Nothing Special   »   [go: up one dir, main page]

JP2017166405A - Power generation system of internal combustion engine - Google Patents

Power generation system of internal combustion engine Download PDF

Info

Publication number
JP2017166405A
JP2017166405A JP2016051954A JP2016051954A JP2017166405A JP 2017166405 A JP2017166405 A JP 2017166405A JP 2016051954 A JP2016051954 A JP 2016051954A JP 2016051954 A JP2016051954 A JP 2016051954A JP 2017166405 A JP2017166405 A JP 2017166405A
Authority
JP
Japan
Prior art keywords
power generation
power
turbocharger
alternator
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016051954A
Other languages
Japanese (ja)
Inventor
雅志 小林
Masashi Kobayashi
雅志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016051954A priority Critical patent/JP2017166405A/en
Priority to KR1020170029251A priority patent/KR20170107901A/en
Priority to EP17160629.6A priority patent/EP3222838A1/en
Priority to CN201710147420.6A priority patent/CN107201939A/en
Priority to US15/456,876 priority patent/US9988979B2/en
Priority to RU2017108208A priority patent/RU2659856C1/en
Priority to BR102017005258-3A priority patent/BR102017005258A2/en
Publication of JP2017166405A publication Critical patent/JP2017166405A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Supercharger (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system of an internal combustion engine which can select efficient power generation by taking into consideration a pump loss of the internal combustion engine between power generation by a turbocharger with a power generation function and power generation by an alternator.SOLUTION: When an internal combustion engine is in an operation state that there is established a magnitude relationship in which the generation power of turbocharger power generation is larger than a loss increase amount of a pump loss of the internal combustion engine by turbocharger power generation, a power generation indication value calculation part 40e calculates a power generation indication value TGeeg of the turbocharger power generation and a power generation indication value TGalt of the alternator power generation so that a ratio of the power generation indication value TGeeg with respect to a power generation upper limit value Geeg which can be generated by the turbocharger power generation becomes large, and a ratio of the power generation indication value TGalt with respect to a power generation upper limit value Galt which can be generated by the alternator power generation becomes small compared with the case that the magnitude relationship is not established.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関に必要な電力を発電する内燃機関の発電システムに関する。   The present invention relates to a power generation system for an internal combustion engine that generates electric power necessary for the internal combustion engine.

発電システムとして、発電機能付きターボチャージャの発電効率と、オルタネータの発電効率とを算出し、これらの発電効率の高い方が優先的に発電の仕事を担うように、ターボチャージャ及びオルタネータのそれぞれの発電指示量を算出するものが知られている(特許文献1)。   As the power generation system, the power generation efficiency of the turbocharger with a power generation function and the power generation efficiency of the alternator are calculated, and the power generation of each of the turbocharger and the alternator is preferentially performed by the one with the higher power generation efficiency. A device that calculates an instruction amount is known (Patent Document 1).

特開2007−327401号公報JP 2007-327401 A

ターボチャージャによる発電は内燃機関の排気にてタービンを駆動することでその排気エネルギを電力に変換するが、特許文献1の発電システムは、ターボチャージャによる発電に伴って内燃機関のポンプ損失が増加することまでは考慮されていなかった。そのため、特許文献1の発電システムは必ずしも常に効率のよい発電を選択できていたわけではなく改善の余地がある。   In the power generation by the turbocharger, the exhaust energy is converted into electric power by driving the turbine with the exhaust gas of the internal combustion engine. However, in the power generation system of Patent Document 1, the pump loss of the internal combustion engine increases with the power generation by the turbocharger. It was not taken into consideration. For this reason, the power generation system of Patent Document 1 does not always select efficient power generation, and there is room for improvement.

そこで、本発明は、発電機能付きターボチャージャによる発電と、オルタネータによる発電との間で、内燃機関のポンプ損失を考慮した効率のよい発電を選択可能な内燃機関の発電システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide an internal combustion engine power generation system capable of selecting efficient power generation in consideration of pump loss of the internal combustion engine between power generation by a turbocharger with a power generation function and power generation by an alternator. And

本発明の内燃機関の発電システムは、内燃機関の排気通路に設けられたタービンの回転を利用して発電可能な発電機能付きターボチャージャと、前記内燃機関の出力を利用して発電可能なオルタネータと、前記内燃機関に必要な要求発電電力を算出する要求発電電力算出手段と、前記ターボチャージャによるターボチャージャ発電と、前記オルタネータによるオルタネータ発電とで前記要求発電電力を賄うことができるように、前記ターボチャージャに要求するべき第1発電指示値及び前記オルタネータに要求するべき第2発電指示値のそれぞれを算出する発電電力算出手段と、前記第1発電指示値を前記ターボチャージャに指示して前記ターボチャージャ発電を、前記第2発電指示値を前記オルタネータに指示して前記オルタネータ発電を、それぞれ実施させる発電制御手段と、を備え、前記発電電力算出手段は、前記内燃機関の運転状態が、前記ターボチャージャ発電の発電電力が前記ターボチャージャ発電による前記内燃機関のポンプ損失の損失増加分よりも大きい大小関係が成立する運転状態の場合、前記大小関係が不成立となる場合に比べて、前記ターボチャージャ発電にて発電可能である第1発電上限値に対する前記第1発電指示値の割合が大きく、かつ前記オルタネータ発電にて発電可能である第2発電上限値に対する前記第2発電指示値の割合が小さくなるように、前記第1発電指示値及び前記第2発電指示値のそれぞれを算出するものである(請求項1)。   A power generation system for an internal combustion engine according to the present invention includes a turbocharger having a power generation function capable of generating power using rotation of a turbine provided in an exhaust passage of the internal combustion engine, and an alternator capable of generating power using the output of the internal combustion engine. The required generated power can be covered by the required generated power calculating means for calculating the required generated power required for the internal combustion engine, the turbocharger power generation by the turbocharger, and the alternator power generation by the alternator. Generated power calculating means for calculating each of a first power generation instruction value to be requested to the charger and a second power generation instruction value to be requested to the alternator; and instructing the first power generation instruction value to the turbocharger, and Instructing the alternator to generate power, instructing the second power generation instruction value to the alternator. Power generation control means to be implemented, the generated power calculation means, the operating state of the internal combustion engine, the generated power of the turbocharger power generation from the increase in loss of pump loss of the internal combustion engine due to the turbocharger power generation In the operating state in which the magnitude relationship is established, the ratio of the first power generation instruction value to the first power generation upper limit value that can be generated by the turbocharger power generation is larger than in the case where the magnitude relationship is not established. And calculating each of the first power generation instruction value and the second power generation instruction value so that a ratio of the second power generation instruction value to a second power generation upper limit value that can be generated by the alternator power generation is small. (Claim 1).

内燃機関の運転状態が、ターボチャージャ発電の発電電力がその発電による内燃機関のポンプ損失の損失増加分よりも大きい大小関係が成立する運転状態の場合は、ターボチャージャ発電を実施することによりエネルギ収支上のメリットが得られる。逆に、その大小関係が不成立となる運転状態の場合にターボチャージャ発電を実施すると、かえってエネルギ収支上の損失となりメリットがないからターボチャージャ発電を制限するほうが望ましい。本発明の発電システムによれば、このような大小関係が成立する場合、それが不成立となる場合に比べて、ターボチャージャ発電による第1発電上限値に対する第1発電指示値の割合が大きくなり、かつオルタネータ発電による第2発電上限値に対する第2発電指示値の割合が小さくなる。換言すれば、上記大小関係が成立する場合は不成立の場合に比べて、ターボチャージャ発電の負荷率が高く、オルタネータ発電の負荷率が低くなる。このように、ターボチャージャ発電によるポンプ損失の増加が考慮されて、内燃機関に必要な要求発電電力に対してターボチャージャ発電とオルタネータ発電とのそれぞれの発電電力が配分される。したがって、内燃機関の運転状態に適した効率のよい発電を選択できる。   If the operating state of the internal combustion engine is in an operating state where the generated power of the turbocharger power generation is larger than the increase in the pump loss of the internal combustion engine due to the power generation, the energy balance is achieved by performing the turbocharger power generation. The above merit is obtained. On the other hand, if turbocharger power generation is performed in an operating state where the magnitude relationship is not established, it is preferable to limit turbocharger power generation because it causes a loss in energy balance and has no merit. According to the power generation system of the present invention, when such a magnitude relationship is established, the ratio of the first power generation instruction value with respect to the first power generation upper limit value by turbocharger power generation is larger than when it is not established, In addition, the ratio of the second power generation instruction value to the second power generation upper limit value by the alternator power generation becomes small. In other words, when the above magnitude relationship is established, the load factor of turbocharger power generation is higher and the load factor of alternator power generation is lower than when the relationship is not established. Thus, in consideration of an increase in pump loss due to the turbocharger power generation, the generated power of the turbocharger power generation and the alternator power generation is allocated to the required generated power required for the internal combustion engine. Therefore, efficient power generation suitable for the operating state of the internal combustion engine can be selected.

本発明の発電システムの一態様において、前記発電電力算出手段は、前記大小関係が成立する場合、前記第1発電上限値を前記第1発電指示値として算出し、かつ前記要求発電電力から前記第1発電上限値を減じた値を前記第2発電指示値として算出してもよい(請求項2)。この態様によれば、上記大小関係が成立する場合は、ターボチャージャ発電の第1発電上限値に対する第1発電指示値の割合が最大となり、ターボチャージャ発電だけでは不足する要求発電電力に対する不足分がオルタネータ発電で補われる。   In one aspect of the power generation system of the present invention, the generated power calculation means calculates the first power generation upper limit value as the first power generation instruction value when the magnitude relationship is established, and calculates the first power generation instruction value from the required generated power. A value obtained by subtracting one power generation upper limit value may be calculated as the second power generation instruction value (Claim 2). According to this aspect, when the magnitude relationship is established, the ratio of the first power generation instruction value to the first power generation upper limit value of the turbocharger power generation is maximized, and there is a shortage with respect to the requested power generation that is insufficient only with the turbocharger power generation. It is supplemented by alternator power generation.

本発明の発電システムの一態様において、前記発電電力算出手段は、前記大小関係が不成立の場合、前記第2発電上限値を前記第2発電指示値として算出し、かつ前記要求発電電力から前記第2発電上限値を減じた値を前記第1発電指示値として算出してもよい(請求項3)。この態様によれば、上記大小関係が成立する場合はオルタネータ発電の第2発電上限値に対する第2発電指示値の割合が最大となり、オルタネータ発電だけでは不足する要求発電電力に対する不足分がターボチャージャ発電で補われる。   In one aspect of the power generation system of the present invention, the generated power calculation means calculates the second power generation upper limit value as the second power generation instruction value when the magnitude relationship is not established, and calculates the second power generation instruction value from the required generated power. (2) A value obtained by subtracting the power generation upper limit value may be calculated as the first power generation instruction value. According to this aspect, when the above magnitude relationship is established, the ratio of the second power generation instruction value to the second power generation upper limit value of the alternator power generation becomes the maximum, and the shortage with respect to the required power generation that is insufficient only with the alternator power generation is the turbocharger power generation. Supplemented with

本発明の発電システムの一態様において、前記発電電力算出手段は、前記第1発電上限値及び前記第2発電上限値の合計が前記要求発電電力よりも小さいために前記ターボチャージャ発電と前記オルタネータ発電とで前記要求発電電力を賄うことができない場合には、前記大小関係の成否に拘わらず、前記ターボチャージャ発電の前記第1発電上限値を前記第1発電指示値として、前記オルタネータ発電の前記第2発電上限値を前記第2発電指示値として、それぞれ算出してもよい(請求項4)。この態様によれば、要求発電電力に対する発電電力の不足を可能な限り低減できる。   In one aspect of the power generation system of the present invention, the generated power calculation means includes the turbocharger power generation and the alternator power generation because a sum of the first power generation upper limit value and the second power generation upper limit value is smaller than the required power generation power. In the case where the required generated power cannot be covered, the first power generation upper limit value of the turbocharger power generation is used as the first power generation instruction value regardless of the success or failure of the magnitude relationship. Two power generation upper limit values may be calculated as the second power generation instruction value, respectively (claim 4). According to this aspect, the shortage of the generated power with respect to the required generated power can be reduced as much as possible.

以上説明した通り、本発明の発電システムによれば、ターボチャージャ発電によるポンプ損失の増加が考慮されて、内燃機関に必要な要求発電電力に対してターボチャージャ発電とオルタネータ発電とのそれぞれの発電電力が配分される。したがって、内燃機関の運転状態に適した効率のよい発電を選択できる。   As described above, according to the power generation system of the present invention, in consideration of the increase in pump loss due to turbocharger power generation, the generated power of each of turbocharger power generation and alternator power generation with respect to the required power generation required for the internal combustion engine. Is allocated. Therefore, efficient power generation suitable for the operating state of the internal combustion engine can be selected.

本発明の一形態に係る発電システムが適用された内燃機関の全体構成を示した図。The figure which showed the whole structure of the internal combustion engine to which the electric power generation system which concerns on one form of this invention was applied. 発電システムの概要を示した図。The figure which showed the outline | summary of the electric power generation system. 図2に示されたエネルギ管理部の詳細を示したブロック図。The block diagram which showed the detail of the energy management part shown by FIG. エネルギ収支上のメリットを判定するための判定マップMを示した図。The figure which showed the determination map M for determining the merit on an energy balance. 本発明の一形態に係る制御ルーチンの一例を示したフローチャート。6 is a flowchart illustrating an example of a control routine according to an embodiment of the present invention. ターボチャージャ発電の実施によるエネルギ収支上のメリットがある場合における発電指示値の算出方法を示した図。The figure which showed the calculation method of the electric power generation instruction value in case there exists a merit on the energy balance by implementation of turbocharger electric power generation. ターボチャージャ発電の実施によるエネルギ収支上のメリットがない場合における発電指示値の算出方法を示した図。The figure which showed the calculation method of the electric power generation instruction value in case there is no merit on the energy balance by implementation of turbocharger electric power generation.

図1に示すように、内燃機関1は4つの気筒2が一列に並べられた直列4気筒型の火花点火内燃機関として構成され、不図示の車両に搭載される。内燃機関1には発電機能付きのモータアシストターボチャージャ(MAT)3が設けられている。MAT3はタービン4及びコンプレッサ5を有しており、それらを連結する回転軸6には電動機及び発電機として機能する三相交流型のモータ・ジェネレータ7が設けられている。MAT3は、モータ・ジェネレータ7を電動機として機能させて過給を補助したり、発電機として機能させて排気エネルギを電力に変換したりすることができる。   As shown in FIG. 1, the internal combustion engine 1 is configured as an in-line four-cylinder spark ignition internal combustion engine in which four cylinders 2 are arranged in a row, and is mounted on a vehicle (not shown). The internal combustion engine 1 is provided with a motor assist turbocharger (MAT) 3 having a power generation function. The MAT 3 includes a turbine 4 and a compressor 5, and a three-phase AC motor / generator 7 that functions as an electric motor and a generator is provided on a rotating shaft 6 that connects the turbine 4 and the compressor 5. The MAT 3 can function the motor / generator 7 as an electric motor to assist supercharging, or function as a generator to convert exhaust energy into electric power.

内燃機関1の各気筒2には吸気通路10及び排気通路11がそれぞれ接続されている。吸気通路10には吸入空気を濾過するエアクリーナ12と、MAT3のコンプレッサ5と、コンプレッサ5で圧縮された空気を冷却するインタークーラ13と、吸入空気量を調整するスロットルバルブ14とが設けられている。吸気通路10はスロットルバルブ14の下流で気筒2毎に分岐する吸気マニホルド10a含む。   An intake passage 10 and an exhaust passage 11 are connected to each cylinder 2 of the internal combustion engine 1. The intake passage 10 is provided with an air cleaner 12 that filters the intake air, a compressor 5 of the MAT 3, an intercooler 13 that cools the air compressed by the compressor 5, and a throttle valve 14 that adjusts the intake air amount. . The intake passage 10 includes an intake manifold 10 a that branches downstream of the throttle valve 14 for each cylinder 2.

排気通路11は各気筒2の排気を集合する吸気マニホルド11aを含み、吸気マニホルド11aの下流の集合部分にはMAT3のタービン4が設けられ、タービン4の下流には排気浄化触媒16が設けられている。また、排気通路11にはMAT3のタービン4の上流と下流とを接続してタービン4を迂回するバイパス通路17が設けられている。バイパス通路17はウエストゲートバルブ18にて開閉される。ウエストゲートバルブ18により内燃機関1の過給圧が調整される。   The exhaust passage 11 includes an intake manifold 11 a that collects the exhaust of each cylinder 2, and a turbine 4 of the MAT 3 is provided in a downstream portion of the intake manifold 11 a, and an exhaust purification catalyst 16 is provided downstream of the turbine 4. Yes. The exhaust passage 11 is provided with a bypass passage 17 that connects the upstream and downstream of the turbine 4 of the MAT 3 to bypass the turbine 4. The bypass passage 17 is opened and closed by a waste gate valve 18. The supercharging pressure of the internal combustion engine 1 is adjusted by the wastegate valve 18.

内燃機関1には、その出力を利用して発電可能なオルタネータ20が設けられている。オルタネータ20にはベルト伝達機構21を介してクランク軸19の出力が伝達される。オルタネータ20は定格12Vの車載バッテリ25と電気的に接続されている。MAT3のモータ・ジェネレータ7はMATインバータ26と交流接続され、MATインバータ26は定格42VのMATバッテリ27と接続される。車載バッテリ25とMATバッテリ27とはDC/DCコンバータ28を介して接続されている。   The internal combustion engine 1 is provided with an alternator 20 that can generate electric power using its output. The output of the crankshaft 19 is transmitted to the alternator 20 via the belt transmission mechanism 21. The alternator 20 is electrically connected to a vehicle battery 25 having a rating of 12V. The motor / generator 7 of the MAT 3 is AC-connected to the MAT inverter 26, and the MAT inverter 26 is connected to a MAT battery 27 having a rating of 42V. The in-vehicle battery 25 and the MAT battery 27 are connected via a DC / DC converter 28.

内燃機関1の制御はコンピュータとして構成されたエンジン電子制御装置(エンジンECU)30にて制御される。エンジンECU30はスロットルバルブ14の開度制御やその開度制御と連動して燃料噴射量を制御するなどの内燃機関1の基本的な動作制御を行うとともに、オルタネータ20の発電電力を制御するなど内燃機関1の補機の制御も行う。その他、エンジンECU30はMAT3及びウエストゲートバルブ18のそれぞれを操作して内燃機関1の過給圧を調整する過給制御を行う。もっとも、MAT3の制御は直接的にはエンジンECU30と通信可能に接続されたMAT電子制御装置(MATECU)31にて行われる。つまり、エンジンECU30はMATECU31に対して各種情報を指令することにより間接的にMAT3の制御を行う。   Control of the internal combustion engine 1 is controlled by an engine electronic control unit (engine ECU) 30 configured as a computer. The engine ECU 30 performs basic operation control of the internal combustion engine 1 such as controlling the opening degree of the throttle valve 14 and controlling the fuel injection amount in conjunction with the opening degree control, and controlling the generated power of the alternator 20. It also controls the auxiliary equipment of engine 1. In addition, the engine ECU 30 performs supercharging control for adjusting the supercharging pressure of the internal combustion engine 1 by operating each of the MAT 3 and the waste gate valve 18. However, the control of the MAT 3 is directly performed by a MAT electronic control unit (MAT ECU) 31 that is communicably connected to the engine ECU 30. That is, the engine ECU 30 indirectly controls the MAT 3 by instructing various information to the MAT ECU 31.

MAT3の制御には、MAT3のモータ・ジェネレータ7を電動機として機能させる過給補助制御と、モータ・ジェネレータ7を発電機として機能させる発電制御とが含まれる。過給補助制御は、例えば車両の加速過渡時におけるターボラグを解消するためにモータ・ジェネレータ7を電動機として機能させることにより過給を補助する。また、発電制御は、ウエストゲートバルブ18を閉じた状態でモータ・ジェネレータ7を発電機として機能させることによりタービン4が受けた排気エネルギを発電電力に変換する。   The control of MAT3 includes supercharging assist control that causes the motor / generator 7 of MAT3 to function as an electric motor, and power generation control that causes the motor / generator 7 to function as a generator. The supercharging assist control assists supercharging by, for example, causing the motor / generator 7 to function as an electric motor in order to eliminate a turbo lag during acceleration acceleration of the vehicle. In the power generation control, exhaust energy received by the turbine 4 is converted into generated power by causing the motor / generator 7 to function as a generator with the wastegate valve 18 closed.

MAT3による発電(以下、ターボチャージャ発電という。)と、オルタネータ20による発電(以下、オルタネータ発電という。)とは、図2に示した構成を有する本形態の発電システムSにて実施される。発電システムSは、エンジンECU30及びMATECU31にて構成されるエネルギ管理部40と、エネルギ管理部40にて制御されるMAT3及びオルタネータ20と、車載バッテリ25やMATバッテリ26の充電状態を検出するSOCセンサ41と、不図示の車載エアコンやライト等の電気負荷を把握するための電力センサ42とを含んでいる。   The power generation by MAT3 (hereinafter referred to as turbocharger power generation) and the power generation by alternator 20 (hereinafter referred to as alternator power generation) are carried out by power generation system S of this embodiment having the configuration shown in FIG. The power generation system S includes an energy management unit 40 composed of an engine ECU 30 and a MAT ECU 31, an MAT 3 and an alternator 20 controlled by the energy management unit 40, and an SOC sensor that detects a charge state of the in-vehicle battery 25 and the MAT battery 26. 41 and a power sensor 42 for grasping an electric load such as an in-vehicle air conditioner or a light (not shown).

エネルギ管理部40には、例えば、SOCセンサ41の出力信号として出力される各バッテリ25、26等の充電状態、電力センサ42の出力信号に反映される車載装備の電力状態、車両の走行状態、及び内燃機関1の運転状態等の各種情報が入力される。エネルギ管理部40は、入力された各種情報に基づいて内燃機関1に必要な要求発電電力を算出するとともに、その要求発電電力に基づいてターボチャージャ発電及びオルタネータ発電のそれぞれの発電電力を算出する。そして、エネルギ管理部40は、算出した各発電電力でターボチャージャ発電及びオルタネータ発電がそれぞれ実施されるように、MAT3及びオルタネータ20を制御する。   In the energy management unit 40, for example, the state of charge of each of the batteries 25 and 26 output as the output signal of the SOC sensor 41, the power state of the in-vehicle equipment reflected in the output signal of the power sensor 42, the traveling state of the vehicle, Various information such as the operating state of the internal combustion engine 1 is input. The energy management unit 40 calculates the required generated power required for the internal combustion engine 1 based on the various input information, and calculates the generated power of each of the turbocharger power generation and the alternator power generation based on the required generated power. Then, the energy management unit 40 controls the MAT 3 and the alternator 20 so that turbocharger power generation and alternator power generation are respectively performed with the calculated generated power.

エネルギ管理部40の詳細は図3に示した通りである。図示されたエネルギ管理部40の各構成部は、エンジンECU30及びMATECU31が所定のプログラムを実行することにより、これらの内部に論理的に構成される。   The details of the energy management unit 40 are as shown in FIG. Each component of the illustrated energy management unit 40 is logically configured inside the engine ECU 30 and the MAT ECU 31 by executing a predetermined program.

要求発電電力算出部40aは、SOCセンサ41及び電力センサ42の各出力信号を参照して車載バッテリ25等の充電状態Bsocと電気負荷Plとを取得する。要求発電電力算出部40aは取得した充電状態Bsocと電気負荷Plとに基づいて内燃機関1に必要な要求発電電力Twを算出し、算出した要求発電電力Twを発電指示値算出部40eに送る。要求発電電力Twの算出は、例えば、予め記憶しておいた算出マップを検索することにより行ってもよいし、充電状態Bsoc及び電気負荷Plを変数とした計算式に基づいて行ってもよい。要求発電電力算出部40aは本発明に係る要求発電電力算出手段に相当する。   The required generated power calculation unit 40a refers to the output signals of the SOC sensor 41 and the power sensor 42, and acquires the charge state Bsoc and the electric load Pl of the in-vehicle battery 25 and the like. The required generated power calculation unit 40a calculates the required generated power Tw required for the internal combustion engine 1 based on the acquired state of charge Bsoc and the electric load Pl, and sends the calculated required generated power Tw to the power generation instruction value calculation unit 40e. The calculation of the required generated power Tw may be performed, for example, by searching a calculation map stored in advance, or may be performed based on a calculation formula using the charging state Bsoc and the electrical load Pl as variables. The required generated power calculation unit 40a corresponds to required generated power calculation means according to the present invention.

オルタネータ発電上限値算出部40bは、クランク角センサ43(図1参照)の出力信号を参照してエンジン回転数Neを取得し、そのエンジン回転数Neにベルト伝達機構21の変速比を乗じてオルタネータ20の回転数Naltを計算する。そして、算出部40bは、オルタネータ20の回転数Naltに基づいてオルタネータ発電にて発電可能である上限値Galtを計算し、これを発電指示値算出部40eに送る。オルタネータ20の回転数Naltと発電電力との関係は決まっているので、オルタネータ発電上限値算出部40bは、例えば予め準備した所定の計算式に基づいて上限値Galtを計算する。上限値Galtは本発明に係る第2発電上限値に相当する。   The alternator power generation upper limit calculation unit 40b refers to the output signal of the crank angle sensor 43 (see FIG. 1), acquires the engine speed Ne, and multiplies the engine speed Ne by the speed ratio of the belt transmission mechanism 21 to generate an alternator. A rotation speed Nalt of 20 is calculated. Then, the calculation unit 40b calculates an upper limit value Galt that can be generated by alternator power generation based on the rotation speed Nalt of the alternator 20, and sends this to the power generation instruction value calculation unit 40e. Since the relationship between the rotational speed Nalt of the alternator 20 and the generated power is determined, the alternator power generation upper limit calculation unit 40b calculates the upper limit Galt based on a predetermined calculation formula prepared in advance, for example. The upper limit value Galt corresponds to the second power generation upper limit value according to the present invention.

ターボチャージャ発電上限値算出部40cは、クランク角センサ43(図1参照)の出力信号を参照してエンジン回転数Neを取得するとともに、アクセル開度センサ44(図1参照)の出力信号を参照してアクセル開度Accを取得する。そして、算出部40cはエンジン回転数Ne及びアクセル開度Accに基づいて運転状態としてのエンジン出力Weを計算するとともに、エンジン出力Weに基づいて発電上限値Geegを算出し、これを損益判定部40dと発電指示値算出部40eとにそれぞれ送る。発電上限値Geegは本発明に係る第1発電上限値に相当する。   The turbocharger power generation upper limit calculation unit 40c refers to the output signal of the crank angle sensor 43 (see FIG. 1), acquires the engine speed Ne, and refers to the output signal of the accelerator opening sensor 44 (see FIG. 1). Then, the accelerator opening degree Acc is acquired. Then, the calculation unit 40c calculates the engine output We as the operating state based on the engine speed Ne and the accelerator opening Acc, and calculates the power generation upper limit value Geeg based on the engine output We. And the power generation instruction value calculation unit 40e. The power generation upper limit value Geeg corresponds to the first power generation upper limit value according to the present invention.

損益判定部40dは、発電上限値Geegと、ターボチャージャ発電による内燃機関1のポンプ損失の損失増加分とを比較した場合のエネルギ収支上のメリットの有無を示す損益判定値αを出力して発電指示値算出部40eに送る。損益判定値αは、発電上限値Geegが損失増加分よりも大きい大小関係が成立する場合はエネルギ収支上のメリット有りを意味する「1」に、その大小関係が不成立の場合はエネルギ収支上のメリット無しを意味する「0」にそれぞれ設定される。損益判定部40dは、例えば図4に示した判定マップMに基づいて損益判定値αの値を設定する。判定マップMは、横軸にエンジン出力が、縦軸に発電電力がそれぞれ設定されていて、ターボチャージャ発電による発電電力が実線の曲線L1で、ポンプ損失の損失増加分が破線の曲線L2でそれぞれ示された構造を有する。この判定マップMから明らかなように、2つの曲線L1、L2はエンジン出力の分岐点pにて交差する。分岐点pよりも高出力側は、ターボチャージャ発電による発電電力が損失増加分よりも大きい上記の大小関係が成立するためエネルギ収支上のメリットがある。そのため、損益判定部40dはエンジン出力Weが分岐点pよりも大きい場合は損益判定値αの値を1に設定する。一方、分岐点pよりも低出力側はターボチャージャ発電による発電電力が損失増加分よりも小さくなるので、上記の大小関係が不成立となりエネルギ収支上のメリットがない。そのため、損益判定部40dはエンジン出力Weが分岐点p以下の場合は損益判定値αの値を0に設定する。   The profit / loss determining unit 40d outputs a profit / loss determination value α indicating whether there is a merit in energy balance when comparing the power generation upper limit value Geeg and the increase in loss of pump loss of the internal combustion engine 1 due to turbocharger power generation. This is sent to the instruction value calculation unit 40e. The profit / loss judgment value α is “1”, which means that there is a merit in the energy balance when the magnitude relationship where the power generation upper limit value Geeg is larger than the increase in loss is established, and is on the energy balance when the magnitude relation is not established. It is set to “0” meaning no merit. The profit / loss determination unit 40d sets the profit / loss determination value α based on, for example, the determination map M shown in FIG. In the determination map M, the engine output is set on the horizontal axis, and the generated power is set on the vertical axis. The power generated by the turbocharger power generation is a solid curve L1, and the loss increase of the pump loss is the broken curve L2. It has the structure shown. As is apparent from the determination map M, the two curves L1 and L2 intersect at the engine output branch point p. On the higher output side than the branch point p, there is a merit in terms of energy balance because the above magnitude relationship is established in which the power generated by the turbocharger power generation is larger than the increase in loss. Therefore, the profit / loss determination unit 40d sets the value of the profit / loss determination value α to 1 when the engine output We is larger than the branch point p. On the other hand, on the output side lower than the branch point p, the power generated by the turbocharger power generation is smaller than the increase in loss, so the above magnitude relationship is not established and there is no merit in energy balance. Therefore, the profit / loss determination unit 40d sets the profit / loss determination value α to 0 when the engine output We is equal to or less than the branch point p.

発電指示値算出部40eは、上述した各部40a〜40dから送られた各種情報を使用して後述の図5に示した処理ルーチンに従ってオルタネータ20に要求するべき発電指示値TGaltとMAT3に要求するべき発電指示値TGeegとをそれぞれ算出し、発電指示値TGaltをオルタネータ制御部40fに、発電指示値TGeegをMAT制御部40gにそれぞれ送る。発電指示値算出部40eは本発明に係る発電電力算出手段に相当する。オルタネータ制御部40fは発電指示値TGaltをオルタネータ20に指示してオルタネータ発電を実施させる。MAT制御部40gは発電指示値TGeegをMAT3に指示してターボチャージャ発電を実施させる。オルタネータ制御部40f及びMAT制御部40gを組み合わせたものが本発明に係る発電制御手段に相当する。また、オルタネータ20に指示する発電指示値TGaltは本発明に係る第2発電指示値に、MAT3に指示する発電指示値TGeegは本発明に係る第1発電指示値にそれぞれ相当する。   The power generation instruction value calculation unit 40e should request the power generation instruction values TGalt and MAT3 to be requested to the alternator 20 according to the processing routine shown in FIG. 5 to be described later using the various types of information sent from the respective units 40a to 40d. The power generation instruction value TGege is calculated, and the power generation instruction value TGalt is sent to the alternator control unit 40f, and the power generation instruction value TGege is sent to the MAT control unit 40g. The power generation instruction value calculation unit 40e corresponds to generated power calculation means according to the present invention. The alternator control unit 40f instructs the alternator 20 to generate the power generation instruction value TGalt so as to perform the alternator power generation. The MAT control unit 40g instructs the power generation instruction value TGeg to MAT3 to perform turbocharger power generation. A combination of the alternator control unit 40f and the MAT control unit 40g corresponds to the power generation control means according to the present invention. Further, the power generation instruction value TGalt instructed to the alternator 20 corresponds to the second power generation instruction value according to the present invention, and the power generation instruction value TGeg instructed to MAT3 corresponds to the first power generation instruction value according to the present invention.

図5に示すように、ステップS1において、発電指示値算出部40eは、要求発電電力Tw、発電上限値Galt、発電上限値Geeg、及び損益判定値αを含んだ必要情報を読み込んでこれらを更新する。   As shown in FIG. 5, in step S1, the power generation instruction value calculation unit 40e reads necessary information including the required power generation power Tw, the power generation upper limit value Galt, the power generation upper limit value Geeg, and the profit / loss determination value α and updates them. To do.

ステップS2において、発電指示値算出部40eは、発電上限値Galt及び発電上限値Geegの合計が要求発電電力Twよりも小さいか否か、換言すれば、オルタネータ発電とターボチャージャ発電とで要求発電電力Twを賄うことができないか否かを判定する。発電上限値Galt及び発電上限値Geegの合計が要求発電電力Twよりも小さい場合は、オルタネータ発電とターボチャージャ発電とで要求発電電力Twを賄うことができない。   In step S2, the power generation instruction value calculation unit 40e determines whether the sum of the power generation upper limit value Galt and the power generation upper limit value Geeg is smaller than the required power generation power Tw, in other words, the required power generation power between the alternator power generation and the turbocharger power generation. It is determined whether Tw cannot be covered. When the total of the power generation upper limit value Galt and the power generation upper limit value Geeg is smaller than the required power generation power Tw, the alternator power generation and the turbocharger power generation cannot cover the required power generation power Tw.

そこで、ステップS3において、発電指示値算出部40eは、発電指示値TGaltに発電上限値Galtを代入し、かつ発電指示値TGeegに発電上限値Geegを代入する。つまり、発電指示値算出部40eは発電上限値Galtを発電指示値TGaltとして、発電上限値Geegを発電指示値TGeegとしてそれぞれ算出する。これにより、現在の内燃機関1の運転状態で決まるオルタネータ20及びMAT3のそれぞれの発電能力が最大限発揮される。したがって、要求発電電力Twに対する発電電力の不足を可能な限り低減できる。   Therefore, in step S3, the power generation instruction value calculation unit 40e substitutes the power generation upper limit value Galt for the power generation instruction value TGalt, and substitutes the power generation upper limit value Geeg for the power generation instruction value TGege. That is, the power generation instruction value calculation unit 40e calculates the power generation upper limit value Galt as the power generation instruction value TGalt and the power generation upper limit value Geeg as the power generation instruction value TGegg, respectively. As a result, the power generation capabilities of the alternator 20 and the MAT 3 determined by the current operating state of the internal combustion engine 1 are maximized. Therefore, the shortage of generated power with respect to the required generated power Tw can be reduced as much as possible.

一方、発電上限値Galt及び発電上限値Geegの合計が要求発電電力Tw以上の場合は、オルタネータ発電とターボチャージャ発電とで要求発電電力Twを賄うことができる。そこで、ステップS4において、発電指示値算出部40eは、損益判定値αが「1」であるか否か、つまりターボチャージャ発電の実施によりエネルギ収支上のメリットがあるか否かを判定する。エネルギ収支上のメリットがある場合はステップS5に進み、エネルギ収支上のメリットがない場合はステップS6に進む。   On the other hand, when the sum of the power generation upper limit value Galt and the power generation upper limit value Geeg is equal to or greater than the required power generation power Tw, the alternator power generation and the turbocharger power generation can cover the required power generation power Tw. Therefore, in step S4, the power generation instruction value calculation unit 40e determines whether or not the profit / loss determination value α is “1”, that is, whether or not there is a merit in energy balance by performing turbocharger power generation. If there is a merit on the energy balance, the process proceeds to step S5, and if there is no merit on the energy balance, the process proceeds to step S6.

ステップS5において、発電指示値算出部40eは、発電指示値TGaltに要求発電電力Twから発電上限値Geegを減じたものを代入するとともに、発電指示値TGeegに発電上限値Geegを代入することにより、発電指示値TGalt及び発電指示値TGeegをそれぞれ算出し、その後、処理をステップS1に戻す。図6に示すように、ステップS5の処理を実行することにより、ターボチャージャ発電の負荷率が最大となる。つまりターボチャージャ発電の発電上限値Geegに対する発電指示値TGeegの割合が最大(100%)となる。そして、ターボチャージャ発電だけでは不足する要求発電電力Twに対する不足分がオルタネータ発電で補われる。   In step S5, the power generation command value calculation unit 40e substitutes the power generation command value TGalt by subtracting the power generation upper limit value Geeg from the required power generation power Tw, and also substitutes the power generation command value TGeg the power generation upper limit value Geeg. The power generation instruction value TGalt and the power generation instruction value TGegeg are calculated, and then the process returns to step S1. As shown in FIG. 6, by performing the process of step S5, the load factor of turbocharger power generation is maximized. That is, the ratio of the power generation instruction value TGeg to the power generation upper limit value Geeg of turbocharger power generation becomes the maximum (100%). Then, the shortage with respect to the required generated power Tw that is insufficient only with the turbocharger power generation is compensated by the alternator power generation.

例えば、要求発電電力Tw、オルタネータ発電の発電上限値Galt、ターボチャージャ発電の発電上限値Geeg、及び損益判定値αが以下の場合、発電指示値TGalt及び発電指示値TGeegは以下の通り算出される。
・Tw=1000[W]
・Galt=1440[W](オルタネータ回転数:4000[rpm])
・Geeg=400[W](エンジン出力:30[KW])
・α=1(エネルギ収支上のメリット有り)
・TGalt=1000−400=600[W]
・TGeeg=400[W]
For example, when the required power generation power Tw, the power generation upper limit value Galt for alternator power generation, the power generation upper limit value Geeg for turbocharger power generation, and the profit / loss judgment value α are as follows, the power generation instruction value TGalt and the power generation instruction value TGege are calculated as follows: .
・ Tw = 1000 [W]
-Galt = 1440 [W] (alternator rotation speed: 4000 [rpm])
Geeg = 400 [W] (Engine output: 30 [KW])
・ Α = 1 (There is merit in energy balance)
・ TGalt = 1000−400 = 600 [W]
・ TGeeg = 400 [W]

ステップS6において、発電指示値算出部40eは、ステップS5とは対照的に、発電指示値TGaltに発電上限値Galtを代入するとともに、発電指示値TGeegに要求発電電力Twから発電上限値Galtを減じたものを代入することにより、発電指示値TGalt及び発電指示値TGeegをそれぞれ算出し、その後、処理をステップS1に戻す。図7に示すように、ステップS6の処理を実行することにより、オルタネータ発電の負荷率が最大となる。つまりオルタネータ発電の発電上限値Galtに対する発電指示値TGaltの割合が最大(100%)となる。そして、オルタネータ発電だけでは不足する要求発電電力Twに対する不足分がターボチャージャ発電で補われる。   In step S6, in contrast to step S5, the power generation command value calculation unit 40e substitutes the power generation upper limit value Galt for the power generation command value TGalt, and subtracts the power generation upper limit value Galt from the required power generation power Tw to the power generation command value TGege. By substituting the values, the power generation instruction value TGalt and the power generation instruction value TGegeg are calculated, and then the process returns to step S1. As shown in FIG. 7, the load factor of alternator power generation is maximized by executing the process of step S6. That is, the ratio of the power generation instruction value TGalt to the power generation upper limit value Galt of the alternator power generation becomes the maximum (100%). Then, the shortage with respect to the required generated power Tw that is insufficient only with the alternator power generation is compensated by the turbocharger power generation.

図6と図7とを比較すると理解できるように、ターボチャージャ発電の実施によってエネルギ収支上のメリットがある図6の場合は、そのメリットがない図7の場合と比べて、ターボチャージャ発電の負荷率が大きく、かつオルタネータ発電の負荷率が小さくなる。換言すれば、ターボチャージャ発電の発電電力が内燃機関1のポンプ損失の損失増加分よりも大きい上述した大小関係が成立する場合はその大小関係が不成立の場合と比べて、ターボチャージャ発電の発電上限値Geegに対する発電指示値TGeegの割合が大きく、かつオルタネータ発電の発電上限値Galtに対する発電指示値TGaltの割合が小さくなる。   As can be understood by comparing FIG. 6 and FIG. 7, the load of turbocharger power generation is greater in the case of FIG. 6 where there is a merit in the energy balance by implementing turbocharger power generation than in the case of FIG. The rate is large and the load factor of alternator power generation is small. In other words, the power generation upper limit of turbocharger power generation is greater when the above-described magnitude relationship is established when the generated power of turbocharger power generation is greater than the increase in pump loss of the internal combustion engine 1 compared to when the magnitude relationship is not established. The ratio of the power generation instruction value TGeg to the value Geeg is large, and the ratio of the power generation instruction value TGalt to the power generation upper limit value Galt of the alternator power generation is small.

本形態によれば、上記のようにターボチャージャ発電によるポンプ損失の増加が考慮されてオルタネータ発電の発電指示値TGaltとターボチャージャ発電の発電指示値TGeegとがそれぞれ算出されることにより、内燃機関1に必要な要求発電電力に対してターボチャージャ発電とオルタネータ発電とのそれぞれの発電電力が配分される。したがって、内燃機関1の運転状態に適した効率のよい発電を選択できる。   According to the present embodiment, the increase in pump loss due to turbocharger power generation is taken into consideration as described above, and the power generation instruction value TGalt for alternator power generation and the power generation instruction value TGeg for turbocharger power generation are calculated, respectively. The generated power of turbocharger power generation and alternator power generation is allocated to the required power generation required for the power generation. Therefore, efficient power generation suitable for the operating state of the internal combustion engine 1 can be selected.

本発明は上記形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。上記形態は、ターボチャージャ発電の実施による発電電力が内燃機関1のポンプ損失の損失増加分よりも大きい大小関係が成立してエネルギ収支上のメリットがある場合、ターボチャージャ発電の負荷率を100%としている。しかし、その大小関係が不成立の場合と比べて負荷率が大きくなる限り、例えば、ターボチャージャ発電の負荷率を80%にするなど100%よりも小さい割合となる形態で本発明を実施することもできる。また、エネルギ収支上のメリットがない場合のオルタネータ発電の負荷率についても、オルタネータ発電の負荷率を80%とするなど100%よりも小さい割合となる形態で本発明を実施することもできる。   This invention is not limited to the said form, It can implement with a various form within the range of the summary of this invention. In the above embodiment, when there is an energy balance merit that the power generated by the turbocharger power generation is larger than the increase in the pump loss of the internal combustion engine 1 and there is a merit in the energy balance, the load factor of the turbocharger power generation is 100%. It is said. However, as long as the load factor becomes larger than that in the case where the magnitude relationship is not established, the present invention may be implemented in a form that is smaller than 100%, for example, the load factor of turbocharger power generation is 80%. it can. Moreover, the present invention can also be implemented in a form in which the load factor of alternator power generation when there is no merit in energy balance is smaller than 100%, such as 80% of the load factor of alternator power generation.

1 内燃機関
3 MAT(発電機能付きターボチャージャ)
4 タービン
11 排気通路
20 オルタネータ
40a 要求発電電力算出部(要求発電電力算出手段)
40e 発電指示値算出部(発電電力算出手段)
40f オルタネータ制御部(発電制御手段)
40g MAT制御部(発電制御手段)
S 発電システム
1 Internal combustion engine 3 MAT (Turbocharger with power generation function)
4 Turbine 11 Exhaust passage 20 Alternator 40a Required generated power calculation unit (Required generated power calculation means)
40e Power generation instruction value calculation unit (power generation calculation means)
40f Alternator control unit (power generation control means)
40g MAT control unit (power generation control means)
S power generation system

Claims (4)

内燃機関の排気通路に設けられたタービンの回転を利用して発電可能な発電機能付きターボチャージャと、
前記内燃機関の出力を利用して発電可能なオルタネータと、
前記内燃機関に必要な要求発電電力を算出する要求発電電力算出手段と、
前記ターボチャージャによるターボチャージャ発電と、前記オルタネータによるオルタネータ発電とで前記要求発電電力を賄うことができるように、前記ターボチャージャに要求するべき第1発電指示値及び前記オルタネータに要求するべき第2発電指示値のそれぞれを算出する発電電力算出手段と、
前記第1発電指示値を前記ターボチャージャに指示して前記ターボチャージャ発電を、前記第2発電指示値を前記オルタネータに指示して前記オルタネータ発電を、それぞれ実施させる発電制御手段と、を備え、
前記発電電力算出手段は、前記内燃機関の運転状態が、前記ターボチャージャ発電の発電電力が前記ターボチャージャ発電による前記内燃機関のポンプ損失の損失増加分よりも大きい大小関係が成立する運転状態の場合、前記大小関係が不成立となる場合に比べて、前記ターボチャージャ発電にて発電可能である第1発電上限値に対する前記第1発電指示値の割合が大きく、かつ前記オルタネータ発電にて発電可能である第2発電上限値に対する前記第2発電指示値の割合が小さくなるように、前記第1発電指示値及び前記第2発電指示値のそれぞれを算出する、内燃機関の発電システム。
A turbocharger with a power generation function capable of generating power using rotation of a turbine provided in an exhaust passage of the internal combustion engine;
An alternator capable of generating electricity using the output of the internal combustion engine;
Required power generation calculating means for calculating required power generation required for the internal combustion engine;
The first power generation instruction value to be requested of the turbocharger and the second power generation to be requested of the alternator so that the required power generation can be covered by the turbocharger power generation by the turbocharger and the alternator power generation by the alternator. Generated power calculating means for calculating each of the indicated values;
Power generation control means for instructing the turbocharger to instruct the first power generation instruction value and instructing the alternator to instruct the second power generation instruction value to the alternator, respectively.
The generated power calculation means is when the operating state of the internal combustion engine is in an operating state where the magnitude of power generated by the turbocharger power generation is greater than the increase in loss of pump loss of the internal combustion engine due to the turbocharger power generation. Compared with the case where the magnitude relationship is not established, the ratio of the first power generation instruction value to the first power generation upper limit value that can be generated by the turbocharger power generation is large, and power generation is possible by the alternator power generation. A power generation system for an internal combustion engine that calculates each of the first power generation instruction value and the second power generation instruction value so that a ratio of the second power generation instruction value to a second power generation upper limit value is reduced.
前記発電電力算出手段は、前記大小関係が成立する場合、前記第1発電上限値を前記第1発電指示値として算出し、かつ前記要求発電電力から前記第1発電上限値を減じた値を前記第2発電指示値として算出する、請求項1に記載の発電システム。   When the magnitude relationship is established, the generated power calculation means calculates the first power generation upper limit value as the first power generation instruction value, and calculates a value obtained by subtracting the first power generation upper limit value from the required generated power. The power generation system according to claim 1, wherein the power generation system is calculated as a second power generation instruction value. 前記発電電力算出手段は、前記大小関係が不成立の場合、前記第2発電上限値を前記第2発電指示値として算出し、かつ前記要求発電電力から前記第2発電上限値を減じた値を前記第1発電指示値として算出する、請求項1又は2に記載の発電システム。   The generated power calculation means calculates the second power generation upper limit value as the second power generation instruction value when the magnitude relationship is not established, and calculates a value obtained by subtracting the second power generation upper limit value from the required generated power. The power generation system according to claim 1, wherein the power generation system is calculated as a first power generation instruction value. 前記発電電力算出手段は、前記第1発電上限値及び前記第2発電上限値の合計が前記要求発電電力よりも小さいために前記ターボチャージャ発電と前記オルタネータ発電とで前記要求発電電力を賄うことができない場合には、前記大小関係の成否に拘わらず、前記ターボチャージャ発電の前記第1発電上限値を前記第1発電指示値として、前記オルタネータ発電の前記第2発電上限値を前記第2発電指示値として、それぞれ算出する、請求項1に記載の発電システム。   The generated power calculation means can cover the required generated power with the turbocharger power generation and the alternator power generation because the sum of the first power generation upper limit value and the second power generation upper limit value is smaller than the required power generation power. If not, the first power generation upper limit value of the turbocharger power generation is used as the first power generation instruction value, and the second power generation upper limit value of the alternator power generation is used as the second power generation instruction, regardless of whether the magnitude relationship is successful. The power generation system according to claim 1, wherein each value is calculated as a value.
JP2016051954A 2016-03-16 2016-03-16 Power generation system of internal combustion engine Pending JP2017166405A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016051954A JP2017166405A (en) 2016-03-16 2016-03-16 Power generation system of internal combustion engine
KR1020170029251A KR20170107901A (en) 2016-03-16 2017-03-08 Power generation system for internal combustion engine
EP17160629.6A EP3222838A1 (en) 2016-03-16 2017-03-13 Power generation system for internal combustion engine
CN201710147420.6A CN107201939A (en) 2016-03-16 2017-03-13 The electricity generation system of internal combustion engine
US15/456,876 US9988979B2 (en) 2016-03-16 2017-03-13 Power generation system for internal combustion engine
RU2017108208A RU2659856C1 (en) 2016-03-16 2017-03-14 Power generation system for the internal combustion engine
BR102017005258-3A BR102017005258A2 (en) 2016-03-16 2017-03-15 ENERGY GENERATION SYSTEM FOR INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051954A JP2017166405A (en) 2016-03-16 2016-03-16 Power generation system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017166405A true JP2017166405A (en) 2017-09-21

Family

ID=58314137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051954A Pending JP2017166405A (en) 2016-03-16 2016-03-16 Power generation system of internal combustion engine

Country Status (7)

Country Link
US (1) US9988979B2 (en)
EP (1) EP3222838A1 (en)
JP (1) JP2017166405A (en)
KR (1) KR20170107901A (en)
CN (1) CN107201939A (en)
BR (1) BR102017005258A2 (en)
RU (1) RU2659856C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173200A (en) * 2020-04-23 2021-11-01 日産自動車株式会社 Control method of internal combustion engine and controller of internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269330B2 (en) * 2014-06-06 2018-01-31 トヨタ自動車株式会社 Control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214415U (en) * 1988-07-13 1990-01-30
JP2005083317A (en) * 2003-09-10 2005-03-31 Toyota Motor Corp Controller of internal combustion engine
JP2007327401A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Generation control device in vehicle
JP2011072117A (en) * 2009-09-25 2011-04-07 Mitsubishi Heavy Ind Ltd Internal combustion engine system and vessel
JP2012219710A (en) * 2011-04-08 2012-11-12 Ihi Corp Vehicle engine and exhaust turbine electric generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001291B1 (en) * 1985-08-28 1990-03-05 이스즈지도샤 가부시끼가이샤 Auxiliary apparatus for internal combustion engine
JP2005151721A (en) * 2003-11-17 2005-06-09 Nissan Motor Co Ltd Controller of vehicle
JP4479488B2 (en) * 2004-12-01 2010-06-09 株式会社デンソー Exhaust power generator
JP4241864B2 (en) * 2007-08-21 2009-03-18 トヨタ自動車株式会社 Control device for vehicle drive unit
JP5167326B2 (en) * 2010-11-05 2013-03-21 三菱重工業株式会社 Engine exhaust energy recovery device
DE102011079036B4 (en) * 2011-07-12 2018-12-20 Mtu Friedrichshafen Gmbh Internal combustion engine system, watercraft and method for operating a marine supply network with an internal combustion engine
JP6156622B2 (en) * 2013-03-01 2017-07-05 三菱自動車工業株式会社 Vehicle control device
JP6294646B2 (en) * 2013-12-04 2018-03-14 三菱重工業株式会社 Turbo compound system controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214415U (en) * 1988-07-13 1990-01-30
JP2005083317A (en) * 2003-09-10 2005-03-31 Toyota Motor Corp Controller of internal combustion engine
JP2007327401A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Generation control device in vehicle
JP2011072117A (en) * 2009-09-25 2011-04-07 Mitsubishi Heavy Ind Ltd Internal combustion engine system and vessel
US20120169130A1 (en) * 2009-09-25 2012-07-05 Keiichi Shiraishi Internal-combustion engine system and ship
JP2012219710A (en) * 2011-04-08 2012-11-12 Ihi Corp Vehicle engine and exhaust turbine electric generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173200A (en) * 2020-04-23 2021-11-01 日産自動車株式会社 Control method of internal combustion engine and controller of internal combustion engine
JP7414359B2 (en) 2020-04-23 2024-01-16 日産自動車株式会社 Internal combustion engine control method and internal combustion engine control device

Also Published As

Publication number Publication date
RU2659856C1 (en) 2018-07-04
EP3222838A1 (en) 2017-09-27
CN107201939A (en) 2017-09-26
US20170268415A1 (en) 2017-09-21
BR102017005258A2 (en) 2017-12-19
US9988979B2 (en) 2018-06-05
KR20170107901A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
US8225608B2 (en) Hybrid powertrain and method for controlling a hybrid powertrain
CN104340207B (en) Diesel engine stable state and the optimization of transition hybrid power
JP5040834B2 (en) Engine start control device for hybrid system
US9638096B2 (en) Vehicle control apparatus
JP5406270B2 (en) Method and apparatus for driving hybrid vehicle with electric supercharger
JP2011051542A (en) Control device for hybrid vehicle
JP6711315B2 (en) Control device and in-vehicle system
US20150369144A1 (en) Control apparatus for vehicle
JP2017166405A (en) Power generation system of internal combustion engine
JP5280392B2 (en) Internal combustion engine control device
JP7159936B2 (en) HYBRID VEHICLE AND ENGINE CONTROL METHOD FOR HYBRID VEHICLE
JP2015107685A (en) Vehicle control device
JP2007016721A (en) Motor driven supercharging device
KR101905569B1 (en) Method and appratus for controlling mhsg of mild hybrid electric vehicle
JP2011080398A (en) Control device for electric supercharger
CN111824120B (en) Hybrid vehicle and method of controlling hybrid vehicle
US11230280B2 (en) Hybrid vehicle and method of controlling hybrid vehicle
CN111720221B (en) Hybrid vehicle and method of controlling hybrid vehicle
JP7196715B2 (en) Hybrid vehicle and hybrid vehicle control method
JP2017140970A (en) Hybrid vehicle and control method for the same
JP7208602B2 (en) hybrid system
JP7208601B2 (en) hybrid system
JP7360804B2 (en) Vehicle control method and vehicle
JP7103290B2 (en) Hybrid vehicle and hybrid vehicle control method
JP2023028186A (en) Internal combustion engine control method and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108