JP2017028446A - 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 - Google Patents
画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 Download PDFInfo
- Publication number
- JP2017028446A JP2017028446A JP2015144285A JP2015144285A JP2017028446A JP 2017028446 A JP2017028446 A JP 2017028446A JP 2015144285 A JP2015144285 A JP 2015144285A JP 2015144285 A JP2015144285 A JP 2015144285A JP 2017028446 A JP2017028446 A JP 2017028446A
- Authority
- JP
- Japan
- Prior art keywords
- image
- display
- virtual
- display surface
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 35
- 230000005540 biological transmission Effects 0.000 title description 6
- 230000000007 visual effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 13
- 208000013057 hereditary mucoepithelial dysplasia Diseases 0.000 description 25
- 230000014509 gene expression Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000009877 rendering Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000000470 constituent Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 206010052143 Ocular discomfort Diseases 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B27/0103—Head-up displays characterised by optical features comprising holographic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0176—Head mounted characterised by mechanical features
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
- G09G3/003—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/128—Adjusting depth or disparity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/398—Synchronisation thereof; Control thereof
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0132—Head-up displays characterised by optical features comprising binocular systems
- G02B2027/0134—Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0138—Head-up displays characterised by optical features comprising image capture systems, e.g. camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/014—Head-up displays characterised by optical features comprising information/image processing systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
- G02B2027/0174—Head mounted characterised by optical features holographic
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0187—Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- User Interface Of Digital Computer (AREA)
- Controls And Circuits For Display Device (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Processing Or Creating Images (AREA)
Abstract
【課題】画像提示装置が提示する画像の立体感を向上する。【解決手段】表示部318は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成される。凸レンズ312は、表示部318に表示された画像の虚像をユーザの視野に提示する。制御部10は、表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、複数の表示面それぞれの位置を調整することで、凸レンズ312により提示される虚像の位置を画素単位で調整する。【選択図】図10
Description
この発明は、データ処理技術に関し、特に画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法に関する。
近年、立体映像を提示するための技術開発が進み、奥行きを持った立体映像を提示することが可能なヘッドマウントディスプレイ(Head Mounted Display; 以下「HMD」と記載する。)が普及してきている。このようなHMDの中には、HMDを装着するユーザの視界を完全に覆って遮蔽し、映像を観察するユーザに対して深い没入感を与えることが可能な遮蔽型HMDが存在する。また別の種類のHMDとして、光学透過型HMDも開発されている。光学透過型HMDは、ホログラフィック素子やハーフミラー等を用いて、仮想的な立体映像であるAR(Augmented Reality)イメージをユーザに提示しつつ、かつユーザにHMDの外の実空間の様子をシースルーで提示することができる画像提示装置である。
HMDを装着したユーザに与える視覚的な違和感を軽減し、より深い没入感を与えるために、HMDが提示する立体映像の立体感を高めることが求められている。また、光学透過型HMDでARイメージを提示する場合には、ARイメージは実空間に重畳して表示される。このため、特に立体的な物体をARイメージとして提示する場合には、光学透過型HMDのユーザにとって実空間の物体と違和感なく調和して見えることが好ましく、ARイメージの立体感を向上させる技術が望まれている。
本発明は、本発明者の上記認識にもとづきなされたものであり、主たる目的は、画像提示装置が提示する画像の立体感を向上させる技術を提供することにある。
上記課題を解決するために、本発明のある態様の画像提示装置は、画像を表示する表示部と、制御部と、を備える。表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、制御部は、表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、複数の表示面それぞれの位置を調整する。
本発明の別の態様もまた、画像提示装置である。この装置は、画像を表示する表示部と、表示部に表示された画像の虚像をユーザの視野に提示する光学素子と、制御部と、を備える。表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、制御部は、表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、複数の表示面それぞれの位置を調整することで、光学素子により提示される虚像の位置を画素単位で調整する。
本発明のさらに別の態様は、画像提示方法である。この方法は、表示部を備える画像提示装置が実行する方法であって、表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、複数の表示面それぞれの位置を調整するステップと、各表示面の位置が調整された表示部に表示対象の画像を表示させるステップと、を含む。
本発明のさらに別の態様もまた、画像提示方法である。この方法は、表示部と光学素子とを備える画像提示装置が実行する方法であって、表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、光学素子は、表示部に表示された画像の虚像をユーザの視野に提示するものであり、表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、複数の表示面それぞれの位置を調整するステップと、各表示面の位置が調整された表示部に表示対象の画像を表示させることにより、光学素子を介して、当該画像内の各画素の虚像を奥行き情報に基づく位置に提示するステップと、を含む。
なお、以上の構成要素の任意の組合せ、本発明の表現を、システム、プログラム、プログラムを格納した記録媒体などの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、画像提示装置が提示する画像の立体感を向上することができる。
まず概要を説明する。光は、振幅(強さ)、波長(色)、向き(光線方向)の情報を含む。通常のディスプレイでは、光の振幅と波長は表現できるが光線方向を表現することは困難である。そのため、ディスプレイ上の画像を見る人に、その画像に写っている物体(オブジェクト)の奥行きを十分に知覚させることは困難であった。本発明者は、光が持つ光線方向の情報もディスプレイで再現できれば、ディスプレイ上の画像を見る人に現実と変わらない知覚を与えることができると考えた。
光の光線方向を再現する方式として、LEDアレイを回転させ、空間に描画する方式や、マイクロレンズアレイを利用し、複数視点のマルチフォーカスを実現する方式が存在する。しかし、前者は、回転による機械の摩耗や音の発生、信頼性が低いという問題があった。また後者は、解像度が(1/視点数)に低下し、また描画処理の負荷が高いという問題があった。
以下の第1から第3の実施の形態では、光の光線方向を再現するための改善された方式として、ディスプレイの表面を画素毎にユーザの視線方向に変位させる(言わば凸凹させる)方式を提案する。ユーザの視線方向は、Z軸方向と言え、奥行き方向とも言える。
具体的には第1の実施の形態(以下「第1実施形態」と呼ぶ。)では、ディスプレイの画面を形成する複数の表示部材であり、ディスプレイで表示対象となる画像内の複数の画素に対応する複数の表示部材を、ディスプレイの画面に対して垂直方向に移動させる。この方式によると、2次元画像とその画像に含まれるオブジェクトの奥行き情報により、画像内のオブジェクトが出す光の光線方向を現実に即して再現でき、また画素毎に距離(奥行き)を表現できる。これにより、立体感が向上した画像をユーザに提示できる。
また第2の実施の形態(以下「第2実施形態」と呼ぶ。)では、画素毎の変位が小さくてすむようにレンズで拡大する方式を提案する。具体的には、光学素子を介して、ディスプレイに表示された画像の虚像をユーザに提示し、ユーザに知覚させる虚像までの距離を画素毎に変える。この方式によると、より一層立体感が向上した画像をユーザに提示できる。さらに第3の実施の形態(以下「第3実施形態」と呼ぶ。)では、動的に変位する面にプロジェクションマッピングする例を示す。後述するが、第2および第3実施形態の好適な例としてはHMDを示す。
(第1実施形態)
図1は、第1実施形態の画像提示装置100の外観を模式的に示す。第1実施形態の画像提示装置100は、能動的・自律的に画像を表示する画面102を備えるディスプレイ装置である。例えばLEDディスプレイやOLEDディスプレイであってもよい。また、数十インチ等、比較的大きいサイズのディスプレイ装置(例えばテレビ受像機等)であってもよい。
図1は、第1実施形態の画像提示装置100の外観を模式的に示す。第1実施形態の画像提示装置100は、能動的・自律的に画像を表示する画面102を備えるディスプレイ装置である。例えばLEDディスプレイやOLEDディスプレイであってもよい。また、数十インチ等、比較的大きいサイズのディスプレイ装置(例えばテレビ受像機等)であってもよい。
図2の(a)(b)は、表示部の構成を示す斜視図である。表示部318は、画像提示装置100の画面102を構成する。同図では、左右方向をZ軸としており、すなわち、同図における表示部318の左側面が画像提示装置100の画面102にあたる。表示部318は、画面102を構成する領域(図の左側面)に、複数の表示面326を含む。画面102を構成する領域は、典型的には画像提示装置100を見るユーザと正対する面であり、言い換えれば、ユーザの視線に直交する面である。複数の表示面326は、表示対象となる画像内の複数の画素に対応する。言い換えれば、複数の表示面326は、画像提示装置100の画面102における複数の画素に対応する。
実施の形態では、表示部318(画面102)に表示される画像内の画素、言い換えれば画面102の画素と、表示面326とは1対1に対応することとする。すなわち表示部318(画面102)には、表示される画像の画素数分の表示面326が設けられ、言い換えれば、画面102の画素数分の表示面326が設けられる。図2の(a)および(b)では便宜的に16個の表示面を示しているが、実際には微細かつ多量の表示面326が設けられ、例えば(1440×1080)個の表示面326が設けられてもよい。
複数の表示面326のそれぞれは、画面102(表示面)に対する垂直方向の位置が変更自在に構成される。表示面に対する垂直方向とは、Z軸方向、すなわちユーザの視線方向とも言える。ここで図2(a)は、全ての表示面326の位置が基準位置(初期位置)にある状態を示している。図2(b)は、一部の表示面326の位置を基準位置より前方に突出させた状態を示している。言い換えれば、図2(b)は、一部の表示面326の位置をユーザの視点側に近づけた状態を示している。
実施の形態の表示部318は、MEMS(Micro Electro Mechanical Systems)を含む。表示部318では、MEMSのマイクロアクチュエータにより複数の表示面326が互いに独立して駆動され、各表示面326のZ軸方向の位置が互いに独立して設定される。複数の表示面326の位置制御は、点字ディスプレイや点字プリンタにおける点字ドットを制御する技術と、MEMSとの組み合わせにより実現されてもよい。また、触覚ディスプレイにおける微少突起の状態(突出および埋没)を制御する技術と、MEMSとの組み合わせにより実現されてもよい。個々の画素に対応する各表示面326は、三原色の発光素子を含み、マイクロアクチュエータにより互いに独立して駆動される。
実施の形態では、図2(b)で示すように、表示面326の位置を基準位置より前方へ突出させることにより各表示面326の位置を調整するため、マイクロアクチュエータとして圧電アクチュエータを使用する。変形例として、表示面326の位置を基準位置より後方へ移動させる(ユーザの視点から離れるように調整する)ことにより各表示面326の位置を調整してもよい。その場合、マイクロアクチュエータとして静電アクチュエータを使用してもよい。圧電アクチュエータや静電アクチュエータは小型化に向くメリットがあるが、他の態様として電磁アクチュエータや熱アクチュエータを使用してもよい。
図3は、第1実施形態の画像提示装置100の機能構成を示すブロック図である。本明細書のブロック図で示す各ブロックは、画像提示装置100の筐体内に実装された各種モジュールによって実現される。例えばハードウェア的には、コンピュータのCPUやメモリをはじめとする素子や電子回路、機械装置で実現でき、ソフトウェア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
例えば、図3の制御部10の各ブロックに対応するモジュールを含むコンピュータプログラムが、DVD等の記録媒体に格納されて流通し、または所定のサーバからダウンロードされて、画像提示装置100にインストールされてもよい。また、画像提示装置100のCPUやGPUがそのコンピュータプログラムをメインメモリに読み出し、実行することで、図3の制御部10の各機能が発揮されてもよい。
画像提示装置100は、制御部10、画像提示部14、画像記憶部16を備える。画像記憶部16は、ユーザに提示すべき静止画や動画(映像)等の画像データを記憶する記憶領域である。DVD等の各種の記録メディアやHDD等のストレージにより実現されてもよい。画像記憶部16は、さらに、画像に写っているヒトや建築物、背景、風景等の各種オブジェクトの奥行き情報を記憶する。
奥行き情報は、例えばある被写体が写っている画像をユーザに提示したときに、ユーザがその被写体を見て認識される距離感を反映する情報である。そのため、オブジェクトの奥行き情報の一例として、複数のオブジェクトが撮像されたときの、カメラから各オブジェクトまでの距離を含む。また、オブジェクトの奥行き情報は、オブジェクトの各部分(例えば各画素に対応する部分)の奥行き方向での絶対位置、例えば所定の基準位置(原点等)からの距離を示す情報であってもよい。また、奥行き情報は、オブジェクトの各部分間の相対位置、例えば座標の差異を示す情報であってもよく、位置の前後(視点からの距離の長短)を示す情報であってもよい。
第1実施形態では、フレーム単位の画像毎に奥行き情報が予め定められ、フレーム単位の画像と奥行き情報の組み合わせが対応付けられて画像記憶部16に格納されていることとする。変形例として、表示対象となる画像および奥行き情報が放送波やインターネットを介して画像提示装置100へ提供されてもよい。また、画像提示装置100の制御部10は、静的に保持された、または動的に提供された画像を解析して、その画像に含まれる各オブジェクトの奥行き情報を生成する奥行き情報生成部をさらに備えてもよい。
画像提示部14は、画像記憶部16に記憶された画像を画面102に表示させる。画像提示部14は表示部318を含む。制御部10は、ユーザに画像を提示するためのデータ処理を実行する。具体的には、制御部10は、提示対象画像に写っているオブジェクトの奥行き情報に基づいて、提示対象画像内の画素単位で、表示部318における複数の表示面326のZ軸方向の位置を調整する。制御部10は、画像取得部34、表示面位置決定部30、位置制御部32、表示制御部26を含む。
画像取得部34は、所定のレート(画面102のリフレッシュレート等)にて画像記憶部16に格納された画像データと、その画像データに対応付けられた奥行き情報を読み込む。画像取得部34は、画像データを表示制御部26へ出力し、奥行き情報を表示面位置決定部30へ出力する。既述したように、放送波やインターネットを介して画像データや奥行き情報が提供される場合は、画像取得部34は、不図示のアンテナやネットワークアダプタを介して、画像データや奥行き情報を取得してもよい。
表示面位置決定部30は、表示対象画像に含まれる各オブジェクトの奥行き情報に基づいて、表示部318が含む複数の表示面326それぞれの位置、具体的にはZ軸方向の位置を決定する。言い換えれば、表示対象画像の各部分領域の画素に対応する表示面326それぞれの位置を決定する。ここでZ軸方向の位置は、基準位置からの変位量(移動量)であってもよい。
具体的には、表示面位置決定部30は、実空間または仮想空間におけるカメラからの距離が近い実空間または仮想空間におけるオブジェクトの部分に該当する第1画素と、カメラからの距離が遠いオブジェクトの部分に該当する第2画素について、第1画素に対応する表示面326の位置が、第2画素に対応する表示面326の位置より前方になるように、各表示面326の位置を決定する。前方とは、Z軸方向におけるユーザ側であり、典型的には、画像提示装置100に正対するユーザの視点308側である。
また、表示面位置決定部30は、相対的に前方に位置するオブジェクトの部分に対応する画素ほど、その画素に対応する表示面326の位置が相対的に前方になるように、個々の表示面326の位置を決定する。言い換えれば、相対的に後方に位置するオブジェクトの部分に対応する画素ほど、その画素に対応する表示面326の位置が相対的に後方になるように、個々の表示面326の位置を決定する。表示面位置決定部30は、個々の表示面326の位置の情報として、予め定められた基準位置(初期位置)からの距離を示す情報や、移動量を示す情報を出力してもよい。
位置制御部32は、表示部318上の複数の表示面326それぞれのZ軸方向の位置を、表示面位置決定部30により決定された位置へ制御する。例えば、位置制御部32は、表示部318の各表示面326を動作させるための信号であり、すなわち各表示面326を駆動させるMEMSアクチュエータを制御するための所定の信号を表示部318へ出力する。この信号には、表示面位置決定部30により決定された各表示面326のZ軸方向の位置を示す情報が含まれる。例えば、基準位置からの変位量(移動量)を示す情報が含まれる。
表示部318は、位置制御部32から送信された信号に基づいて個々の表示面326のZ軸方向の位置を変化させる。例えば、複数の表示面326を駆動する複数のアクチュエータを制御して、個々の表示面326を、初期位置またはそれまでの位置から信号で指定された位置まで移動させる。
表示制御部26は、画像取得部34から出力された画像データを表示部318へ出力し、様々なオブジェクトを含む画像を表示部318に表示させる。例えば、表示制御部26は、画像を構成する個々の画素値を表示部318へ出力し、表示部318は、個々の画素値に応じた態様で個々の表示面326を発光させる。なお、画像取得部34または表示制御部26は、デコード処理等、画像の表示に必要な他の処理を適宜実行してもよい。
以上の構成による画像提示装置100の動作を説明する。
図4は、第1実施形態の画像提示装置100の動作を示すフローチャートである。同図に示す処理は、画像記憶部16に記憶された画像の表示を指示するユーザ操作が画像提示装置100に入力された場合に開始されてもよい。また、画像や奥行き情報が動的に提供される場合は、ユーザにより番組(チャンネル)が選択され、選択された番組を表示する際に開始されてもよい。なお、画像提示装置100は、S10〜S18の処理を、予め定められたリフレッシュレート(例えば120Hz)に応じて繰り返す。
図4は、第1実施形態の画像提示装置100の動作を示すフローチャートである。同図に示す処理は、画像記憶部16に記憶された画像の表示を指示するユーザ操作が画像提示装置100に入力された場合に開始されてもよい。また、画像や奥行き情報が動的に提供される場合は、ユーザにより番組(チャンネル)が選択され、選択された番組を表示する際に開始されてもよい。なお、画像提示装置100は、S10〜S18の処理を、予め定められたリフレッシュレート(例えば120Hz)に応じて繰り返す。
画像取得部34は、表示対象となる画像とその画像に対応する奥行き情報を画像記憶部16から取得する(S10)。表示面位置決定部30は、画像取得部34により取得された奥行き情報にしたがって、表示対象画像内の各画素に対応する各表示面326のZ軸上の位置を決定する(S12)。位置制御部32は、表示面位置決定部30の決定にしたがって、表示部318における各表示面326のZ軸方向の位置を調整する(S14)。各表示面326の位置調整が完了すると、位置制御部32は表示制御部26に表示を指示し、表示制御部26は、画像取得部34により生成された画像を表示部318に表示させる(S16)。
第1実施形態の画像提示装置100によると、表示対象画像内の複数の部分のうち、実空間または仮想空間におけるカメラに近い部分を相対的にユーザから近い位置で表示させ、カメラに遠い部分を相対的にユーザから遠い位置で表示させることができる。これにより、画像内の各オブジェクト(およびオブジェクトの各部分)を、深さ方向の情報を反映した態様で提示でき、実空間または仮想空間における奥行きの再現性を向上できる。言い換えれば、光が持つ光線方向の情報の再現性を向上できる。この結果、立体感が向上した画像を提示するディスプレイを実現できる。また、単眼であっても画像を見るユーザに立体感を抱かせることができる。
(第2実施形態)
第2実施形態の画像提示装置100は、Z軸方向に変位するデバイス(表示部318)を適用したHMDである。ユーザに提示する画像をレンズで拡大することにより、各表示面326の変位量を抑えつつ、画像の立体感を一層向上させることができる。以下、第1実施形態で説明した部材と同一または対応する部材には同じ符号を付している。第1実施形態と重複する説明は適宜省略する。
第2実施形態の画像提示装置100は、Z軸方向に変位するデバイス(表示部318)を適用したHMDである。ユーザに提示する画像をレンズで拡大することにより、各表示面326の変位量を抑えつつ、画像の立体感を一層向上させることができる。以下、第1実施形態で説明した部材と同一または対応する部材には同じ符号を付している。第1実施形態と重複する説明は適宜省略する。
図5は、第2実施形態の画像提示装置100の外観を模式的に示す。画像提示装置100は、提示部120、撮像素子140、および種々のモジュールを収納する筐体160を含む。第2実施形態の画像提示装置100は、実空間中にARイメージを重畳して表示する光学透過型HMDとする。ただし、実施の形態の画像提示技術は遮蔽型HMDにも適用可能である。例えば、第1実施形態と同様の各種映像コンテンツを表示する場合にも適用できる。また、VR(Virtual Reality)イメージを表示する場合や、3D映画のように左目用の視差画像と右目用の視差画像を含む立体映像を表示する場合にも適用できる。
提示部120は、立体的な映像をユーザの目に提示する。提示部120は、左目用の視差画像と右目用の視差画像とを個別にユーザの目に提示してもよい。撮像素子140は、画像提示装置100を装着するユーザの視野を含む領域に存在する被写体を撮像する。このため撮像素子140は、画像提示装置100をユーザが装着したとき、ユーザの眉間のあたりに位置するように筐体160上に配置される。撮像素子140は、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の既知の固体撮像素子を用いて実現できる。
筐体160は、画像提示装置100におけるフレームの役割を果たすとともに、画像提示装置100が利用する様々なモジュール(図示せず)を収納する。画像提示装置100は、ホログラム導光板を含む光学部品、これらの光学部品の位置を変更するためのモータ、その他Wi−Fi(登録商標)モジュール等の通信モジュール、電子コンパス、加速度センサ、傾きセンサ、GPS(Global Positioning System)センサ、照度センサ等のモジュールを含んでもよい。また、これらのモジュールを制御するためのプロセッサ(例えばCPUやGPU)、プロセッサの作業領域となるメモリ等を含んでもよい。これらのモジュールは例示であり、画像提示装置100はこれらのモジュールを必ずしも全て搭載する必要はない。いずれのモジュールを搭載するかは、画像提示装置100が想定する利用シーンに応じて決定すればよい。
図5は、画像提示装置100の例としてめがね型のHMDを示している。画像提示装置100の形状は、この他にも帽子形状、ユーザの頭部を一周して固定されるベルト形状、ユーザの頭部全体を覆うヘルメット形状等さまざまなバリエーションが考えられるが、いずれの形状の画像提示装置100も本発明の実施の形態に含まれることは、当業者であれば容易に理解されることである。
次に、図6〜図9を参照して、第2実施形態の画像提示装置100が提示する画像の立体感を向上させる原理を説明する。
図6の(a)および(b)は、仮想的な3次元空間のオブジェクトと、実空間に重畳された当該オブジェクトとの関係を模式的に示す。図2(a)は、仮想的な3次元空間(以下「仮想空間」と呼ぶ。)に設定された仮想的なカメラである仮想カメラ300が、仮想的なオブジェクトである仮想オブジェクト304を撮影している様子を示している。仮想空間には、仮想オブジェクト304の位置座標を規定するための仮想的な3次元直交座標系(以下「仮想座標系302」と呼ぶ。)が設定されている。
仮想カメラ300は仮想的な両眼カメラである。仮想カメラ300は、ユーザの左目用の視差画像と右目用の視差画像とを生成する。仮想カメラ300から撮影される仮想オブジェクト304の像は、仮想空間における仮想カメラ300から仮想オブジェクト304までの距離に応じて変化する。仮想オブジェクト304は、ゲーム等のアプリケーションがユーザに提示する様々なモノを含み、例えば仮想空間に存在するヒト(キャラクタ等)、建築物、背景、風景等を含む。
図6(b)は、仮想空間における仮想カメラ300から見た場合における仮想オブジェクト304の像を、実空間に重畳して表示する様子を示す。図6(b)において、机310は実空間に存在する実物の机である。画像提示装置100を装着したユーザが、左目308aおよび右目308bで机310を観察すると、ユーザには机310の上に仮想オブジェクト304が置かれているように観察される。このように、実空間に存在する実物に重畳して表示する画像がARイメージである。以下本明細書において、ユーザの左目308aと右目308bとを特に区別しない場合は、単に「視点308」と記載する。
仮想空間と同様に、実空間にも仮想オブジェクト304の位置座標を規定するための3次元直交座標系(以下「実座標系306」と呼ぶ。)が設定されている。画像提示装置100は、仮想座標系302と実座標系306とを参照して、仮想空間における仮想カメラ300から仮想オブジェクト304までの距離に応じて、実空間における仮想オブジェクト304の提示位置を変更する。より具体的には、画像提示装置100は、仮想空間における仮想カメラ300から仮想オブジェクト304までの距離が長いほど、現実空間において視点308から遠い位置に仮想オブジェクト304の虚像が配置されるようにする。
図7は、凸レンズに係るレンズの公式を説明する図である。より具体的に、図7は、凸レンズ312の焦点の内側に物体がある場合における、物体314とその虚像316との関係を説明する図である。図7に示すように、視点308の視線方向にZ軸が定められており、Z軸上に凸レンズ312の光軸とZ軸とが一致するようにして凸レンズ312が配置されている。凸レンズ312の焦点距離はFであり、物体314が、凸レンズ312に対して視点308の反対側に、凸レンズ312から距離A(A<F)離れて配置されている。すなわち、図3において、物体314は凸レンズ312の焦点の内側に配置されている。このとき、視点308から物体314を眺めると、物体314は凸レンズ312から距離B(F<B)離れた位置に、虚像316として観察される。
このとき、距離A、距離B、および焦点距離Fの関係は、以下の式(1)で示す既知のレンズの公式によって規定される。
1/A−1/B=1/F ・・・式(1)
また、物体314の大きさP(図3における実線の矢印の長さ)に対する虚像316の大きさQ(図3における破線の矢印の長さ)の割合、すなわち倍率m=Q/Pは、以下の式(2)で表される。
m=B/A ・・・式(2)
1/A−1/B=1/F ・・・式(1)
また、物体314の大きさP(図3における実線の矢印の長さ)に対する虚像316の大きさQ(図3における破線の矢印の長さ)の割合、すなわち倍率m=Q/Pは、以下の式(2)で表される。
m=B/A ・・・式(2)
式(1)は、凸レンズ312に対して視点308の反対側に、凸レンズ312から距離B離れた位置に虚像316を提示するための、物体314の距離Aと焦点距離Fとが満たすべき関係を示していると捉えることもできる。例えば、凸レンズ312の焦点距離Fが固定されている場合を考える。この場合、式(1)を変形することにより、距離Aを距離Bの関数として、以下の式(3)のように表すことができる。
A(B)=FB/(F+B)=F/(1+F/B) ・・・式(3)
A(B)=FB/(F+B)=F/(1+F/B) ・・・式(3)
式(3)は、凸レンズの焦点距離がFのとき、距離Bの位置に虚像316を提示するために、物体314を配置すべき位置を示している。式(3)から明らかなように、距離Bが大きくなるほど、距離Aも大きくなる。
また、式(2)に式(1)を代入して変形すると、距離Bの位置にQの大きさの虚像316を提示するために物体314がとるべき大きさPを、以下の式(4)のように表すことができる。
P(B,Q)=Q×F/(B+F) ・・・式(4)
式(4)は、物体314がとるべき大きさPを、距離Bと虚像316の大きさQとの関数として表す式である。式(4)は、虚像316の大きさQが大きいほど、物体314の大きさPも大きくなることを示している。また、虚像316の距離Bが大きいほど、物体314の大きさPが小さくなることも示している。
P(B,Q)=Q×F/(B+F) ・・・式(4)
式(4)は、物体314がとるべき大きさPを、距離Bと虚像316の大きさQとの関数として表す式である。式(4)は、虚像316の大きさQが大きいほど、物体314の大きさPも大きくなることを示している。また、虚像316の距離Bが大きいほど、物体314の大きさPが小さくなることも示している。
図8は、第2実施形態の画像提示装置100が備える光学系を模式的に示す。画像提示装置100は、筐体160内に、凸レンズ312と表示部318を備える。同図の表示部318は、各種のオブジェクトが写った画像(ARイメージ)を表示しつつ、装置外部からの可視光を透過する透過型OLEDディスプレイとする。表示部318として非透過型のディスプレイを使用する場合は、後述する図12の構成を採用してもよい。
図8では、視点308の視線方向にZ軸が定められており、Z軸上に凸レンズ312の光軸とZ軸とが一致するようにして凸レンズ312が配置されている。凸レンズ312の焦点距離はFであり、図8において、ふたつの点Fはそれぞれ凸レンズ312の焦点を表す。図8に示すように、表示部318は、凸レンズ312に対して視点308の反対側において、凸レンズ312の焦点の内側に配置される。
このように、視点308と表示部318の間には凸レンズ312が存在する。したがって、視点308から表示部318を見ると、表示部318が表示する画像は、式(1)および式(2)にしたがう虚像として観察される。この意味で、凸レンズ312は、表示部318が表示する画像の虚像を生成する光学素子として機能する。また、式(3)で示したように、表示部318の各表示面326のZ軸方向の位置が変更されることで、各表示面326が示す画像(画素)の虚像が異なる位置で観察されることになる。
また画像提示装置100は、図5の提示部120を介して、装置外部(ユーザの前方)からの可視光を透過的にユーザの目に届ける光学透過型HMDである。したがって、ユーザの目には、装置外部の実空間の様子(例えば実空間の物体)と、表示部318が表示する画像の虚像(例えば仮想オブジェクト304の虚像)とが重畳した状態で観察される。
図9は、異なる位置に同じ大きさの虚像を提示するために、表示部318が表示すべき画像を示す。図9は、3つの虚像316a、316b、および316cが、凸レンズ312の光学中心から距離B1、B2、およびB3の距離に、同じ大きさQで提示されている場合の例を示している。また図9において、画像314a、314b、および314cは、それぞれ虚像316a、316b、および316cに対応する画像である。画像314a、314b、および314cは、表示部318によって表示される。なお、式(1)に示すレンズの公式に関し、図7における物体314が図9における表示部318が表示する画像に対応する。そこで、図9における画像も、図7における物体314と同様に、符号314を付す。
より具体的には、画像314a、314b、および314cは、それぞれ凸レンズ312の光学中心からA1、A2、およびA3離れた位置にある表示面326によって表示される。ここで、A1、A2、およびA3は、式(3)より、それぞれ以下の式で与えられる。
A1=F/(1+F/B1)
A2=F/(1+F/B2)
A3=F/(1+F/B3)
A1=F/(1+F/B1)
A2=F/(1+F/B2)
A3=F/(1+F/B3)
また、表示すべき画像314a、314b、および314cの大きさP1、P2、およびP3は、虚像316の大きさQを用いて、式(4)よりそれぞれ以下の式で与えられる。
P1=Q×F/(B1+F)
P2=Q×F/(B2+F)
P3=Q×F/(B3+F)
P1=Q×F/(B1+F)
P2=Q×F/(B2+F)
P3=Q×F/(B3+F)
このように、表示部318における画像314の表示位置を変更すること、言い換えれば、画像を表示させる表示面326のZ軸方向の位置を変更することで、ユーザに提示する虚像316の位置を変更することができる。また、表示部318に表示する画像の大きさを変更することで、提示すべき虚像316の大きさを制御することもできる。
なお、図8に示した光学系の構成は一例であり、異なる構成の光学系を介して、表示部318に表示された画像の虚像をユーザに提示してもよい。例えば、虚像を提示する光学素子として非球面レンズやプリズム等を使用してもよい。図12に関連して後述する第3実施形態の光学系でも同様である。虚像を提示する光学素子としては、焦点距離が短い(例えば数mm程度の)光学素子が望ましい。表示面326の変位量、言い換えれば、必要となるZ軸方向への移動距離を短くでき、HMDのコンパクト化、省電力化を実現しやすいからである。
以上、物体314が凸レンズ312の焦点Fの内側にある場合における、物体314の位置と虚像316の位置との関係、および物体314の大きさと虚像316の大きさとの関係について説明した。続いて、第2実施形態に係る画像提示装置100の機能構成について説明する。第2実施形態に係る画像提示装置100は、上述した画像314と虚像316との関係を利用する。
図10は、第2実施形態の画像提示装置100の機能構成を示すブロック図である。画像提示装置100は、制御部10、オブジェクト記憶部12、画像提示部14を備える。制御部10は、ユーザにARイメージを提示するための各種データ処理を実行する。画像提示部14は、制御部10によりレンダリングされた画像(ARイメージ)を、画像提示装置100を装着するユーザが観察する実空間に重畳して提示する。具体的には、仮想オブジェクト304を含む画像の虚像316を実空間に重畳して提示する。制御部10は、ユーザに提示する画像に写っている仮想オブジェクト304の奥行き情報に基づいて、画像提示部14が虚像316を提示する位置を調整する。
既述したように、奥行き情報は、例えばある被写体が写っている画像をユーザに提示したときに、ユーザがその被写体を見て認識される距離感を反映する情報である。そのため、仮想オブジェクト304の奥行き情報の一例として、仮想オブジェクト304が撮像されたときの、仮想カメラ300から仮想オブジェクト304までの距離を含む。また、仮想オブジェクト304の奥行き情報は、仮想オブジェクト304の各部分(例えば各画素に対応する部分)の奥行き方向での絶対位置や相対位置を示す情報であってもよい。
制御部10は、仮想空間における仮想カメラ300から仮想オブジェクト304までの距離が近い場合は、遠い場合と比較して、ユーザから見て近い位置に、仮想オブジェクト304の画像の虚像316を提示させるように画像提示部14を制御する。詳細は後述するが、制御部10は、表示対象の画像に含まれる仮想オブジェクト304の奥行き情報に基づいて、複数の表示面326それぞれの位置を調整することで、凸レンズ312を介した虚像316の提示位置を画素単位で調整する。
また制御部10は、仮想カメラ300からの距離が近い仮想オブジェクト304の部分に該当する第1画素と、仮想カメラ300からの距離が遠い仮想オブジェクト304の部分に該当する第2画素について、第1画素に対応する表示面326と凸レンズ312との距離を、第2画素に対応する表示面326と凸レンズ312との距離より短くするように調整する。また制御部10は、上記第1画素の虚像316が、上記第2画素の虚像316よりも前方に提示されるように、上記第1画素と上記第2画素の少なくとも一方に対応する表示面326の位置を調整する。
画像提示部14は、表示部318と凸レンズ312を含む。第2実施形態の表示部318も、第1実施形態と同様に、能動的・自律的に画像を表示するディスプレイである。例えば、発光ダイオード(LED)ディスプレイや、有機発光ダイオード(OLED)ディスプレイである。また表示部318は、画像内の複数の画素に対応する複数の表示面326を含む。第2実施形態では表示画像が拡大された虚像をユーザへ提示するため、小型のディスプレイでよく、また各表示面326の変位量も微少でよい。凸レンズ312は、表示部318の各表示面に表示された画像の虚像をユーザの視野に提示する。
オブジェクト記憶部12は、画像提示装置100のユーザに提示すべきARイメージの元になる仮想オブジェクト304のデータを記憶する記憶領域である。仮想オブジェクト304のデータは、例えば3次元のボクセル(voxel)データで構成される。
制御部10は、オブジェクト設定部20、仮想カメラ設定部22、レンダリング部24、表示制御部26、虚像位置決定部28、表示面位置決定部30、位置制御部32を含む。
オブジェクト設定部20は、オブジェクト記憶部12から仮想オブジェクト304のボクセルデータを読み出し、仮想空間内に仮想オブジェクト304を設定する。例えば、図6(a)で示した仮想座標系302に仮想オブジェクト304を配置し、仮想座標系302における仮想オブジェクト304の座標を、撮像素子140で撮像された実空間の実座標系306にマッピングしてもよい。オブジェクト設定部20はさらに、仮想空間内に設定した仮想オブジェクト304を照明するための仮想の光源を仮想空間内に設定してもよい。なお、オブジェクト設定部20は、筐体160中のWi−Fiモジュールを介して、画像提示装置100の外部にある他の機器から、仮想オブジェクト304のボクセルデータを無線通信で取得してもよい。
仮想カメラ設定部22は、オブジェクト設定部20が設定した仮想オブジェクト304を観察するための仮想カメラ300を仮想空間内に設定する。仮想カメラ300は、画像提示装置100が備える撮像素子140に対応して仮想空間内に設定されてもよい。例えば、仮想カメラ設定部22は、撮像素子140の動きに応じて、仮想空間内における仮想カメラ300の設定位置を変更してもよい。
この場合、仮想カメラ設定部22は、筐体160が備える電子コンパス、加速度センサ、および傾きセンサ等の各種センサの出力をもとに、撮像素子140の姿勢および動きを検知する。仮想カメラ設定部22は、検知した撮像素子140の姿勢および動きに追従するように、仮想カメラ300の姿勢および設定位置を変更する。これにより、画像提示装置100を装着するユーザの頭部の動きに追従して、仮想カメラ300から見た仮想オブジェクト304の見え方を変更することができる。これにより、ユーザに提示するARイメージの現実感をより高めることができる。
レンダリング部24は、仮想空間に設定された仮想カメラ300が撮像する仮想オブジェクト304の画像データを生成する。言い換えれば、仮想カメラ300から観察可能な仮想オブジェクト304の部分をレンダリングして画像を生成し、さらに言い換えれば、仮想カメラ300から見える範囲の仮想オブジェクト304の画像を生成する。仮想カメラ300が撮像する画像は、3次元的な情報を持つ仮想オブジェクト304を2次元に投影して得られる2次元画像である。
表示制御部26は、レンダリング部24により生成された画像(例えば様々なオブジェクトを含むARイメージ)を表示部318に表示させる。例えば、表示制御部26は、画像を構成する個々の画素値を表示部318へ出力し、表示部318は、個々の画素値に応じた態様で個々の表示面326を発光させる。
虚像位置決定部28は、オブジェクト設定部20から仮想座標系302または実座標系306における仮想オブジェクト304の座標を取得し、仮想カメラ設定部22から仮想座標系302または実座標系306における仮想カメラ300の座標を取得する。仮想オブジェクト304の座標には、仮想オブジェクト304の画像の各画素の座標が含まれてもよい。または虚像位置決定部28は、仮想オブジェクト304の特定部分を示す座標に基づいて、仮想オブジェクト304の画像の各画素の座標を算出してもよい。
虚像位置決定部28は、仮想カメラ300の座標と、仮想オブジェクト304の画像内の各画素の座標にしたがって、仮想カメラ300から、仮想オブジェクト304の画像の各画素までの距離を識別する。そして、その距離を各画素に対応する虚像316の提示位置として設定する。言い換えれば、虚像位置決定部28は、仮想カメラ300から、表示対象画像内の各画素に対応する仮想オブジェクト304の一部領域(以下「部分領域」とも呼ぶ。)までの距離を識別する。そして、仮想カメラ300から各部分領域までの距離を、各部分領域の虚像316の提示位置として設定する。
このように第2実施形態では、虚像位置決定部28が、表示部318で表示対象となる画像に含まれる仮想オブジェクト304の奥行き情報を、仮想カメラ300の座標と、仮想オブジェクト304の画像の各画素の座標にしたがって動的に設定する。変形例として、第1実施形態と同様に、仮想オブジェクト304の奥行き情報は予め静的に定められ、オブジェクト記憶部12に保持されてもよい。また、仮想カメラ300の姿勢や位置の組み合わせ毎に、仮想オブジェクト304の複数の奥行き情報が予め定められてもよい。この場合、後述の表示面位置決定部30は、現在の仮想カメラ300の姿勢や位置の組み合わせに対応する奥行き情報を選択してもよい。
表示面位置決定部30は、仮想オブジェクト304の奥行き情報、すなわち表示対象画像内の各画素の虚像316の提示位置であり、仮想カメラ300から各部分領域までの距離と、その距離を表現するために必要となる表示面326のZ軸方向の位置との対応関係を保持する。表示面位置決定部30は、虚像位置決定部28により設定された仮想オブジェクト304の奥行き情報に基づいて、表示部318の複数の表示面326それぞれのZ軸方向の位置を決定する。言い換えれば、表示対象画像の各部分領域の画素に対応する表示面326それぞれの位置を決定する。
図7を参照して上述したように、画像314の位置と虚像316の位置とは1対1に対応する。したがって、式(3)に示すように、虚像316を提示する位置は、虚像316に対応する画像314の位置を変更することで制御できる。表示面位置決定部30は、虚像位置決定部28により決定された、仮想カメラ300から、仮想オブジェクト304の各部分領域までの距離に応じて、各部分領域の画像を表示させる表示面326それぞれの位置を決定する。すなわち、表示面位置決定部30は、仮想カメラ300から、仮想オブジェクト304の各部分領域までの距離と、式(3)にしたがって、各表示面326の位置を決定する。
具体的には、表示面位置決定部30は、仮想カメラ300からの距離が相対的に近い仮想オブジェクト304の部分に該当する第1画素の虚像が、仮想カメラ300からの距離が相対的に遠い仮想オブジェクト304の部分に該当する第2画素の虚像よりも前方に提示されるように、第1画素に対応する表示面326の位置と、第2画素に対応する表示面326の位置をそれぞれ決定する。より具体的には、表示面位置決定部30は、上記第1画素に対応する表示面326と凸レンズ312との距離を、上記第2画素に対応する表示面326と凸レンズ312との距離より短くするよう各表示面326の位置を決定する。
例えば、仮想カメラ300からある部分領域Aまでの距離が遠いほど、視点308から虚像316の提示位置までの距離を長くすべきである。言い換えれば、虚像316はより後方に見えるべきである。そこで表示面位置決定部30は、凸レンズ312からの距離をより長くするように、部分領域Aの画素に対応する表示面326の位置を決定する。その一方、仮想カメラ300からある部分領域Bまでの距離が近いほど、視点308から虚像316の提示位置までの距離を短くすべきである。言い換えれば、虚像316はより前方に見えるべきである。そこで表示面位置決定部30は、凸レンズ312からの距離をより短くするように、部分領域Bの画素に対応する表示面326の位置を決定する。
本発明者の試算では、虚像316を提示する光学素子(実施の形態では凸レンズ312)の焦点距離Fが2mmの場合、視点308の眼前10cmから無限遠の間に虚像316を提示するために必要な表示面326の移動量(Z軸方向)は40μmである。例えば、各表示面326の動作を圧電アクチュエータにより制御する場合、表示面326の基準位置(初期位置)を、無限遠を表現するために必要な所定位置(凸レンズ312から所定距離)に設定してもよい。そして、Z軸方向へ40μm前方の位置を、眼前10cmを表現するための、凸レンズ312に対して各表示面326が最も接近した位置(最近接位置)として設定してもよい。この場合、無限遠に見えるべき部分領域の画素に対応する表示面326は移動が不要である。
また、各表示面326の動作を静電アクチュエータにより制御する場合、表示面326の基準位置(初期位置)を、眼前10cmを表現するために必要な所定位置(凸レンズ312から所定距離)に設定してもよい。そして、Z軸方向へ40μm後方の位置を、無限遠を表現するための、凸レンズ312に対して各表示面326が最も離れた位置(最離間位置)として設定してもよい。この場合、眼前10cmに見えるべき部分領域の画素に対応する表示面326は移動が不要である。このように、虚像316を提示する光学素子の焦点距離Fが2mmの場合、表示面位置決定部30は、40μmの範囲で、複数の表示面326それぞれのZ軸方向の位置を決定してもよい。
位置制御部32は、第1実施形態と同様に、各表示面326を駆動させるMEMSアクチュエータを制御するための所定の信号を表示部318へ出力する。この信号には、表示面位置決定部30により決定された各表示面326のZ軸方向の位置を示す情報が含まれる。
以上の構成による画像提示装置100の動作を説明する。
図11は、第2実施形態の画像提示装置100の動作を示すフローチャートである。同図に示す処理は、画像提示装置100の電源が起動したときに開始されてもよい。また、予め定められたリフレッシュレート(例えば120Hz)で、画像提示装置100の最新の位置や姿勢にしたがって、同図のS20〜S30の処理を繰り返してもよい。この場合、リフレッシュレートにて、ユーザに提示されるARイメージ(VRイメージでもよい)が更新される。
図11は、第2実施形態の画像提示装置100の動作を示すフローチャートである。同図に示す処理は、画像提示装置100の電源が起動したときに開始されてもよい。また、予め定められたリフレッシュレート(例えば120Hz)で、画像提示装置100の最新の位置や姿勢にしたがって、同図のS20〜S30の処理を繰り返してもよい。この場合、リフレッシュレートにて、ユーザに提示されるARイメージ(VRイメージでもよい)が更新される。
オブジェクト設定部20は、仮想空間に仮想オブジェクト304を設定し、仮想カメラ設定部22は、仮想空間に仮想カメラ300を設定する(S20)。画像提示装置100の撮像素子140により撮像された実空間を仮想空間として取り込んでもよい。レンダリング部24は、仮想カメラ300から見える範囲の仮想オブジェクト304の画像を生成する(S22)。虚像位置決定部28は、表示部318で表示対象となる画像の部分領域毎に、その部分領域の虚像の提示位置を決定する(S24)。言い換えれば、虚像位置決定部28は、表示対象画像の画素単位に、視点308から各画素の虚像までの距離を決定する。例えば、眼前10cmから無限遠の範囲で決定する。
表示面位置決定部30は、虚像位置決定部28により決定された各画素の虚像の提示位置にしたがって、各画素に対応する各表示面326のZ軸方向の位置を決定する(S26)。例えば、凸レンズ312の焦点距離Fが2mmの場合、基準位置から+40μm前方の範囲で決定する。不図示だが、S22の処理と、S24およびS26の処理は並行して実行されてもよい。これによりARイメージの表示速度を高速化できる。
位置制御部32は、表示面位置決定部30の決定にしたがって、表示部318における各表示面326のZ軸方向の位置を調整する(S28)。各表示面326の位置調整が完了すると、位置制御部32は表示制御部26に表示を指示し、表示制御部26は、レンダリング部24により生成された画像を表示部318に表示させる(S30)。表示部318は、各画素値に応じた態様で各表示面326を発光させ、これにより、Z軸方向の位置が調整済の各表示面326に画像の部分領域を表示させる。
第2実施形態の画像提示装置100は、表示部318に設けられた各表示面326をユーザの視線方向に変位させることで、仮想オブジェクト304の奥行きを、仮想オブジェクト304を示す各画素の虚像提示位置に反映させる。これにより、ユーザに対して一層立体的なARイメージを提示することができる。また、単眼であっても画像を見るユーザに立体感を抱かせることができる。仮想オブジェクト304の深さ方向の情報が、各画素の虚像316の提示位置に反映され、すなわち光が持つ光線方向の情報が再現されるからである。
また画像提示装置100では、仮想オブジェクト304の奥行きを、画素単位に、近距離から無限遠の範囲で無段階に表現できる。これにより、画像提示装置100は、奥行き解像度が高い画像を提示でき、また解像度が損なわれることがない。
また画像提示装置100による画像提示技術は、光学透過型HMDに特に有用である。仮想オブジェクト304の深さ方向の情報が仮想オブジェクト304の虚像316に反映されるため、ユーザに仮想オブジェクト304をあたかも実空間の物体であるかのように知覚させることができるからである。言い換えれば、光学透過型HMDのユーザの視野において実空間の物体と仮想オブジェクト304とが混在する場合に、両者を違和感なく調和して見せることができる。
(第3実施形態)
第3実施形態の画像提示装置100も、Z軸方向に変位するデバイス(表示部318)を適用したHMDである。第3実施形態のHMDは、自らは発光しないスクリーンの表面を画素単位に変位させて、そのスクリーンに画像をプロジェクションする。表示部318の個々の表示面326を発光させる必要がないため、表示部318における配線等の制約が小さくなり、実装の容易性が向上する。また製品のコストを抑制することができる。以下、第1または第2実施形態で説明した部材と同一または対応する部材には同じ符号を付している。第1または第2実施形態と重複する説明は適宜省略する。
第3実施形態の画像提示装置100も、Z軸方向に変位するデバイス(表示部318)を適用したHMDである。第3実施形態のHMDは、自らは発光しないスクリーンの表面を画素単位に変位させて、そのスクリーンに画像をプロジェクションする。表示部318の個々の表示面326を発光させる必要がないため、表示部318における配線等の制約が小さくなり、実装の容易性が向上する。また製品のコストを抑制することができる。以下、第1または第2実施形態で説明した部材と同一または対応する部材には同じ符号を付している。第1または第2実施形態と重複する説明は適宜省略する。
図12は、第3実施形態の画像提示装置100が備える光学系を模式的に示す。第3実施形態の画像提示装置100は、図5で示したHMDの筐体160内に、凸レンズ312、表示部318、投射部320、反射部材322、反射部材324を備える。投射部320は、各種のオブジェクトが写った画像を示すレーザ光を投射する。表示部318は、投射部320により投射されたレーザ光を乱反射して、ユーザへ提示すべき画像を表示するスクリーンである。反射部材322および反射部材324は、入射光を全反射する光学素子(例えばミラー)である。
図12に示す光学系では、投射部320が投射したレーザ光は、反射部材322により全反射されて表示部318に届く。表示部318に表示された画像の光、言い換えれば、表示部318の表面で乱反射された画像の光は、反射部材324により全反射されてユーザの目に届く。
第3実施形態では、図2に示した表示部318の左側面が、投射部320からのレーザ光が投射される面(以下「投射面」と呼ぶ。)になる。投射面は、ユーザ(ユーザの視点308)に正対する面と言え、ユーザの視線方向に直交する面とも言える。表示部318は、その投射面に、表示対象の画像内の複数の画素に対応する複数の表示面326を含む。言い換えれば、表示部318の投射面は、複数の表示面326により構成される。
第3実施形態では、表示部318(投射面)に表示される画像内の画素と、表示面326とは1対1に対応する。すなわち表示部318(投射面)には、表示される画像の画素数分の表示面326が設けられる。第3実施形態では、表示部318に投射される画像の各画素の光は、各画素に対応する表示面326により乱反射される。第3実施形態の表示部318は、第2実施形態と同様に、個々の表示面326のZ軸方向の位置を、マイクロアクチュエータにより互いに独立して変化させる。
図8と同様に、図12においても視点308の視線方向にZ軸が定められており、Z軸上に凸レンズ312の光軸とZ軸とが一致するようにして凸レンズ312が配置されている。凸レンズ312の焦点距離はFであり、図12において、ふたつの点Fはそれぞれ凸レンズ312の焦点を表す。図12に示すように、表示部318は、凸レンズ312に対して視点308の反対側において、凸レンズ312の焦点の内側に配置される。
第3実施形態の光学系が、ユーザに対する虚像の提示位置を画素毎に変化させる原理は、第2実施形態と同様である。すなわち、表示部318の各表示面326のZ軸方向の位置が変更されることで、各表示面326が示す画像(画素)の虚像が異なる位置で観察されることになる。また、第3実施形態の画像提示装置100は、第2実施形態と同様に、装置外部(ユーザの前方)からの可視光を透過的にユーザの目に届ける光学透過型HMDである。したがって、ユーザの目には、装置外部の実空間の様子(例えば実空間の物体)と、表示部318が表示する画像の虚像(例えば仮想オブジェクト304を含むARイメージの虚像)とが重畳した状態で観察される。
第3実施形態の画像提示装置100の機能構成は、第2実施形態(図10)と同様である。ただし、画像提示部14が投射部320をさらに含む点と、表示制御部26からの信号の出力先が投射部320になる点で異なる。
投射部320は、ユーザに提示すべき画像を表示させるためのレーザ光を表示部318へ投射する。表示制御部26は、投射部320を制御して、レンダリング部24により生成された画像を表示部318に表示させる。具体的には表示制御部26は、レンダリング部24により生成された画像データ(例えば表示部318に表示させるべき画像の各画素値)を投射部320へ出力し、当該画像を示すレーザ光を投射部320から出力させる。
第3実施形態の画像提示装置100の動作も、第2実施形態(図11)と同様である。位置制御部32は、表示面位置決定部30の決定にしたがって、表示部318における各表示面326のZ軸方向の位置を調整する(S28)。各表示面326の位置調整が完了すると、位置制御部32は表示制御部26に表示を指示する。表示制御部26は、レンダリング部24により生成された画像の各画素値を投射部320へ出力し、投射部320は、各画素値に対応するレーザ光を表示部318へ投射する。これにより、Z軸方向の位置が調整済の各表示面326に画像の部分領域を表示させる(S30)。
第3実施形態の画像提示装置100も、第2実施形態の画像提示装置100と同様に、仮想オブジェクト304の奥行きを、仮想オブジェクト304を示す各画素の虚像提示位置に反映させることができる。これにより、ユーザに対して一層立体的なARイメージやVRイメージを提示できる。
以上、本発明を第1から第3の実施の形態をもとに説明した。各実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、変形例を示す。
第1変形例を説明する。上記の図3および図10で示した制御部10、画像記憶部16、オブジェクト記憶部12の機能ブロックのうち少なくとも一部を画像提示装置100の外部の情報処理装置(ここではゲーム機とする)が備える構成としてもよい。例えば、ゲーム機は、所定の画像(ARイメージ等)をユーザに提示するゲーム等のアプリケーションを実行し、オブジェクト記憶部12、オブジェクト設定部20、仮想カメラ設定部22、レンダリング部24、虚像位置決定部28、表示面位置決定部30を含んでもよい。
第1変形例の画像提示装置100は通信部を備え、撮像素子140や各種センサが取得したデータを、通信部を介してゲーム機へ送信してもよい。ゲーム機は、画像提示装置100に表示させる画像データを生成し、また、画像提示装置100の複数の表示面326それぞれのZ軸方向の位置を決定し、それらのデータを画像提示装置100へ送信してもよい。画像提示装置100の位置制御部32は、通信部で受信された各表示面326の位置情報を表示部318へ出力してもよい。画像提示装置100の表示制御部26は、通信部で受信された画像データを表示部318または投射部320へ出力してもよい。
第1変形例においても、画像に含まれる各オブジェクト(仮想オブジェクト304等)の奥行きを、各オブジェクトを示す各画素の虚像提示位置に反映させることができ、ユーザに対して一層立体的な画像(ARイメージ等)を提示できる。また、レンダリング処理や虚像位置決定処理、表示面位置決定処理等を画像提示装置100の外部リソースで実行させることで、画像提示装置100に必要となるハードウェアリソースを低減できる。
第2変形例を説明する。上記実施の形態では、互いに独立駆動する表示面326を、表示対象画像の画素数分設けることとした。変形例として、1つの表示面326には、N個(Nは2以上の整数)の画素の画像を一括して表示するよう構成してもよい。この場合、表示部318は、(表示対象画像内の画素数/N)個の表示面326を含む。表示面位置決定部30は、ある表示面326の位置を、その表示面326が対応する複数の画素とカメラとの距離の平均に基づいて決定してもよい。また、表示面位置決定部30は、ある表示面326の位置を、その表示面326が対応する複数の画素の1つ(例えば複数の画素のうち中央もしくは略中央の画素)とカメラとの距離に基づいて決定してもよい。この場合、制御部10は、複数の画素単位で、それらの画素に対応する表示面326のZ軸方向の位置を調整する。
上述した実施の形態および変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。また、請求項に記載の各構成要件が果たすべき機能は、実施の形態および変形例において示された各構成要素の単体もしくはそれらの連携によって実現されることも当業者には理解されるところである。
10 制御部、 20 オブジェクト設定部、 22 仮想カメラ設定部、 24 レンダリング部、 26 表示制御部、 28 虚像位置決定部、 30 表示面位置決定部、 32 位置制御部、 100 画像提示装置、 312 凸レンズ、 318 表示部、 326 表示面。
Claims (9)
- 画像を表示する表示部と、
制御部と、を備え、
前記表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、
前記制御部は、前記表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、前記複数の表示面それぞれの位置を調整することを特徴とする画像提示装置。 - 前記オブジェクトの奥行き情報は、前記オブジェクトを撮像するカメラから前記オブジェクトまでの距離を含み、
前記制御部は、前記カメラからの距離が近い前記オブジェクトの部分に該当する第1画素と、前記カメラからの距離が遠い前記オブジェクトの部分に該当する第2画素について、前記第1画素に対応する表示面の位置が、前記第2画素に対応する表示面の位置より前方になるように調整することを特徴とする請求項1に記載の画像提示装置。 - 画像を表示する表示部と、
前記表示部に表示された画像の虚像をユーザの視野に提示する光学素子と、
制御部と、を備え、
前記表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、
前記制御部は、前記表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、前記複数の表示面それぞれの位置を調整することで、前記光学素子により提示される虚像の位置を画素単位で調整することを特徴とする画像提示装置。 - 前記オブジェクトの奥行き情報は、前記オブジェクトを撮像するカメラから前記オブジェクトまでの距離を含み、
前記制御部は、前記カメラからの距離が近い前記オブジェクトの部分に該当する第1画素と、前記カメラからの距離が遠い前記オブジェクトの部分に該当する第2画素について、前記第1画素に対応する表示面と前記光学素子との距離を、前記第2画素に対応する表示面と前記光学素子との距離より短くすることを特徴とする請求項3に記載の画像提示装置。 - 前記オブジェクトの奥行き情報は、前記オブジェクトを撮像するカメラから前記オブジェクトまでの距離を含み、
前記制御部は、前記カメラからの距離が近い前記オブジェクトの部分に該当する第1画素の虚像が、前記カメラからの距離が遠い前記オブジェクトの部分に該当する第2画素の虚像よりも前方に提示されるように、前記第1画素と前記第2画素の少なくとも一方に対応する表示面の位置を調整することを特徴とする請求項3に記載の画像提示装置。 - 前記表示部は、MEMSを含むことを特徴とする請求項3から5のいずれかに記載の画像提示装置。
- 請求項3から6のいずれかに記載の画像提示装置を含む光学透過型ヘッドマウントディスプレイ。
- 表示部を備える画像提示装置が実行する方法であって、
前記表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、
前記表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、前記複数の表示面それぞれの位置を調整するステップと、
各表示面の位置が調整された表示部に前記表示対象の画像を表示させるステップと、
を含むことを特徴とする画像提示方法。 - 表示部と光学素子とを備える画像提示装置が実行する方法であって、
前記表示部は、表示対象の画像内の複数の画素に対応する複数の表示面を含み、各表示面は、表示面に対する垂直方向の位置が変更自在に構成されており、
前記光学素子は、前記表示部に表示された画像の虚像をユーザの視野に提示するものであり、前記表示対象の画像に含まれるオブジェクトの奥行き情報に基づいて、前記複数の表示面それぞれの位置を調整するステップと、
各表示面の位置が調整された表示部に前記表示対象の画像を表示させることにより、前記光学素子を介して、当該画像内の各画素の虚像を前記奥行き情報に基づく位置に提示するステップと、
を含むことを特徴とする画像提示方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015144285A JP2017028446A (ja) | 2015-07-21 | 2015-07-21 | 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 |
US15/736,973 US20180299683A1 (en) | 2015-07-21 | 2016-07-14 | Image presenting apparatus, optical transmission type head-mounted display, and image presenting method |
PCT/JP2016/070806 WO2017014138A1 (ja) | 2015-07-21 | 2016-07-14 | 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015144285A JP2017028446A (ja) | 2015-07-21 | 2015-07-21 | 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017028446A true JP2017028446A (ja) | 2017-02-02 |
Family
ID=57835013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015144285A Pending JP2017028446A (ja) | 2015-07-21 | 2015-07-21 | 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180299683A1 (ja) |
JP (1) | JP2017028446A (ja) |
WO (1) | WO2017014138A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020527872A (ja) * | 2017-07-13 | 2020-09-10 | グーグル エルエルシー | 非平面コンピュテーショナルディスプレイ |
WO2021112439A1 (ko) * | 2019-12-04 | 2021-06-10 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10948983B2 (en) * | 2018-03-21 | 2021-03-16 | Samsung Electronics Co., Ltd. | System and method for utilizing gaze tracking and focal point tracking |
WO2019224972A1 (ja) * | 2018-05-24 | 2019-11-28 | 三菱電機株式会社 | 車両用表示制御装置および車両用表示制御方法 |
CN112929646A (zh) * | 2019-12-05 | 2021-06-08 | 北京芯海视界三维科技有限公司 | 实现3d图像显示的方法、3d显示设备 |
US11425283B1 (en) * | 2021-12-09 | 2022-08-23 | Unity Technologies Sf | Blending real and virtual focus in a virtual display environment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH066830A (ja) * | 1992-06-24 | 1994-01-14 | Hitachi Ltd | 立体表示装置 |
JPH09331552A (ja) * | 1996-06-10 | 1997-12-22 | Atr Tsushin Syst Kenkyusho:Kk | 多焦点式頭部搭載型ディスプレイ |
JP2001333438A (ja) * | 2000-05-23 | 2001-11-30 | Nippon Hoso Kyokai <Nhk> | 立体表示装置 |
JP2005277900A (ja) * | 2004-03-25 | 2005-10-06 | Mitsubishi Electric Corp | 3次元映像装置 |
-
2015
- 2015-07-21 JP JP2015144285A patent/JP2017028446A/ja active Pending
-
2016
- 2016-07-14 US US15/736,973 patent/US20180299683A1/en not_active Abandoned
- 2016-07-14 WO PCT/JP2016/070806 patent/WO2017014138A1/ja active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020527872A (ja) * | 2017-07-13 | 2020-09-10 | グーグル エルエルシー | 非平面コンピュテーショナルディスプレイ |
WO2021112439A1 (ko) * | 2019-12-04 | 2021-06-10 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2017014138A1 (ja) | 2017-01-26 |
US20180299683A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102704703B1 (ko) | 눈 위치를 사용하는 삼차원 무안경 광 필드 디스플레이 | |
WO2017014138A1 (ja) | 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法 | |
JP7029399B2 (ja) | 仮想/拡張現実システムにおけるビーム角度センサ | |
JP6294780B2 (ja) | 立体画像提示装置、立体画像提示方法、およびヘッドマウントディスプレイ | |
US8570372B2 (en) | Three-dimensional imager and projection device | |
KR101057617B1 (ko) | 3차원 디스플레이 시스템 | |
US9230500B2 (en) | Expanded 3D stereoscopic display system | |
US20150262424A1 (en) | Depth and Focus Discrimination for a Head-mountable device using a Light-Field Display System | |
EP2660645A1 (en) | Head-mountable display system | |
JP2017204674A (ja) | 撮像装置、ヘッドマウントディスプレイ、情報処理システム、および情報処理方法 | |
KR20150088355A (ko) | 눈동자 이동 시점 생성을 지원하는 스테레오 라이트필드 입출력 장치 및 방법 | |
US11695913B1 (en) | Mixed reality system | |
CN110879469A (zh) | 一种头戴式显示设备 | |
CN116582661B (zh) | 混合模式三维显示系统和方法 | |
US20210218946A1 (en) | Image display device and image display method | |
CN117853642A (zh) | 虚拟、增强和混合现实系统和方法 | |
KR102546321B1 (ko) | 3차원 영상 표시 장치 및 방법 | |
EP4137872A1 (en) | Display apparatus, system and method | |
US20230403386A1 (en) | Image display within a three-dimensional environment | |
EP3781979B1 (en) | Apparatus and method for image display | |
JP2017079389A (ja) | 表示装置、表示装置の制御方法、及び、プログラム | |
JP5263244B2 (ja) | 立体表示装置 | |
CN118633277A (zh) | 具有基于机器学习(ml)的宽视场立体视图合成的显示系统 | |
KR20220145668A (ko) | 자유형상 곡면을 포함하는 디스플레이 장치 및 그 동작 방법 | |
Hua | Stereoscopic displays |