 21 protrudes further to the distal end side than the distal end of the outer tube 20.

バルーン12は、基端側端部が外管20の先端部に固定され、先端側端部が内管21の先端部に固定されている。これにより、バルーン12の内部が拡張ルーメン22と連通している。拡張ルーメン22を介してバルーン12に拡張用流体を注入することで、バルーン12を拡張させることができる。拡張用流体は気体でも液体でもよく、例えばヘリウムガス、COガス、Oガス等の気体や、生理食塩水、造影剤等の液体を用いることができる。なお、図2において、バルーン12は拡張した状態である。 The balloon 12 has a proximal end portion fixed to the distal end portion of the outer tube 20 and a distal end portion fixed to the distal end portion of the inner tube 21. Thereby, the inside of the balloon 12 communicates with the expansion lumen 22. The balloon 12 can be expanded by injecting an expansion fluid into the balloon 12 via the expansion lumen 22. The expansion fluid may be a gas or a liquid. For example, a gas such as helium gas, CO 2 gas, or O 2 gas, or a liquid such as physiological saline or contrast medium can be used. In FIG. 2, the balloon 12 is in an expanded state.

バルーン12の軸心方向における中央部には、拡張させた際に外径が等しい円筒状のストレート部12a(拡張部)が形成され、ストレート部12aの軸心方向の両側に、外径が徐々に変化するテーパ部12bが形成される。そして、ストレート部12aの表面の全体に、薬剤を含むコート層30が形成される。なお、バルーン12においてコート層30を形成する範囲は、ストレート部12aのみに限定されず、ストレート部12aに加えてテーパ部12bの少なくとも一部が含まれてもよく、または、ストレート部12aの一部のみであってもよい。   A cylindrical straight portion 12a (expanded portion) having the same outer diameter when expanded is formed at the central portion in the axial direction of the balloon 12, and the outer diameter gradually increases on both sides of the straight portion 12a in the axial direction. A taper portion 12b that changes to is formed. And the coat layer 30 containing a chemical | medical agent is formed in the whole surface of the straight part 12a. In addition, the range in which the coating layer 30 is formed in the balloon 12 is not limited to the straight portion 12a, and may include at least a part of the tapered portion 12b in addition to the straight portion 12a, or one of the straight portions 12a. It may be only part.

外管20及び内管21は、ある程度の可撓性を有する材料により形成されるのが好ましい。そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリテトラフルオロエチレン等のフッ素樹脂、シリコーンゴム、ラテックスゴム等が挙げられる。   The outer tube 20 and the inner tube 21 are preferably formed of a material having a certain degree of flexibility. Examples of such a material include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, soft polyvinyl chloride resin, Examples thereof include fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polytetrafluoroethylene, silicone rubber, and latex rubber.

バルーン12は、ある程度の柔軟性と血管や組織等に到達した際に拡張されて、その表面に有するコート層30から薬剤を放出できるようにある程度の硬度を有するものが好ましい。具体的には、金属や、樹脂で構成されるが、コート層30が設けられるバルーン12の少なくとも表面は、樹脂で構成されていることが好ましい。バルーン12の少なくとも表面の構成材料は、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ナイロンエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が使用できる。そのなかでも、好適にはポリアミド類が挙げられる。すなわち、薬剤をコートする医療機器の拡張部の表面の少なくとも一部がポリアミド類である。ポリアミド類としては、アミド結合を有する重合体であれば特に制限されないが、例えば、ポリテトラメチレンアジパミド(ナイロン46)、ポリカプロラクタム(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカノラクタム(ナイロン11)、ポリドデカノラクタム(ナイロン12)などの単独重合体、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/アミノウンデカン酸共重合体(ナイロン6/11)、カプロラクタム/ω−アミノノナン酸共重合体(ナイロン6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/ 66)などの共重合体、アジピン酸とメタキシレンジアミンとの共重合体、またはヘキサメチレンジアミンとm,p−フタル酸との共重合体などの芳香族ポリアミドなどが挙げられる。さらに、ナイロン6、ナイロン66、ナイロン11、ナイロン12などをハードセグメントとし、ポリアルキレングリコール、ポリエーテル、または脂肪族ポリエステルなどをソフトセグメントとするブロック共重合体であるポリアミドエラストマーも、本発明に係る医療用具の基層として用いられる。上記ポリアミド類は、1種単独で使用してもよいし、2種以上を併用してもよい。   The balloon 12 preferably has a certain degree of flexibility and a certain degree of hardness so that it can be expanded when it reaches a blood vessel, tissue, etc., and the drug can be released from the coat layer 30 on its surface. Specifically, it is made of metal or resin, but at least the surface of the balloon 12 on which the coat layer 30 is provided is preferably made of resin. The constituent material of at least the surface of the balloon 12 is, for example, a polyolefin such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, or soft polychlorinated Vinyl resins, polyamides, polyamide elastomers, nylon elastomers, polyesters, polyester elastomers, polyurethanes, thermoplastic resins such as fluorine resins, silicone rubbers, latex rubbers and the like can be used. Among these, polyamides are preferable. That is, at least a part of the surface of the extended portion of the medical device that coats the drug is a polyamide. The polyamide is not particularly limited as long as it is a polymer having an amide bond. For example, polytetramethylene adipamide (nylon 46), polycaprolactam (nylon 6), polyhexamethylene adipamide (nylon 66), Homopolymers such as polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecanolactam (nylon 11), polydodecanolactam (nylon 12), caprolactam / lauryl lactam copolymer Polymer (nylon 6/12), caprolactam / aminoundecanoic acid copolymer (nylon 6/11), caprolactam / ω-aminononanoic acid copolymer (nylon 6/9), caprolactam / hexamethylene diammonium adipate copolymer ( Nylon 6/66 And aromatic polyamides such as a copolymer of adipic acid and metaxylenediamine, or a copolymer of hexamethylenediamine and m, p-phthalic acid. Further, a polyamide elastomer which is a block copolymer having nylon 6, nylon 66, nylon 11, nylon 12 or the like as a hard segment and polyalkylene glycol, polyether or aliphatic polyester as a soft segment also relates to the present invention. Used as a base layer for medical devices. The said polyamides may be used individually by 1 type, and may use 2 or more types together.

バルーン12には、その表面上に、後述する方法によって、直接またはプライマー層等の前処理層を介してコート層30が形成される。コート層30は、図3、4に示すように、バルーン12の表面31に層状に配置される水溶性低分子化合物を含む基層32(賦形剤)と、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体33とを有している。   A coating layer 30 is formed on the surface of the balloon 12 directly or via a pretreatment layer such as a primer layer on the surface thereof by a method described later. As shown in FIGS. 3 and 4, the coat layer 30 has a base layer 32 (excipient) containing a water-soluble low-molecular compound disposed in a layer on the surface 31 of the balloon 12 and an independent long axis. And a plurality of elongated bodies 33 that are crystals of existing water-insoluble drugs.

コート層30に含まれる薬剤量は、特に限定されないが、0.1μg/mm〜10μg/mm、好ましくは0.5μg/mm〜5μg/mmの密度で、より好ましくは0.5μg/mm〜3.5μg/mm、さらに好ましくは1.0μg/mm〜3μg/mmの密度で含まれる。また、コート層30の結晶の量は、特に限定されないが、5〜500000crystal/10μm(10μm当たりの結晶の数)、好ましくは50〜50000crystal/10μm、より好ましくは500〜5000crystal/10μmである。 The amount of drug contained in the coat layer 30 is not particularly limited, 0.1μg / mm 2 ~10μg / mm 2, at a density of preferably 0.5μg / mm 2 ~5μg / mm 2 , more preferably 0.5 [mu] g / mm 2 ~3.5μg / mm 2, more preferably included at a density of 1.0μg / mm 2 ~3μg / mm 2 . The amount of crystals in the coat layer 30 is not particularly limited, but is 5 to 500,000 crystal / 10 μm 2 (number of crystals per 10 μm 2 ), preferably 50 to 50000 crystal / 10 μm 2 , more preferably 500 to 5000 crystal / 10 μm 2. It is.

長尺体33は、中空である場合と、中実である場合がある。長尺体33は、中空である場合、少なくともその先端付近が中空である。長尺体33の長軸に直角な(垂直な)面における長尺体33の断面は中空を有する。当該中空を有する長尺体33は長軸に直角な(垂直な)面における長尺体33の断面が多角形である。当該多角形は、例えば3角形、4角形、5角形、6角形などである。したがって、長尺体33は先端(または先端面)と基端(または基端面)とを有し、先端(または先端面)と基端(または基端面)との間の側面が複数のほぼ平面で構成された長尺多面体として形成される。この結晶形態型(中空長尺体結晶形態型)は基層表面において、ある平面の全体または少なくとも一部を構成する。   The long body 33 may be hollow or solid. When the long body 33 is hollow, at least the vicinity of the tip thereof is hollow. The cross section of the long body 33 in a plane perpendicular to the long axis of the long body 33 is hollow. The long body 33 having the hollow has a polygonal cross section in a plane perpendicular to the long axis (perpendicular). The polygon is, for example, a triangle, a tetragon, a pentagon, or a hexagon. Therefore, the elongated body 33 has a distal end (or distal end surface) and a proximal end (or proximal end surface), and a side surface between the distal end (or distal end surface) and the proximal end (or proximal end surface) has a plurality of substantially flat surfaces. It is formed as a long polyhedron composed of This crystal form type (hollow elongated body crystal form type) constitutes all or at least a part of a certain plane on the surface of the base layer.

長軸を有する長尺体33の軸方向の長さは5μm〜20μmが好ましく、9μm〜11μmがより好ましく、10μm前後であるのがさらに好ましい。長軸を有する長尺体33の径は、0.01μm〜5μmであるのが好ましく、0.05μm〜4μmであるのがより好ましく、0.1μm〜3μmであるのがさらに好ましい。長軸を有する長尺体33の軸方向の長さと径の組み合わせの例として、長さが5μm〜20μmのときに径が0.01〜5μmである組み合わせ、長さが5〜20μmのときに径が0.05〜4μmである組み合わせ、長さが5〜20μmのときに径が0.1〜3μmである組み合わせが挙げられる。長軸を有する長尺体33は、長軸方向に略直線状であるが、曲線状に湾曲していてもよい。   The length of the long body 33 having the long axis is preferably 5 μm to 20 μm, more preferably 9 μm to 11 μm, and still more preferably around 10 μm. The diameter of the long body 33 having a long axis is preferably 0.01 μm to 5 μm, more preferably 0.05 μm to 4 μm, and still more preferably 0.1 μm to 3 μm. As an example of the combination of the length and diameter in the axial direction of the long body 33 having a long axis, when the length is 5 μm to 20 μm, the diameter is 0.01 to 5 μm, and when the length is 5 to 20 μm Combinations having a diameter of 0.05 to 4 μm and combinations having a diameter of 0.1 to 3 μm when the length is 5 to 20 μm can be mentioned. The long body 33 having the long axis is substantially linear in the long axis direction, but may be curved in a curved shape.

コーティング後であってバルーン12が折り畳まれる前の長軸を有する長尺体33は、バルーン12の表面に対して寝ることなく立っているように形成される。この際の長尺体33は、バルーン12のプリーティング(バルーンに羽根部40を形成するステップ)またはフォールディング(羽根部40を折り畳むステップ)により長尺体33の角度が変わり、バルーン12の表面に対する長尺体33の長軸の角度を変化させることができる。したがって、最初からバルーン12の表面に寝たように形成される結晶は、バルーン12の表面や隣接する長尺体33に固着(固定)されるのに対し、立っている長尺体33は、バルーン12の表面や隣接する長尺体33と物理的に固定されて形成されていない。このため、立っている長尺体33は、例えばバルーン12の表面や隣接する長尺体33に接触するように位置付けられている(配置されている)だけであり、三次元的に位置を変更可能である。したがって、コーティング後の長尺体33は、バルーン12のプリーティングやフォールディングの前後で角度や位置が変わり得るように形成されている。長尺体33の一部は、バルーン12の表面に埋め込まれていてもよい。   The long body 33 having a long axis after coating and before the balloon 12 is folded is formed so as to stand without sleeping on the surface of the balloon 12. At this time, the long body 33 changes its angle with respect to the surface of the balloon 12 by pleating the balloon 12 (step of forming the blade portion 40 on the balloon) or folding (step of folding the blade portion 40). The angle of the long axis of the long body 33 can be changed. Therefore, the crystal formed as if lying on the surface of the balloon 12 from the beginning is fixed (fixed) to the surface of the balloon 12 or the adjacent long body 33, whereas the standing long body 33 is The surface of the balloon 12 and the adjacent long body 33 are not physically fixed. For this reason, the standing long body 33 is only positioned (disposed) so as to contact the surface of the balloon 12 or the adjacent long body 33, for example, and its position is changed three-dimensionally. Is possible. Therefore, the elongated body 33 after coating is formed so that the angle and position can be changed before and after the pleating and folding of the balloon 12. A part of the elongated body 33 may be embedded in the surface of the balloon 12.

基層32は、林立する複数の長尺体33の間の空間に分配されて存在する。コート層30を構成する物質の割合は、水不溶性薬剤の結晶の方が、基層32よりも大きい体積を占めることが好ましい。基層32を構成する賦形剤は、マトリックスを形成しない。マトリックスとは、比較的高分子の物質(ポリマーなど)が連続して構成された層であり、網目状の三次元構造を形成し、その中に微細な空間が存在する。したがって、結晶を構成する水不溶性薬剤はマトリックス物質中に付着していない。結晶を構成する水不溶性薬剤は、マトリックス物質中に埋め込まれてもいない。   The base layer 32 is distributed and present in a space between the plurality of long bodies 33 that stand. The ratio of the substance constituting the coat layer 30 is preferably such that the crystal of the water-insoluble drug occupies a larger volume than the base layer 32. The excipient constituting the base layer 32 does not form a matrix. The matrix is a layer in which a relatively high-molecular substance (polymer or the like) is continuously formed, forms a network-like three-dimensional structure, and has a fine space therein. Therefore, the water-insoluble drug constituting the crystal is not attached to the matrix material. The water-insoluble drug constituting the crystal is not embedded in the matrix material.

基層32はバルーン12の表面で水溶液の状態でコートされた後、乾燥して層として形成される。基層32はアモルファス、結晶粒子、または、その混合物として存在する。図4の基層32は、結晶粒子及び/または粒子状アモルファスの状態である。基層32は、水不溶性薬剤を含んだ層として形成されてもよいし、または、水不溶性薬剤を含まない独立した層として形成されてもよい。基層32の厚みは、0.1〜5μm、好ましくは0.3〜3μm、より好ましくは0.5〜2μmである。   The base layer 32 is coated on the surface of the balloon 12 in the form of an aqueous solution and then dried to form a layer. The base layer 32 exists as amorphous, crystal particles, or a mixture thereof. The base layer 32 in FIG. 4 is in the state of crystal grains and / or particulate amorphous. The base layer 32 may be formed as a layer containing a water-insoluble drug, or may be formed as an independent layer not containing a water-insoluble drug. The thickness of the base layer 32 is 0.1 to 5 μm, preferably 0.3 to 3 μm, more preferably 0.5 to 2 μm.

中空長尺体の形態型の長尺体33を有するコート層30は、体内に送達する際に、毒性が低く、狭窄抑制効果が高い。中空長尺体結晶形態を含む水不溶性薬剤は、薬剤が組織に移行した時に結晶の一つの単位が小さくなるために組織への浸透性が良く、かつ、良好な溶解性を有するため、有効に作用して狭窄を抑制できる。また、薬剤が大きな塊として組織に残留することが少ないために毒性が低くなると考えられる。   The coat layer 30 having the elongated body 33 in the form of a hollow elongated body has low toxicity and high stenosis-inhibiting effect when delivered to the body. A water-insoluble drug containing a hollow long crystalline form is effective because it has good permeability to the tissue and good solubility because one unit of the crystal becomes small when the drug moves into the tissue. It can act to suppress stenosis. In addition, it is considered that toxicity is low because the drug hardly remains in the tissue as a large mass.

また、中空長尺体結晶形態型を含む層は、複数の、長軸を有するほぼ均一な長尺体33であり、かつ基層表面に規則性を有してほぼ均一に並び立っている形態型である。したがって、組織に移行する結晶の大きさ(長軸方向の長さ)が約10μmと小さい。そのために病変患部に均一に作用し、組織浸透性が高まる。さらに、移行する結晶の寸法が小さいために過剰量の薬剤が、過剰時間、患部に留まることがなくなるために、毒性を発現することなく、高い狭窄抑制効果を示すことが可能であると考えられる。   The layer including the hollow long crystal form is a plurality of substantially uniform long bodies 33 having a long axis, and the base layer surface has regularity and is arranged almost uniformly. It is. Therefore, the size of the crystal that moves to the structure (length in the major axis direction) is as small as about 10 μm. Therefore, it acts uniformly on the affected part of the lesion and increases tissue permeability. Furthermore, since the size of the migrating crystals is small, an excessive amount of drug does not stay in the affected area for an excessive period of time, so that it is possible to exhibit a high stenosis-inhibiting effect without developing toxicity. .

バルーン12の表面にコーティングされる薬剤は、非結晶質(アモルファス)型を含んでもよい。結晶や非晶質は、コート層30において規則性を有するように配置されてもよいが、不規則に配置されてもよい。   The drug coated on the surface of the balloon 12 may include an amorphous type. Crystals and amorphous materials may be arranged so as to have regularity in the coat layer 30, but may be arranged irregularly.

薬剤結晶である長尺体33の、バルーン12の表面における状態についてさらに説明する。図3に示すように、長尺体33が形成された状態では、各長尺体33は、バルーン12の表面に対して立った状態となっている。これに対し、バルーン12の表面に外部から力を加えることにより、図5に示すように長尺体33を軸方向D2に沿って傾倒した状態とすることができる。長尺体33が軸方向D2に沿って傾倒した状態とは、長尺体33がバルーン12の周方向D1より軸方向D2側に向くように傾倒した状態であって、長尺体33がバルーン12の表面に対してなす角度であるθが30度以下である状態を言う。軸方向D2に傾倒した状態となっている長尺体33は、根元部が折れていてもよいし、また折れていなくてもよいが、折れていないほうが好ましい。また、本実施形態では、長尺体33が向く方向は、バルーン12の軸方向D2であって、バルーン12の先端側から基端側に向かう方向である。   The state of the elongated body 33, which is a drug crystal, on the surface of the balloon 12 will be further described. As shown in FIG. 3, in the state in which the long bodies 33 are formed, each long body 33 is in a state of standing on the surface of the balloon 12. On the other hand, by applying a force from the outside to the surface of the balloon 12, the elongated body 33 can be tilted along the axial direction D2 as shown in FIG. The state in which the long body 33 is tilted along the axial direction D2 is a state in which the long body 33 is tilted so as to face the axial direction D2 side from the circumferential direction D1 of the balloon 12, and the long body 33 is A state in which θ, which is an angle formed with respect to the surface of 12, is 30 degrees or less. The elongate body 33 that is tilted in the axial direction D2 may have a root portion that is not bent or may not be bent, but is preferably not bent. In the present embodiment, the direction in which the long body 33 faces is the axial direction D2 of the balloon 12 and is the direction from the distal end side of the balloon 12 toward the proximal end side.

長尺体33は、バルーン12の表面の一部領域で軸方向D2に沿って傾倒した状態となっている。ここで、長尺体33が特定の領域で軸方向に沿って傾倒した状態とは、当該特定の領域内の長尺体33のうち、50体積%以上、好ましくは70体積%以上の長尺体33が軸方向に沿って傾倒した状態であることを言う。   The long body 33 is in a state of being tilted along the axial direction D2 in a partial region of the surface of the balloon 12. Here, the state in which the long body 33 is tilted along the axial direction in a specific region means that the long body 33 in the specific region is 50% by volume or more, preferably 70% by volume or more. It means that the body 33 is tilted along the axial direction.

バルーン12は、図6(a)に示すように、内部に拡張用流体が注入された状態で断面略円形状を有する。この状態から、後述するプリーティング部120により、バルーン12は図6(b)に示すような羽根部40を有する形態とされる。この状態において、バルーン12の表面は、カテーテルシャフト11の周方向に沿う周面部41の領域と、外周側に突出する羽根部40の領域とに分けられる。また、羽根部40は、折り畳まれることで周面部41に向かう面となる羽根内側部40aと、折り畳まれることで外周側に向かう面となる羽根外側部40bとを有している。   As shown in FIG. 6A, the balloon 12 has a substantially circular cross section in a state where the expansion fluid is injected therein. From this state, the balloon 12 is configured to have a blade portion 40 as shown in FIG. In this state, the surface of the balloon 12 is divided into a region of the peripheral surface portion 41 along the circumferential direction of the catheter shaft 11 and a region of the blade portion 40 protruding to the outer peripheral side. Moreover, the blade | wing part 40 has the blade | wing inner side part 40a used as the surface which goes to the surrounding surface part 41 by being folded, and the blade | wing outer side part 40b used as the surface which goes to the outer peripheral side by being folded.

図6(b)の状態から、後述するフォールディング部130により、バルーン12は図6(c)に示すような折り畳まれた形態とされる。この状態において、周面部41は、羽根部40の羽根内側部40aと対向する対向面部41aと、外周側に向かう外周構成面部41bとに分けられる。また、バルーン12が折り畳まれた状態では、羽根部40の根元部と周面部41との間に、根元側空間部42が形成される。根元側空間部42の領域では、羽根部40と周面部41との間に、微小な隙間が形成される。一方、羽根部40の根元側空間部42よりも先端側の領域は、周面部41に対して密接した状態となっている。羽根部40の周方向長さに対する根元側空間部42の周方向長さの割合は、1〜95%の範囲である。   From the state shown in FIG. 6B, the balloon 12 is folded as shown in FIG. In this state, the peripheral surface portion 41 is divided into an opposing surface portion 41a that faces the blade inner portion 40a of the blade portion 40 and an outer peripheral configuration surface portion 41b that faces the outer peripheral side. Further, in a state where the balloon 12 is folded, a root-side space portion 42 is formed between the root portion of the blade portion 40 and the peripheral surface portion 41. In the region of the root side space portion 42, a minute gap is formed between the blade portion 40 and the peripheral surface portion 41. On the other hand, the tip side region of the blade portion 40 is closer to the peripheral surface portion 41 than the base side space portion 42. The ratio of the circumferential length of the base side space portion 42 to the circumferential length of the blade portion 40 is in the range of 1 to 95%.

図6(c)の状態で、バルーン12の外周側に向かう面は、羽根部40の羽根外側部40bと、周面部41の外周構成面部41bである。本実施形態では、バルーン12の表面のうち、外周側に向かう羽根部40の羽根外側部40bと周面部41の外周構成面部41bの領域で、長尺体33が軸方向に沿って傾倒した状態となっている。この領域において、長尺体33は、バルーン12の先端側から基端側に向かう方向に傾倒している。一方、互いに対向する羽根部40の羽根内側部40aと周面部41の対向面部41aの領域は、長尺体33が立った状態を維持している。   In the state of FIG. 6C, the surfaces toward the outer peripheral side of the balloon 12 are the blade outer portion 40 b of the blade portion 40 and the outer peripheral configuration surface portion 41 b of the peripheral surface portion 41. In the present embodiment, the elongated body 33 is tilted along the axial direction in the region of the outer surface 40b of the blade 40 and the outer peripheral surface 41b of the peripheral surface 41 on the outer surface of the balloon 12. It has become. In this region, the elongated body 33 is tilted in the direction from the distal end side to the proximal end side of the balloon 12. On the other hand, the area | region of the blade | wing inner side part 40a of the blade | wing part 40 which opposes mutually, and the opposing surface part 41a of the surrounding surface part 41 is maintaining the state which the elongate body 33 stood.

バルーン12は、図6(c)の折り畳まれた状態で生体管腔内に挿入されていく。このため、図6(c)の状態でバルーン12の外周側に向かう面である羽根部40の羽根外側部40bと周面部41の外周構成面部41bが、生体管腔の内周面に接触することになる。この領域では、長尺体33がバルーン12の先端側から基端側に向かう方向に傾倒しているため、バルーン12の挿入時に長尺体33が生体管腔の内周面に引っ掛かりにくい。このため、バルーン12が生体管腔内に挿入される際に、長尺体33がバルーン12から剥離しにくく、長尺体33を確実に病変部まで送達させることができる。また、バルーン12の外周面の摩擦が小さくなるので、バルーン12の通過性も良好にすることができる。   The balloon 12 is inserted into the living body lumen in the folded state of FIG. For this reason, the wing | blade outer side part 40b of the wing | blade part 40 which is a surface which goes to the outer peripheral side of the balloon 12 in the state of FIG.6 (c), and the outer peripheral structure surface part 41b of the surrounding surface part 41 contact the inner peripheral surface of a biological lumen. It will be. In this region, since the long body 33 is inclined in the direction from the distal end side to the proximal end side of the balloon 12, the long body 33 is hardly caught on the inner peripheral surface of the living body lumen when the balloon 12 is inserted. For this reason, when the balloon 12 is inserted into the living body lumen, the long body 33 is difficult to peel off from the balloon 12, and the long body 33 can be reliably delivered to the lesioned part. Further, since the friction on the outer peripheral surface of the balloon 12 is reduced, the passage of the balloon 12 can be improved.

一方、図6(c)の状態で外周側に露出しない羽根部40の羽根内側部40aと周面部41の対向面部41aの領域は、長尺体33が立った状態となっており、バルーン12が病変部で拡張されることで、外周側に露出する。そして、これらの領域で長尺体33は立った状態であるので、バルーン12が拡張することで病変部の内壁面に長尺体33が移行しやすい。   On the other hand, in the state of FIG. 6C, the region of the blade inner portion 40a of the blade portion 40 that is not exposed to the outer peripheral side and the opposed surface portion 41a of the peripheral surface portion 41 is in a state in which the long body 33 stands. Is exposed to the outer peripheral side by being expanded at the lesion. Since the long body 33 is standing in these regions, the long body 33 easily moves to the inner wall surface of the lesioned part when the balloon 12 is expanded.

次に、上述したバルーン12上のコート層30を形成するためのバルーンコーティングシステムを説明する。本システムは、バルーン12にコート層30を形成するためのバルーンコーティング装置50(図7を参照)と、コート層30が形成されたバルーン12を折り畳むためのバルーン折り畳み装置100(図9を参照)とを備えている。バルーンコーティング装置50を用いることで、バルーン12の表面に、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体が形成される。この後、バルーン折り畳み装置100によりバルーン12を折り畳むことで、バルーン12の表面の一部の領域において、長尺体33が立った状態から軸方向に傾倒した状態となる。   Next, a balloon coating system for forming the coat layer 30 on the balloon 12 will be described. This system includes a balloon coating apparatus 50 (see FIG. 7) for forming the coat layer 30 on the balloon 12, and a balloon folding apparatus 100 (see FIG. 9) for folding the balloon 12 on which the coat layer 30 is formed. And. By using the balloon coating apparatus 50, a plurality of elongated bodies that are crystals of a water-insoluble drug extending with independent long axes are formed on the surface of the balloon 12. Thereafter, the balloon 12 is folded by the balloon folding device 100, and in a partial region on the surface of the balloon 12, the elongated body 33 is tilted in the axial direction from the standing state.

まず、バルーンコーティング装置50について説明する。バルーンコーティング装置50は、図7、8に示すように、バルーンカテーテル10を回転させる回転機構部60と、バルーンカテーテル10を支持する支持台70とを有する。バルーンコーティング装置50は、さらに、バルーン12の表面にコーティング溶液を塗布するディスペンシングチューブ94が設けられる塗布機構部90と、ディスペンシングチューブ94をバルーン12に対して移動させるための移動機構部80と、バルーンコーティング装置50を制御する制御部99とを有する。   First, the balloon coating apparatus 50 will be described. As shown in FIGS. 7 and 8, the balloon coating apparatus 50 includes a rotation mechanism 60 that rotates the balloon catheter 10 and a support base 70 that supports the balloon catheter 10. The balloon coating apparatus 50 further includes an application mechanism 90 provided with a dispensing tube 94 for applying a coating solution to the surface of the balloon 12, and a moving mechanism 80 for moving the dispensing tube 94 relative to the balloon 12. And a control unit 99 for controlling the balloon coating apparatus 50.

回転機構部60は、バルーンカテーテル10のハブ13を保持し、内蔵されるモーター等の駆動源により、バルーン12の軸心を中心としてバルーンカテーテル10を回転させる。バルーンカテーテル10は、ガイドワイヤルーメン23内に芯材61が挿通されて保持されるとともに、芯材61によってコーティング溶液のガイドワイヤルーメン23内への流入が防止されている。また、バルーンカテーテル10は、拡張ルーメン22への流体の流通を操作するために、ハブ13の基端開口部13aに、流路の開閉を操作可能な三方活栓が接続される。   The rotation mechanism unit 60 holds the hub 13 of the balloon catheter 10 and rotates the balloon catheter 10 about the axis of the balloon 12 by a drive source such as a built-in motor. In the balloon catheter 10, the core material 61 is inserted and held in the guide wire lumen 23, and the core material 61 prevents the coating solution from flowing into the guide wire lumen 23. Further, in the balloon catheter 10, a three-way cock that can open and close the flow path is connected to the proximal end opening 13 a of the hub 13 in order to operate the flow of fluid to the expansion lumen 22.

支持台70は、カテーテルシャフト11を内部に収容して回転可能に支持する管状の基端側支持部71と、芯材61を回転可能に支持する先端側支持部72とを備えている。なお、先端側支持部72は、可能であれば、芯材61ではなしにカテーテルシャフト11の先端部を回転可能に支持してもよい。   The support base 70 includes a tubular proximal end support portion 71 that accommodates the catheter shaft 11 and rotatably supports it, and a distal end support portion 72 that rotatably supports the core member 61. Note that the distal end side support portion 72 may rotatably support the distal end portion of the catheter shaft 11 instead of the core member 61 if possible.

移動機構部80は、バルーン12の軸心と平行な方向へ直線的に移動可能な移動台81と、ディスペンシングチューブ94が固定されるチューブ固定部83とを備えている。移動台81は、内蔵されるモーター等の駆動源によって、直線的に移動可能である。チューブ固定部83は、ディスペンシングチューブ94の上端を移動台81に対して固定している。したがって、移動台81が移動することで、ディスペンシングチューブ94がバルーン12の軸心と平行な方向へ直線的に移動する。また、移動台81には、塗布機構部90が載置されており、塗布機構部90を軸心に沿う両方向へ直線的に移動させる。   The moving mechanism unit 80 includes a moving table 81 that can move linearly in a direction parallel to the axis of the balloon 12 and a tube fixing unit 83 to which the dispensing tube 94 is fixed. The moving table 81 can move linearly by a driving source such as a built-in motor. The tube fixing part 83 fixes the upper end of the dispensing tube 94 to the moving table 81. Therefore, as the moving table 81 moves, the dispensing tube 94 moves linearly in a direction parallel to the axis of the balloon 12. In addition, an application mechanism 90 is placed on the movable table 81, and the application mechanism 90 is linearly moved in both directions along the axis.

塗布機構部90は、バルーン12の表面にコーティング溶液を塗布する部位である。塗布機構部90は、コーティング溶液を収容する容器92と、任意の送液量でコーティング溶液を送液する送液ポンプ93と、コーティング溶液をバルーン12に塗布するディスペンシングチューブ94とを備えている。   The application mechanism unit 90 is a part that applies a coating solution to the surface of the balloon 12. The coating mechanism unit 90 includes a container 92 that stores the coating solution, a liquid feeding pump 93 that feeds the coating solution in an arbitrary amount, and a dispensing tube 94 that coats the balloon 12 with the coating solution. .

送液ポンプ93は、例えばシリンジポンプであり、制御部99によって制御されて、容器92から吸引チューブ91を介してコーティング溶液を吸引し、供給チューブ96を介してディスペンシングチューブ94へコーティング溶液を任意の送液量で供給することができる。送液ポンプ93は、移動台81に設置され、移動台81の移動により直線的に移動可能である。なお、送液ポンプ93は、コーティング溶液を送液可能であればシリンジポンプに限定されず、例えばチューブポンプであってもよい。   The liquid feed pump 93 is, for example, a syringe pump, and is controlled by the control unit 99 to suck the coating solution from the container 92 through the suction tube 91 and arbitrarily supply the coating solution to the dispensing tube 94 through the supply tube 96. It is possible to supply with the amount of liquid fed. The liquid feed pump 93 is installed on the moving table 81 and can move linearly by the movement of the moving table 81. The liquid feed pump 93 is not limited to a syringe pump as long as the coating solution can be fed, and may be a tube pump, for example.

ディスペンシングチューブ94は、供給チューブ96と連通しており、送液ポンプ93から供給チューブ96を介して供給されるコーティング溶液を、バルーン12の表面へ吐出する部材である。ディスペンシングチューブ94は、可撓性を備えた円管状の部材である。ディスペンシングチューブ94は、チューブ固定部83に上端が固定されており、チューブ固定部83から鉛直方向下方へ延在し、下端である吐出端97に開口部95が形成されている。ディスペンシングチューブ94は、移動台81を移動させることで、移動台81に設置される送液ポンプ93とともに、バルーンカテーテル10の軸心方向に沿う両方向へ直線的に移動可能である。ディスペンシングチューブ94は、バルーン12に押し付けられて撓んだ状態で、コーティング溶液をバルーン12の表面に供給可能である。   The dispensing tube 94 communicates with the supply tube 96 and is a member that discharges the coating solution supplied from the liquid feed pump 93 through the supply tube 96 to the surface of the balloon 12. The dispensing tube 94 is a flexible tubular member. The dispensing tube 94 has an upper end fixed to the tube fixing portion 83, extends vertically downward from the tube fixing portion 83, and has an opening 95 at the discharge end 97 that is the lower end. The dispensing tube 94 can move linearly in both directions along the axial direction of the balloon catheter 10 together with the liquid feed pump 93 installed on the moving table 81 by moving the moving table 81. The dispensing tube 94 can supply the coating solution to the surface of the balloon 12 in a state where the dispensing tube 94 is bent by being pressed against the balloon 12.

なお、ディスペンシングチューブ94は、コーティング溶液を供給可能であれば、円管状でなくてもよい。また、ディスペンシングチューブ94は、開口部95からコーティング溶液を吐出可能であれば、鉛直方向に延在していなくてもよい。   The dispensing tube 94 may not be circular as long as the coating solution can be supplied. The dispensing tube 94 may not extend in the vertical direction as long as the coating solution can be discharged from the opening 95.

ディスペンシングチューブ94は、バルーン12への接触負担を低減し、かつバルーン12の回転に伴う接触位置の変化を撓みにより吸収できるように、柔軟な材料であることが好ましい。ディスペンシングチューブ94の構成材料は、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、環状ポリオレフィン、ポリエステル、ポリアミド、ポリウレタン、PTFE(ポリテトラフルオロエチレン)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(四フッ化エチレン・六フッ化プロピレン共重合体)等のフッ素系樹脂等を適用できるが、可撓性を有して変形可能であれば、特に限定されない。   The dispensing tube 94 is preferably made of a flexible material so as to reduce a contact load on the balloon 12 and absorb a change in the contact position accompanying the rotation of the balloon 12 by bending. The constituent material of the dispensing tube 94 is, for example, polyolefin such as polyethylene and polypropylene, cyclic polyolefin, polyester, polyamide, polyurethane, PTFE (polytetrafluoroethylene), ETFE (tetrafluoroethylene / ethylene copolymer), PFA (tetra Fluororesin such as fluoroethylene / perfluoroalkyl vinyl ether copolymer) or FEP (tetrafluoroethylene / hexafluoropropylene copolymer) can be applied, but if it is flexible and deformable There is no particular limitation.

ディスペンシングチューブ94の外径は、特に限定されないが、例えば0.1mm〜5.0mm、好ましくは0.15mm〜3.0mm、より好ましくは0.3mm〜2.5mmである。ディスペンシングチューブ94の内径は、特に限定されないが、例えば0.05mm〜3.0mm、好ましくは0.1mm〜2.0mm、より好ましくは0.15mm〜1.5mmである。ディスペンシングチューブ94の長さは、特に限定されないが、バルーン直径の5倍以内の長さであることがよく、例えば1.0mm〜50mm、好ましくは3mm〜40mm、より好ましくは5mm〜35mmである。   The outer diameter of the dispensing tube 94 is not particularly limited, but is, for example, 0.1 mm to 5.0 mm, preferably 0.15 mm to 3.0 mm, and more preferably 0.3 mm to 2.5 mm. The inner diameter of the dispensing tube 94 is not particularly limited, but is, for example, 0.05 mm to 3.0 mm, preferably 0.1 mm to 2.0 mm, and more preferably 0.15 mm to 1.5 mm. The length of the dispensing tube 94 is not particularly limited, but may be a length within 5 times the balloon diameter, for example, 1.0 mm to 50 mm, preferably 3 mm to 40 mm, more preferably 5 mm to 35 mm. .

制御部99は、例えばコンピュータにより構成され、回転機構部60、移動機構部80及び塗布機構部90を統括的に制御する。したがって、制御部99は、バルーン12の回転速度、ディスペンシングチューブ94のバルーン12に対する軸心方向への移動速度、ディスペンシングチューブ94からの薬剤吐出速度等を、統括的に制御することができる。   The control unit 99 is configured by a computer, for example, and comprehensively controls the rotation mechanism unit 60, the movement mechanism unit 80, and the coating mechanism unit 90. Therefore, the control unit 99 can comprehensively control the rotational speed of the balloon 12, the moving speed of the dispensing tube 94 in the axial direction relative to the balloon 12, the drug discharge speed from the dispensing tube 94, and the like.

ディスペンシングチューブ94によりバルーン12に供給されるコーティング溶液は、コート層30の構成材料を含む溶液または懸濁液であり、水不溶性薬剤、賦形剤、有機溶媒及び水を含んでいる。コーティング溶液がバルーン12の表面に供給された後、有機溶媒及び水が揮発することで、バルーン12の表面に、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体を有するコート層30が形成される。コーティング溶液の粘度は、0.5〜1500cP、好ましくは1.0〜500cP、より好ましくは1.5〜100cPである。   The coating solution supplied to the balloon 12 by the dispensing tube 94 is a solution or suspension containing the constituent material of the coating layer 30 and contains a water-insoluble drug, an excipient, an organic solvent, and water. After the coating solution is supplied to the surface of the balloon 12, the organic solvent and water are volatilized, whereby a plurality of long crystals that are crystals of a water-insoluble drug extending on the surface of the balloon 12 with independent long axes. A coat layer 30 having a scale is formed. The viscosity of the coating solution is 0.5-1500 cP, preferably 1.0-500 cP, more preferably 1.5-100 cP.

水不溶性薬剤とは、水に不溶または難溶性である薬剤を意味し、具体的には、水に対する溶解度が、pH5〜8で5mg/mL未満である。その溶解度は、1mg/mL未満、さらに、0.1mg/mL未満でもよい。水不溶性薬剤は脂溶性薬剤を含む。   The water-insoluble drug means a drug that is insoluble or hardly soluble in water. Specifically, the solubility in water is less than 5 mg / mL at pH 5-8. Its solubility may be less than 1 mg / mL and even less than 0.1 mg / mL. Water-insoluble drugs include fat-soluble drugs.

いくつかの好ましい水不溶性薬剤の例は、免疫抑制剤、例えば、シクロスポリンを含むシクロスポリン類、ラパマイシン等の免疫活性剤、パクリタキセル等の抗がん剤、抗ウイルス剤または抗菌剤、抗新生組織剤、鎮痛剤及び抗炎症剤、抗生物質、抗てんかん剤、不安緩解剤、抗麻痺剤、拮抗剤、ニューロンブロック剤、抗コリン作動剤及びコリン作動剤、抗ムスカリン剤及びムスカリン剤、抗アドレナリン作用剤、抗不整脈剤、抗高血圧剤、ホルモン剤ならびに栄養剤を含む。   Examples of some preferred water-insoluble drugs include immunosuppressants, such as cyclosporines including cyclosporine, immunoactive agents such as rapamycin, anticancer agents such as paclitaxel, antiviral or antibacterial agents, anti-neoplastic agents, Analgesics and anti-inflammatory agents, antibiotics, antiepileptics, anxiolytics, antiparalytic agents, antagonists, neuron blocking agents, anticholinergics and cholinergic agents, antimuscarinic and muscarinic agents, antiadrenergic agents, Contains antiarrhythmic, antihypertensive, hormonal and nutritional agents.

水不溶性薬剤は、好ましくは、ラパマイシン、パクリタキセル、ドセタキセル、エベロリムスからなる群から選択される少なくとも1つが好ましい。本明細書においてラパマイシン、パクリタキセル、ドセタキセル、エベロリムスとは、同様の薬効を有する限りそれらの類似体及び/またはそれらの誘導体を含む。例えば、パクリタキセルとドセタキセルは類似体の関係にある。ラパマイシンとエベロリムスは誘導体の関係にある。これらのうちでは、パクリタキセルがさらに好ましい。   The water-insoluble drug is preferably at least one selected from the group consisting of rapamycin, paclitaxel, docetaxel and everolimus. In the present specification, rapamycin, paclitaxel, docetaxel and everolimus include analogs and / or derivatives thereof as long as they have the same medicinal effect. For example, paclitaxel and docetaxel are in an analog relationship. Rapamycin and everolimus are in a derivative relationship. Of these, paclitaxel is more preferred.

賦形剤は、バルーン12上で基層32を構成する。賦形剤は、水溶性の低分子化合物を含む。水溶性の低分子化合物の分子量は、50〜2000であり、好ましくは50〜1000であり、より好ましくは50〜500であり、さらに好ましくは50〜200である。水溶性の低分子化合物は、水不溶性薬剤100質量部に対して、好ましくは5〜10000質量部、より好ましくは5〜200質量部、さらに好ましくは8〜150質量部である。水溶性の低分子化合物の構成材料は、セリンエチルエステル、クエン酸エステル、ポリソルベート、水溶性ポリマー、糖、造影剤、アミノ酸エステル、短鎖モノガルボン酸のグリセロールエステル、医薬として許容される塩及び界面活性剤等、あるいはこれら二種以上の混合物等が使用できる。水溶性の低分子化合物は、親水基と疎水基を有し、水に溶解することを特徴とする。水溶性の低分子化合物は、非膨潤性または難膨潤性であることが好ましい。賦形剤は、バルーン12上でアモルファス(非晶質)であることが好ましい。水溶性の低分子化合物を含む賦形剤は、バルーン12の表面上で水不溶性薬剤を均一に分散させる効果を有する。さらに、血管内でのバルーン12の拡張時に基層32が溶解しやすくなることで、バルーン12の表面上の水不溶性薬剤の長尺体33を放出しやすくなり、血管への薬剤の付着量を増加させる効果を有する。   The excipient constitutes the base layer 32 on the balloon 12. The excipient contains a water-soluble low molecular weight compound. The molecular weight of the water-soluble low molecular weight compound is 50 to 2000, preferably 50 to 1000, more preferably 50 to 500, and further preferably 50 to 200. The water-soluble low molecular weight compound is preferably 5 to 10,000 parts by mass, more preferably 5 to 200 parts by mass, and still more preferably 8 to 150 parts by mass with respect to 100 parts by mass of the water-insoluble drug. Constituent materials of water-soluble low molecular weight compounds are serine ethyl ester, citrate ester, polysorbate, water-soluble polymer, sugar, contrast agent, amino acid ester, glycerol ester of short-chain monogalbonic acid, pharmaceutically acceptable salt and surfactant An agent, etc., or a mixture of two or more of these can be used. The water-soluble low molecular weight compound has a hydrophilic group and a hydrophobic group and is characterized by being dissolved in water. The water-soluble low molecular weight compound is preferably non-swellable or hardly swellable. The excipient is preferably amorphous on the balloon 12. The excipient containing the water-soluble low-molecular compound has an effect of uniformly dispersing the water-insoluble drug on the surface of the balloon 12. Furthermore, since the base layer 32 is easily dissolved when the balloon 12 is expanded in the blood vessel, the water-insoluble drug elongate body 33 on the surface of the balloon 12 is easily released, and the amount of the drug attached to the blood vessel is increased. Has the effect of

有機溶媒は、特に限定されないが、テトラヒドロフラン、アセトン、グリセリン、エタノール、メタノール、ジクロロメタン、ヘキサン、エチルアセテート、水、中でもテトラヒドロフラン、エタノール、アセトン、水のうち、これらのいくつかの混合溶媒が好ましい。例えば、テトラヒドロフランと水、テトラヒドロフランとエタノールと水、テトラヒドロフランとアセトンと水、アセトンとエタノールと水、テトラヒドロフランとアセトンとエタノールと水といった組み合わせが挙げられる。   The organic solvent is not particularly limited, but some of these solvents are preferable among tetrahydrofuran, acetone, glycerin, ethanol, methanol, dichloromethane, hexane, ethyl acetate, water, especially tetrahydrofuran, ethanol, acetone, and water. For example, a combination of tetrahydrofuran and water, tetrahydrofuran and ethanol and water, tetrahydrofuran and acetone and water, acetone and ethanol and water, tetrahydrofuran, acetone, ethanol, and water can be used.

次に、上述したバルーンコーティング装置50を用いてバルーン12の表面に水不溶性薬剤の結晶を形成する方法を説明する。   Next, a method for forming water-insoluble drug crystals on the surface of the balloon 12 using the balloon coating apparatus 50 described above will be described.

初めに、バルーンカテーテル10の基端開口部13aに接続した三方活栓を介して、拡張用の流体をバルーン12内に供給する。次に、バルーン12を拡張させた状態で三方活栓を操作して拡張ルーメン22を密封し、バルーン12を拡張させた状態を維持する。バルーン12は、血管内での使用時の圧力(例えば8気圧)よりも低い圧力(例えば4気圧)で拡張される。なお、バルーン12を拡張させずに、バルーン12の表面にコート層30を形成することもでき、その場合には、拡張用の流体をバルーン12内に供給する必要はない。   First, a fluid for expansion is supplied into the balloon 12 through a three-way cock connected to the proximal end opening 13 a of the balloon catheter 10. Next, in a state where the balloon 12 is expanded, the three-way cock is operated to seal the expansion lumen 22, and the state where the balloon 12 is expanded is maintained. The balloon 12 is expanded at a pressure (for example, 4 atmospheres) lower than the pressure (for example, 8 atmospheres) when used in the blood vessel. Note that the coating layer 30 can also be formed on the surface of the balloon 12 without expanding the balloon 12, and in this case, it is not necessary to supply the expansion fluid into the balloon 12.

次に、ディスペンシングチューブ94がバルーン12の表面と接触しない状態で、バルーンカテーテル10を支持台70に回転可能に設置し、ハブ13を回転機構部60に連結する。   Next, in a state where the dispensing tube 94 is not in contact with the surface of the balloon 12, the balloon catheter 10 is rotatably installed on the support base 70, and the hub 13 is connected to the rotation mechanism unit 60.

次に、移動台81の位置を調節して、ディスペンシングチューブ94を、バルーン12に対して位置決めする。このとき、バルーン12においてコート層30を形成する最も先端側の位置に、ディスペンシングチューブ94を位置決めする。一例として、ディスペンシングチューブ94の延在方向(吐出方向)は、バルーン12の回転方向と逆方向である。したがって、バルーン12は、ディスペンシングチューブ94を接触させた位置において、ディスペンシングチューブ94からのコーティング溶液の吐出方向と逆方向に回転する。これにより、コーティング溶液に刺激を与え、薬剤結晶の核の形成を促すことができる。そして、ディスペンシングチューブ94の開口部95へ向かう延在方向(吐出方向)が、バルーン12の回転方向と逆方向であることで、バルーン12の表面に形成される水不溶性薬剤の結晶は、結晶が各々独立した長軸を有する複数の長尺体を含む形態型(morphological form)を含んで形成されやすい。なお、ディスペンシングチューブ94の延在方向は、バルーン12の回転方向と逆方向でなくてもよく、したがって同方向とすることができ、または垂直とすることもできる。   Next, by adjusting the position of the moving table 81, the dispensing tube 94 is positioned with respect to the balloon 12. At this time, the dispensing tube 94 is positioned at the most distal end position where the coating layer 30 is formed in the balloon 12. As an example, the extending direction (discharge direction) of the dispensing tube 94 is opposite to the rotation direction of the balloon 12. Accordingly, the balloon 12 rotates in the direction opposite to the direction in which the coating solution is discharged from the dispensing tube 94 at the position where the dispensing tube 94 is brought into contact. Thereby, the coating solution can be stimulated to promote the formation of drug crystal nuclei. The extending direction (discharge direction) toward the opening 95 of the dispensing tube 94 is opposite to the rotation direction of the balloon 12, so that the water-insoluble drug crystals formed on the surface of the balloon 12 are crystals. Is easy to be formed including a morphological form including a plurality of long bodies each having an independent long axis. The extending direction of the dispensing tube 94 does not have to be the reverse direction of the rotation direction of the balloon 12, and can therefore be the same direction or can be perpendicular.

次に、送液ポンプ93により送液量を調節しつつコーティング溶液をディスペンシングチューブ94へ供給し、回転機構部60によりバルーンカテーテル10を回転させるとともに、移動台81を移動させて、ディスペンシングチューブ94をバルーン12の軸心方向に沿って徐々に基端方向へ移動させる。ディスペンシングチューブ94の開口部95から吐出されるコーティング溶液は、ディスペンシングチューブ94がバルーン12に対して相対的に移動することで、バルーン12の外周面に螺旋を描きつつ塗布される。   Next, the coating solution is supplied to the dispensing tube 94 while adjusting the amount of liquid fed by the liquid feeding pump 93, the balloon catheter 10 is rotated by the rotating mechanism 60, and the moving table 81 is moved to move the dispensing tube. 94 is gradually moved in the proximal direction along the axial direction of the balloon 12. The coating solution discharged from the opening 95 of the dispensing tube 94 is applied while drawing a spiral on the outer peripheral surface of the balloon 12 as the dispensing tube 94 moves relative to the balloon 12.

ディスペンシングチューブ94の移動速度は、特に限定されないが、例えば0.01〜2mm/sec、好ましくは0.03〜1.5mm/sec、より好ましくは0.05〜1.0mm/secである。コーティング溶液のディスペンシングチューブ94からの吐出速度は、特に限定されないが、例えば0.01〜1.5μL/sec、好ましくは0.01〜1.0μL/sec、より好ましくは0.03〜0.8μL/secである。バルーン12の回転速度は、特に限定されないが、例えば10〜300rpm、好ましくは30〜250rpm、より好ましくは50〜200rpmである。コーティング溶液を塗布する際のバルーン12の直径は、特に限定されないが、例えば1〜10mm、好ましくは2〜7mmである。   Although the moving speed of the dispensing tube 94 is not specifically limited, For example, it is 0.01-2 mm / sec, Preferably it is 0.03-1.5 mm / sec, More preferably, it is 0.05-1.0 mm / sec. Although the discharge speed of the coating solution from the dispensing tube 94 is not particularly limited, for example, 0.01 to 1.5 μL / sec, preferably 0.01 to 1.0 μL / sec, more preferably 0.03 to 0.00. 8 μL / sec. Although the rotational speed of the balloon 12 is not specifically limited, For example, it is 10-300 rpm, Preferably it is 30-250 rpm, More preferably, it is 50-200 rpm. Although the diameter of the balloon 12 at the time of apply | coating a coating solution is not specifically limited, For example, it is 1-10 mm, Preferably it is 2-7 mm.

この後、バルーン12の表面に塗布されたコーティング溶液に含まれる有機溶媒が、水よりも先に揮発する。したがって、バルーン12の表面に、水不溶性薬剤、水溶性低分子化合物及び水が残された状態で、有機溶媒が揮発する。このように、水が残された状態で有機溶媒が揮発すると、水不溶性の薬剤が、水を含む水溶性低分子化合物の内部で析出し、結晶核から結晶が徐々に成長して、バルーン12の表面に、結晶が各々独立した長軸を有する複数の長尺体33を含む形態型(morphological form)の薬剤結晶が形成される。なお、この状態の長尺体33は、バルーン12の表面に対して立った状態となっている。長尺体33の基端は、バルーン12の表面、基層32の表面または内部に位置する可能性がある(図4を参照)。有機溶媒が揮発して薬剤結晶が複数の長尺体33として析出した後、水が有機溶媒よりもゆっくり蒸発し、水溶性低分子化合物を含む基層32が形成される。水が蒸発する時間は、薬剤の種類、水溶性低分子化合物の種類、有機溶媒の種類、材料の比率、コーティング溶液の塗布量等に応じて適宜設定されるが、例えば、1〜600秒程度である。   Thereafter, the organic solvent contained in the coating solution applied to the surface of the balloon 12 volatilizes before water. Accordingly, the organic solvent is volatilized while the water-insoluble drug, the water-soluble low-molecular compound and water remain on the surface of the balloon 12. As described above, when the organic solvent is volatilized with water remaining, a water-insoluble drug is precipitated inside the water-soluble low-molecular compound containing water, and crystals gradually grow from the crystal nucleus. A morphological form of a drug crystal including a plurality of elongated bodies 33 each having an independent major axis is formed on the surface. Note that the elongated body 33 in this state is standing with respect to the surface of the balloon 12. The proximal end of the elongated body 33 may be located on the surface of the balloon 12, the surface of the base layer 32, or inside (see FIG. 4). After the organic solvent is volatilized and the drug crystals are deposited as a plurality of long bodies 33, the water is evaporated more slowly than the organic solvent, and the base layer 32 containing the water-soluble low-molecular compound is formed. The time for water to evaporate is appropriately set according to the type of drug, the type of water-soluble low molecular weight compound, the type of organic solvent, the ratio of materials, the amount of coating solution applied, etc., for example, about 1 to 600 seconds It is.

そして、バルーン12を回転させつつディスペンシングチューブ94を徐々にバルーン12の軸心方向へ移動させることで、バルーン12の表面に、軸心方向へ向かってコート層30を徐々に形成する。バルーン12のコーティングする範囲の全体に、長尺体33を有するコート層30が形成された後、回転機構部60、移動機構部80及び塗布機構部90を停止させる。   Then, the dispensing tube 94 is gradually moved in the axial direction of the balloon 12 while rotating the balloon 12, whereby the coat layer 30 is gradually formed on the surface of the balloon 12 in the axial direction. After the coating layer 30 having the elongated body 33 is formed over the entire area to be coated by the balloon 12, the rotation mechanism unit 60, the movement mechanism unit 80, and the coating mechanism unit 90 are stopped.

この後、バルーンカテーテル10をバルーンコーティング装置50から取り外して、バルーン12のコーティングが完了する。   Thereafter, the balloon catheter 10 is removed from the balloon coating apparatus 50, and the coating of the balloon 12 is completed.

次に、バルーン折り畳み装置100について説明する。バルーン折り畳み装置100は、バルーン12を内管21に対し巻き付けるように折り畳むことのできる装置である。   Next, the balloon folding device 100 will be described. The balloon folding device 100 is a device that can fold the balloon 12 so as to be wound around the inner tube 21.

バルーン折り畳み装置100は、図9に示すように、台状に形成された基台110に、プリーティング部120、フォールディング部130及び支持台140が配置されている。プリーティング部120は、バルーン12に径方向に突出する羽根部40を形成できる。フォールディング部130は、バルーン12に形成された羽根部40を周方向に寝かせて畳むことができる。支持台140は、バルーンカテーテル10を載置して保持できる。バルーン12に形成される羽根部40は、バルーン12の略軸心方向に延びる折り目によって形成され、バルーン12の軸心に対して垂直な断面で見たとき、折り目がバルーン12の長軸から周方向に突出するように形成される。羽根部40の長軸方向の長さは、バルーン12の長さを超えない。羽根部40がカテーテルシャフト11から周方向に突出する方向の長さは、1〜8mmである。羽根部40の数は特に限定されず、2枚、3枚、4枚、5枚、6枚、7枚のいずれかから選択することができるが、本実施形態では3枚である。   In the balloon folding device 100, as shown in FIG. 9, a pleating unit 120, a folding unit 130, and a support table 140 are arranged on a base 110 formed in a trapezoidal shape. The pleating portion 120 can form a blade portion 40 protruding in the radial direction on the balloon 12. The folding unit 130 can fold the wings 40 formed on the balloon 12 in the circumferential direction. The support stand 140 can place and hold the balloon catheter 10. The vane portion 40 formed on the balloon 12 is formed by a fold extending substantially in the axial direction of the balloon 12, and when viewed in a cross section perpendicular to the axial center of the balloon 12, the fold is circumferential from the long axis of the balloon 12. It is formed so as to protrude in the direction. The length of the blade 40 in the major axis direction does not exceed the length of the balloon 12. The length in the direction in which the blade portion 40 protrudes from the catheter shaft 11 in the circumferential direction is 1 to 8 mm. The number of blade portions 40 is not particularly limited, and can be selected from 2, 3, 4, 5, 6, and 7, but in this embodiment, it is three.

基台110には、プリーティング部120に対して第1フィルム155及び第2フィルム156を供給するフィルム供給部150が、プリーティング部120に隣接して配置されている。また、基台110には、フォールディング部130に対して第1フィルム181及び第2フィルム182を供給するフィルム供給部180が、フォールディング部130に隣接して配置されている。   On the base 110, a film supply unit 150 that supplies the first film 155 and the second film 156 to the pleating unit 120 is disposed adjacent to the pleating unit 120. In addition, on the base 110, a film supply unit 180 that supplies the first film 181 and the second film 182 to the folding unit 130 is disposed adjacent to the folding unit 130.

プリーティング部120は、基台110に対して垂直な前面板121を有し、前面板121はバルーンカテーテル10の先端部を挿入可能な挿入孔121aを有している。また、フォールディング部130は、基台110に対して垂直な前面板131を有し、前面板131はバルーンカテーテル10の先端部を挿入可能な挿入孔131aを有している。フォールディング部130の前面板131は、プリーティング部120の前面板121が面する方向に対して所定角度異なる方向に向かって面している。   The pleating unit 120 has a front plate 121 perpendicular to the base 110, and the front plate 121 has an insertion hole 121 a into which the distal end portion of the balloon catheter 10 can be inserted. The folding unit 130 has a front plate 131 perpendicular to the base 110, and the front plate 131 has an insertion hole 131 a into which the distal end portion of the balloon catheter 10 can be inserted. The front plate 131 of the folding unit 130 faces in a direction different from the direction in which the front plate 121 of the pleating unit 120 faces by a predetermined angle.

支持台140のプリーティング部120及びフォールディング部130から離れた側には、基台110から上方に突出する支持軸111が枢着している。支持台140は、支持軸111を中心に基台110の上面をスライド移動することで、プリーティング部120の前面板121に対向する位置及びフォールディング部130の前面板131に対向する位置に、位置決めできる。   A support shaft 111 protruding upward from the base 110 is pivotally attached to the side of the support base 140 away from the pleating part 120 and the folding part 130. The support table 140 is positioned at a position facing the front plate 121 of the pleating unit 120 and a position facing the front plate 131 of the folding unit 130 by sliding and moving the upper surface of the base 110 around the support shaft 111. it can.

支持台140は、基台110に載置される基部141と、基部141上を水平移動可能な保持台部142とを有している。基部141は、基台110の上面を摺動可能である。保持台部142は、基部141の上面をスライド移動し、プリーティング部120またはフォールディング部130へ向かって前進または後退可能である。   The support stand 140 includes a base portion 141 placed on the base stand 110 and a holding stand portion 142 that can move horizontally on the base portion 141. The base 141 can slide on the upper surface of the base 110. The holding base part 142 slides on the upper surface of the base part 141 and can move forward or backward toward the pleating part 120 or the folding part 130.

保持台部142の上面には、バルーンカテーテル10のカテーテルシャフト11を載置可能な溝状の載置部142aが形成されている。また、保持台部142には、載置部142aに載置されたカテーテルシャフト11を保持する保持部143が設けられる。なお、バルーンカテーテル10を固定できるのであれば、他の方法によりバルーンカテーテル10を固定してもよい。   On the upper surface of the holding base part 142, a groove-like placement part 142a on which the catheter shaft 11 of the balloon catheter 10 can be placed is formed. The holding table 142 is provided with a holding part 143 that holds the catheter shaft 11 placed on the placing part 142a. As long as the balloon catheter 10 can be fixed, the balloon catheter 10 may be fixed by other methods.

支持台140がプリーティング部120の前面板121に対向している状態において、保持台部142の載置部142aの延長線上に、前面板121に形成される挿入孔121aの中心が位置する。このため、載置部142aにカテーテルシャフト11が載置されたバルーンカテーテル10は、プリーティング部120に対し挿入孔121aの中心位置から内部に挿入される。支持台140がフォールディング部130の前面板131に対向している状態では、保持台部142の載置部142aの延長線上に、前面板131に形成される挿入孔131aの中心が位置する。このため、載置部142aにカテーテルシャフト11が載置されたバルーンカテーテル10は、保持台部142を基部141上でスライド移動させることで、フォールディング部130に対し挿入孔131aの中心位置から内部に挿入される。   In a state where the support base 140 faces the front plate 121 of the pleating unit 120, the center of the insertion hole 121 a formed in the front plate 121 is positioned on the extension line of the mounting portion 142 a of the holding base unit 142. For this reason, the balloon catheter 10 on which the catheter shaft 11 is placed on the placement portion 142a is inserted into the pleating portion 120 from the center position of the insertion hole 121a. In a state where the support base 140 faces the front plate 131 of the folding unit 130, the center of the insertion hole 131 a formed in the front plate 131 is positioned on the extension line of the mounting unit 142 a of the holding table 142. For this reason, the balloon catheter 10 having the catheter shaft 11 placed on the placement portion 142a is moved from the center position of the insertion hole 131a to the inside of the folding portion 130 by sliding the holding base portion 142 on the base portion 141. Inserted.

次に、プリーティング部120の構造について説明する。図10に示すように、プリーティング部120は、内部に3つの羽根形成用のブレード122を有している。各ブレード122は、挿入されるバルーンカテーテル10の軸心方向に沿う各位置における断面形状が、同形状で形成される板状の部材である。ブレード122は、バルーン12が挿通される中心位置を基準として、それぞれが120度の角度をなすように配置されている。すなわち、各ブレード122は、周方向において等角度毎に配置されている。ブレード122は、外周端部付近に回動中心部122aを有し、この回動中心部122aを中心として回動することができる。また、ブレード122は、回動中心部122aより内周側に、軸心方向に延びる移動ピン122dを有している。移動ピン122dは、プリーティング部120内で回転可能な回転部材124に形成される嵌合溝124aに嵌合している。回転部材124は、略水平方向に延びる梁部126に連結されている。回転部材124は、油圧シリンダーやモーター等の駆動源125から力を受けて傾く梁部126から回転力を受けて回動可能である。回転部材124が回転すると、嵌合溝124aに嵌合する移動ピン122dが周方向へ移動し、これにより、各々のブレード122が回動中心部122aを中心として回動する。3つのブレード122が回動することにより、ブレード122に囲まれた中心部の空間領域を狭めることができる。なお、ブレード122の数は、2つ以上であれば、特に限定されない。   Next, the structure of the pleating unit 120 will be described. As shown in FIG. 10, the pleating section 120 has three blade forming blades 122 inside. Each blade 122 is a plate-like member formed with the same cross-sectional shape at each position along the axial direction of the balloon catheter 10 to be inserted. The blades 122 are arranged so as to form an angle of 120 degrees with reference to the center position through which the balloon 12 is inserted. That is, the blades 122 are arranged at equal angles in the circumferential direction. The blade 122 has a rotation center portion 122a in the vicinity of the outer peripheral end portion, and can rotate around the rotation center portion 122a. The blade 122 has a moving pin 122d extending in the axial direction on the inner peripheral side from the rotation center portion 122a. The moving pin 122d is fitted in a fitting groove 124a formed in a rotating member 124 that is rotatable in the pleating portion 120. The rotating member 124 is connected to a beam portion 126 extending in a substantially horizontal direction. The rotating member 124 is rotatable by receiving a rotating force from a beam portion 126 that is inclined by receiving a force from a driving source 125 such as a hydraulic cylinder or a motor. When the rotating member 124 rotates, the moving pin 122d fitted in the fitting groove 124a moves in the circumferential direction, whereby each blade 122 rotates about the rotation center portion 122a. By rotating the three blades 122, the central space area surrounded by the blades 122 can be narrowed. The number of blades 122 is not particularly limited as long as it is two or more.

ブレード122は、図11に示すように、回動中心部122aと反対側の内周端部に、略弧状の第1形状形成部122bと第2形状形成部122cとを有している。第1形状形成部122bは、ブレード122が回動するのに伴い、プリーティング部120内に挿通されるバルーン12の表面に当接して、バルーン12に径方向に突出する羽根部40を形成することができる。第2形状形成部122cは、ブレード122が回動するのに伴い、バルーン12に形成される羽根部40に当接し、その羽根部40を所定方向に湾曲させることができる。また、プリーティング部120は、ブレード122を加熱するためのヒーター(図示しない)を有している。ブレード122のバルーンカテーテル10の軸心方向に沿う長さは、バルーン12の長さよりも長い。また、ブレード122の第1形状形成部122b及び第2形状形成部122cの長さは、ブレード122の全長に渡っていてもよいし、渡っていなくてもよい。   As shown in FIG. 11, the blade 122 has a substantially arc-shaped first shape forming portion 122 b and a second shape forming portion 122 c at the inner peripheral end on the side opposite to the rotation center portion 122 a. As the blade 122 rotates, the first shape forming portion 122b abuts on the surface of the balloon 12 inserted into the pleating portion 120, and forms the blade portion 40 protruding radially in the balloon 12. be able to. As the blade 122 rotates, the second shape forming portion 122c can come into contact with the blade portion 40 formed on the balloon 12 and bend the blade portion 40 in a predetermined direction. The pleating unit 120 includes a heater (not shown) for heating the blade 122. The length of the blade 122 along the axial direction of the balloon catheter 10 is longer than the length of the balloon 12. Further, the lengths of the first shape forming part 122b and the second shape forming part 122c of the blade 122 may or may not extend over the entire length of the blade 122.

ブレード122には、フィルム供給部150から樹脂製の第1フィルム155及び第2フィルム156が供給される。各フィルムを案内するため、プリーティング部120内には複数の回転軸部123が設けられている。第1フィルム155は、第1フィルム保持部151から回転軸部123を介して、上部に配置されているブレード122の表面に係っている。また、第1フィルム155は、ブレード122から回転軸部123を経て、図示しないモーター等の駆動源により回転駆動されるフィルム巻取部153に至っている。第2フィルム156は、第2フィルム保持部152から回転軸部123を介して、下部に配置されている2つのブレード122に係っている。また、第2フィルム156は、回転軸部123を経て、フィルム巻取部153に至っている。これらにより、バルーン12が挿通されるプリーティング部120の中心位置は、第1フィルム155と第2フィルム156に囲まれた状態となっている。   A first film 155 and a second film 156 made of resin are supplied from the film supply unit 150 to the blade 122. In order to guide each film, a plurality of rotating shafts 123 are provided in the pleating unit 120. The first film 155 is related to the surface of the blade 122 arranged at the upper part from the first film holding part 151 via the rotating shaft part 123. Further, the first film 155 passes from the blade 122 through the rotating shaft portion 123 to the film winding portion 153 that is rotationally driven by a driving source such as a motor (not shown). The second film 156 is engaged with the two blades 122 arranged in the lower part from the second film holding part 152 through the rotating shaft part 123. Further, the second film 156 reaches the film winding unit 153 through the rotation shaft unit 123. As a result, the center position of the pleating unit 120 through which the balloon 12 is inserted is surrounded by the first film 155 and the second film 156.

第1フィルム155と第2フィルム156は、バルーン12がプリーティング部120に挿入され、ブレード122が回動してバルーン12に羽根部40を形成する際に、バルーン12がブレード122の表面に直接接触しないように保護する機能を有する。バルーン12の羽根部40を形成した後、第1フィルム155と第2フィルム156はフィルム巻取部153に所定長さが巻き取られる。すなわち、第1フィルム155及び第2フィルム156のバルーン12に一度接触した部分は、再度バルーン12に接触せず、バルーン12が挿入される度に新しい部分がプリーティング部120の中心位置に供給される。   In the first film 155 and the second film 156, when the balloon 12 is inserted into the pleating portion 120 and the blade 122 rotates to form the blade portion 40 on the balloon 12, the balloon 12 directly contacts the surface of the blade 122. It has a function to protect against contact. After forming the blade portion 40 of the balloon 12, the first film 155 and the second film 156 are wound around the film winding portion 153 by a predetermined length. That is, the portions of the first film 155 and the second film 156 that have once contacted the balloon 12 do not contact the balloon 12 again, and each time the balloon 12 is inserted, a new portion is supplied to the central position of the pleating unit 120. The

図11に示すように、バルーン12の挿入前の状態において、3つのブレード122の第1形状形成部122b及び第2形状形成部122cは、それぞれ離隔した状態となっている。ブレード122間の中心領域は、それぞれ略弧状の第1形状形成部122bに囲まれており、折り畳み前のバルーン12を挿入することができる。   As shown in FIG. 11, in the state before the insertion of the balloon 12, the first shape forming part 122b and the second shape forming part 122c of the three blades 122 are separated from each other. The central regions between the blades 122 are each surrounded by a substantially arc-shaped first shape forming portion 122b, and the balloon 12 before folding can be inserted.

次に、フォールディング部130の構造について説明する。図12に示すように、フォールディング部130は、内部に10個の羽根畳み用のブレード132を有している。各ブレード132は、挿入されるバルーンカテーテル10の軸心方向に沿う各位置における断面形状が、同形状で形成される板状の部材である。ブレード132は、バルーンが挿通される中心位置を基準として、それぞれが36度の角度をなすように配置されている。すなわち、各ブレード132は、周方向において等角度毎に配置されている。ブレード132は、略中央付近に回動中心部132aを有し、この回動中心部132aを中心として回動することができる。また、各ブレード132は、略外周端部付近に、軸方向に延びる移動ピン132cを有している。移動ピン132cは、フォールディング部130内で回転可能な回転部材133に形成される嵌合溝133aに嵌合している。回転部材133は、略水平方向に延びる梁135に連結されている。回転部材133は、油圧シリンダーやモーター等の駆動源134から力を受けて傾く梁135から回転力を受けて回動可能である。回転部材133が回転すると、嵌合溝133aに嵌合する移動ピン132cが周方向へ移動し、これにより、各々のブレード132が回動中心部132aを中心として回動する。10個のブレード132が回動することにより、ブレード132に囲まれた中心部の空間領域を狭めることができる。なお、ブレード132の数は、10個に限定されない。   Next, the structure of the folding unit 130 will be described. As shown in FIG. 12, the folding unit 130 has ten blade folding blades 132 therein. Each blade 132 is a plate-like member formed with the same cross-sectional shape at each position along the axial direction of the balloon catheter 10 to be inserted. The blades 132 are arranged so as to form an angle of 36 degrees with respect to the center position through which the balloon is inserted. That is, the blades 132 are arranged at equal angles in the circumferential direction. The blade 132 has a rotation center portion 132a near the center, and can rotate around the rotation center portion 132a. Each blade 132 has a moving pin 132c extending in the axial direction in the vicinity of the substantially outer peripheral end. The moving pin 132 c is fitted in a fitting groove 133 a formed in a rotating member 133 that can rotate in the folding portion 130. The rotating member 133 is connected to a beam 135 extending in a substantially horizontal direction. The rotating member 133 is rotatable by receiving a rotating force from a beam 135 that is inclined by receiving a force from a driving source 134 such as a hydraulic cylinder or a motor. When the rotating member 133 rotates, the moving pin 132c fitted in the fitting groove 133a moves in the circumferential direction, whereby each blade 132 rotates about the rotation center portion 132a. By rotating the ten blades 132, the space area of the central portion surrounded by the blades 132 can be narrowed. The number of blades 132 is not limited to ten.

ブレード132は、先端側が屈曲すると共に、先端部132bは尖った形状を有している。先端部132bは、ブレード132が回動するのに伴い、フォールディング部130内に挿通されるバルーン12の表面に当接して、バルーン12に形成された羽根部40を周方向に寝かせるように畳むことができる。また、フォールディング部130は、ブレード132を加熱するためのヒーター(図示しない)を有している。   The blade 132 is bent at the distal end side, and the distal end portion 132b has a pointed shape. As the blade 132 rotates, the distal end portion 132b abuts on the surface of the balloon 12 inserted into the folding portion 130 and folds so that the blade portion 40 formed on the balloon 12 lies in the circumferential direction. Can do. The folding unit 130 includes a heater (not shown) for heating the blade 132.

ブレード132には、フィルム供給部180から樹脂製の第1フィルム181及び第2フィルム182が供給される。各フィルムの供給構造は、プリーティング部120の場合と同様である。第1フィルム181と第2フィルム182は、ブレード132によって囲まれた中央の空間領域を挟むように対向配置される。これら第1フィルム181と第2フィルム182により、フォールディング部130に挿入されたバルーン12は、ブレード132の表面に直接接触しないようにすることができる。第1フィルム181と第2フィルム182は、ブレード132を経て、図示しないモーター等の駆動源により回転駆動されるフィルム巻取部183に至っている。   The blade 132 is supplied with the first film 181 and the second film 182 made of resin from the film supply unit 180. The supply structure of each film is the same as that of the pleating unit 120. The first film 181 and the second film 182 are arranged to face each other so as to sandwich a central space region surrounded by the blade 132. With the first film 181 and the second film 182, the balloon 12 inserted into the folding unit 130 can be prevented from directly contacting the surface of the blade 132. The first film 181 and the second film 182 pass through the blade 132 and reach the film winding unit 183 that is rotationally driven by a driving source such as a motor (not shown).

図13に示すように、バルーン12の挿入前の状態において、各ブレード132の先端部132bは、それぞれ周方向に離隔した状態となっている。ブレード132に囲まれた中心領域であって第1フィルム181と第2フィルム182の間には、羽根部40を形成されたバルーン12を挿入することができる。   As shown in FIG. 13, in the state before insertion of the balloon 12, the front-end | tip part 132b of each braid | blade 132 is the state spaced apart in the circumferential direction, respectively. The balloon 12 formed with the blades 40 can be inserted between the first film 181 and the second film 182 in the central region surrounded by the blade 132.

次に、バルーン折り畳み装置100を用いて、バルーンコーティング装置50により薬剤の結晶が表面に形成されたバルーン12を折り畳む方法を説明する。   Next, a method of folding the balloon 12 on which the drug crystals are formed by the balloon coating apparatus 50 using the balloon folding apparatus 100 will be described.

まず、バルーン12に羽根部40を形成するために、カテーテルシャフト11を、支持台140の載置部142aに載置して保持部143により保持する。バルーン12には、ハブ13に取り付けられる三方活栓、ハブ13及び内管21を通じて拡張用流体が注入され、バルーン12はある程度拡張した状態とされる。また、プリーティング部120のブレード122が加熱される。ガイドワイヤルーメン23には、芯材61が挿入される。この芯材61によって、カテーテルシャフト11の自重による撓みが抑制される。   First, in order to form the blade portion 40 in the balloon 12, the catheter shaft 11 is placed on the placement portion 142 a of the support base 140 and held by the holding portion 143. An expansion fluid is injected into the balloon 12 through the three-way cock attached to the hub 13, the hub 13, and the inner tube 21, so that the balloon 12 is expanded to some extent. Further, the blade 122 of the pleating unit 120 is heated. A core material 61 is inserted into the guide wire lumen 23. The core member 61 suppresses the bending due to the weight of the catheter shaft 11.

次に、図14に示すように、保持台部142を基部141上でスライド移動させて、バルーンカテーテル10を挿入孔121aからプリーティング部120に挿入する。   Next, as shown in FIG. 14, the holding base 142 is slid on the base 141, and the balloon catheter 10 is inserted into the pleating portion 120 through the insertion hole 121a.

次に、駆動源125を作動させて回転部材124(図10を参照)を回転させると、図15に示すように、ブレード122が回動し、各ブレード122の第1形状形成部122bが互いに近づき、ブレード122間の中心領域が狭まる。これに伴い、ブレード122間の中心領域に挿入されたバルーン12は、第1形状形成部122bによって内管22に対し押し付けられる。バルーン12のうち第1形状形成部122bによって押圧されない部分は、ブレード122の先端部と、当該ブレード122に隣接するブレード122の第2形状形成部122cとの間の隙間に押し出され、一方に湾曲した羽根部40が形成される。ブレード122によりバルーン12は約50〜60度に加熱されるので、形成された羽根部40はそのままの形を維持することができる。このようにして、バルーン12に周方向3枚の羽根部40が形成される。   Next, when the drive source 125 is operated to rotate the rotating member 124 (see FIG. 10), the blades 122 are rotated as shown in FIG. 15, and the first shape forming portions 122b of the blades 122 are mutually connected. Approaching, the central area between the blades 122 narrows. Accordingly, the balloon 12 inserted in the central region between the blades 122 is pressed against the inner tube 22 by the first shape forming portion 122b. A portion of the balloon 12 that is not pressed by the first shape forming portion 122 b is pushed into a gap between the tip portion of the blade 122 and the second shape forming portion 122 c of the blade 122 adjacent to the blade 122, and is curved to one side. The blade part 40 is formed. Since the balloon 12 is heated to about 50 to 60 degrees by the blade 122, the formed blade part 40 can maintain the shape as it is. In this way, three blade portions 40 in the circumferential direction are formed on the balloon 12.

このとき、各ブレード122のバルーン12と接触する表面は、第1フィルム155及び第2フィルム156によって覆われており、バルーン12はブレード122の表面に直接接触することはない。バルーン12に羽根部40を形成した後、ブレード122を元の位置に戻すように回動させ、バルーン12はプリーティング部120から引き抜かれる。なお、プリーティングの過程において、バルーン12の内部の体積が減少するため、それに合わせて、三方活栓を調節して拡張用流体を外部に排出し、バルーン12を収縮(deflate)させることが好ましい。これにより、バルーン12に過剰な力が作用することを抑制できる。   At this time, the surface of each blade 122 that contacts the balloon 12 is covered with the first film 155 and the second film 156, and the balloon 12 does not directly contact the surface of the blade 122. After the blade portion 40 is formed on the balloon 12, the blade 122 is rotated so as to return to the original position, and the balloon 12 is pulled out from the pleating portion 120. In the pleating process, the volume inside the balloon 12 decreases, and accordingly, it is preferable to adjust the three-way stopcock to discharge the expansion fluid to the outside and deflate the balloon 12. Thereby, it can suppress that excessive force acts on the balloon 12. FIG.

バルーン12は、突出する羽根部40が形成されることで、図15及び図6(b)に示すように、第2形状形成部122cに押圧されて羽根部40の外周側に向かう面を構成する羽根外側部40bと、ブレード122の先端部に押圧されて羽根部40の周面部41と対向する面を構成する羽根内側部40aと、第1形状形成部122bに押圧されて内管21の周面に沿う周面部41とが形成される。   The balloon 12 is formed with a protruding blade portion 40, and forms a surface that is pressed by the second shape forming portion 122c toward the outer peripheral side of the blade portion 40 as shown in FIGS. 15 and 6B. Of the inner tube 21, pressed by the blade outer portion 40 b, the blade inner portion 40 a that is pressed by the tip of the blade 122 and forms the surface facing the peripheral surface portion 41 of the blade 40, and the first shape forming portion 122 b. A peripheral surface portion 41 is formed along the peripheral surface.

プリーティング部120によるプリーティングの過程において、カテーテルシャフト11を保持する保持台部142は、プリーティング部120に近づくようにスライド移動する。プリーティング部120内に挿入されるバルーンカテーテル10には、図14に示すように芯材61が挿通されており、その先端部はプリーティング部120によって保持されている。また、芯材61の保持部分は、カテーテルシャフト11の長さ方向に沿って移動可能となっており、保持台部142がスライド移動するのに合わせて移動する。これによって、バルーン12がプリーティング部120内において軸方向に沿って移動できる。このように保持台部142及び芯材61の先端部が移動することで、プリーティング部120内でブレード122に押圧された状態のバルーン12は、軸方向に沿いプリーティング部120の奥側に向かって押し出される。   In the process of pleating by the pleating unit 120, the holding table 142 that holds the catheter shaft 11 slides so as to approach the pleating unit 120. As shown in FIG. 14, a core material 61 is inserted into the balloon catheter 10 inserted into the pleating portion 120, and the distal end portion thereof is held by the pleating portion 120. Further, the holding portion of the core member 61 is movable along the length direction of the catheter shaft 11 and moves in accordance with the sliding movement of the holding base portion 142. Accordingly, the balloon 12 can move along the axial direction in the pleating unit 120. As the holding base part 142 and the tip part of the core material 61 move in this way, the balloon 12 in a state of being pressed by the blade 122 in the pleating part 120 is moved to the back side of the pleating part 120 along the axial direction. Pushed out.

図16(a)に示すように、薬剤結晶の長尺体33は、ブレード122による押圧前の状態で、それぞれ立った状態である。バルーン12の表面がブレード122によって押圧されると、長尺体33もブレード122に押圧され、図16(b)に示すように、バルーン12の表面に対して傾倒する。バルーン12がブレード122に押圧されたまま、バルーン12を軸方向に沿って移動させると、図18(c)に示すように、傾倒した長尺体33は、バルーン12の軸方向D2に沿うようにその向きを変化させる。   As shown in FIG. 16A, the long drug crystal 33 is in a standing state before being pressed by the blade 122. When the surface of the balloon 12 is pressed by the blade 122, the elongated body 33 is also pressed by the blade 122 and tilts with respect to the surface of the balloon 12, as shown in FIG. When the balloon 12 is moved along the axial direction while the balloon 12 is pressed by the blade 122, the slanted long body 33 is aligned along the axial direction D2 of the balloon 12, as shown in FIG. Change its direction.

なお、バルーン12の表面の長尺体33を所定方向に沿って傾倒させるためには、ブレード122によるバルーン12に対する押圧力、押圧時間及び加熱温度を適切に設定することが必要である。また、プリーティングの過程において、バルーン12を過拡張させた後に、少し収縮(deflate)させるステップ、または、バルーン12を過拡張とならない程度に拡張させた後に、少し収縮させるステップを有していてもよい。   In order to tilt the long body 33 on the surface of the balloon 12 along a predetermined direction, it is necessary to appropriately set the pressing force, pressing time, and heating temperature of the balloon 122 against the balloon 12. Further, in the process of pleating, the method includes a step of slightly deflating the balloon 12 after overexpanding, or a step of slightly deflating the balloon 12 after expanding the balloon 12 so as not to overexpand. Also good.

次に、保持台部142を基部141の上面で移動させてプリーティング部120から離間させ、バルーンカテーテル10をプリーティング部120から引き抜く。次に、支持台140の向きを変化させ、フォールディング部130の前面板131に対向する位置に、支持台140を位置決めする。この後、保持台部142を基部141の上面で移動させて、図17に示すように、バルーンカテーテル10を挿入孔131aからフォールディング部130内に挿入する。フォールディング部130のブレード132は、予め50〜60度程度に加熱されている。   Next, the holding base part 142 is moved on the upper surface of the base part 141 to be separated from the pleating part 120, and the balloon catheter 10 is pulled out from the pleating part 120. Next, the direction of the support base 140 is changed, and the support base 140 is positioned at a position facing the front plate 131 of the folding unit 130. Thereafter, the holding base part 142 is moved on the upper surface of the base part 141, and the balloon catheter 10 is inserted into the folding part 130 from the insertion hole 131a as shown in FIG. The blade 132 of the folding unit 130 is heated to about 50 to 60 degrees in advance.

羽根部40が形成されたバルーン12をフォールディング部130に挿入した後、図18に示すように、駆動源134を作動させて回転部材133を回転させると、ブレード132が回動し、各ブレード132の先端部132bが互いに近づき、ブレード132間の中心領域が狭まる。これに伴い、ブレード132間の中心領域に挿入されたバルーン12は、各ブレード132の先端部132bによって羽根部40が周方向に寝かされた状態となる。ブレード132は、バルーン12の挿入前に予め加熱されており、ブレード132によってバルーン12が加熱されるので、ブレード132により周方向に寝かされた羽根部40は、そのままの形を維持することができる。このとき、各ブレード132のバルーン12と接触する表面は、第1フィルム181及び第2フィルム182によって覆われており、バルーン12はブレード132の表面に直接接触することはない。   After inserting the balloon 12 in which the blade part 40 is formed into the folding part 130, as shown in FIG. 18, when the drive source 134 is operated to rotate the rotating member 133, the blade 132 rotates and each blade 132 is rotated. The leading end portions 132b approach each other, and the central region between the blades 132 is narrowed. Accordingly, the balloon 12 inserted in the central region between the blades 132 is in a state in which the blade portion 40 is laid down in the circumferential direction by the tip portion 132b of each blade 132. The blade 132 is preheated before the insertion of the balloon 12, and the balloon 12 is heated by the blade 132. Therefore, the blade portion 40 laid in the circumferential direction by the blade 132 can maintain the shape as it is. it can. At this time, the surface of each blade 132 that contacts the balloon 12 is covered with the first film 181 and the second film 182, and the balloon 12 does not directly contact the surface of the blade 132.

バルーン12の羽根部40が折り畳まれると、図18及び図6(c)に示すように、羽根部40のうち羽根内側部40aと、周面部41のうち対向面部41aとが重なって接触し、バルーン12の表面同士が対向して重なりあう。また、羽根部40のうち羽根外側部40bと、周面部41のうち外周構成面部41bとは、外周側に露出する。フォールディングの過程において、プリーティング部120でバルーン12の軸方向に沿って傾倒した長尺体33は、そのままの状態を維持する。   When the blade portion 40 of the balloon 12 is folded, as shown in FIGS. 18 and 6C, the blade inner portion 40 a of the blade portion 40 and the opposing surface portion 41 a of the peripheral surface portion 41 are in contact with each other. The surfaces of the balloon 12 overlap each other. In addition, the blade outer portion 40b of the blade portion 40 and the outer peripheral component surface portion 41b of the peripheral surface portion 41 are exposed to the outer peripheral side. In the process of folding, the long body 33 tilted along the axial direction of the balloon 12 by the pleating unit 120 maintains the state as it is.

バルーン12の羽根部40を畳んだ後、ブレード132を元の位置に戻すように回動させる。次に、把持部110からバルーンカテーテル10を取り外し、バルーン12をフォールディング部130から引き抜く。次に、保持部143によるカテーテルシャフト11の保持を解除し、バルーン12を筒状の保護シース15(図1を参照)で覆って、バルーンカテーテル10におけるバルーン12の折り畳みが完了する。保護シース15は、バルーン12からの薬剤の脱落を抑制する部材であり、バルーンカテーテル10を使用する前に取り除かれる。   After folding the blade portion 40 of the balloon 12, the blade 132 is rotated so as to return to the original position. Next, the balloon catheter 10 is removed from the grasping part 110 and the balloon 12 is pulled out from the folding part 130. Next, the holding of the catheter shaft 11 by the holding portion 143 is released, and the balloon 12 is covered with a cylindrical protective sheath 15 (see FIG. 1), and the folding of the balloon 12 in the balloon catheter 10 is completed. The protective sheath 15 is a member that prevents the drug from falling off the balloon 12 and is removed before the balloon catheter 10 is used.

これらの工程により、バルーン12が折り畳まれると共に、プリーティングの際の押圧力によって、バルーン12の表面の長尺体33を、立った状態から軸方向に沿って傾倒した状態とすることができる。   Through these steps, the balloon 12 is folded, and the elongated body 33 on the surface of the balloon 12 can be inclined from the standing state along the axial direction by the pressing force at the time of pleating.

次に、本実施形態に係るバルーンカテーテル10の使用方法を、血管内の狭窄部を治療する場合を例として説明する。   Next, a method of using the balloon catheter 10 according to the present embodiment will be described by taking as an example the case of treating a stenosis in a blood vessel.

まず、術者は、セルジンガー法等の公知の方法により、皮膚から血管を穿刺し、イントロデューサ(図示せず)を留置する。次に、バルーンカテーテル10の保護シース15を外し、プライミングを行った後、ガイドワイヤルーメン23内にガイドワイヤ200(図19を参照)を挿入する。この状態で、ガイドワイヤ200及びバルーンカテーテル10をイントロデューサの内部より血管内へ挿入する。続いて、ガイドワイヤ200を先行させつつバルーンカテーテル10を進行させ、バルーン12を狭窄部300へ到達させる。なお、バルーンカテーテル10を狭窄部300まで到達させるために、ガイディングカテーテルを用いてもよい。   First, the surgeon punctures a blood vessel from the skin by a known method such as the Seldinger method and places an introducer (not shown). Next, after removing the protective sheath 15 of the balloon catheter 10 and performing priming, the guide wire 200 (see FIG. 19) is inserted into the guide wire lumen 23. In this state, the guide wire 200 and the balloon catheter 10 are inserted into the blood vessel from the inside of the introducer. Subsequently, the balloon catheter 10 is advanced while the guide wire 200 is advanced, and the balloon 12 reaches the narrowed portion 300. A guiding catheter may be used to reach the balloon catheter 10 to the stenosis 300.

バルーン12を血管内で移動させる際、折り畳まれた状態のバルーン12は、外周側に露出する領域では薬剤結晶の長尺体33が先端側から基端側に向かって傾倒しているので、バルーン12の表面が血管内壁に摺接しても、長尺体33は剥離しにくい。また、長尺体33が血管内壁に引っ掛からないので、摩擦抵抗も低減することができる。すなわち、バルーン12の挿入中における薬剤の逸失を抑え、目的の位置まで薬剤を効果的に送達させることができると共に、バルーン12の生体管腔内における通過性も良好にすることができる。   When the balloon 12 is moved in the blood vessel, the folded balloon 12 is tilted from the distal end side toward the proximal end side in the region exposed to the outer peripheral side. Even if the surface of 12 is in sliding contact with the inner wall of the blood vessel, the long body 33 is difficult to peel off. Further, since the long body 33 is not caught on the inner wall of the blood vessel, the frictional resistance can be reduced. That is, loss of the drug during insertion of the balloon 12 can be suppressed, the drug can be effectively delivered to the target position, and the passage of the balloon 12 in the living body lumen can be improved.

バルーン12を狭窄部300に配置した後には、ハブ13の基端開口部13aより、インデフレーターまたはシリンジ等を用いて拡張用流体を所定量注入し、拡張ルーメン22を通じてバルーン12の内部に拡張用流体を送り込む。これにより、図19に示すように、折り畳まれたバルーン12が拡張し、狭窄部300が、バルーン12によって押し広げられる。このとき、バルーン12の表面に設けられる薬剤結晶を含むコート層30が、狭窄部300に接触する。バルーン12を拡張させてコート層30を生体組織に押し付けると、コート層30に含まれる低分子化合物である基層32が徐々にまたは速やかに溶けつつ、薬剤が生体へ送達される。バルーン12が拡張すると、折り畳まれた状態では外周側に露出しない領域も、外周側に露出し、この領域では薬剤結晶の長尺体33は立った状態であるので、狭窄部300に対し薬剤が効果的に移行される。したがって、狭窄部300の再狭窄が、効果的に抑制される。   After the balloon 12 is disposed in the narrowed portion 300, a predetermined amount of expansion fluid is injected from the proximal end opening 13 a of the hub 13 using an inflator or a syringe, and the expansion fluid 22 is expanded into the balloon 12 through the expansion lumen 22. Feed the fluid. Thereby, as shown in FIG. 19, the folded balloon 12 is expanded, and the narrowed portion 300 is pushed and expanded by the balloon 12. At this time, the coat layer 30 containing drug crystals provided on the surface of the balloon 12 contacts the narrowed portion 300. When the balloon 12 is expanded and the coat layer 30 is pressed against the living tissue, the base layer 32 that is a low molecular compound contained in the coat layer 30 dissolves gradually or quickly, and the drug is delivered to the living body. When the balloon 12 is expanded, the region that is not exposed to the outer peripheral side in the folded state is also exposed to the outer peripheral side. In this region, the elongated body 33 of the drug crystal is standing, so that the drug is applied to the narrowed portion 300. Effectively migrated. Therefore, restenosis of the constricted portion 300 is effectively suppressed.

この後、拡張用流体をハブ13の基端開口部13aより吸引して排出し、バルーン12を収縮させて折り畳まれた状態とする。この後、イントロデューサを介して血管よりガイドワイヤ200及びバルーンカテーテル10を抜去し、手技が終了する。   Thereafter, the expansion fluid is sucked and discharged from the proximal end opening 13a of the hub 13, and the balloon 12 is contracted and folded. Thereafter, the guide wire 200 and the balloon catheter 10 are removed from the blood vessel via the introducer, and the procedure is completed.

以上のように、本実施形態に係るバルーンカテーテル10は、カテーテルシャフト11の先端部にバルーン12を有し、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体33がバルーン12の表面に設けられるバルーンカテーテル10であって、バルーン12の表面は、50体積%以上の長尺体33がバルーン12の周方向側より軸方向側に沿うように傾倒している領域を有する。これにより、折り畳まれたバルーン12が生体管腔を移動する際に、長尺体33が軸方向に沿って傾倒した状態となっているので、バルーン12からの剥離が抑制されると共に、摩擦力も小さくすることができる。これにより、バルーン12が生体管腔内を移動する際における薬剤の逸失を抑えて、目的の位置まで薬剤を効果的に送達させることができ、また、バルーン12の通過性も良好にすることができる。   As described above, the balloon catheter 10 according to this embodiment has the balloon 12 at the distal end portion of the catheter shaft 11 and a plurality of long lengths that are crystals of a water-insoluble drug extending with an independent long axis. The body 33 is a balloon catheter 10 provided on the surface of the balloon 12, and the surface of the balloon 12 is inclined so that the long body 33 of 50% by volume or more is along the axial direction side from the circumferential direction side of the balloon 12. Have an area. As a result, when the folded balloon 12 moves through the living body lumen, the elongated body 33 is tilted along the axial direction, so that peeling from the balloon 12 is suppressed and frictional force is also reduced. Can be small. Thereby, the loss of the medicine when the balloon 12 moves in the living body lumen can be suppressed, the medicine can be effectively delivered to the target position, and the passage of the balloon 12 can be improved. it can.

また、バルーン12の周方向側より軸方向側に沿うように傾倒している長尺体33は、バルーン12の表面に対してなす角度が30度以下であるようにすれば、軸方向に沿って傾倒した状態の長尺体33が、バルーン12の表面に対して寝た状態となって、バルーン12の移動時に生体管腔の内壁などと接触しても、剥離することを効果的に抑制することができる。   In addition, the long body 33 that is inclined so as to be along the axial direction side from the circumferential direction side of the balloon 12 is aligned along the axial direction if the angle formed with respect to the surface of the balloon 12 is 30 degrees or less. Even if the elongated body 33 in a tilted state becomes a state of lying on the surface of the balloon 12 and comes into contact with the inner wall of the living body lumen when the balloon 12 is moved, the peeling is effectively suppressed. can do.

また、傾倒している長尺体33は、バルーン12の先端側から基端側に向かって傾倒しているようにすれば、バルーン12の挿入時に、長尺体33の先端が生体管腔の内壁面に引っ掛からないようにすることができるので、長尺体33の剥離をより効果的に抑制でき、また、バルーン12挿入時の摩擦抵抗を低減できる。   In addition, if the elongated body 33 is inclined from the distal end side to the proximal end side of the balloon 12, the distal end of the elongated body 33 is inserted into the living body lumen when the balloon 12 is inserted. Since it can be prevented from being caught on the inner wall surface, peeling of the long body 33 can be more effectively suppressed, and the frictional resistance when the balloon 12 is inserted can be reduced.

また、傾倒している長尺体33は、バルーン12の基端側から先端側に向かって傾倒しているようにすれば、バルーン12を引き抜く際に、長尺体33の先端が生体管腔の内壁面に引っ掛からないようにすることができるので、長尺体33の剥離をより効果的に抑制でき、また、バルーン12引き抜き時の摩擦抵抗を低減できる。   Further, if the elongated body 33 is tilted from the proximal end side of the balloon 12 toward the distal end side, the distal end of the elongated body 33 is attached to the living body lumen when the balloon 12 is pulled out. Since it can be prevented from being caught on the inner wall surface, the peeling of the long body 33 can be more effectively suppressed, and the frictional resistance when the balloon 12 is pulled out can be reduced.

また、水不溶性薬剤は、ラパマイシン、パクリタキセル、ドセタキセル、またはエベロリムスであるようにすれば、血管内の狭窄部の再狭窄を良好に抑制できる。   In addition, if the water-insoluble drug is rapamycin, paclitaxel, docetaxel, or everolimus, restenosis of the stenosis in the blood vessel can be satisfactorily suppressed.

また、本実施形態に係るバルーンカテーテル10の製造方法は、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体33がバルーン12の表面に設けられているバルーンカテーテル10の製造方法において、バルーン12の表面に長尺体33を形成するステップと、バルーン12に径方向に突出する羽根部50を形成するステップと、バルーン12に形成された羽根部40を周方向に沿って寝かせるステップと、を有し、バルーン12に羽根部40を形成するステップ、またはバルーン12の羽根部40を寝かせるステップのいずれかにおいて、バルーン12を変形させるために作用させる力によって、バルーン12の表面を軸方向に沿って押圧することにより、バルーン12の表面の長尺体33を傾倒させ、少なくとも50体積%以上の長尺体33が、バルーン12の周方向側より軸方向側に沿うように傾倒している領域を形成する。これにより、バルーン12に羽根部40を形成するステップ、または羽根部40を折り畳むステップにおいてバルーン12に作用する力を利用して、バルーン12の表面において長尺体33を軸方向に沿って傾倒させることができる。   Further, in the method for manufacturing the balloon catheter 10 according to the present embodiment, a balloon in which a plurality of elongated bodies 33 that are crystals of a water-insoluble drug extending with independent long axes are provided on the surface of the balloon 12 is provided. In the method of manufacturing the catheter 10, the step of forming the elongated body 33 on the surface of the balloon 12, the step of forming the blade portion 50 projecting radially on the balloon 12, and the blade portion 40 formed on the balloon 12 Laying along the direction, and by the force acting to deform the balloon 12 in either the step of forming the wings 40 on the balloon 12 or the step of laying the wings 40 of the balloon 12 By pressing the surface of the balloon 12 along the axial direction, the elongated body 33 on the surface of the balloon 12 is tilted, and at least 0% by volume or more of the elongate body 33 forms a region which is inclined along than the circumferential side of the balloon 12 in the axial direction. Accordingly, the elongated body 33 is tilted along the axial direction on the surface of the balloon 12 by using the force acting on the balloon 12 in the step of forming the blade portion 40 on the balloon 12 or the step of folding the blade portion 40. be able to.

また、バルーン12の表面を押圧する際に、バルーン12を軸方向に移動させることにより、バルーン12の表面を軸方向に沿って押圧するようにすれば、バルーン12の軸方向の移動に伴って長尺体33を軸方向に沿って傾倒させることができる。   Further, when the surface of the balloon 12 is pressed, the balloon 12 is moved in the axial direction so that the surface of the balloon 12 is pressed along the axial direction. The long body 33 can be tilted along the axial direction.

また、本実施形態に係る処置方法は、バルーンカテーテル10を使用して生体管腔内の病変部に薬剤を送達する処置方法であって、バルーン12を生体管腔内に挿入して病変部へ到達させるステップと、バルーン12を拡張させて長尺体33を生体組織に押し付けるステップと、バルーン12を収縮させて生体管腔から抜去するステップと、を有する。これにより、折り畳まれた状態のバルーン12を血管内で移動させる際に、バルーン12の表面において薬剤結晶の長尺体33が軸方向に沿って傾倒しているので、長尺体33の剥離を抑制でき、また、生体管腔の内壁面との間の摩擦抵抗が小さいので、バルーン12を円滑に移動させることができる。これにより、薬剤を病変部に効果的に送達させることができる。   The treatment method according to the present embodiment is a treatment method for delivering a drug to a lesion in a living body lumen using the balloon catheter 10, and the balloon 12 is inserted into the living body lumen to reach the lesion. And a step of expanding the balloon 12 to press the elongated body 33 against the living tissue, and a step of contracting the balloon 12 and removing it from the living body lumen. Thereby, when the balloon 12 in the folded state is moved in the blood vessel, the long body 33 of the drug crystal is tilted along the axial direction on the surface of the balloon 12, so that the long body 33 is peeled off. Further, since the frictional resistance with the inner wall surface of the living body lumen is small, the balloon 12 can be moved smoothly. Thereby, a chemical | medical agent can be effectively delivered to a lesioned part.

なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、上述の実施形態に係るバルーンカテーテル10は、ラピッドエクスチェンジ型(Rapid exchange type)であるが、オーバーザワイヤ型(Over−the−wire type)であってもよい。   Note that the present invention is not limited to the above-described embodiments, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, the balloon catheter 10 according to the above-described embodiment is a rapid exchange type, but may be an over-the-wire type.

また、本実施形態では、バルーン12のプリーティングの過程において、バルーン12の表面に形成された長尺体33を軸方向に沿って傾倒させているが、フォールディングの過程において、ブレード132による押圧力により長尺体33を傾倒させてもよい(図18を参照)。   In the present embodiment, the elongated body 33 formed on the surface of the balloon 12 is tilted along the axial direction in the pleating process of the balloon 12, but the pressing force of the blade 132 is applied in the folding process. The elongate body 33 may be tilted by (see FIG. 18).

また、本実施形態では、長尺体33をバルーン12の先端側から基端側に向かって傾倒させているが、バルーン12の軸方向である基端側から先端側に向かって傾倒させてもよい。このように長尺体33を傾倒させるには、バルーン12の羽根部40をプリーティング部120で形成する際に、ブレード122によりバルーン12の表面を押圧した状態で、カテーテルシャフト11を保持する支持台140の保持部143を、プリーティング部120から遠ざかるように、載置部142aの長さ方向に沿って移動させる。これにより、プリーティング部120内のバルーン12は、軸方向に沿いプリーティング部120の手前側に引かれ、バルーン12の表面の長尺体33は、バルーン12の基端側から先端側に向かって傾倒する。   In the present embodiment, the elongated body 33 is tilted from the distal end side to the proximal end side of the balloon 12. However, even if the elongated body 33 is tilted from the proximal end side, which is the axial direction of the balloon 12, to the distal end side. Good. In order to tilt the elongate body 33 in this manner, when the blade portion 40 of the balloon 12 is formed by the pleating portion 120, the support for holding the catheter shaft 11 while pressing the surface of the balloon 12 with the blade 122. The holding part 143 of the base 140 is moved along the length direction of the placement part 142a so as to be away from the pleating part 120. As a result, the balloon 12 in the pleating unit 120 is pulled toward the front side of the pleating unit 120 along the axial direction, and the elongated body 33 on the surface of the balloon 12 is directed from the proximal end side to the distal end side of the balloon 12. To tilt.

長尺体33をバルーン12の基端側から先端側に向かって傾倒させることで、バルーン12を引き抜く際に、長尺体33の先端が生体管腔の内壁面に引っ掛からないようにすることができるので、長尺体33の剥離を効果的に抑制でき、また、バルーン12の引き抜き時における摩擦抵抗を低減できる。   By tilting the elongated body 33 from the proximal end side to the distal end side of the balloon 12, it is possible to prevent the distal end of the elongated body 33 from being caught on the inner wall surface of the living body lumen when the balloon 12 is pulled out. Since it can do, peeling of the elongate body 33 can be suppressed effectively, and the frictional resistance at the time of extraction of the balloon 12 can be reduced.

また、本実施形態では、長尺体33をバルーン12の軸方向に沿って傾倒させるために、ブレード122によりバルーン12の表面を押圧した状態で、バルーン12を軸方向に移動させるようにしているが、プリーティング部120のブレード122が、バルーン12の長さ方向に順次接触するように構成することで、長尺体33をバルーン12の軸方向に沿って傾倒させてもよい。具体的には、ブレード122が、バルーン12の先端側から基端側に向かって順次接触し、押圧していくことで、長尺体33をバルーン12の先端側から基端側に向かうように傾倒させることができる。   In the present embodiment, in order to tilt the long body 33 along the axial direction of the balloon 12, the balloon 12 is moved in the axial direction while the surface of the balloon 12 is pressed by the blade 122. However, the long body 33 may be tilted along the axial direction of the balloon 12 by configuring the blade 122 of the pleating unit 120 so as to sequentially contact with the length of the balloon 12. Specifically, the blade 122 sequentially contacts and presses from the distal end side to the proximal end side of the balloon 12 so that the elongated body 33 is directed from the distal end side to the proximal end side of the balloon 12. Can be tilted.

前述のように、基層32は、アモルファス、結晶粒子、または、その混合物として存在する。図4の基層32は、結晶粒子及び/または粒子状アモルファスの状態であるが、図20に示すように、基層32がフィルム状アモルファスの状態であってもよい。   As described above, the base layer 32 exists as an amorphous material, a crystal particle, or a mixture thereof. The base layer 32 in FIG. 4 is in a crystalline particle and / or particulate amorphous state, but as shown in FIG. 20, the base layer 32 may be in a film-like amorphous state.

また、本実施形態において、折り畳まれたバルーン12の羽根部40は、先端が隣接する羽根部40に達しないが、図21に示す2つの例のように、先端が隣接する羽根部40に達していてもよい。図21(a)の例では、羽根部40の根元側と周面部41との間に根元側空間部42が形成され、羽根部40の先端側と周面部41との間に先端側空間部43が形成される。図21(b)の例では、羽根部40の根元側から隣接する羽根部40までの領域の全体において、羽根部40と周面部41との間に空間部44が形成されている。   Further, in the present embodiment, the wing portion 40 of the folded balloon 12 does not reach the adjacent wing portion 40, but as shown in FIG. 21, the wing portion 40 reaches the adjacent wing portion 40. It may be. In the example of FIG. 21A, a root-side space portion 42 is formed between the root side of the blade portion 40 and the peripheral surface portion 41, and a tip-side space portion is provided between the tip side of the blade portion 40 and the peripheral surface portion 41. 43 is formed. In the example of FIG. 21B, a space portion 44 is formed between the blade portion 40 and the peripheral surface portion 41 in the entire region from the root side of the blade portion 40 to the adjacent blade portion 40.

10 カテーテル
11 カテーテルシャフト
12 バルーン
13 ハブ
20 外管
21 内管
22 拡張ルーメン
23 ガイドワイヤルーメン
24 開口部
30 コート層
31 バルーン表面
32 基層
33 長尺体
40 羽根部
40a 羽根内側部
40b 羽根外側部
40c 根元部
41 周面部
41a 対向面部
41b 外周構成面部
50 バルーンコーティング装置
60 回転機構部
70 支持台
80 移動機構部
90 塗布機構部
94 ディスペンシングチューブ
100 バルーン折り畳み装置
DESCRIPTION OF SYMBOLS 10 Catheter 11 Catheter shaft 12 Balloon 13 Hub 20 Outer tube 21 Inner tube 22 Expansion lumen 23 Guide wire lumen 24 Opening portion 30 Coat layer 31 Balloon surface 32 Base layer 33 Long body 40 Blade portion 40a Blade inner portion 40b Blade outer portion 40c Root Part 41 Peripheral surface part 41a Opposing surface part 41b Outer peripheral component surface part 50 Balloon coating device 60 Rotating mechanism part 70 Support base 80 Moving mechanism part 90 Application mechanism part 94 Dispensing tube 100 Balloon folding apparatus

Claims (8)

カテーテルシャフトの先端部にバルーンを有し、独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体が前記バルーンの表面に設けられているバルーンカテーテルであって、
前記バルーンの表面は、50体積%以上の前記長尺体が前記バルーンの周方向側より軸方向側に沿うように傾倒している領域を有するバルーンカテーテル。
A balloon catheter having a balloon at the distal end portion of the catheter shaft, and a plurality of elongated bodies that are crystals of a water-insoluble drug extending with an independent long axis provided on the surface of the balloon,
The balloon catheter has a region in which the surface of the balloon has a region in which the elongated body of 50% by volume or more is inclined so as to be along the axial direction side from the circumferential direction side of the balloon.
前記バルーンの周方向側より軸方向側に沿うように傾倒している前記長尺体は、前記バルーンの表面に対してなす角度が30度以下である請求項1記載のバルーンカテーテル。   The balloon catheter according to claim 1, wherein the elongated body tilted so as to extend along the axial direction side from the circumferential side of the balloon has an angle of 30 degrees or less with respect to the surface of the balloon. 傾倒している前記長尺体は、前記バルーンの先端側から基端側に向かって傾倒している請求項1または2記載のバルーンカテーテル。   The balloon catheter according to claim 1 or 2, wherein the elongated body tilted is tilted from the distal end side to the proximal end side of the balloon. 傾倒している前記長尺体は、前記バルーンの基端側から先端側に向かって傾倒している請求項1または2記載のバルーンカテーテル。   The balloon catheter according to claim 1 or 2, wherein the elongated body tilted is tilted from the proximal end side to the distal end side of the balloon. 前記水不溶性薬剤は、ラパマイシン、パクリタキセル、ドセタキセル、またはエベロリムスである請求項1〜4のいずれか1項に記載のバルーンカテーテル。   The balloon catheter according to any one of claims 1 to 4, wherein the water-insoluble drug is rapamycin, paclitaxel, docetaxel, or everolimus. 独立した長軸を有して延在する水不溶性薬剤の結晶である複数の長尺体がバルーンの表面に設けられているバルーンカテーテルの製造方法において、
前記バルーンの表面に前記長尺体を形成するステップと、
前記バルーンに径方向に突出する羽根部を形成するステップと、
前記バルーンに形成された羽根部を周方向に沿って寝かせるステップと、を有し、
前記バルーンに羽根部を形成するステップ、または前記バルーンの羽根部を寝かせるステップのいずれかにおいて、前記バルーンを変形させるために作用させる力によって、前記バルーンの表面を軸方向に沿って押圧することにより、前記バルーンの表面の長尺体を傾倒させ、少なくとも50体積%以上の前記長尺体が、前記バルーンの周方向側より軸方向側に沿うように傾倒している領域を形成するバルーンカテーテルの製造方法。
In the method of manufacturing a balloon catheter, a plurality of elongated bodies that are crystals of a water-insoluble drug extending with an independent long axis are provided on the surface of the balloon.
Forming the elongated body on the surface of the balloon;
Forming a radially projecting wing on the balloon;
Laying the wings formed on the balloon along the circumferential direction,
By pressing the surface of the balloon along the axial direction by a force that acts to deform the balloon in either the step of forming the blade on the balloon or the step of laying down the blade of the balloon A balloon catheter that tilts the elongated body on the surface of the balloon to form a region in which at least 50% by volume or more of the elongated body is tilted so as to be along the axial direction side from the circumferential direction side of the balloon Production method.
前記バルーンの表面を押圧する際に、前記バルーンを軸方向に移動させることにより、前記バルーンの表面を軸方向に沿って押圧する請求項6記載のバルーンカテーテルの製造方法。   The method for manufacturing a balloon catheter according to claim 6, wherein when the surface of the balloon is pressed, the surface of the balloon is pressed along the axial direction by moving the balloon in the axial direction. 請求項1〜5のいずれか1項に記載のバルーンカテーテルを使用して生体管腔内の病変部に薬剤を送達する処置方法であって、
前記バルーンを生体管腔内に挿入して病変部へ到達させるステップと、
前記バルーンを拡張させて前記長尺体を生体組織に押し付けるステップと、
前記バルーンを収縮させて生体管腔から抜去するステップと、を有する処置方法。
A treatment method for delivering a drug to a lesion in a living body lumen using the balloon catheter according to any one of claims 1 to 5,
Inserting the balloon into the body lumen to reach the lesion;
Expanding the balloon and pressing the elongated body against the living tissue;
Deflating the balloon and removing it from the living body lumen.
JP2016058037A 2016-03-23 2016-03-23 Balloon catheter, manufacturing method thereof, and treatment method Active JP6704273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058037A JP6704273B2 (en) 2016-03-23 2016-03-23 Balloon catheter, manufacturing method thereof, and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058037A JP6704273B2 (en) 2016-03-23 2016-03-23 Balloon catheter, manufacturing method thereof, and treatment method

Publications (2)

Publication Number Publication Date
JP2017169735A true JP2017169735A (en) 2017-09-28
JP6704273B2 JP6704273B2 (en) 2020-06-03

Family

ID=59969565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058037A Active JP6704273B2 (en) 2016-03-23 2016-03-23 Balloon catheter, manufacturing method thereof, and treatment method

Country Status (1)

Country Link
JP (1) JP6704273B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502690A (en) * 2008-09-15 2012-02-02 シーヴィー インジェニュイティ コーポレイション Local delivery of water-soluble or water-insoluble therapeutic agents to the body lumen surface
US20140271775A1 (en) * 2013-03-14 2014-09-18 W.L. Gore & Associates, Inc. Porous composites with high-aspect ratio crystals
US20150182732A1 (en) * 2014-01-02 2015-07-02 Boston Scientific Scimed, Inc. Drug Eluting Balloon With Preferred Drug Orientation To Improve Drug Transfer Efficiency
WO2015151876A1 (en) * 2014-04-01 2015-10-08 テルモ株式会社 Balloon coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502690A (en) * 2008-09-15 2012-02-02 シーヴィー インジェニュイティ コーポレイション Local delivery of water-soluble or water-insoluble therapeutic agents to the body lumen surface
US20140271775A1 (en) * 2013-03-14 2014-09-18 W.L. Gore & Associates, Inc. Porous composites with high-aspect ratio crystals
US20150182732A1 (en) * 2014-01-02 2015-07-02 Boston Scientific Scimed, Inc. Drug Eluting Balloon With Preferred Drug Orientation To Improve Drug Transfer Efficiency
WO2015151876A1 (en) * 2014-04-01 2015-10-08 テルモ株式会社 Balloon coating method

Also Published As

Publication number Publication date
JP6704273B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6472572B2 (en) Balloon catheter, manufacturing method thereof, and treatment method
US11331457B2 (en) Balloon catheter, method of manufacturing a balloon catheter, and treatment method
JP6832339B2 (en) Balloon catheter and its manufacturing method and treatment method
JP2017169740A (en) Balloon catheter and manufacture method therefor, and treatment method
JP6668131B2 (en) Balloon catheter, manufacturing method and treatment method thereof
JP7073337B2 (en) How to manufacture a balloon catheter
JP2017169738A (en) Balloon catheter, and production method and treatment method therefor
JP6914612B2 (en) Balloon catheter and its manufacturing method and treatment method
JP7073339B2 (en) Balloon catheter and its manufacturing method
JP6697917B2 (en) Balloon catheter, manufacturing method thereof, and treatment method
JP2018153291A (en) Manufacturing method and manufacturing apparatus of balloon catheter
JP2017169741A (en) Balloon catheter and treatment method
JP7118222B2 (en) Balloon catheter and manufacturing method thereof
JP6704273B2 (en) Balloon catheter, manufacturing method thereof, and treatment method
JP2019063086A (en) Drug coating layer and method of forming the same
WO2017164282A1 (en) Balloon catheter, method for producing same, and treatment method
JP2017169736A (en) Balloon catheter, and production method and treatment method therefor
JP2018153289A (en) Method and apparatus for manufacturing baloon catheter
JP2017169733A (en) Balloon catheter, and production method and treatment method therefor
JP2017169742A (en) Balloon catheter, and production method and treatment method therefor
JP2018153282A (en) Balloon coating method
JP2018153284A (en) Balloon coating method and balloon coating apparatus
JP2018153285A (en) Balloon coating method
JP2018153287A (en) Manufacturing method and manufacturing device of balloon catheter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200512

R150 Certificate of patent or registration of utility model

Ref document number: 6704273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250