Nothing Special   »   [go: up one dir, main page]

JP2017032354A - Device for measuring wall thickness and displacement of inner and outer surfaces of tube - Google Patents

Device for measuring wall thickness and displacement of inner and outer surfaces of tube Download PDF

Info

Publication number
JP2017032354A
JP2017032354A JP2015151041A JP2015151041A JP2017032354A JP 2017032354 A JP2017032354 A JP 2017032354A JP 2015151041 A JP2015151041 A JP 2015151041A JP 2015151041 A JP2015151041 A JP 2015151041A JP 2017032354 A JP2017032354 A JP 2017032354A
Authority
JP
Japan
Prior art keywords
displacement
tube
contact
pipe
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015151041A
Other languages
Japanese (ja)
Other versions
JP6493070B2 (en
Inventor
一宗 下田
Kazumune Shimoda
一宗 下田
康嗣 山根
Yasushi Yamane
康嗣 山根
祐二 井上
Yuji Inoue
祐二 井上
秀輔 下岡
Shusuke Shimooka
秀輔 下岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015151041A priority Critical patent/JP6493070B2/en
Publication of JP2017032354A publication Critical patent/JP2017032354A/en
Application granted granted Critical
Publication of JP6493070B2 publication Critical patent/JP6493070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for measuring a wall thickness and displacement of inner and outer surfaces of a tube, which can efficiently measure a wall thickness and displacement of inner and outer surfaces of a tube, and eventually can evaluate undulation of the inner and outer surfaces of the tube.SOLUTION: A measurement device 100 related to the present invention comprises: a U-shaped member 1 including a first arm part 11 and a second arm part 12; a first contact piece 2 attached to the first arm part on an open end side of the U-shaped member; a contact type displacement gauge 3 comprising a second contact piece 32 attached to the second arm part; energization means 4 energizing the U-shaped member so that the first contact piece contacts with the inner surface of a pipe P; a displacement gauge 5 configured to measure displacement of the U-shaped member; movement means 6 integrally relatively moving the U-shaped member and the like in an axial direction of the pipe; and calculation means 7 calculating a wall thickness of the pipe on the basis of a displacement measurement value of the contact type displacement gauge, calculating displacement of the inner surface of the pipe on the basis of a displacement measurement value of the displacement gauge, and calculating displacement of an outer surface of the pipe on the basis of the displacement measurement values of the contact type displacement gauge and displacement gauge.SELECTED DRAWING: Figure 1

Description

本発明は、継目無管等の管の肉厚及び内外面の変位を測定する装置に関する。特に、本発明は、効率良く管の肉厚及び内外面の変位を測定可能であり、ひいては管の内外面変位の軸方向分布で表わされる内外面のうねりを評価可能な管の肉厚及び内外面変位測定装置に関する。   The present invention relates to an apparatus for measuring the thickness of a pipe such as a seamless pipe and the displacement of the inner and outer surfaces. In particular, the present invention can efficiently measure the wall thickness and inner / outer surface displacement of the tube, and thus can evaluate the inner / outer surface undulation represented by the axial distribution of the inner / outer surface displacement of the tube. The present invention relates to an outer surface displacement measuring apparatus.

継目無管の製造方法としては、マンドレルミル方式、プラグミル方式、ユジーン・セジュルネ方式、エルハルト・プッシュベンチ方式など種々の方式が知られている。いずれの方式であっても、継目無管は複数の工程を経て製造されるため、各工程で生じた肉厚変動が加算されて製品に残る。
このため、製品の肉厚分布を解析し、各工程での肉厚不良の原因を特定する取り組みがなされている(例えば、特許文献1、2参照)。
ただし、特許文献1、2に記載のように、肉厚分布を解析するのに用いられるフーリエ解析等の周波数解析は、管の軸方向及び周方向に大量の測定データを必要とする。
As a method for manufacturing a seamless pipe, various methods such as a mandrel mill method, a plug mill method, a Eugene Sejurnee method, and an Erhard push bench method are known. Regardless of which method is used, the seamless pipe is manufactured through a plurality of processes, so that the thickness fluctuation generated in each process is added and remains in the product.
For this reason, efforts have been made to analyze the wall thickness distribution of products and identify the cause of wall thickness defects in each process (for example, see Patent Documents 1 and 2).
However, as described in Patent Documents 1 and 2, frequency analysis such as Fourier analysis used to analyze the wall thickness distribution requires a large amount of measurement data in the axial and circumferential directions of the tube.

管の肉厚を測定する方法としては、超音波を用いた方法が広く用いられている。これは、管の表面と超音波プローブとの間に水などの接触媒質を介在させ、超音波プローブから接触媒質を介して管内に超音波を入射し、そのエコーを検出することで管の肉厚を測定する方法である。超音波プローブに対して管を相対的に周方向に回転させると共に軸方向に相対的に移動させることで、管の軸方向及び周方向の肉厚分布が測定される。
しかしながら、上記の方法では、表面に形成されたスケールが除去されていない製品の測定においてノイズを含み易く、測定誤差が大きくなる。また、肉厚測定装置は、製造後の管の肉厚を速やかに測定し、測定値が許容範囲内であるか否かを速やかに判定するために、管の製造ラインと直結していることが多い。したがって、ノイズなどによる測定誤差が疑われるために再測定する必要が生じた場合であっても、上記のように製造ラインに直結した肉厚測定装置を用いて再測定することは、製造スケジュールの調整や、管を再び製造ラインに戻すための運搬の問題があり、容易ではない。
As a method for measuring the wall thickness of a tube, a method using ultrasonic waves is widely used. This is because a contact medium such as water is interposed between the surface of the tube and the ultrasonic probe, ultrasonic waves are incident on the tube from the ultrasonic probe through the contact medium, and the echo of the tube is detected. This is a method for measuring thickness. By rotating the tube in the circumferential direction relative to the ultrasonic probe and moving it in the axial direction, the thickness distribution in the axial direction and the circumferential direction of the tube is measured.
However, in the above method, it is easy to include noise in measurement of a product from which the scale formed on the surface is not removed, and the measurement error increases. In addition, the wall thickness measuring device shall be directly connected to the pipe production line in order to quickly measure the wall thickness of the pipe after production and to quickly determine whether the measured value is within the allowable range. There are many. Therefore, even if a measurement error due to noise or the like is suspected and it is necessary to re-measure, re-measurement using a thickness measuring device directly connected to the production line as described above is There is a problem of adjustment and transportation for returning the pipe to the production line again, which is not easy.

したがって、肉厚測定値に疑義が生じた場合などに肉厚を再測定するには、ハンディタイプの超音波厚み計を用いて1点ずつ肉厚を測定するか、マイクロメータを用いて肉厚を測定するが、これらの方法では大量の測定データを得ることが困難である。このため、肉厚測定の省力化と測定時間の短縮が可能な装置の開発が望まれている。   Therefore, in order to re-measure the wall thickness when there is doubt about the wall thickness measurement value, the wall thickness is measured point by point using a hand-held ultrasonic thickness gauge, or the wall thickness is measured using a micrometer. However, it is difficult to obtain a large amount of measurement data by these methods. For this reason, it is desired to develop an apparatus capable of saving the thickness measurement and shortening the measurement time.

また、小型の実験ミルを用いて管の寸法精度を高める取り組みがなされる場合、小型ミルで製造した管についても同様に、管の軸方向及び周方向の肉厚測定データを解析する必要がある。   In addition, when efforts are made to increase the dimensional accuracy of a pipe using a small experimental mill, it is necessary to analyze the axial and circumferential thickness measurement data of the pipe manufactured by the small mill as well. .

さらに、継目無管は内外面にうねり(管の軸方向に沿った内外面変位の変動)が発生し、品質不良の一因となる場合がある。このため、肉厚測定と同時にうねりを測定する必要もある。   Furthermore, the seamless pipe may swell on the inner and outer surfaces (changes in the inner and outer surface displacements along the axial direction of the pipe), which may contribute to poor quality. For this reason, it is also necessary to measure the swell simultaneously with the thickness measurement.

なお、マイクロメータ等と同様に、管の肉厚を接触式で測定する装置としては、例えば、特許文献3、4に記載の装置が提案されている。
しかしながら、特許文献3、4に記載の装置は管の肉厚を測定可能であるものの、管の内外面のうねりを測定可能な構成になっていない。
Similar to a micrometer or the like, for example, devices described in Patent Documents 3 and 4 have been proposed as devices for measuring the wall thickness of a tube by a contact method.
However, although the apparatuses described in Patent Documents 3 and 4 can measure the wall thickness of the pipe, they are not configured to measure the undulation of the inner and outer surfaces of the pipe.

特許第4232779号公報Japanese Patent No. 4232791 特開昭61−135409号公報JP-A-61-135409 実開平5−76610号公報Japanese Utility Model Publication No. 5-76610 特開平8−219703号公報JP-A-8-219703

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、効率良く管の肉厚及び内外面の変位を測定可能であり、ひいては管の内外面のうねりを評価可能な管の肉厚及び内外面変位測定装置を提供することを課題とする。   The present invention has been made to solve the above-described problems of the prior art, and can efficiently measure the wall thickness and displacement of the inner and outer surfaces of the tube, and thereby evaluate the undulation of the inner and outer surfaces of the tube. It is an object of the present invention to provide a tube thickness and inner / outer surface displacement measuring device that can be used.

前記課題を解決するため、本発明は、第1アーム部及び該第1アーム部に対向して平行に配置された第2アーム部を具備し、該第1アーム部及び該第2アーム部の一端側が連結されたコの字状部材と、前記コの字状部材の開放端側において、前記第2アーム部に対向するように前記第1アーム部に取り付けられた第1接触子と、前記コの字状部材の開放端側において、前記第1接触子に対向するように前記第2アーム部に取り付けられ、前記対向方向に進退動可能な軸部材及び該軸部材の先端に取り付けられた第2接触子を具備し、前記軸部材の進退動量に応じた前記第2接触子の変位を測定する接触式変位計と、前記第1アーム部が管の内側に位置し、前記第2アーム部が前記管の外側に位置し、なお且つ前記第1アーム部及び前記第2アーム部が前記管の軸方向に対して略平行となるように前記コの字状部材が配置された際に、前記第1アーム部に取り付けられた前記第1接触子が前記管の内面に接触するように、前記コの字状部材を前記第1アーム部及び前記第2アーム部の対向方向に付勢する付勢手段と、前記コの字状部材の付勢方向の変位を測定する変位計と、前記コの字状部材、前記第1接触子、前記接触式変位計、前記付勢手段及び前記変位計を前記管の軸方向に一体的に相対移動させる移動手段と、前記接触式変位計による変位測定値に基づき前記管の肉厚を算出し、前記変位計による変位測定値に基づき前記管の内面の変位を算出し、前記接触式変位計による変位測定値及び前記変位計による変位測定値に基づき前記管の外面の変位を算出する演算手段と、を備えることを特徴とする管の肉厚及び内外面変位測定装置を提供する。   In order to solve the above problems, the present invention includes a first arm part and a second arm part arranged in parallel to face the first arm part, and the first arm part and the second arm part are A U-shaped member connected at one end, a first contact attached to the first arm so as to face the second arm at the open end of the U-shaped member; At the open end side of the U-shaped member, it is attached to the second arm portion so as to face the first contactor, and is attached to the shaft member capable of moving forward and backward in the facing direction and the tip of the shaft member. A contact displacement meter that includes a second contact and measures the displacement of the second contact according to the amount of advancement and retraction of the shaft member; and the first arm is located inside the tube, and the second arm Is located outside the tube, and the first arm and the second arm When the U-shaped member is arranged so that the groove portion is substantially parallel to the axial direction of the tube, the first contact attached to the first arm portion is placed on the inner surface of the tube. An urging means for urging the U-shaped member in the opposing direction of the first arm portion and the second arm portion so as to contact each other, and a displacement in the urging direction of the U-shaped member are measured. A displacement meter; a U-shaped member; the first contact; the contact displacement meter; the biasing means; and a moving means for relatively moving the displacement meter integrally in the axial direction of the tube; and the contact The thickness of the tube is calculated based on the displacement measurement value by the displacement meter, the displacement of the inner surface of the tube is calculated based on the displacement measurement value by the displacement meter, the displacement measurement value by the contact displacement meter, and the displacement meter Computing means for calculating the displacement of the outer surface of the pipe based on the displacement measurement value by Providing the wall thickness and inner and outer surfaces displacement measuring apparatus of a tube according to claim Rukoto.

本発明に係る測定装置によれば、移動手段によってコの字状部材等を管の軸方向に相対移動させ、第1アーム部が管の内側に位置し、第2アーム部が管の外側に位置し、なお且つ第1アーム部及び第2アーム部が管の軸方向に対して略平行となるように、コの字状部材の開放端からコの字状部材の内側に管の周方向の一部を挿通させた状態において、付勢手段によってコの字状部材が第1アーム部及び第2アーム部の対向方向に付勢され、第1アーム部に取り付けられた第1接触子が管の内面に接触することになる。そして、変位計によってコの字状部材の付勢方向(第1アーム部及び第2アーム部の対向方向)の変位が測定される。この変位計による変位測定値は、第1接触子が接触する管の内面の変位のみに応じて変化するため、演算手段は、変位計による変位測定値に基づき管の内面の変位を容易に算出可能である。
また、上記の状態において、接触式変位計が具備する軸部材を進退動させて第2接触子を管の外面に接触させることで、軸部材の進退動量に応じた第2接触子の変位が測定される。例えば、管の軸方向に沿って管の内面の位置のみが変化し管の肉厚が一定であるとすれば、第2接触子が接触する管の外面の位置は、内面の位置の変化量と同じ量だけ変化することになる。しかしながら、接触式変位計はコの字状部材に取り付けられているため、管の内面の位置が変化することで付勢手段によってコの字状部材が付勢されて移動することにより、接触式変位計の位置(軸部材及び第2接触子の位置)もコの字状部材の移動量(すなわち、管の内面の位置の変化量)と同じ量だけ変化することになる。このため、第2接触子が接触する管の外面の位置が変化したとしても、接触式変位計の軸部材は進退動しないため、接触式変位計による変位測定値は変化しないことになる。換言すれば、接触式変位計による変位測定値は、管の肉厚のみに応じて変化するため、演算手段は、接触式変位計による変位測定値に基づき管の肉厚を容易に算出可能である。
さらに、管の外面の変位は、管の内面の変位に管の肉厚を加算することによって算出できるため、演算手段は、接触式変位計による変位測定値及び変位計による変位測定値に基づき管の外面の変位を容易に算出可能である。
そして、移動手段によってコの字状部材等が管の軸方向に相対移動しつつ、演算手段が管の肉厚を算出することで管の肉厚の軸方向分布を評価し、演算手段が管の内外面の変位を算出することで管の内外面のうねりを評価可能である。
さらに、本発明に係る測定装置に対して管を周方向に相対回転させれば、管の全周に亘る測定も可能である。
According to the measuring apparatus of the present invention, the U-shaped member or the like is relatively moved in the axial direction of the tube by the moving means, the first arm portion is located inside the tube, and the second arm portion is located outside the tube. The circumferential direction of the pipe is located from the open end of the U-shaped member to the inside of the U-shaped member so that the first arm part and the second arm part are substantially parallel to the axial direction of the pipe. The U-shaped member is urged by the urging means in the opposing direction of the first arm part and the second arm part, and the first contact attached to the first arm part is It will contact the inner surface of the tube. Then, the displacement of the U-shaped member in the biasing direction (opposite direction of the first arm portion and the second arm portion) is measured by the displacement meter. Since the displacement measurement value by this displacement meter changes only in accordance with the displacement of the inner surface of the tube with which the first contactor comes into contact, the calculation means easily calculates the displacement of the inner surface of the tube based on the displacement measurement value by the displacement meter. Is possible.
Further, in the above state, by moving the shaft member included in the contact displacement meter forward and backward to bring the second contactor into contact with the outer surface of the pipe, the displacement of the second contactor according to the amount of forward and backward movement of the shaft member is achieved. Measured. For example, if only the position of the inner surface of the tube changes along the axial direction of the tube and the thickness of the tube is constant, the position of the outer surface of the tube with which the second contactor contacts is the amount of change in the position of the inner surface. Will change by the same amount. However, since the contact displacement meter is attached to the U-shaped member, the position of the inner surface of the tube changes, and the U-shaped member is urged and moved by the urging means. The position of the displacement meter (the position of the shaft member and the second contact) also changes by the same amount as the amount of movement of the U-shaped member (that is, the amount of change in the position of the inner surface of the tube). For this reason, even if the position of the outer surface of the tube with which the second contactor contacts is changed, the shaft member of the contact displacement meter does not move back and forth, so that the displacement measurement value by the contact displacement meter does not change. In other words, since the displacement measurement value by the contact displacement meter changes only according to the thickness of the tube, the computing means can easily calculate the tube thickness based on the displacement measurement value by the contact displacement meter. is there.
Furthermore, since the displacement of the outer surface of the tube can be calculated by adding the thickness of the tube to the displacement of the inner surface of the tube, the computing means can calculate the displacement based on the displacement measurement value by the contact displacement meter and the displacement measurement value by the displacement meter. The displacement of the outer surface can be easily calculated.
Then, while the U-shaped member or the like is relatively moved in the axial direction of the pipe by the moving means, the calculating means evaluates the axial thickness distribution of the pipe thickness by calculating the thickness of the pipe, and the calculating means calculates the pipe thickness. By calculating the displacement of the inner and outer surfaces, it is possible to evaluate the undulation of the inner and outer surfaces of the pipe.
Furthermore, if the tube is rotated relative to the measuring device according to the present invention in the circumferential direction, measurement over the entire circumference of the tube is also possible.

以上のように、本発明によれば、ハンディタイプの超音波厚み計やマイクロメータを用いて肉厚を測定する場合に比べて、容易に管の肉厚を測定可能である。また、管の肉厚と同時に管の内外面の変位を測定可能であり、ひいては管の内外面のうねりを評価可能である。
また、本発明によれば、第1接触子が接触する管の内面の部位では変位が直接測定されず、管の外部に配置することが可能な変位計によって、コの字状部材の変位、ひいては管の内面の変位が測定されることになる。すなわち、第1接触子は、第2接触子のように進退動可能な軸部材に取り付けられた接触式変位計の一部を構成するものではない。このため、管の内外にそれぞれ接触式変位計を配置して管の肉厚を測定する場合に比べて、管内に挿入する部材の寸法を小さくすることができるので、内径の小さな管であっても肉厚や内外面変位を測定可能である。
As described above, according to the present invention, it is possible to easily measure the wall thickness of the tube as compared with the case where the wall thickness is measured using a handy type ultrasonic thickness meter or a micrometer. In addition, the displacement of the inner and outer surfaces of the tube can be measured simultaneously with the thickness of the tube, so that the undulation of the inner and outer surfaces of the tube can be evaluated.
Further, according to the present invention, the displacement of the U-shaped member is not measured directly at the portion of the inner surface of the tube that is in contact with the first contact, but by the displacement meter that can be disposed outside the tube, As a result, the displacement of the inner surface of the tube is measured. That is, the first contact does not constitute a part of a contact displacement meter attached to a shaft member that can move forward and backward like the second contact. For this reason, compared with the case where contact displacement meters are arranged inside and outside the tube and the thickness of the tube is measured, the size of the member inserted into the tube can be reduced. Can measure wall thickness and inner / outer surface displacement.

なお、本発明におけるコの字状部材の付勢方向の変位を測定する「変位計」としては、第2接触子を具備する接触式変位計と同様の接触式変位計を用いることが可能である。ただし、コの字状部材は管と異なりスケール等の影響が少ないため、本発明の「変位計」は必ずしも接触式変位計に限るものではなく、レーザ変位計等の非接触式の変位計を用いることも可能である。
また、本発明におけるコの字状部材等を管の軸方向に一体的に相対移動させる「移動手段」としては、コの字状部材等に連結された一軸ステージ等を例示できる。ただし、本発明の「移動手段」は必ずしもコの字状部材等を移動させるものに限らず、水平に配置された管を下から支持すると共に管を軸方向に搬送可能な搬送ローラなど、管の方を軸方向に移動させる手段を用いることも可能である。
As the “displacement meter” for measuring the displacement in the urging direction of the U-shaped member in the present invention, a contact displacement meter similar to the contact displacement meter including the second contact can be used. is there. However, since the U-shaped member is less affected by the scale and the like, unlike the tube, the “displacement meter” of the present invention is not necessarily limited to the contact displacement meter, and a non-contact displacement meter such as a laser displacement meter is used. It is also possible to use it.
In addition, as the “moving means” for relatively moving the U-shaped member or the like integrally in the axial direction of the pipe in the present invention, a uniaxial stage connected to the U-shaped member or the like can be exemplified. However, the “moving means” of the present invention is not necessarily limited to the one that moves the U-shaped member or the like, but a tube such as a conveyance roller that supports a horizontally arranged tube from below and can convey the tube in the axial direction. It is also possible to use means for moving one of them in the axial direction.

本発明の演算手段は、具体的には、以下のようにして、管の肉厚、管の内面の変位及び管の外面の変位を算出することが可能である。
すなわち、前記演算手段は、前記第1接触子と前記第2接触子との間に厚みAの校正材を挟んで校正した際の前記接触式変位計による変位測定値をUOとし、前記第1接触子が前記管の内面に接触し且つ前記第2接触子が前記管の外面に接触した状態での前記接触式変位計による変位測定値をUOとし、前記変位計による変位測定値をUIとしたとき、以下の式(1)〜(3)によって、前記管の肉厚、前記管の内面の変位及び前記管の外面の変位を算出することが可能である。
管の肉厚=UO−UO+A ・・・(1)
管の内面の変位=UI−B ・・・(2)
管の外面の変位=UI−B+UO−UO+A ・・・(3)
ただし、上記式(2)及び(3)におけるBは、任意の定数を意味する。また、前記接触式変位計による変位測定値は、前記第2接触子が前記第1接触子から離れる方向に変位する場合に大きくなるものとする。
Specifically, the calculation means of the present invention can calculate the thickness of the tube, the displacement of the inner surface of the tube, and the displacement of the outer surface of the tube as follows.
That is, the calculation means sets the displacement measurement value by the contact displacement meter when calibrating with a calibration material having a thickness A between the first contact and the second contact as UO 0 , a displacement value measured by the contact type displacement gauge in a state in which one contact is the contact and the second contact on the inner surface of the tube in contact with the outer surface of the tube and UO n, the displacement value measured by the displacement meter When UI n is set, the thickness of the tube, the displacement of the inner surface of the tube, and the displacement of the outer surface of the tube can be calculated by the following formulas (1) to (3).
Tube thickness = UO n −UO 0 + A (1)
Displacement of the inner surface of the tube = UI n −B (2)
Displacement of the outer surface of the pipe = UI n −B + UO n −UO 0 + A (3)
However, B in the above formulas (2) and (3) means an arbitrary constant. The displacement measurement value by the contact displacement meter is increased when the second contact is displaced in a direction away from the first contact.

本発明によれば、効率良く管の肉厚及び内外面の変位を測定可能であり、ひいては管の内外面のうねりを評価可能である。   According to the present invention, the thickness of the tube and the displacement of the inner and outer surfaces can be measured efficiently, and consequently, the undulation of the inner and outer surfaces of the tube can be evaluated.

図1は、本発明の一実施形態に係る管の肉厚及び内外面変位測定装置の概略構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a schematic configuration of a tube thickness and inner / outer surface displacement measuring apparatus according to an embodiment of the present invention. 図2は、本発明に係る管の肉厚及び内外面変位測定装置の変形例の概略構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a schematic configuration of a modified example of the pipe thickness and inner / outer surface displacement measuring apparatus according to the present invention. 図3は、図1に示す測定装置を用いて、ユジーン・セジュルネ方式で製管した後に冷間加工された継目無管の管端部分を測定した結果の一例を示す図である。FIG. 3 is a diagram illustrating an example of a result of measuring a pipe end portion of a seamless pipe that has been cold-worked after pipe-making by the Eugene Sejurune method using the measurement apparatus illustrated in FIG. 1. 図4は、図1に示す測定装置を用いて、ユジーン・セジュルネ方式で製管した後に冷間加工された継目無管の管端部分を測定した結果の他の例を示す図である。FIG. 4 is a diagram showing another example of a result of measuring a pipe end portion of a seamless pipe that has been cold-worked after pipe-making by the Eugene Sejurune method using the measuring apparatus shown in FIG. 図5は、図1に示す測定装置を用いて、マンネスマンピアサ実験ミルで穿孔圧延した継目無管の肉厚を測定した結果の一例を示す図である。FIG. 5 is a diagram showing an example of the result of measuring the wall thickness of a seamless pipe pierced and rolled by a Mannesmann Piercer experimental mill using the measuring apparatus shown in FIG.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係る管の肉厚及び内外面変位測定装置(以下、単に「測定装置」という)の概略構成を模式的に示す図である。図1(a)は管Pの軸方向に対して直交する水平方向から見た正面図であり、図1(b)は平面図であり、図1(c)は図1(b)のAA矢視断面図である。図1(a)において管Pは断面図で示している。また、図1(b)において演算手段7は図示省略している。
図1に示すように、本実施形態に係る測定装置100は、コの字状部材1と、第1接触子2と、接触式変位計3と、付勢手段4と、変位計5と、移動手段6と、演算手段7とを備えている。また、本実施形態に係る測定装置100は、好ましい形態として、管Pを保持する保持手段8を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a diagram schematically showing a schematic configuration of a tube thickness and inner / outer surface displacement measuring device (hereinafter simply referred to as “measuring device”) according to an embodiment of the present invention. FIG. 1A is a front view seen from a horizontal direction orthogonal to the axial direction of the pipe P, FIG. 1B is a plan view, and FIG. 1C is an AA in FIG. It is arrow sectional drawing. In FIG. 1A, the pipe P is shown in a sectional view. In FIG. 1B, the calculation means 7 is not shown.
As shown in FIG. 1, the measuring apparatus 100 according to the present embodiment includes a U-shaped member 1, a first contact 2, a contact displacement meter 3, an urging means 4, a displacement meter 5, The moving means 6 and the calculating means 7 are provided. Moreover, the measuring apparatus 100 which concerns on this embodiment is provided with the holding means 8 which hold | maintains the pipe | tube P as a preferable form.

コの字状部材1は、第1アーム部11及び第1アーム部11に対向して平行に配置された第2アーム部12を具備する。図1(a)に示す例では、第2アーム部12は、第1アーム部11の上方で且つ平行に配置されている。また、本実施形態のコの字状部材1は、第1アーム部11及び第2アーム部12の一端側に配置された連結部材13を具備する。第1アーム部11及び第2アーム部12の一端側がそれぞれ連結部材13と結合されることにより、第1アーム部11及び第2アーム部12の一端側は連結されている。   The U-shaped member 1 includes a first arm portion 11 and a second arm portion 12 disposed in parallel to face the first arm portion 11. In the example illustrated in FIG. 1A, the second arm portion 12 is disposed above and in parallel with the first arm portion 11. Further, the U-shaped member 1 of the present embodiment includes a connecting member 13 disposed on one end side of the first arm portion 11 and the second arm portion 12. One end sides of the first arm portion 11 and the second arm portion 12 are respectively coupled to the connecting member 13, whereby the one end sides of the first arm portion 11 and the second arm portion 12 are connected.

第1接触子2は、コの字状部材1の開放端側(第1アーム部11及び第2アーム部12の他端側)において、第2アーム部12に対向するように第1アーム部11に取り付けられている。図1(a)に示す例では、第1接触子2は、第1アーム部11の他端側において第1アーム部11の上側に取り付けられている。   The first contact 2 has a first arm portion so as to face the second arm portion 12 on the open end side of the U-shaped member 1 (the other end side of the first arm portion 11 and the second arm portion 12). 11 is attached. In the example shown in FIG. 1A, the first contact 2 is attached to the upper side of the first arm portion 11 on the other end side of the first arm portion 11.

接触式変位計3は、コの字状部材1の開放端側において、第1接触子2に対向するように第2アーム部に取り付けられている。接触式変位計3は、前記対向方向(図1(a)に示す例では上下方向)に進退動可能な軸部材31と、軸部材31の先端(図1(a)に示す例では下端)に取り付けられた第2接触子32とを具備し、軸部材31の進退動量に応じた第2接触子32の変位を測定するものである。接触式変位計3としては、市販されている種々の接触式変位計を変位測定範囲に応じて選択し適用することが可能である。なお、接触式変位計3は、軸部材31を進動させる方向に付勢するバネ等から構成された付勢部材(図示せず)を具備している。   The contact displacement meter 3 is attached to the second arm portion so as to face the first contact 2 on the open end side of the U-shaped member 1. The contact-type displacement meter 3 includes a shaft member 31 capable of moving back and forth in the facing direction (the vertical direction in the example shown in FIG. 1A) and the tip of the shaft member 31 (the lower end in the example shown in FIG. 1A). The second contactor 32 attached to the head is measured, and the displacement of the second contactor 32 corresponding to the amount of forward / backward movement of the shaft member 31 is measured. As the contact displacement meter 3, various commercially available contact displacement meters can be selected and applied according to the displacement measurement range. The contact displacement meter 3 includes an urging member (not shown) configured by a spring or the like that urges the shaft member 31 in the direction in which the shaft member 31 is moved forward.

付勢手段4は、第1アーム部11(少なくとも第1アーム部11の他端側)が管Pの内側に位置し、第2アーム部12(少なくとも第2アーム部12の他端側)が管Pの外側に位置し、なお且つ第1アーム部11及び第2アーム部12が管Pの軸方向に対して略平行となるようにコの字状部材1が配置された際(図1(a)に示す状態)に、第1アーム部11に取り付けられた第1接触子2が管Pの内面に接触するように、コの字状部材1を第1アーム部11及び第2アーム部12の対向方向(図1(a)に示す例では上方向)に付勢する。具体的には、本実施形態の付勢手段4は、一端が連結部材13に結合され他端が移動部材62に結合された軸部材41と、軸部材41に巻回された弾性部材(バネ)42とを具備する。バネ42は、その一端(図1(a)に示す例では上端)が連結部材13の一端(図1(a)に示す例では下端)に当接し、その他端(図1(a)に示す例では下端)が移動部材62の上面に当接し、自然長よりも短い状態で取り付けられている。これにより、連結部材13ひいてはコの字状部材1に対して上方向の付勢力Fが作用することになる。   The biasing means 4 has a first arm portion 11 (at least the other end side of the first arm portion 11) positioned inside the pipe P, and a second arm portion 12 (at least the other end side of the second arm portion 12). When the U-shaped member 1 is arranged so that the first arm portion 11 and the second arm portion 12 are positioned substantially outside the tube P and are substantially parallel to the axial direction of the tube P (FIG. 1). In the state shown in (a), the U-shaped member 1 is moved to the first arm portion 11 and the second arm so that the first contact 2 attached to the first arm portion 11 contacts the inner surface of the pipe P. The portion 12 is biased in the facing direction (upward in the example shown in FIG. 1A). Specifically, the biasing means 4 of this embodiment includes a shaft member 41 having one end coupled to the connecting member 13 and the other end coupled to the moving member 62, and an elastic member (spring) wound around the shaft member 41. 42). One end (the upper end in the example shown in FIG. 1A) of the spring 42 abuts on one end (the lower end in the example shown in FIG. 1A) of the connecting member 13, and the other end (shown in FIG. 1A). In the example, the lower end is in contact with the upper surface of the moving member 62 and is attached in a state shorter than the natural length. As a result, an upward biasing force F acts on the connecting member 13 and thus the U-shaped member 1.

変位計5は、コの字状部材1の付勢方向(上下方向)の変位を測定するものである。本実施形態の変位計5は、接触式変位計3と同様の接触式変位計とされており、付勢方向に進退動可能な軸部材と、該軸部材の先端に取り付けられた接触子とを具備し、前記軸部材の進退動量に応じた前記接触子の変位を測定する。具体的には、変位計5の本体が連結部材13に取り付けられ、変位計5の接触子が移動部材62の上面に接触するように配置されることで、連結部材13ひいてはコの字状部材1の変位が測定される。なお、変位計5は必ずしも接触式変位計に限るものではなく、レーザ変位計等の非接触式の変位計を用いることも可能である。   The displacement meter 5 measures the displacement of the U-shaped member 1 in the urging direction (vertical direction). The displacement meter 5 of the present embodiment is a contact displacement meter similar to the contact displacement meter 3, and includes a shaft member capable of moving forward and backward in the biasing direction, and a contact attached to the tip of the shaft member. The displacement of the contact according to the amount of advancement and retraction of the shaft member is measured. Specifically, the main body of the displacement meter 5 is attached to the connecting member 13, and the contact of the displacement meter 5 is disposed so as to contact the upper surface of the moving member 62, so that the connecting member 13 and thus the U-shaped member. A displacement of 1 is measured. The displacement meter 5 is not necessarily limited to the contact displacement meter, and a non-contact displacement meter such as a laser displacement meter can also be used.

移動手段6は、コの字状部材1、第1接触子2、接触式変位計3、付勢手段4及び変位計5を管Pの軸方向に一体的に相対移動させるものである。具体的には、本実施形態の移動手段6は、基台61と、基台61上を管Pの軸方向に移動する移動部材62とを具備する一軸ステージとされている。前述のように移動部材62には付勢手段4の軸部材41が結合されているため、移動部材62が管Pの軸方向に移動することにより、軸部材41及びバネ41を具備する付勢手段4も管Pの軸方向に移動することになる。これにより、軸部材41に結合されたコの字状部材1や、コの字状部材1に取り付けられた第1接触子2、接触式変位計3、付勢手段4及び変位計5も一体的に管Pの軸方向に移動することになる。なお、移動手段6は必ずしもコの字状部材等を移動させるものに限らず、水平に配置された管Pを下から支持すると共に管Pを軸方向に搬送可能な搬送ローラなど、管Pの方を軸方向に移動させる手段とすることも可能である。   The moving means 6 moves the U-shaped member 1, the first contact 2, the contact displacement meter 3, the urging means 4 and the displacement meter 5 integrally relative to each other in the axial direction of the pipe P. Specifically, the moving means 6 of the present embodiment is a uniaxial stage including a base 61 and a moving member 62 that moves on the base 61 in the axial direction of the pipe P. Since the shaft member 41 of the urging means 4 is coupled to the moving member 62 as described above, the urging force provided with the shaft member 41 and the spring 41 when the moving member 62 moves in the axial direction of the pipe P. The means 4 also moves in the axial direction of the pipe P. Thereby, the U-shaped member 1 coupled to the shaft member 41, the first contact 2 attached to the U-shaped member 1, the contact-type displacement meter 3, the biasing means 4, and the displacement meter 5 are also integrated. Therefore, it moves in the axial direction of the pipe P. The moving means 6 is not necessarily limited to moving the U-shaped member or the like. The moving means 6 supports the horizontally arranged pipe P from below, and includes a conveyance roller that can carry the pipe P in the axial direction. It is also possible to use means for moving the direction in the axial direction.

演算手段7は、接触式変位計3による変位測定値に基づき管Pの肉厚を算出し、変位計5による変位測定値に基づき管Pの内面の変位を算出し、接触式変位計3による変位測定値及び変位計5による変位測定値に基づき管Pの外面の変位を算出するように構成されている。
具体的には、演算手段7は、第1接触子2と第2接触子32との間に厚みAの校正材を挟んで校正した際の接触式変位計3による変位測定値をUOとし、第1接触子2が管Pの内面に接触し且つ第2接触子32が管Pの外面に接触した状態(図1(a)に示す状態)での接触式変位計3による変位測定値をUOとし、変位計5による変位測定値をUIとしたとき、以下の式(1)〜(3)によって、管Pの肉厚、管Pの内面の変位及び管Pの外面の変位を算出するように構成されている。
管の肉厚=UO−UO+A ・・・(1)
管の内面の変位=UI−B ・・・(2)
管の外面の変位=UI−B+UO−UO+A ・・・(3)
ただし、上記式(2)及び(3)におけるBは、任意の定数を意味する。また、接触式変位計3による変位測定値は、第2接触子32が第1接触子2から離れる方向に変位する場合(軸部材31が退動する場合)に大きくなるものとする。
The calculation means 7 calculates the thickness of the pipe P based on the displacement measurement value by the contact displacement meter 3, calculates the displacement of the inner surface of the tube P based on the displacement measurement value by the displacement meter 5, and The displacement of the outer surface of the pipe P is calculated based on the displacement measurement value and the displacement measurement value by the displacement meter 5.
Specifically, the calculation means 7 sets UO 0 as a displacement measurement value by the contact displacement meter 3 when calibrating with a calibration material having a thickness A between the first contact 2 and the second contact 32. The displacement measured value by the contact displacement meter 3 in a state where the first contactor 2 is in contact with the inner surface of the tube P and the second contactor 32 is in contact with the outer surface of the tube P (the state shown in FIG. 1A). was a UO n, when the displacement measured by the displacement gauge 5 was UI n, the following equation (1) to (3), the wall thickness of the pipe P, the displacement of the outer surface of the displacement and the pipe P of the inner surface of the pipe P Is calculated.
Tube thickness = UO n −UO 0 + A (1)
Displacement of the inner surface of the tube = UI n −B (2)
Displacement of the outer surface of the pipe = UI n −B + UO n −UO 0 + A (3)
However, B in the above formulas (2) and (3) means an arbitrary constant. Further, the displacement measurement value by the contact displacement meter 3 is increased when the second contact 32 is displaced in a direction away from the first contact 2 (when the shaft member 31 is retracted).

演算手段7は、例えば、接触式変位計3及び変位計5に接続され、接触式変位計3及び変位計5からそれぞれ入力された変位測定値に基づき前述の式(1)〜(3)で表される演算を行うようにプログラミングされたPLC(programmable logic controller)によって構成される。
なお、本実施形態の演算手段7は、移動手段6を駆動する制御手段としての機能も果たしている。具体的には、演算手段7は、移動手段6である一軸ステージの駆動源(図示せず)に接続され、移動手段6の移動部材62を管Pの軸方向に一定の速度で移動させる指令信号を前記駆動源に出力するようにプログラミングされている。これにより、管Pの肉厚及び管Pの内外面の変位を管Pの軸方向に連続して測定することが可能である。
The calculation means 7 is connected to, for example, the contact displacement meter 3 and the displacement meter 5, and is based on the displacement measurement values input from the contact displacement meter 3 and the displacement meter 5, respectively, according to the above formulas (1) to (3). It is comprised by PLC (programmable logic controller) programmed so that the operation represented may be performed.
Note that the computing means 7 of this embodiment also functions as a control means for driving the moving means 6. Specifically, the calculation means 7 is connected to a drive source (not shown) of a uniaxial stage that is the movement means 6 and commands to move the movement member 62 of the movement means 6 in the axial direction of the pipe P at a constant speed. It is programmed to output a signal to the drive source. Thereby, the thickness of the tube P and the displacement of the inner and outer surfaces of the tube P can be continuously measured in the axial direction of the tube P.

保持手段8は、管Pの外面に当接して管Pを支持・位置決めする当接部材81と、移動手段6の基台61に立設され当接部材81が取り付けられた支持柱82とを備えている。本実施形態の当接部材81は上下左右に4つ設けられ、各当接部材81は支持柱82に対して水平方向に(左右に)位置調整可能に取り付けられている。測定対象である管Pの外径に応じて各当接部材81の位置を調整することで、管Pは肉厚等を測定する上で適切な位置に保持される。なお、保持手段8は、必ずしも図1に示す形態に限らず、管Pを肉厚等を測定する上で適切な位置に保持できる限りにおいて種々の形態を採用可能である。   The holding means 8 includes an abutting member 81 that abuts the outer surface of the pipe P to support and position the pipe P, and a support column 82 that is erected on the base 61 of the moving means 6 and to which the abutting member 81 is attached. I have. In this embodiment, four contact members 81 are provided on the top, bottom, left, and right, and each contact member 81 is attached to the support column 82 so that its position can be adjusted in the horizontal direction (left and right). By adjusting the position of each abutting member 81 according to the outer diameter of the pipe P to be measured, the pipe P is held at an appropriate position for measuring the thickness and the like. The holding means 8 is not necessarily limited to the form shown in FIG. 1, and various forms can be adopted as long as the pipe P can be held at an appropriate position for measuring the thickness and the like.

以上に説明した構成を有する測定装置100によれば、移動手段6によってコの字状部材1等を管Pの軸方向に相対移動させ、第1アーム部11が管Pの内側に位置し、第2アーム部12が管Pの外側に位置し、なお且つ第1アーム部11及び第2アーム部12が管Pの軸方向に対して略平行となるように、コの字状部材1の開放端からコの字状部材1の内側に管Pの周方向の一部を挿通させた状態(図1(a)に示す状態)において、付勢手段4によってコの字状部材1が第1アーム部11及び第2アーム部12の対向方向に付勢され、第1アーム部11に取り付けられた第1接触子2が管Pの内面に接触することになる。そして、変位計5によってコの字状部材1の付勢方向(第1アーム部11及び第2アーム部12の対向方向)の変位が測定される。この変位計5による変位測定値は、第1接触子2が接触する管Pの内面の変位のみに応じて変化するため、演算手段7は、変位計5による変位測定値に基づき、式(2)によって管Pの内面の変位を容易に算出可能である。   According to the measuring apparatus 100 having the above-described configuration, the U-shaped member 1 or the like is relatively moved in the axial direction of the pipe P by the moving means 6, and the first arm portion 11 is located inside the pipe P. The U-shaped member 1 of the U-shaped member 1 is arranged such that the second arm portion 12 is located outside the tube P, and the first arm portion 11 and the second arm portion 12 are substantially parallel to the axial direction of the tube P. In a state where a part of the pipe P in the circumferential direction is inserted from the open end to the inside of the U-shaped member 1 (the state shown in FIG. 1A), the U-shaped member 1 is The first contact 2 attached to the first arm 11 that is biased in the opposing direction of the first arm 11 and the second arm 12 comes into contact with the inner surface of the pipe P. Then, the displacement meter 5 measures the displacement of the U-shaped member 1 in the urging direction (opposite direction of the first arm portion 11 and the second arm portion 12). Since the displacement measurement value by the displacement meter 5 changes only in accordance with the displacement of the inner surface of the pipe P with which the first contactor 2 comes into contact, the calculation means 7 is based on the displacement measurement value by the displacement meter 5 and the formula (2 ) Can easily calculate the displacement of the inner surface of the pipe P.

また、上記の状態(図1(a)に示す状態)において、接触式変位計3が具備する軸部材31を付勢部材(図示せず)による付勢力によって進動させて又は付勢力に抗して退動させて第2接触子32を管Pの外面に接触させることで、軸部材31の進退動量に応じた第2接触子32の変位が測定される。例えば、管Pの軸方向に沿って管Pの内面の位置のみが変化し管Pの肉厚が一定であるとすれば、第2接触子32が接触する管Pの外面の位置は、内面の位置の変化量と同じ量だけ変化することになる。しかしながら、接触式変位計3はコの字状部材1に取り付けられているため、管Pの内面の位置が変化することで付勢手段4によってコの字状部材1が付勢されて移動することにより、接触式変位計3の位置(軸部材31及び第2接触子32の位置)もコの字状部材1の移動量(すなわち、管Pの内面の位置の変化量)と同じ量だけ変化することになる。このため、第2接触子32が接触する管Pの外面の位置が変化したとしても、接触式変位計3の軸部材31は進退動しないため、接触式変位計3による変位測定値は変化しないことになる。換言すれば、接触式変位計3による変位測定値は、管Pの肉厚のみに応じて変化するため、演算手段7は、接触式変位計3による変位測定値に基づき、式(1)によって管Pの肉厚を容易に算出可能である。   Further, in the above-described state (the state shown in FIG. 1A), the shaft member 31 provided in the contact displacement meter 3 is advanced by an urging force by an urging member (not shown) or resists the urging force. Then, the displacement of the second contactor 32 according to the amount of advancement / retraction of the shaft member 31 is measured by retracting and bringing the second contactor 32 into contact with the outer surface of the pipe P. For example, if only the position of the inner surface of the tube P changes along the axial direction of the tube P and the thickness of the tube P is constant, the position of the outer surface of the tube P with which the second contactor 32 contacts is the inner surface. It will change by the same amount as the change amount of the position of. However, since the contact displacement meter 3 is attached to the U-shaped member 1, the U-shaped member 1 is urged and moved by the urging means 4 when the position of the inner surface of the pipe P changes. Accordingly, the position of the contact displacement meter 3 (the position of the shaft member 31 and the second contact 32) is also the same amount as the amount of movement of the U-shaped member 1 (that is, the amount of change in the position of the inner surface of the tube P). Will change. For this reason, even if the position of the outer surface of the pipe P with which the second contactor 32 contacts is changed, the shaft member 31 of the contact displacement meter 3 does not move forward and backward, so that the displacement measurement value by the contact displacement meter 3 does not change. It will be. In other words, since the displacement measurement value by the contact displacement meter 3 changes only in accordance with the thickness of the pipe P, the calculation means 7 is based on the displacement measurement value by the contact displacement meter 3 according to the equation (1). The thickness of the tube P can be easily calculated.

さらに、管Pの外面の変位は、管Pの内面の変位に管Pの肉厚を加算することによって算出できるため、演算手段7は、接触式変位計3による変位測定値及び変位計5による変位測定値に基づき、式(3)によって管Pの外面の変位を容易に算出可能である。
そして、移動手段6によってコの字状部材1等が管Pの軸方向に相対移動しつつ、演算手段7が管Pの肉厚を算出することで管Pの肉厚の軸方向分布を評価し、演算手段7が管Pの内外面の変位を算出することで管Pの内外面のうねりを評価可能である。
さらに、測定装置100に対して管Pを周方向に相対回転させれば(手動、又は、管Pを周方向に回転させる回転手段を設けてこの回転手段により回転させても良い)、管Pの全周に亘る測定も可能である。
Furthermore, since the displacement of the outer surface of the tube P can be calculated by adding the thickness of the tube P to the displacement of the inner surface of the tube P, the computing means 7 can calculate the displacement measured by the contact displacement meter 3 and the displacement meter 5. Based on the displacement measurement value, the displacement of the outer surface of the pipe P can be easily calculated by the equation (3).
Then, while the U-shaped member 1 and the like are relatively moved in the axial direction of the pipe P by the moving means 6, the calculating means 7 calculates the thickness of the pipe P, thereby evaluating the axial distribution of the thickness of the pipe P. Then, the swell of the inner and outer surfaces of the pipe P can be evaluated by the calculation means 7 calculating the displacement of the inner and outer surfaces of the pipe P.
Furthermore, if the pipe P is relatively rotated in the circumferential direction with respect to the measuring apparatus 100 (manually or a rotating means for rotating the pipe P in the circumferential direction may be provided and rotated by this rotating means), the pipe P Measurement over the entire circumference is also possible.

以上のように、本実施形態に係る測定装置100によれば、ハンディタイプの超音波厚み計やマイクロメータを用いて肉厚を測定する場合に比べて、容易に管Pの肉厚を測定可能である。また、管Pの肉厚と同時に管Pの内外面の変位を測定可能であり、ひいては管Pの内外面のうねりを評価可能である。
また、本実施形態に係る測定装置100によれば、第1接触子2が接触する管Pの内面の部位では変位が直接測定されず、管Pの外部に配置することが可能な変位計5によって、コの字状部材1の変位、ひいては管Pの内面の変位が測定されることになる。すなわち、第1接触子2は、第2接触子32のように進退動可能な軸部材に取り付けられた接触式変位計の一部を構成するものではない。このため、管Pの内外にそれぞれ接触式変位計を配置して管Pの肉厚を測定する場合に比べて、管P内に挿入する部材(本実施形態の場合は、第1アーム部11及び第1接触子2)の寸法を小さくすることができるので、内径の小さな管Pであっても肉厚や内外面変位を測定可能である。
As described above, according to the measuring apparatus 100 according to the present embodiment, it is possible to easily measure the thickness of the pipe P as compared with the case where the thickness is measured using a handy type ultrasonic thickness meter or a micrometer. It is. In addition, the displacement of the inner and outer surfaces of the tube P can be measured simultaneously with the thickness of the tube P, and consequently the undulation of the inner and outer surfaces of the tube P can be evaluated.
Moreover, according to the measuring apparatus 100 which concerns on this embodiment, the displacement meter 5 which can be arrange | positioned on the exterior of the pipe | tube P is not measured directly in the site | part of the inner surface of the pipe | tube P which the 1st contactor 2 contacts. As a result, the displacement of the U-shaped member 1 and the displacement of the inner surface of the tube P are measured. That is, the first contact 2 does not constitute a part of a contact-type displacement meter attached to a shaft member that can move forward and backward like the second contact 32. For this reason, compared with the case where the contact-type displacement meter is arrange | positioned inside and outside the pipe | tube P and the thickness of the pipe | tube P is measured, the member inserted in the pipe | tube P (in this embodiment, the 1st arm part 11) Since the dimensions of the first contact 2) can be reduced, the thickness and inner / outer surface displacement can be measured even with the pipe P having a small inner diameter.

図2は、本発明に係る測定装置の変形例の概略構成を模式的に示す図である。図2(a)は第1の変形例を示す正面図であり、図2(b)は第2の変形例を示す正面図であり、図2(c)は第3の変形例を示す正面図である。なお、図2では、演算手段7は図示省略している。
図2(a)に示すように、第1の変形例に係る測定装置100Aは、図1(a)に示す測定装置100と異なり、付勢手段4が連結部材13の上側(第2アーム部12側)に設けられている。このため、付勢手段4のバネ42は自然長よりも長い状態で取り付けられている。これにより、連結部材13ひいてはコの字状部材1に対して上方向の付勢力Fが作用し、第1アーム部11に取り付けられた第1接触子2が管Pの内面に接触することになる。また、第1の変形例に係る測定装置100Aは、付勢手段4が連結部材13の上側に設けられているため、移動手段6には、付勢手段4と移動部材62とを連結する連結部材63が設けられている。これにより、移動部材62が管Pの軸方向に移動することで、コの字状部材1、第1接触子2、接触式変位計3、付勢手段4及び変位計5を管Pの軸方向に一体的に移動させることが可能である。
FIG. 2 is a diagram schematically showing a schematic configuration of a modified example of the measuring apparatus according to the present invention. FIG. 2A is a front view showing a first modification, FIG. 2B is a front view showing a second modification, and FIG. 2C is a front view showing a third modification. FIG. In FIG. 2, the calculation means 7 is not shown.
As shown in FIG. 2A, the measuring device 100A according to the first modification differs from the measuring device 100 shown in FIG. 1A in that the biasing means 4 is located above the connecting member 13 (second arm portion). 12 side). For this reason, the spring 42 of the biasing means 4 is attached in a state longer than the natural length. As a result, an upward biasing force F acts on the connecting member 13 and thus the U-shaped member 1 so that the first contact 2 attached to the first arm portion 11 contacts the inner surface of the pipe P. Become. Further, in the measuring apparatus 100A according to the first modification, the urging means 4 is provided on the upper side of the connecting member 13, so that the moving means 6 is connected to the urging means 4 and the moving member 62. A member 63 is provided. Thus, the U-shaped member 1, the first contact 2, the contact-type displacement meter 3, the biasing means 4, and the displacement meter 5 are moved along the axis of the tube P by moving the moving member 62 in the axial direction of the tube P. It is possible to move integrally in the direction.

図2(b)に示すように、第2の変形例に係る測定装置100Bは、図1(a)に示す測定装置100と異なり、第1アーム部11及び第1接触子2が、第2アーム部12及び接触式変位計3よりも上方に設けられている。このため、付勢手段4のバネ42は自然長よりも長い状態で取り付けられている。これにより、連結部材13ひいてはコの字状部材1に対して下方向の付勢力Fが作用し、第1アーム部11に取り付けられた第1接触子2が管Pの内面に接触することになる。   As shown in FIG. 2 (b), the measuring device 100B according to the second modification is different from the measuring device 100 shown in FIG. 1 (a) in that the first arm portion 11 and the first contact 2 are the second. It is provided above the arm portion 12 and the contact displacement meter 3. For this reason, the spring 42 of the biasing means 4 is attached in a state longer than the natural length. As a result, a downward urging force F acts on the connecting member 13 and thus the U-shaped member 1, and the first contact 2 attached to the first arm portion 11 comes into contact with the inner surface of the pipe P. Become.

図2(c)に示すように、第3の変形例に係る測定装置100Cは、図1(a)に示す測定装置100と異なり、第1アーム部11及び第1接触子2が、第2アーム部12及び接触式変位計3よりも上方に設けられている。また、第3の変形例に係る測定装置100Cは、図1(a)に示す測定装置100と異なり、付勢手段4が連結部材13の上側に設けられている。付勢手段4のバネ42は、図1(a)に示す測定装置100と同様に、自然長よりも短い状態で取り付けられている。これにより、連結部材13ひいてはコの字状部材1に対して下方向の付勢力Fが作用し、第1アーム部11に取り付けられた第1接触子2が管Pの内面に接触することになる。また、第3の変形例に係る測定装置100Cは、付勢手段4が連結部材13の上側に設けられているため、移動手段6には、付勢手段4と移動部材62とを連結する連結部材63が設けられている。これにより、移動部材62が管Pの軸方向に移動することで、コの字状部材1、第1接触子2、接触式変位計3、付勢手段4及び変位計5を管Pの軸方向に一体的に移動させることが可能である。   As shown in FIG. 2 (c), the measuring device 100C according to the third modification is different from the measuring device 100 shown in FIG. 1 (a) in that the first arm portion 11 and the first contactor 2 are the second ones. It is provided above the arm portion 12 and the contact displacement meter 3. Further, unlike the measuring apparatus 100 shown in FIG. 1A, the measuring apparatus 100 </ b> C according to the third modification is provided with the biasing means 4 on the upper side of the connecting member 13. The spring 42 of the urging means 4 is attached in a state shorter than the natural length, like the measuring device 100 shown in FIG. As a result, a downward urging force F acts on the connecting member 13 and thus the U-shaped member 1, and the first contact 2 attached to the first arm portion 11 comes into contact with the inner surface of the pipe P. Become. Further, in the measuring apparatus 100C according to the third modification, the urging means 4 is provided on the upper side of the connecting member 13, so that the moving means 6 is connected to the urging means 4 and the moving member 62. A member 63 is provided. Thus, the U-shaped member 1, the first contact 2, the contact-type displacement meter 3, the biasing means 4, and the displacement meter 5 are moved along the axis of the tube P by moving the moving member 62 in the axial direction of the tube P. It is possible to move integrally in the direction.

以上に説明した第1の変形例に係る測定装置100A、第2の変形例に係る測定装置100B、及び第3の変形例に係る測定装置100Cによっても、図1(a)に示す測定装置100と同様に、効率良く管Pの肉厚及び内外面の変位を測定可能であり、ひいては管Pの内外面のうねりを評価可能であるという作用効果を奏する。   The measurement apparatus 100A shown in FIG. 1A is also obtained by the measurement apparatus 100A according to the first modification described above, the measurement apparatus 100B according to the second modification, and the measurement apparatus 100C according to the third modification. Similarly, the thickness and the displacement of the inner and outer surfaces of the tube P can be measured efficiently, and as a result, the undulation of the inner and outer surfaces of the tube P can be evaluated.

図3は、図1に示す測定装置100を用いて、ユジーン・セジュルネ方式で製管した後に冷間加工された外径110mm、肉厚10mmの継目無管の管端部分を測定した結果の一例を示す図である。図4は、同仕様である別の継目無管の管端部分を測定した結果の一例を示す図である。なお、図3(a)及び(b)並びに図4(a)及び(b)の縦軸に示す外面変位及び内面変位は、測定開始点(横軸の原点)の変位がそれぞれ0mmとなるように、式(2)及び(3)に示す定数Bを決定したときの値を示す。
図3及び図4に示すように、本実施形態に係る測定装置100によれば、継目無管の肉厚及び内外面のうねりを評価可能である。
FIG. 3 shows an example of the result of measuring the pipe end portion of a seamless pipe having an outer diameter of 110 mm and a wall thickness of 10 mm that has been cold-worked after pipe-making by the Eugene Sejurune method using the measuring apparatus 100 shown in FIG. FIG. FIG. 4 is a diagram illustrating an example of a result of measuring a pipe end portion of another seamless pipe having the same specification. Note that the outer surface displacement and the inner surface displacement shown on the vertical axis in FIGS. 3A and 3B and FIGS. 4A and 4B are such that the displacement at the measurement start point (the origin of the horizontal axis) is 0 mm. Shows the value when the constant B shown in the equations (2) and (3) is determined.
As shown in FIGS. 3 and 4, according to the measuring apparatus 100 according to the present embodiment, it is possible to evaluate the thickness of the seamless pipe and the undulation of the inner and outer surfaces.

図5は、図1に示す測定装置100を用いて、小型の実験ミルで製造した外径73mm、肉厚6.6mmの継目無管の肉厚を測定した結果の一例を示す図である。具体的には、図5は、製管された継目無管を軸方向の適宜の箇所で切断し、切断された継目無管毎に、軸方向5mmピッチで測定した肉厚を繋ぎ合わせて図示したものである。図5(a)〜図5(h)は、それぞれ継目無管の周方向に等間隔を隔てた異なる8箇所の部位について肉厚を測定した結果を示す。
図5に示すように、本実施形態に係る測定装置100によれば、継目無管の表面にスケールが形成された状態であっても、管の軸方向及び周方向に正確な肉厚データを容易に且つ大量に測定可能であるため、容易にフーリエ解析等の周波数解析を実行可能である。また、本実施形態に係る測定装置100は、管内に挿入する部材(第1アーム部11、第1接触子2)が単純化されているため、小型の実験ミルで製造した内径の小さな管であっても、肉厚及び内外面変位を測定可能である。
FIG. 5 is a diagram showing an example of the result of measuring the wall thickness of a seamless pipe having an outer diameter of 73 mm and a wall thickness of 6.6 mm manufactured by a small experimental mill using the measuring apparatus 100 shown in FIG. Specifically, FIG. 5 is a diagram in which piped seamless pipes are cut at appropriate positions in the axial direction, and the thicknesses measured at a pitch of 5 mm in the axial direction are connected for each cut seamless pipe. It is a thing. Fig.5 (a)-FIG.5 (h) each show the result of having measured the thickness about eight different site | parts spaced at equal intervals in the circumferential direction of the seamless pipe.
As shown in FIG. 5, according to the measuring apparatus 100 according to the present embodiment, accurate wall thickness data can be obtained in the axial direction and the circumferential direction of the pipe even when the scale is formed on the surface of the seamless pipe. Since it is possible to measure easily and in large quantities, frequency analysis such as Fourier analysis can be easily performed. Moreover, since the member (the 1st arm part 11 and the 1st contactor 2) inserted in a pipe | tube is simplified, the measuring apparatus 100 which concerns on this embodiment is a pipe | tube with a small internal diameter manufactured with the small experiment mill. Even if it is, the thickness and inner / outer surface displacement can be measured.

1・・・コの字状部材
2・・・第1接触子
3・・・接触式変位計
4・・・付勢手段
5・・・変位計
6・・・移動手段
7・・・演算手段
8・・・保持手段
11・・・第1アーム部
12・・・第2アーム部
13・・・連結部材
31・・・軸部材
32・・・第2接触子
100・・・管の肉厚及び内外面変位測定装置(測定装置)
P・・・管
DESCRIPTION OF SYMBOLS 1 ... U-shaped member 2 ... 1st contactor 3 ... Contact-type displacement meter 4 ... Biasing means 5 ... Displacement meter 6 ... Moving means 7 ... Calculation means 8 ... Holding means 11 ... 1st arm part 12 ... 2nd arm part 13 ... Connection member 31 ... Shaft member 32 ... 2nd contactor 100 ... Thickness of a pipe | tube And inner / outer surface displacement measuring device (measuring device)
P ... Tube

Claims (2)

第1アーム部及び該第1アーム部に対向して平行に配置された第2アーム部を具備し、該第1アーム部及び該第2アーム部の一端側が連結されたコの字状部材と、
前記コの字状部材の開放端側において、前記第2アーム部に対向するように前記第1アーム部に取り付けられた第1接触子と、
前記コの字状部材の開放端側において、前記第1接触子に対向するように前記第2アーム部に取り付けられ、前記対向方向に進退動可能な軸部材及び該軸部材の先端に取り付けられた第2接触子を具備し、前記軸部材の進退動量に応じた前記第2接触子の変位を測定する接触式変位計と、
前記第1アーム部が管の内側に位置し、前記第2アーム部が前記管の外側に位置し、なお且つ前記第1アーム部及び前記第2アーム部が前記管の軸方向に対して略平行となるように前記コの字状部材が配置された際に、前記第1アーム部に取り付けられた前記第1接触子が前記管の内面に接触するように、前記コの字状部材を前記第1アーム部及び前記第2アーム部の対向方向に付勢する付勢手段と、
前記コの字状部材の付勢方向の変位を測定する変位計と、
前記コの字状部材、前記第1接触子、前記接触式変位計、前記付勢手段及び前記変位計を前記管の軸方向に一体的に相対移動させる移動手段と、
前記接触式変位計による変位測定値に基づき前記管の肉厚を算出し、前記変位計による変位測定値に基づき前記管の内面の変位を算出し、前記接触式変位計による変位測定値及び前記変位計による変位測定値に基づき前記管の外面の変位を算出する演算手段と、
を備えることを特徴とする管の肉厚及び内外面変位測定装置。
A U-shaped member having a first arm part and a second arm part arranged in parallel to face the first arm part, and having one end side of the first arm part and the second arm part connected to each other; ,
A first contact attached to the first arm portion so as to face the second arm portion on the open end side of the U-shaped member;
On the open end side of the U-shaped member, the shaft member is attached to the second arm portion so as to face the first contactor, and can be moved forward and backward in the facing direction, and attached to the tip of the shaft member. A contact-type displacement meter for measuring the displacement of the second contact according to the amount of advancement and retraction of the shaft member;
The first arm portion is located inside the tube, the second arm portion is located outside the tube, and the first arm portion and the second arm portion are substantially in the axial direction of the tube. When the U-shaped member is arranged so as to be parallel, the U-shaped member is arranged so that the first contact attached to the first arm portion contacts the inner surface of the tube. An urging means for urging the first arm portion and the second arm portion in an opposing direction;
A displacement meter for measuring the displacement in the biasing direction of the U-shaped member;
Moving means for relatively moving the U-shaped member, the first contactor, the contact displacement meter, the biasing means, and the displacement meter integrally in the axial direction of the tube;
The thickness of the tube is calculated based on the displacement measurement value by the contact displacement meter, the displacement of the inner surface of the tube is calculated based on the displacement measurement value by the displacement meter, the displacement measurement value by the contact displacement meter and the A calculation means for calculating a displacement of the outer surface of the pipe based on a displacement measurement value by a displacement meter;
An apparatus for measuring the thickness and inner / outer surface displacement of a tube.
前記演算手段は、前記第1接触子と前記第2接触子との間に厚みAの校正材を挟んで校正した際の前記接触式変位計による変位測定値をUOとし、前記第1接触子が前記管の内面に接触し且つ前記第2接触子が前記管の外面に接触した状態での前記接触式変位計による変位測定値をUOとし、前記変位計による変位測定値をUIとしたとき、以下の式(1)〜(3)によって、前記管の肉厚、前記管の内面の変位及び前記管の外面の変位を算出することを特徴とする請求項1に記載の管の肉厚及び内外面変位測定装置。
管の肉厚=UO−UO+A ・・・(1)
管の内面の変位=UI−B ・・・(2)
管の外面の変位=UI−B+UO−UO+A ・・・(3)
ただし、上記式(2)及び(3)におけるBは、任意の定数を意味する。また、前記接触式変位計による変位測定値は、前記第2接触子が前記第1接触子から離れる方向に変位する場合に大きくなるものとする。
The arithmetic means sets the displacement measurement value by the contact displacement meter when the calibration material having a thickness A is sandwiched between the first contact and the second contact as UO 0, and the first contact a displacement value measured by the contact type displacement gauge in a state in which the child is the contact and the second contact on the inner surface of the tube in contact with the outer surface of the tube and UO n, UI n a displacement value measured by the displacement meter The tube according to claim 1, wherein the thickness of the tube, the displacement of the inner surface of the tube, and the displacement of the outer surface of the tube are calculated by the following formulas (1) to (3). Thickness and inner / outer surface displacement measuring device.
Tube thickness = UO n −UO 0 + A (1)
Displacement of the inner surface of the tube = UI n −B (2)
Displacement of the outer surface of the pipe = UI n −B + UO n −UO 0 + A (3)
However, B in the above formulas (2) and (3) means an arbitrary constant. The displacement measurement value by the contact displacement meter is increased when the second contact is displaced in a direction away from the first contact.
JP2015151041A 2015-07-30 2015-07-30 Tube thickness and inner / outer surface displacement measuring device Active JP6493070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151041A JP6493070B2 (en) 2015-07-30 2015-07-30 Tube thickness and inner / outer surface displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151041A JP6493070B2 (en) 2015-07-30 2015-07-30 Tube thickness and inner / outer surface displacement measuring device

Publications (2)

Publication Number Publication Date
JP2017032354A true JP2017032354A (en) 2017-02-09
JP6493070B2 JP6493070B2 (en) 2019-04-03

Family

ID=57988626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151041A Active JP6493070B2 (en) 2015-07-30 2015-07-30 Tube thickness and inner / outer surface displacement measuring device

Country Status (1)

Country Link
JP (1) JP6493070B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816924A (en) * 2017-10-26 2018-03-20 卢素珠 A kind of petroleum pipeline spot thickness measurement device
CN110411396A (en) * 2019-05-15 2019-11-05 上海大学 A kind of deep hole wall thickness on-line measuring device
CN110895128A (en) * 2019-12-20 2020-03-20 芜湖舍达激光科技有限公司 Laser cladding machine coating detection device
CN112284219A (en) * 2020-12-24 2021-01-29 湖南联智科技股份有限公司 Pipeline size measuring device
CN118009958A (en) * 2024-04-10 2024-05-10 山东伊德欣厨业有限公司 Wall thickness measuring device for kitchen ware production
CN118168491A (en) * 2024-05-14 2024-06-11 山东尚泰新材料有限公司 Quartz crucible bottom thickness measuring instrument and measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238706A (en) * 1984-05-11 1985-11-27 Sumitomo Metal Ind Ltd Measuring instrument of thickness and bend of pipe
JPS60253910A (en) * 1984-05-31 1985-12-14 Sumitomo Metal Ind Ltd Measuring instrument of thickness and bend of pipe
US20140288860A1 (en) * 2013-03-21 2014-09-25 Robert Bosch Gmbh Device for measuring length of electrode plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238706A (en) * 1984-05-11 1985-11-27 Sumitomo Metal Ind Ltd Measuring instrument of thickness and bend of pipe
JPS60253910A (en) * 1984-05-31 1985-12-14 Sumitomo Metal Ind Ltd Measuring instrument of thickness and bend of pipe
US20140288860A1 (en) * 2013-03-21 2014-09-25 Robert Bosch Gmbh Device for measuring length of electrode plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816924A (en) * 2017-10-26 2018-03-20 卢素珠 A kind of petroleum pipeline spot thickness measurement device
CN107816924B (en) * 2017-10-26 2019-11-01 泉州市雅情机械科技有限公司 A kind of petroleum pipeline spot thickness measurement device
CN110411396A (en) * 2019-05-15 2019-11-05 上海大学 A kind of deep hole wall thickness on-line measuring device
CN110895128A (en) * 2019-12-20 2020-03-20 芜湖舍达激光科技有限公司 Laser cladding machine coating detection device
CN110895128B (en) * 2019-12-20 2021-03-12 芜湖舍达激光科技有限公司 Laser cladding machine coating detection device
CN112284219A (en) * 2020-12-24 2021-01-29 湖南联智科技股份有限公司 Pipeline size measuring device
CN112284219B (en) * 2020-12-24 2021-04-02 湖南联智科技股份有限公司 Pipeline size measuring device
CN118009958A (en) * 2024-04-10 2024-05-10 山东伊德欣厨业有限公司 Wall thickness measuring device for kitchen ware production
CN118009958B (en) * 2024-04-10 2024-05-31 山东伊德欣厨业有限公司 Wall thickness measuring device for kitchen ware production
CN118168491A (en) * 2024-05-14 2024-06-11 山东尚泰新材料有限公司 Quartz crucible bottom thickness measuring instrument and measuring method

Also Published As

Publication number Publication date
JP6493070B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6493070B2 (en) Tube thickness and inner / outer surface displacement measuring device
CN101796373B (en) Method for the complete detection of the geometry of test objects by means of ultrasound
CN103692292B (en) The method carrying out workpiece size on-line measurement on lathe
CN203337062U (en) Inner diameter measuring device
CN202533417U (en) Reference block for detecting incomplete penetration width of T-shaped joint by straight probe
JP2006153546A (en) Contact type steel pipe dimension-measuring device
CN206160911U (en) Measurement device for be used for part centre bore degree of depth
CN202083676U (en) Steel tube ultrasonic wave flaw detection comparison sample and measuring device
CN204085406U (en) A kind of bulk pick-up unit for stake body
CN203744894U (en) Detector for measuring inner and outer diameters of large-diameter bearing
CN102840811A (en) Measuring device for measuring outer ring channel of large-sized bearing
CN202109898U (en) Digital outside and inside diameter measuring instrument
CN105737718A (en) Detection apparatus for parallelism degree between workpiece hole and machine tool guide rail
CN201155962Y (en) Off-grade metal pipes detection device
CN103697795A (en) Gear ring inner tooth inter-bar spacing measuring gauge
CN101398296B (en) Standard gauge for calibrating contourgraph
CN207215170U (en) A kind of full-scale aluminium drill pipe detecting system
CN103278107B (en) The device and method of laser scanning grating compensating measure gear pattern
CN203719598U (en) Hand-held male spline M value special-purpose measuring instrument
CN103822754B (en) A kind of compressive stress generating means for stress measurement system calibration
CN108871152A (en) A kind of internal diameter of the pipeline measuring device and method
CN203605876U (en) Tool for measuring spacing between inner toothed rods of tooth ring
TWM462360U (en) Vertical axis detection device
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
CN106705809B (en) Go-no-go gauge for measuring appearance of product with circular section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350