JP2017027772A - Lithium ion secondary battery and method for manufacturing the same - Google Patents
Lithium ion secondary battery and method for manufacturing the same Download PDFInfo
- Publication number
- JP2017027772A JP2017027772A JP2015144892A JP2015144892A JP2017027772A JP 2017027772 A JP2017027772 A JP 2017027772A JP 2015144892 A JP2015144892 A JP 2015144892A JP 2015144892 A JP2015144892 A JP 2015144892A JP 2017027772 A JP2017027772 A JP 2017027772A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- electrode active
- negative electrode
- amount
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池及びその製造方法に関するものである。 The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.
非水電解質二次電池を用いた製品は増加の一途を辿っており、一般に、携帯電話やノート型パソコンなどの携帯機器には非水電解質二次電池が必須のものとして認識されている。非水電解質二次電池のうちリチウムイオン二次電池は小型で大容量であるため汎用されており、航空機や自動車にも採用されている。 Products using non-aqueous electrolyte secondary batteries are steadily increasing, and in general, non-aqueous electrolyte secondary batteries are recognized as essential for portable devices such as mobile phones and laptop computers. Among non-aqueous electrolyte secondary batteries, lithium ion secondary batteries are widely used because of their small size and large capacity, and are also used in aircraft and automobiles.
近年、リチウムイオン二次電池に対する研究が盛んに行われており、リチウムイオン二次電池の負極活物質として、炭素材料の理論容量を大きく超える充放電容量を持つ珪素、珪素合金、珪素酸化物などの珪素系材料が検討されている。例えば、特許文献1には、CaSi2と酸とを反応させ、層状ポリシランを主成分とする層状シリコン化合物を合成したこと、当該層状シリコン化合物を300℃以上で加熱してシリコン材料を製造したこと、及び、当該シリコン材料を活物質として具備するリチウムイオン二次電池が記載されている。また珪素系材料を負極活物質として用いると、充放電時にリチウム(Li)の吸蔵及び放出に伴って、珪素系材料が膨張及び収縮することが知られている。 In recent years, research on lithium ion secondary batteries has been actively conducted, and as a negative electrode active material for lithium ion secondary batteries, silicon, silicon alloys, silicon oxides, and the like having a charge / discharge capacity that greatly exceeds the theoretical capacity of carbon materials These silicon-based materials have been studied. For example, in Patent Document 1, CaSi 2 and an acid are reacted to synthesize a layered silicon compound mainly composed of layered polysilane, and the layered silicon compound is heated at 300 ° C. or higher to produce a silicon material. And a lithium ion secondary battery including the silicon material as an active material. In addition, when a silicon-based material is used as a negative electrode active material, it is known that the silicon-based material expands and contracts with the insertion and extraction of lithium (Li) during charge and discharge.
さて、リチウムイオン二次電池に使用される電解液の液量は、一般的にリチウムイオン二次電池が良好に動き、かつ電池のエネルギー密度を下げないように、設定される。電解液量が少なすぎるとリチウムイオン二次電池の抵抗が上がることが知られており、電池の抵抗が上がるとリチウムイオン二次電池の寿命が短くなることが知られている。また電解液は充放電に伴って分解されることがあるため、電解液量はなるべく多いほうが好ましいとされていた。 Now, the amount of the electrolytic solution used for the lithium ion secondary battery is generally set so that the lithium ion secondary battery operates well and does not lower the energy density of the battery. It is known that when the amount of the electrolyte is too small, the resistance of the lithium ion secondary battery increases, and when the resistance of the battery increases, the life of the lithium ion secondary battery is shortened. Moreover, since electrolyte solution may be decomposed | disassembled with charging / discharging, it was supposed that the amount of electrolyte solution was as much as possible.
リチウムイオン二次電池における電解液の液量は、使用される電極、セパレータによって異なる。特に珪素は充放電によって膨張及び収縮するので、珪素を含む負極活物質を用いたリチウムイオン二次電池においては、電解液の液量設定が難しい。そこで珪素を含む負極活物質を有するリチウムイオン二次電池において、寿命特性を向上させることのできる、電解液の液量の新たな設定方法が要望されていた。 The amount of the electrolytic solution in the lithium ion secondary battery varies depending on the electrode and separator used. In particular, since silicon expands and contracts due to charging and discharging, in a lithium ion secondary battery using a negative electrode active material containing silicon, it is difficult to set the amount of the electrolytic solution. Accordingly, there has been a demand for a new method for setting the amount of the electrolytic solution that can improve the life characteristics of a lithium ion secondary battery having a negative electrode active material containing silicon.
本発明は、このような事情に鑑みて為されたものであり、珪素を含む負極を有するリチウムイオン二次電池における寿命特性を向上させることのできる、リチウムイオン二次電池の電解液の液量の新たな設定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the amount of electrolyte in a lithium ion secondary battery that can improve the life characteristics of a lithium ion secondary battery having a negative electrode containing silicon. It aims to provide a new setting method.
本発明の発明者等は、鋭意研究の結果、ある新たな式に基づいて電解液の液量を設定すれば、珪素を含む負極を有するリチウムイオン二次電池の寿命を向上させることができることを見いだした。 As a result of earnest research, the inventors of the present invention can improve the life of a lithium ion secondary battery having a negative electrode containing silicon if the amount of the electrolyte is set based on a new equation. I found it.
すなわち本発明のリチウムイオン二次電池の製造方法は、正極活物質層を有する正極と、珪素を含む負極活物質層を有する負極と、セパレータと、非水電解液とを含むリチウムイオン二次電池の製造方法であって、下記式(1)を満たすように非水電解液の液量を設定する液量設定工程を含むことを特徴とする。
0.89≦非水電解液の液量(ml)÷(正極活物質層の空隙量(ml)+セパレータの空隙量(ml)+負極活物質層の空隙量(ml))<1.13・・・・式(1)
That is, the method for producing a lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer containing silicon, a separator, and a nonaqueous electrolyte solution. And a liquid amount setting step of setting the liquid amount of the non-aqueous electrolyte so as to satisfy the following formula (1).
0.89 ≦ Non-aqueous electrolyte volume (ml) / (Positive electrode active material layer void volume (ml) + Separator void volume (ml) + Negative electrode active material layer void volume (ml)) <1.13 .... Formula (1)
CaSi2と酸とを反応させ、層状ポリシランを主成分とする層状シリコン化合物を製造する工程と、層状シリコン化合物を300℃以上で加熱してシリコン材料を製造する工程と、シリコン材料を含む負極を製造する負極製造工程と、を有することが好ましい。 A step of reacting CaSi 2 with an acid to produce a layered silicon compound mainly composed of layered polysilane, a step of producing a silicon material by heating the layered silicon compound at 300 ° C. or higher, and a negative electrode containing the silicon material. A negative electrode manufacturing step to be manufactured.
さらに式(1)を満たすように非水電解液の液量を計算する液量計算工程を含むことが好ましい。 Furthermore, it is preferable to include a liquid amount calculation step of calculating the liquid amount of the non-aqueous electrolyte so as to satisfy the formula (1).
本発明のリチウムイオン二次電池は、正極活物質層を有する正極と、珪素を含む負極活物質層を有する負極と、セパレータと、非水電解液とを含み、非水電解液の液量は式(1)を満たすことを特徴とする。 The lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer containing silicon, a separator, and a non-aqueous electrolyte. The expression (1) is satisfied.
負極活物質層は板状シリコン体が厚さ方向に積層された構造を有するシリコン材料を含むことが好ましい。 The negative electrode active material layer preferably contains a silicon material having a structure in which plate-like silicon bodies are laminated in the thickness direction.
非水電解液の液量設定工程を有する本発明のリチウムイオン二次電池の製造方法によれば、珪素を含む負極を有するリチウムイオン二次電池の寿命を向上させることができる。 According to the method for producing a lithium ion secondary battery of the present invention having the liquid amount setting step of the non-aqueous electrolyte, the life of the lithium ion secondary battery having a negative electrode containing silicon can be improved.
以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
<リチウムイオン二次電池の製造方法>
本発明のリチウムイオン二次電池の製造方法は、正極活物質層を有する正極と、珪素を含む負極活物質層を有する負極と、セパレータと、非水電解液とを含むリチウムイオン二次電池の製造方法であって、下記式(1)を満たすように非水電解液の液量を設定する液量設定工程を含むことを特徴とする。
0.89≦非水電解液の液量(ml)÷(正極活物質層の空隙量(ml)+セパレータの空隙量(ml)+負極活物質層の空隙量(ml))<1.13・・・・式(1)
<Method for producing lithium ion secondary battery>
A method for producing a lithium ion secondary battery according to the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer containing silicon, a separator, and a non-aqueous electrolyte. It is a manufacturing method, Comprising: The liquid quantity setting process which sets the liquid quantity of a non-aqueous electrolyte so that following formula (1) may be satisfy | filled is characterized.
0.89 ≦ Non-aqueous electrolyte volume (ml) / (Positive electrode active material layer void volume (ml) + Separator void volume (ml) + Negative electrode active material layer void volume (ml)) <1.13 .... Formula (1)
本発明のリチウムイオン二次電池の製造方法は、式(1)を満たすように非水電解液の液量を設定する液量設定工程を含む。 The manufacturing method of the lithium ion secondary battery of this invention includes the liquid quantity setting process which sets the liquid quantity of a non-aqueous electrolyte so that Formula (1) may be satisfy | filled.
(液量設定工程)
液量設定工程では、非水電解液の液量を設定する。この時、非水電解液の液量の計算方法は特に限定されない。例えば、公知の計算方法で計算した電解液量が式(1)を満たすかどうかを確認し、式(1)を満たした液量を電解液量として設定すればよい。
(Liquid volume setting process)
In the liquid volume setting step, the liquid volume of the non-aqueous electrolyte is set. At this time, the calculation method of the amount of the non-aqueous electrolyte is not particularly limited. For example, it may be confirmed whether the amount of the electrolyte calculated by a known calculation method satisfies the formula (1), and the amount of the liquid that satisfies the formula (1) may be set as the amount of the electrolyte.
液量設定工程に加えて、さらに式(1)を満たすように非水電解液の液量を計算する液量計算工程を含んでもよい。液量計算工程は、式(1)を満たすように非水電解液の液量を計算する。 In addition to the liquid volume setting step, a liquid volume calculation step of calculating the liquid volume of the non-aqueous electrolyte so as to satisfy the formula (1) may be included. In the liquid amount calculation step, the liquid amount of the nonaqueous electrolytic solution is calculated so as to satisfy Expression (1).
ここで、(正極活物質層の空隙量(ml)+セパレータの空隙量(ml)+負極活物質層の空隙量(ml))は、各空隙量を合算した状態で計測又は算出されたものでもよいし、各空隙量を各々計測又は算出しその数値を合算してもよい。 Here, (the amount of voids in the positive electrode active material layer (ml) + the amount of voids in the separator (ml) + the amount of voids in the negative electrode active material layer (ml)) was measured or calculated in the state where the amount of each void was added Alternatively, each void amount may be measured or calculated, and the numerical values may be added together.
例えば、各空隙量は以下のようにして算出できる。 For example, each void amount can be calculated as follows.
正極活物質層の空隙量は、正極活物質層の見かけの体積から、正極活物質層に含まれる各成分の配合量及び真密度から算出した各成分の理論上の体積の和を減じた値である。 The amount of voids in the positive electrode active material layer is a value obtained by subtracting the theoretical volume of each component calculated from the blending amount and true density of each component contained in the positive electrode active material layer from the apparent volume of the positive electrode active material layer. It is.
正極活物質層に含まれる成分を、例えば、正極活物質、導電助剤及び結着剤とした場合、正極活物質層の空隙量は以下の式で算出される。
空隙量=(正極活物質層の見かけの体積−正極活物質層の各成分の理論上の体積の和)
正極活物質層の見かけの体積=正極活物質層の実測厚み×正極活物質層の形成された面の面積
正極活物質層の各成分の理論上の体積の和=正極活物質の質量÷正極活物質の真密度+導電助剤の質量÷導電助剤の真密度+結着剤の質量÷結着剤の真密度
When the components included in the positive electrode active material layer are, for example, a positive electrode active material, a conductive additive, and a binder, the void amount of the positive electrode active material layer is calculated by the following formula.
Void amount = (apparent volume of positive electrode active material layer−sum of theoretical volume of each component of positive electrode active material layer)
Apparent volume of positive electrode active material layer = actual thickness of positive electrode active material layer × area of surface on which positive electrode active material layer is formed Sum of theoretical volumes of components of positive electrode active material layer = mass of positive electrode active material ÷ positive electrode True density of active material + mass of conductive aid ÷ true density of conductive aid + mass of binder ÷ true density of binder
負極活物質層の空隙量は、負極活物質層の見かけの体積から、負極活物質層に含まれる各成分の配合量及び真密度から算出した各成分の理論上の体積の和を減じた値であり、正極活物質層の空隙量と同様にして求められる。 The void amount of the negative electrode active material layer is a value obtained by subtracting the theoretical volume of each component calculated from the blending amount and true density of each component contained in the negative electrode active material layer from the apparent volume of the negative electrode active material layer. It is obtained in the same manner as the void amount of the positive electrode active material layer.
セパレータの空隙量は、セパレータの見かけの体積から、セパレータに含まれる各成分の配合量及び真密度から算出した各成分の理論上の体積の和を減じた値である。 The amount of voids in the separator is a value obtained by subtracting the sum of the theoretical volumes of each component calculated from the blending amount and true density of each component contained in the separator from the apparent volume of the separator.
本発明のリチウムイオン二次電池の製造方法において、上記液量設定工程及び液量計算工程以外の製造工程は公知の方法を用いればよい。 In the manufacturing method of the lithium ion secondary battery of the present invention, a known method may be used for manufacturing steps other than the liquid amount setting step and the liquid amount calculating step.
本発明のリチウムイオン二次電池の製造方法において、リチウムイオン二次電池は正極と、負極と、セパレータと、非水電解液とを含む。 In the method for producing a lithium ion secondary battery of the present invention, the lithium ion secondary battery includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution.
正極、負極、セパレータ及び非水電解液について以下に説明する。 A positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte will be described below.
(正極)
正極は、正極活物質を含む正極活物質層を有する。正極活物質層は集電体の表面に配置される。
(Positive electrode)
The positive electrode has a positive electrode active material layer containing a positive electrode active material. The positive electrode active material layer is disposed on the surface of the current collector.
集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体の材料として、例えば、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。特に、電気伝導性、加工性、価格の面から、集電体の材料としては、アルミニウムまたは銅が好ましい。集電体は、箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が、箔、シートまたはフィルムの場合は、集電体の厚みは10μm〜50μmであることが好ましい。集電体に高い強度を保持しつつ電池容量を高くする点から、集電体の厚みは、12μm〜30μmであることが特に好ましい。 The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. Examples of the current collector material include metal materials such as stainless steel, titanium, nickel, aluminum, and copper, or conductive resins. In particular, from the viewpoint of electrical conductivity, workability, and cost, the material for the current collector is preferably aluminum or copper. The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. As the current collector, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be suitably used. When the current collector is a foil, sheet or film, the thickness of the current collector is preferably 10 μm to 50 μm. In view of increasing the battery capacity while maintaining high strength in the current collector, the thickness of the current collector is particularly preferably 12 μm to 30 μm.
(正極活物質層)
正極活物質層は、正極活物質を有する。正極活物質層は、必要に応じて結着剤及び導電助剤を含んでもよい。
(Positive electrode active material layer)
The positive electrode active material layer has a positive electrode active material. The positive electrode active material layer may include a binder and a conductive additive as necessary.
正極活物質としては、リチウム含有化合物あるいは他の金属化合物が挙げられる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式:LiaCopNiqMnrDsOx(Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物、一般式:LiMPO4で示されるオリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:Li2MPO4Fで示されるフッ化オリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:Li2MSiO4で示されるケイ酸塩系型リチウム複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)が挙げられる。また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、または硫化チタン若しくは硫化モリブデンなどの硫化物が挙げられる。 Examples of the positive electrode active material include lithium-containing compounds or other metal compounds. Examples of the lithium-containing compound, for example, lithium-cobalt composite oxide having a layered structure, the lithium nickel composite oxide having a layered structure, the lithium manganese composite oxide having a spinel structure represented by the general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe and Na, p + q + r + s = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) things, the general formula: olivine-type lithium phosphate compound oxide represented by LiMPO 4 (at least one of M is Mn, Fe, Co and Ni), the general formula: represented by Li 2 MPO 4 F That fluoride olivine-type lithium phosphate compound oxide (M is Mn, Fe, at least one of Co and Ni), the general formula: Li 2 MSiO silicate lithium composite oxide represented by 4 (M is one or more of At least one of Mn, Fe, Co, and Ni). Examples of other metal compounds include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, and sulfides such as titanium sulfide and molybdenum sulfide.
正極活物質はその平均粒径D50が1μm〜20μmである粉末形状であることが好ましい。正極活物質の平均粒径D50が小さいと、正極活物質の比表面積が大きくなる。このため、正極活物質の平均粒径D50が小さすぎると正極活物質と電解液との反応面積が過度に増えることになり、その結果、電解液の分解が促進されて、リチウムイオン二次電池のサイクル特性が悪くなるおそれがある。正極活物質の平均粒径D50が大きすぎるとリチウムイオン二次電池の抵抗が大きくなり、リチウムイオン二次電池の出力特性が下がるおそれがある。 The positive electrode active material preferably has an average particle diameter D 50 is a powder shape is 1 m to 20 m. When the average particle diameter D 50 of the positive electrode active material is small, the specific surface area of the positive electrode active material is increased. Thus, the reaction area of the average particle diameter D 50 of the positive electrode active material is too small and the positive electrode active material and the electrolyte becomes excessive increase it, as a result, are accelerated decomposition of the electrolytic solution, the lithium ion secondary The cycle characteristics of the battery may be deteriorated. When the average particle diameter D 50 of the positive electrode active material is too large resistance of the lithium ion secondary battery increases, there is a possibility that the output characteristics of the lithium ion secondary battery decreases.
なお、平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を意味する。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。 Note that the average particle diameter D 50 refers to the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.
結着剤は、上記正極活物質を集電体に繋ぎ止める役割を果たす。結着剤として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(略称FEP)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリロニトリルが挙げられる。 The binder plays a role of connecting the positive electrode active material to the current collector. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer (abbreviation FEP), fluorine-containing resin such as fluorine rubber, thermoplastic resin such as polypropylene and polyethylene, polyimide, Examples thereof include imide resins such as polyamide imide, acrylic resins such as poly (meth) acrylic acid, alkoxysilyl group-containing resins, styrene / butadiene rubber, carboxymethyl cellulose, polyethylene glycol, and polyacrylonitrile.
正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.001〜1:0.3であるのが好ましい。正極活物質:結着剤=1:0.005〜1:0.2であるのがより好ましく、1:0.01〜1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下するおそれがあり、また、結着剤が多すぎると電極のエネルギー密度が低くなるおそれがある。 The blending ratio of the binder in the positive electrode active material layer is preferably a mass ratio of positive electrode active material: binder = 1: 0.001 to 1: 0.3. The positive electrode active material: binder is more preferably 1: 0.005 to 1: 0.2, and further preferably 1: 0.01 to 1: 0.15. If the amount of the binder is too small, the moldability of the electrode may be lowered, and if the amount of the binder is too large, the energy density of the electrode may be lowered.
導電助剤は、電極の導電性を高めるために必要に応じて正極活物質層に添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(略称AB)、ケッチェンブラック(登録商標)(略称KB)、気相法炭素繊維(略称VGCF)等を単独でまたは二種以上組み合わせて使用することができる。導電助剤の使用量については、特に限定的ではないが、例えば、電極に含有される活物質100質量部に対して、1質量部〜30質量部程度とすることができる。 A conductive support agent is added to a positive electrode active material layer as needed, in order to improve the electroconductivity of an electrode. Carbon black, graphite, acetylene black (abbreviated as AB), ketjen black (registered trademark) (abbreviated as KB), vapor-grown carbon fiber (abbreviated as VGCF), etc., which are carbonaceous fine particles, are used alone or in combination as conductive aids. These can be used in combination. Although there are no particular limitations on the amount of conductive aid used, for example, it can be about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the electrode.
正極活物質層を集電体の表面に配置するには、正極活物質及び結着剤、並びに必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥すればよい。なお、必要に応じて電極密度を高めるべく正極活物質層が配置された集電体を圧縮してもよい。 In order to dispose the positive electrode active material layer on the surface of the current collector, a positive electrode active material layer-forming composition containing a positive electrode active material, a binder, and, if necessary, a conductive additive is prepared. A suitable solvent may be added to form a paste, which is then applied to the surface of the current collector and then dried. In addition, you may compress the electrical power collector in which the positive electrode active material layer is arrange | positioned so that an electrode density may be raised as needed.
正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法、リップコート法、コンマコート法、ダイコート法などの従来から公知の方法を用いればよい。 As a coating method of the composition for forming a positive electrode active material layer, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, a lip coating method, a comma coating method, and a die coating method are known. A method may be used.
粘度調整のための溶剤としては、水、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトンなどが使用可能である。 As the solvent for adjusting the viscosity, water, N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and the like can be used.
(負極)
負極は、珪素を含む負極活物質層を有する。負極活物質層は集電体の表面に配置される。集電体は正極で説明したものと同様である。
(Negative electrode)
The negative electrode has a negative electrode active material layer containing silicon. The negative electrode active material layer is disposed on the surface of the current collector. The current collector is the same as that described for the positive electrode.
(負極活物質層)
負極活物質層は、負極活物質を有する。負極活物質層は、必要に応じて結着剤及び導電助剤を含んでも良い。結着剤、導電助剤は、正極で説明したものと同様である。
(Negative electrode active material layer)
The negative electrode active material layer has a negative electrode active material. The negative electrode active material layer may contain a binder and a conductive additive as necessary. The binder and the conductive assistant are the same as those described for the positive electrode.
負極活物質は珪素を含む。珪素は、充放電容量が高いが、充放電時にリチウム(Li)の吸蔵及び放出に伴って膨張及び収縮する性質を持つ。 The negative electrode active material contains silicon. Silicon has a high charge / discharge capacity, but has the property of expanding and contracting with the insertion and extraction of lithium (Li) during charge / discharge.
珪素を含む負極活物質として、例えば、珪素、珪素化合物が挙げられる。珪素化合物としては、SiOx(0.3≦x≦1.6)、SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、 CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si3N4、Si2N2O、SnSiO3、LiSiO及び本発明者等が特に研究した、板状シリコン体が厚さ方向に積層された構造を有するシリコン材料が挙げられる。珪素を含む負極活物質としては、板状シリコン体が厚さ方向に積層された構造を有するシリコン材料が好ましい。 Examples of the negative electrode active material containing silicon include silicon and silicon compounds. Examples of the silicon compound include SiO x (0.3 ≦ x ≦ 1.6), SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2. , Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SnSiO 3, LiSiO , and the present inventors, is particularly The silicon material which has the structure where the plate-shaped silicon body investigated was laminated | stacked in the thickness direction is mentioned. As the negative electrode active material containing silicon, a silicon material having a structure in which plate-like silicon bodies are laminated in the thickness direction is preferable.
板状シリコン体が厚さ方向に積層されてなる構造を有するシリコン材料の構造は、走査型電子顕微鏡などによる観察で確認できる。シリコン材料をリチウムイオン二次電池の活物質として使用することを考慮すると、リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm〜100nmの範囲内のものが好ましく、20nm〜50nmの範囲内のものがより好ましい。また、板状シリコン体の長軸方向の長さは、0.1μm〜50μmの範囲内のものが好ましい。また、板状シリコン体は、(長軸方向の長さ)/(厚さ)が2〜1000の範囲内であるのが好ましい。 The structure of the silicon material having a structure in which the plate-like silicon bodies are laminated in the thickness direction can be confirmed by observation with a scanning electron microscope or the like. In consideration of using a silicon material as an active material of a lithium ion secondary battery, the plate-like silicon body has a thickness in the range of 10 nm to 100 nm for efficient insertion and desorption reaction of lithium ions. A thing in the range of 20 nm-50 nm is more preferable. The length of the plate-like silicon body in the major axis direction is preferably in the range of 0.1 μm to 50 μm. The plate-like silicon body preferably has a (length in the major axis direction) / (thickness) range of 2 to 1000.
シリコン材料は、粉砕や分級を経て、一定の粒度分布の粒子としてもよい。シリコン材料の好ましい粒度分布としては、一般的なレーザー回折式粒度分布測定装置で測定した場合に、D50が1μm〜30μmの範囲内を例示できる。 The silicon material may be pulverized or classified to form particles having a certain particle size distribution. As a preferable particle size distribution of the silicon material, D 50 can be exemplified within a range of 1 μm to 30 μm when measured by a general laser diffraction type particle size distribution measuring apparatus.
シリコン材料に対してX線回折測定(XRD測定)を行い、得られたXRDチャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式からシリコン結晶子サイズが算出される。このシリコン結晶子のサイズとしては、ナノサイズのものが好ましい。具体的には、シリコン結晶子サイズは、0.5nm〜300nmの範囲内が好ましく、1nm〜100nmの範囲内がより好ましく、1nm〜50nmの範囲内がさらに好ましく、1nm〜10nmの範囲内が特に好ましい。 X-ray diffraction measurement (XRD measurement) is performed on the silicon material, and the silicon crystallite size is calculated from the Scherrer equation using the half-value width of the diffraction peak of the Si (111) plane of the obtained XRD chart. The silicon crystallite size is preferably nano-sized. Specifically, the silicon crystallite size is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly in the range of 1 nm to 10 nm. preferable.
上記シリコン材料は下記の製造工程によって製造されることができる。製造工程は、CaSi2と酸とを反応させ、層状ポリシランを主成分とする層状シリコン化合物を製造する工程と、層状シリコン化合物を300℃以上で加熱してシリコン材料を製造する工程とを含む。 The silicon material can be manufactured by the following manufacturing process. The production process includes a process of producing a layered silicon compound mainly composed of layered polysilane by reacting CaSi 2 and an acid, and a process of producing a silicon material by heating the layered silicon compound at 300 ° C. or higher.
CaSi2は、一般にCa層とSi層が積層した構造からなる。CaSi2は、公知の製造方法で合成してもよく、市販されているものを採用してもよい。層状シリコン化合物の製造に用いるCaSi2は、あらかじめ粉砕しておくことが好ましい。 CaSi 2 generally has a structure in which a Ca layer and a Si layer are laminated. CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted. CaSi 2 used for producing the layered silicon compound is preferably pulverized in advance.
酸としては、フッ化水素、塩化水素、臭化水素、ヨウ化水素、硫酸、硝酸、リン酸、蟻酸、酢酸、メタンスルホン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、ヘキサフルオロヒ素酸、フルオロアンチモン酸、ヘキサフルオロケイ酸、ヘキサフルオロゲルマン酸、ヘキサフルオロスズ(IV)酸、トリフルオロ酢酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコニウム酸、トリフルオロメタンスルホン酸、フルオロスルホン酸が例示される。これらの酸を単独又は併用して使用すればよい。 Acids include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, methanesulfonic acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoroarsenic acid, fluoro Examples include antimonic acid, hexafluorosilicic acid, hexafluorogermanic acid, hexafluorotin (IV) acid, trifluoroacetic acid, hexafluorotitanic acid, hexafluorozirconic acid, trifluoromethanesulfonic acid, and fluorosulfonic acid. These acids may be used alone or in combination.
また、酸は水溶液として用いられるのが、作業の簡便性及び安全性の観点、並びに、副生物の除去の観点から好ましい。 In addition, the acid is preferably used as an aqueous solution from the viewpoints of easy work and safety, and removal of by-products.
酸は、CaSi2に対して2当量以上のプロトンを供給できる量で用いればよい。したがって、1価の酸であれば、CaSi21モルに対して酸を2モル以上で用いればよい。 Acid may be used in an amount capable of providing 2 or more equivalents of protons relative CaSi 2. Therefore, in the case of a monovalent acid, the acid may be used in an amount of 2 mol or more with respect to 1 mol of CaSi 2 .
反応条件は、真空などの減圧条件又は不活性ガス雰囲気下とすることが好ましく、また、氷浴などの室温以下の温度条件とするのが好ましい。反応時間は適宜設定すれば良い。 The reaction conditions are preferably reduced pressure conditions such as vacuum or an inert gas atmosphere, and are preferably temperature conditions of room temperature or lower such as an ice bath. What is necessary is just to set reaction time suitably.
さて、CaSi2と酸とを反応させる反応工程において、酸として塩化水素を用いた場合の反応式で示すと、以下のとおりとなる。
3CaSi2+6HCl→Si6H6+3CaCl2
Now, in the reaction step of reacting CaSi 2 and an acid, the reaction formula when hydrogen chloride is used as the acid is as follows.
3CaSi 2 + 6HCl → Si 6 H 6 + 3CaCl 2
ポリシランであるSi6H6が理想的な層状シリコン化合物に該当する。この反応は、層状のCaSi2のCaが2Hで置換されつつ、Si−H結合を形成すると考えることもできる。層状シリコン化合物は、原料のCaSi2におけるSi層の基本骨格が維持されているため、層状をなす。 Si 6 H 6 which is polysilane corresponds to an ideal layered silicon compound. It can be considered that this reaction forms Si—H bonds while Ca in the layered CaSi 2 is substituted with 2H. The layered silicon compound has a layer shape because the basic skeleton of the Si layer in the raw material CaSi 2 is maintained.
CaSi2と酸とを反応させる反応工程において、酸は水溶液として用いられるのが好ましいことは、前述した。ここで、Si6H6は水と反応し得るため、通常は、層状シリコン化合物がSi6H6なる化合物のみで得られることはほとんどなく、酸素や酸由来の元素を含有する。 As described above, the acid is preferably used as an aqueous solution in the reaction step of reacting CaSi 2 with the acid. Here, since Si 6 H 6 can react with water, the layered silicon compound is rarely obtained only with a compound of Si 6 H 6 , and contains an element derived from oxygen or an acid.
層状シリコン化合物を300℃以上で加熱することで水素などを離脱させ、シリコン材料とする。この層状シリコン化合物を300℃以上で加熱する工程を、以下シリコン材料製造工程ということがある。 By heating the layered silicon compound at 300 ° C. or higher, hydrogen or the like is released to obtain a silicon material. The process of heating the layered silicon compound at 300 ° C. or higher is sometimes referred to as a silicon material manufacturing process.
シリコン材料製造工程を理想的な反応式で示すと以下のとおりとなる。
Si6H6→6Si+3H2↑
The silicon material manufacturing process is represented by an ideal reaction formula as follows.
Si 6 H 6 → 6Si + 3H 2 ↑
ただし、シリコン材料製造工程に実際に用いられる層状シリコン化合物は酸素や酸由来の元素を含有し、さらに不可避不純物も含有するため、実際に得られるシリコン材料も酸素や酸由来の元素を含有し、さらに不可避不純物も含有するものとなる。シリコン材料は、ケイ素のモル量を100としたとき酸素元素のモル量が50以下であることが好ましく、40以下の量となるのが特に好ましい。また、ケイ素のモル量を100としたとき酸由来の元素のモル量が8以下の量であることが好ましく、5以下の量となるのが特に好ましい。 However, the layered silicon compound actually used in the silicon material manufacturing process contains elements derived from oxygen and acid, and also contains inevitable impurities, so the silicon material actually obtained also contains elements derived from oxygen and acid, Further, inevitable impurities are also contained. In the silicon material, when the molar amount of silicon is 100, the molar amount of oxygen element is preferably 50 or less, and particularly preferably 40 or less. Further, when the molar amount of silicon is 100, the molar amount of the acid-derived element is preferably 8 or less, and particularly preferably 5 or less.
シリコン材料製造工程は、通常の大気下よりも酸素含有量の少ない非酸化性雰囲気下で行われるのが好ましい。非酸化性雰囲気としては、真空を含む減圧雰囲気、不活性ガス雰囲気を例示できる。加熱温度は、350℃〜1200℃の範囲内が好ましく、400℃〜1200℃の範囲内がより好ましい。加熱温度が低すぎると水素の離脱が十分でない場合があり、他方、加熱温度が高すぎるとエネルギーの無駄になる。加熱時間は加熱温度に応じて適宜設定すれば良く、また、反応系外に抜けていく水素などの量を測定しながら加熱時間を決定するのも好ましい。 The silicon material manufacturing process is preferably performed in a non-oxidizing atmosphere having a lower oxygen content than in normal air. Examples of the non-oxidizing atmosphere include a reduced pressure atmosphere including a vacuum and an inert gas atmosphere. The heating temperature is preferably in the range of 350 ° C to 1200 ° C, more preferably in the range of 400 ° C to 1200 ° C. If the heating temperature is too low, hydrogen may not be released sufficiently. On the other hand, if the heating temperature is too high, energy is wasted. What is necessary is just to set a heating time suitably according to heating temperature, and it is also preferable to determine a heating time, measuring the quantity of hydrogen etc. which escapes out of a reaction system.
加熱温度及び加熱時間を適宜選択することにより、製造されるシリコン材料に含まれるアモルファスシリコン及びシリコン結晶子の割合、並びに、シリコン結晶子の大きさを調製することもでき、さらには、製造されるシリコン材料に含まれる、アモルファスシリコン及びシリコン結晶子を含むナノ水準の厚みの層の形状や大きさを調製することもできる。 By appropriately selecting the heating temperature and the heating time, the ratio of amorphous silicon and silicon crystallites contained in the silicon material to be manufactured, and the size of the silicon crystallites can also be adjusted, and further manufactured. The shape and size of a nano-level layer containing amorphous silicon and silicon crystallites contained in the silicon material can also be prepared.
またシリコン材料をリチウムイオン二次電池などの二次電池の負極活物質として使用する場合は、シリコン材料を炭素で被覆して用いるのが好ましい。炭素は、非晶質の炭素のみであってもよいし、結晶質の炭素のみであってもよいし、非晶質の炭素と結晶質の炭素とが混在していてもよい。 In addition, when a silicon material is used as a negative electrode active material for a secondary battery such as a lithium ion secondary battery, the silicon material is preferably coated with carbon. The carbon may be only amorphous carbon, may be crystalline carbon, or may be a mixture of amorphous carbon and crystalline carbon.
シリコン材料に炭素を被覆する方法は特に限定されない。炭素被覆方法としては、炭素粉末とシリコン材料を混合(例えばメカニカルミリング)する方法、樹脂とシリコン材料の複合化から得られる混合物を加熱処理して樹脂を炭素化する方法、シリコン材料を非酸化性雰囲気下にて有機物ガスと接触させ加熱して有機物ガスを炭素化する方法(熱CVD法)などが挙げられる。 The method for coating the silicon material with carbon is not particularly limited. Carbon coating methods include mixing carbon powder and silicon material (for example, mechanical milling), heating the mixture obtained from the composite of resin and silicon material, and carbonizing the resin, and non-oxidizing silicon material. Examples thereof include a method (thermal CVD method) in which an organic gas is carbonized by being brought into contact with an organic gas in an atmosphere and heated.
負極活物質層における珪素を含む負極活物質の含有量は負極活物質層を100質量部としたときに30質量部以上85質量部以下であることが好ましく、40質量部以上80質量部以下であることがより好ましく、50質量部以上75質量部以下であることがさらに好ましい。珪素を含む負極活物質が上記範囲で含まれることにより、電池の充放電容量を高くし、かつ電池の寿命を長くすることができる。 The content of the negative electrode active material containing silicon in the negative electrode active material layer is preferably 30 parts by mass or more and 85 parts by mass or less, and 40 parts by mass or more and 80 parts by mass or less when the negative electrode active material layer is 100 parts by mass. More preferably, it is 50 parts by mass or more and 75 parts by mass or less. By including the negative electrode active material containing silicon in the above range, the charge / discharge capacity of the battery can be increased and the life of the battery can be extended.
負極活物質は、上記珪素を含む負極活物質以外に他の負極活物質を含んでもよい。他の負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを用いることができる。 The negative electrode active material may contain other negative electrode active materials in addition to the negative electrode active material containing silicon. As another negative electrode active material, a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, a compound having an element capable of being alloyed with lithium, a polymer material, or the like can be used.
炭素系材料としては、黒鉛、難黒鉛化性炭素、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include graphite, non-graphitizable carbon, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Ge、Sn、Pb、Sb、Biの少なくとも1種である。 Elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Ge, Sn, Pb. , Sb, Bi.
リチウムと合金化可能な元素を有する化合物としては、例えば、ZnLiAl、AlSb、Mg2Sn、SnOw(0<w≦2)、LiSnOなどが挙げられる。 Examples of the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, Mg 2 Sn, SnO w (0 <w ≦ 2), LiSnO, and the like.
高分子材料としては、ポリアセチレン、ポリピロールなどが使用できる。 As the polymer material, polyacetylene, polypyrrole, or the like can be used.
他の負極活物質としては、炭素系材料が好ましい。 As the other negative electrode active material, a carbon-based material is preferable.
負極活物質は粉末形状であることが好ましい。負極活物質が粉末形状の場合、負極活物質の平均粒径D50は0.5μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。負極活物質の平均粒径D50が小さすぎると、負極活物質の粉末の比表面積が大きくなり、負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、リチウムイオン二次電池のサイクル特性が悪くなるおそれがある。負極活物質の平均粒径D50が大きすぎると、電極全体の導電性が不均一になり、充放電特性が低下するおそれがある。 The negative electrode active material is preferably in powder form. When the negative electrode active material is in a powder form, the average particle diameter D 50 of the negative electrode active material is preferably 0.5 μm or more and 30 μm or less, and more preferably 1 μm or more and 20 μm or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material is increased, it increases the contact area of the powder of the anode active material and the electrolyte solution, proceed decomposition of the electrolyte solution Therefore, the cycle characteristics of the lithium ion secondary battery may be deteriorated. When the average particle diameter D 50 of the negative electrode active material is too large, conductivity of the whole electrode becomes uneven, charging and discharging characteristics may deteriorate.
負極活物質層を集電体の表面に配置するには、正極活物質層を集電体の表面に配置するのと同様にして行うことができる。 The negative electrode active material layer can be disposed on the surface of the current collector in the same manner as the positive electrode active material layer is disposed on the surface of the current collector.
(セパレータ)
セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとして、例えばポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が挙げられる。珪素系材料を含む負極の充放電による膨張収縮に追随しやすくなるように、セパレータは合成樹脂製の多孔質膜を含むことが好ましい。
(Separator)
The separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. Examples of the separator include a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, polyethylene, polyester, and polyamide, or a porous film made of ceramics. The separator preferably includes a porous film made of a synthetic resin so as to easily follow expansion and contraction due to charging / discharging of the negative electrode including the silicon-based material.
合成樹脂製のセパレータは、単一の合成樹脂を用いた単層構造でもよいし、複数の合成樹脂の層を重ねた積層構造でもよい。セパレータの厚みは特に制限されないが、5μm〜100μmの範囲が好ましく、10μm〜50μmの範囲がより好ましく、15μm〜30μmの範囲が特に好ましい。 The separator made of synthetic resin may have a single layer structure using a single synthetic resin or a laminated structure in which a plurality of synthetic resin layers are stacked. The thickness of the separator is not particularly limited, but is preferably in the range of 5 μm to 100 μm, more preferably in the range of 10 μm to 50 μm, and particularly preferably in the range of 15 μm to 30 μm.
(非水電解液)
非水電解液は、非水溶媒と非水溶媒に溶解された電解質とを含んでいる。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution contains a nonaqueous solvent and an electrolyte dissolved in the nonaqueous solvent.
非水溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が挙げられる。環状エステル類として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンが挙げられる。鎖状エステル類として、例えばジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが挙げられる。エーテル類として、例えばテトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンが挙げられる。非水溶媒としては、上記具体的な非水溶媒の化学構造のうち一部または全部の水素がフッ素に置換した化合物を採用してもよい。非水溶媒の化学構造のうち一部または全部の水素がフッ素置換された化合物としては、例えばフルオロエチレンカーボネート、ジフルオロエチレンカーボネートが挙げられる。 Examples of the non-aqueous solvent include cyclic esters, chain esters, and ethers. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of the chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which part or all of hydrogen in the chemical structure of the specific non-aqueous solvent is substituted with fluorine may be employed. Examples of the compound in which part or all of hydrogen in the chemical structure of the non-aqueous solvent is fluorine-substituted include, for example, fluoroethylene carbonate and difluoroethylene carbonate.
また上記非水電解液に溶解させる電解質として、例えばLiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2等のリチウム塩を使用することができる。 Moreover, as an electrolyte dissolved in the non-aqueous electrolyte, for example, a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
非水電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの溶媒にLiClO4、LiPF6、LiBF4、LiCF3SO3などのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As the non-aqueous electrolyte, for example, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a solvent such as ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate is used in an amount of 0.5 mol / l to 1. A solution dissolved at a concentration of about 7 mol / l can be used.
正極および負極にセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしてもよい。正極用集電体および負極用集電体から外部に通ずる正極タブ部および負極タブ部までの間を、集電用リード等を用いて接続した後に、電極体に非水電解液を加えてリチウムイオン二次電池とする。 A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be any of a stacked type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are sandwiched. After connecting the current collector for the positive electrode and the current collector for the negative electrode to the positive electrode tab portion and the negative electrode tab portion that communicate with the outside using a current collector lead, etc., a non-aqueous electrolyte is added to the electrode body and lithium is added. An ion secondary battery is used.
その際に非水電解液の液量を式(1)を満たすように設定する。 At that time, the amount of the non-aqueous electrolyte is set so as to satisfy the formula (1).
リチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be employed.
上記リチウムイオン二次電池は車両に搭載することができる。上記リチウムイオン二次電池は、安全性が高いため、そのリチウムイオン二次電池を搭載した車両は、安全性が高くなる。 The lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery has high safety, a vehicle equipped with the lithium ion secondary battery has high safety.
車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist. Bicycles and electric motorcycles are examples.
以上、本発明のリチウムイオン二次電池及びその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of the lithium ion secondary battery and its manufacturing method of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
以下、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(正極の作成)
(正極A)
正極活物質として平均粒径D50が6μmのLiNi0.5Co0.2Mn0.3O2と、正極活物質として表面をカーボンコートした平均粒径D50が1.5μmのLiFePO4と、導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(以下PVDFと称す)とを、それぞれ67質量部、27質量部、3質量部、3質量部の割合で混合し、この混合物を適量のN−メチル−2−ピロリドン(以下NMPと称す)に分散させて、正極活物質層用スラリーを作製した。
(Creation of positive electrode)
(Positive electrode A)
LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter D 50 of 6 μm as a positive electrode active material, and LiFePO 4 having an average particle diameter D 50 of 1.5 μm having a carbon coating on the surface as a positive electrode active material, Acetylene black as a conductive auxiliary agent and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder were mixed in a ratio of 67 parts by mass, 27 parts by mass, 3 parts by mass, and 3 parts by mass, respectively. A positive electrode active material layer slurry was prepared by dispersing in an appropriate amount of N-methyl-2-pyrrolidone (hereinafter referred to as NMP).
ここで、LiNi0.5Co0.2Mn0.3O2の真密度は4.8g/cm3、LiFePO4との真密度は3.6g/cm3、アセチレンブラックの真密度は2g/cm3、PVDFの真密度は1.78g/cm3であった。 Here, the true density of LiNi 0.5 Co 0.2 Mn 0.3 O 2 is 4.8 g / cm 3 , the true density with LiFePO 4 is 3.6 g / cm 3 , and the true density of acetylene black is 2 g / cm 2. The true density of cm 3 and PVDF was 1.78 g / cm 3 .
集電体として厚み15μmのアルミニウム箔を準備した。集電体に正極活物質層用スラリーをのせ、コンマコーターを用いて、正極活物質層用スラリーを膜状に塗布した。正極活物質層用スラリーが塗布された集電体を90℃で5分間乾燥し、次に120℃で5分間乾燥してNMPを揮発させて除去した。片面塗布後、アルミニウム箔を裏返し、同じ塗布量となるよう裏面にも同様に塗工した。その後、ロ−ルプレス機により、集電体と集電体上の塗布物を強固に密着接合させた。この時正極活物質層の片面の目付は27.0mg/cm2となるようにした。ここでいう正極活物質層の目付は、正極活物質層の質量(g)÷正極活物質層の面積(cm2)の式より算出した。接合物を120℃で6時間、真空乾燥機で加熱した。加熱後の接合物を、所定の形状(40mm×80mmの矩形状)に切り取り、正極Aとした。正極Aの正極活物質層の片面の厚さは93μmであった。ここから、正極Aの正極活物質層の片面の体積は0.2976cm3と算出された。 An aluminum foil having a thickness of 15 μm was prepared as a current collector. The positive electrode active material layer slurry was placed on the current collector, and the positive electrode active material layer slurry was applied in a film form using a comma coater. The current collector coated with the positive electrode active material layer slurry was dried at 90 ° C. for 5 minutes and then dried at 120 ° C. for 5 minutes to volatilize and remove NMP. After coating on one side, the aluminum foil was turned over and coated on the back side in the same manner so that the same coating amount was obtained. Thereafter, the current collector and the coated material on the current collector were firmly and closely joined by a roll press. At this time, the basis weight on one side of the positive electrode active material layer was set to 27.0 mg / cm 2 . Here, the basis weight of the positive electrode active material layer was calculated from the equation: mass of positive electrode active material layer (g) ÷ area of positive electrode active material layer (cm 2 ). The bonded product was heated in a vacuum dryer at 120 ° C. for 6 hours. The bonded product after heating was cut into a predetermined shape (rectangular shape of 40 mm × 80 mm) to obtain a positive electrode A. The thickness of one surface of the positive electrode active material layer of the positive electrode A was 93 μm. From this, the volume of one surface of the positive electrode active material layer of the positive electrode A was calculated to be 0.2976 cm 3 .
ここで、正極Aの正極活物質層の片面の質量は864mgであった。正極活物質層の質量と、正極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を正極活物質層の片面の体積0.2976cm3から減じて空隙量を算出した。正極Aの正極活物質層の片面の空隙量は0.081mlであった。 Here, the mass of one surface of the positive electrode active material layer of the positive electrode A was 864 mg. The sum of the volume of each component contained in the positive electrode active material layer and the theoretical amount calculated from the blending amount (parts by mass) and true density of each component contained in the positive electrode active material layer is the volume of one side of the positive electrode active material layer. The void amount was calculated by subtracting from 2976 cm 3 . The amount of voids on one side of the positive electrode active material layer of positive electrode A was 0.081 ml.
(正極B)
正極活物質として平均粒径D50が6μmのLiNi0.5Co0.2Mn0.3O2と、導電助剤としてアセチレンブラックと、結着剤としてPVDFとを、それぞれ94質量部、3質量部、3質量部の割合で混合し、この混合物を適量のNMPに分散させて、正極活物質層用スラリーを作製し、正極活物質層の片面の目付が18.0mg/cm2となるようにした以外は正極Aと同様にして正極Bを作製した。正極Bの正極活物質層の片面の厚さは61μmであった。ここから、正極Bの正極活物質層の片面の体積は0.1952cm3と算出された。
(Positive electrode B)
94 parts by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter D 50 of 6 μm as a positive electrode active material, acetylene black as a conductive additive, and PVDF as a binder, Mixing at a ratio of 3 parts by mass and 3 parts by mass, this mixture is dispersed in an appropriate amount of NMP to produce a slurry for the positive electrode active material layer, and the basis weight on one side of the positive electrode active material layer is 18.0 mg / cm 2. A positive electrode B was produced in the same manner as the positive electrode A except that the above procedure was performed. The thickness of one surface of the positive electrode active material layer of the positive electrode B was 61 μm. From this, the volume of one surface of the positive electrode active material layer of the positive electrode B was calculated to be 0.1952 cm 3 .
ここで、正極Bの正極活物質層の片面の質量は576mgであった。正極活物質層の質量と、正極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を正極活物質層の片面の体積0.1952cm3から減じて空隙量を算出した。正極Bの正極活物質層の片面の空隙量は0.052mlであった。 Here, the mass of one surface of the positive electrode active material layer of the positive electrode B was 576 mg. The sum of the volume of each component contained in the positive electrode active material layer and the theoretical amount calculated from the blending amount (parts by mass) and true density of each component contained in the positive electrode active material layer is the volume of one side of the positive electrode active material layer. The void amount was calculated by subtracting from 1952 cm 3 . The amount of voids on one side of the positive electrode active material layer of positive electrode B was 0.052 ml.
(正極C)
加熱後の接合物を、所定の形状(130mm×101.5mmの矩形状)に切り取った以外は正極Aと同様にして正極Cを作製した。正極Cの正極活物質層の片面の厚さは93μmであった。ここから、正極Cの正極活物質層の片面の体積は1.227cm3と算出された。
(Positive electrode C)
A positive electrode C was produced in the same manner as the positive electrode A, except that the bonded product after heating was cut into a predetermined shape (rectangular shape of 130 mm × 101.5 mm). The thickness of one surface of the positive electrode active material layer of the positive electrode C was 93 μm. From this, the volume of one surface of the positive electrode active material layer of the positive electrode C was calculated to be 1.227 cm 3 .
ここで、正極Cの正極活物質層の片面の質量は3.562gであった。正極活物質層の質量と、正極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を正極活物質層の片面の体積1.227cm3から減じて空隙量を算出した。正極Cの正極活物質層の片面の空隙量は0.24mlであった。 Here, the mass of one surface of the positive electrode active material layer of the positive electrode C was 3.562 g. The volume of one side of the positive electrode active material layer is defined as the sum of the mass of the positive electrode active material layer and the theoretical volume of each component calculated from the blending amount (parts by mass) and true density of each component contained in the positive electrode active material layer. The void amount was calculated by subtracting from 227 cm 3 . The amount of voids on one side of the positive electrode active material layer of positive electrode C was 0.24 ml.
(正極D)
加熱後の接合物を、所定の形状(130mm×101.5mmの矩形状)に切り取った以外は正極Bと同様にして正極Dを作製した。正極Dの正極活物質層の片面の厚さは61μmであった。ここから、正極Dの正極活物質層の片面の体積は0.805cm3と算出された。
(Positive electrode D)
A positive electrode D was produced in the same manner as the positive electrode B, except that the bonded product after heating was cut into a predetermined shape (rectangular shape of 130 mm × 101.5 mm). The thickness of one surface of the positive electrode active material layer of the positive electrode D was 61 μm. From this, the volume of one surface of the positive electrode active material layer of the positive electrode D was calculated to be 0.805 cm 3 .
ここで、正極Dの正極活物質層の片面の質量は2.375gであった。正極活物質層の質量と、正極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を正極活物質層の片面の体積0.805cm3から減じて空隙量を算出した。正極Dの正極活物質層の片面の空隙量は0.21mlであった。 Here, the mass of one surface of the positive electrode active material layer of the positive electrode D was 2.375 g. The sum of the volume of each component contained in the positive electrode active material layer and the theoretical amount calculated from the blending amount (parts by mass) and true density of each component contained in the positive electrode active material layer is the volume of one side of the positive electrode active material layer. The void amount was calculated by subtracting from 805 cm 3 . The amount of voids on one side of the positive electrode active material layer of positive electrode D was 0.21 ml.
(負極の作製)
(シリコン材料の作製)
炭素で被覆されたシリコン材料を以下のように作製した。
(Preparation of negative electrode)
(Production of silicon material)
A silicon material coated with carbon was prepared as follows.
濃度46質量%のHF水溶液7mlと、濃度36質量%のHCl水溶液56mlとの混合溶液を氷浴中で0℃とし、アルゴンガス気流中にてそこへ3.3gのCaSi2を加えて撹拌した。発泡が完了したのを確認した後に混合溶液を室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに10分間撹拌した。このとき黄色粉末が浮遊した。 A mixed solution of 7 ml of an aqueous HF solution having a concentration of 46% by mass and 56 ml of an aqueous HCl solution having a concentration of 36% by mass was brought to 0 ° C. in an ice bath, and 3.3 g of CaSi 2 was added thereto and stirred in an argon gas stream. . After confirming the completion of foaming, the mixed solution was warmed to room temperature, stirred for another 2 hours at room temperature, then added with 20 ml of distilled water and further stirred for 10 minutes. At this time, yellow powder floated.
得られた混合溶液を濾過し、得られた残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄した。洗浄後の残渣を真空乾燥して2.5gの層状ポリシランを得た。 The obtained mixed solution was filtered, and the obtained residue was washed with 10 ml of distilled water and then with 10 ml of ethanol. The residue after washing was vacuum dried to obtain 2.5 g of layered polysilane.
この層状ポリシランを1g秤量し、O2を1体積%以下の量で含むアルゴンガス中にて500℃で1時間保持する熱処理を行い、シリコン材料を得た。 1 g of this layered polysilane was weighed, and a heat treatment was performed in an argon gas containing O 2 in an amount of 1% by volume or less at 500 ° C. for 1 hour to obtain a silicon material.
得られたシリコン材料をロータリーキルン型の反応器に入れ、プロパンガス通気下にて850℃、滞留時間5分間の条件で熱CVDによる炭素化工程を行い、炭素で被覆されたシリコン材料を得た。ロータリーキルン型の反応器では、回転式でシリコン材料を循環させながら加熱するため、炭素の被覆ムラがおこりにくい。反応器の回転速度は1rpmとした。この炭素で被覆されたシリコン材料の平均粒径D50は5μmであった。 The obtained silicon material was put into a rotary kiln type reactor, and a carbonization process by thermal CVD was performed under a condition of 850 ° C. and a residence time of 5 minutes under a flow of propane gas to obtain a silicon material coated with carbon. In the rotary kiln type reactor, since the silicon material is heated while being circulated in a rotary type, uneven coating of carbon hardly occurs. The rotation speed of the reactor was 1 rpm. The average particle diameter D 50 of the silicon material coated with this carbon was 5 [mu] m.
(負極A)
負極活物質として、上記した炭素で被覆されたシリコン材料及び平均粒子径D50が15μmの天然黒鉛を準備した。バインダー樹脂としてポリアミドイミド樹脂を準備した。導電助剤としてアセチレンブラックを準備した。
(Negative electrode A)
As an anode active material, the silicon material and the average particle diameter D 50 coated with carbon was prepared 15μm natural graphite. A polyamide-imide resin was prepared as a binder resin. Acetylene black was prepared as a conductive aid.
ここで、シリコン材料の真密度は2.31g/cm3、天然黒鉛の真密度は2.25g/cm3、ポリアミドイミド樹脂の真密度は1.41g/cm3、アセチレンブラックの真密度は2g/cm3であった。 Here, the true density of the silicon material is 2.31 g / cm 3, the true density of natural graphite 2.25 g / cm 3, the true density of the polyamide-imide resin 1.41 g / cm 3, the true density of the acetylene black 2g / Cm 3 .
上記負極活物質、導電助剤及びバインダー樹脂を、シリコン材料:黒鉛:導電助剤:バインダー樹脂=58:24:7:11の質量比で混合した。上記混合物に、溶媒としてNMPを適量入れて調整して、負極活物質層用スラリーとした。 The negative electrode active material, the conductive auxiliary agent, and the binder resin were mixed at a mass ratio of silicon material: graphite: conductive auxiliary agent: binder resin = 58: 24: 7: 11. An appropriate amount of NMP was added as a solvent to the above mixture to prepare a negative electrode active material layer slurry.
負極用集電体として20μmの銅箔を準備し、銅箔にコンマコーターを用いて、上記負極活物質層用スラリーを膜状に塗布した。負極活物質層用スラリーが塗布された銅箔を80℃で5分間乾燥してNMPを揮発させて除去した。片面塗布後、銅箔を裏返し、同じ塗布量となるよう裏面にも同様に塗工した。その後、ロ−ルプレス機により、集電体と集電体上の塗布物を強固に密着接合させた。この時負極活物質層の片面の目付は4.9mg/cm2となるようにした。ここでいう負極活物質層の目付は、負極活物質層の質量(g)÷負極活物質層の面積(cm2)の式より算出した。接合物を200℃で2時間、真空乾燥機で加熱した後、所定の形状(負極活物質層面積44mm×84mmの矩形状)に切り取り、負極Aとした。負極Aの負極活物質層の片面の厚さは43μmであった。ここから、負極Aの負極活物質層の片面の体積は0.1589cm3と算出された。 A 20 μm copper foil was prepared as a negative electrode current collector, and the slurry for negative electrode active material layer was applied to the copper foil in a film form using a comma coater. The copper foil coated with the negative electrode active material layer slurry was dried at 80 ° C. for 5 minutes to volatilize and remove NMP. After coating on one side, the copper foil was turned over and coated on the back side in the same way so that the same coating amount was obtained. Thereafter, the current collector and the coated material on the current collector were firmly and closely joined by a roll press. At this time, the basis weight on one side of the negative electrode active material layer was set to 4.9 mg / cm 2 . Here, the basis weight of the negative electrode active material layer was calculated from the equation: mass of negative electrode active material layer (g) ÷ area of negative electrode active material layer (cm 2 ). The joined product was heated in a vacuum dryer at 200 ° C. for 2 hours, and then cut into a predetermined shape (rectangular shape having a negative electrode active material layer area of 44 mm × 84 mm) to form a negative electrode A. The thickness of one surface of the negative electrode active material layer of the negative electrode A was 43 μm. From this, the volume of one side of the negative electrode active material layer of the negative electrode A was calculated to be 0.1589 cm 3 .
ここで、負極Aの負極活物質層の片面の質量は181.1mgであった。負極活物質層の質量と、負極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を負極活物質層の片面の体積0.1589cm3から減じて空隙量を算出した。負極Aの負極活物質層の片面の空隙量は0.065mlであった。 Here, the mass of one surface of the negative electrode active material layer of the negative electrode A was 181.1 mg. The sum of the theoretical volume calculated from the mass of the negative electrode active material layer, the blending amount (parts by mass) and the true density of each component contained in the negative electrode active material layer is the volume of one side of the negative electrode active material layer. The void amount was calculated by subtracting from 1589 cm 3 . The amount of voids on one side of the negative electrode active material layer of negative electrode A was 0.065 ml.
(負極B)
天然黒鉛98質量部と、結着剤として、スチレン−ブタジエンゴム(以下SBRと称す。)1質量部及びカルボキシメチルセルロース(以下CMCと称す。)1質量部とを混合して混合物とし、負極活物質層の片面の目付を11mg/cm2となるようにした以外は負極Aと同様にして負極Bを作製した。
(Negative electrode B)
A mixture of 98 parts by mass of natural graphite, 1 part by mass of styrene-butadiene rubber (hereinafter referred to as SBR) and 1 part by mass of carboxymethyl cellulose (hereinafter referred to as CMC) as a binder is used as a negative electrode active material. A negative electrode B was produced in the same manner as the negative electrode A, except that the basis weight on one side of the layer was 11 mg / cm 2 .
ここで、天然黒鉛の真密度は2.25g/cm3、SBRの真密度は0.93g/cm3、CMCの真密度は0.8g/cm3であった。 Here, the true density of natural graphite was 2.25 g / cm 3 , the true density of SBR was 0.93 g / cm 3 , and the true density of CMC was 0.8 g / cm 3 .
負極Bの負極活物質層の片面の厚さは77μm程度であった。ここから、負極Bの負極活物質層の片面の体積は0.2845cm3と算出された。 The thickness of one surface of the negative electrode active material layer of the negative electrode B was about 77 μm. From this, the volume of one side of the negative electrode active material layer of the negative electrode B was calculated to be 0.2845 cm 3 .
ここで、負極Bの負極活物質層の片面の質量は405.6mgであった。負極活物質層の質量と、負極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を負極活物質層の片面の体積0.2845cm3から減じて空隙量を算出した。負極Bの負極活物質層の片面の空隙量は0.108mlであった。 Here, the mass of one surface of the negative electrode active material layer of the negative electrode B was 405.6 mg. The sum of the theoretical volume calculated from the mass of the negative electrode active material layer, the blending amount (parts by mass) and the true density of each component contained in the negative electrode active material layer is the volume of one side of the negative electrode active material layer. The void amount was calculated by subtracting from 2845 cm 3 . The amount of voids on one side of the negative electrode active material layer of negative electrode B was 0.108 ml.
(負極C)
加熱後の接合物を、所定の形状(136mm×108.5mmの矩形状)に切り取った以外は負極Aと同様にして負極Cを作製した。負極Cの負極活物質層の厚さは43μmであった。ここから、負極Cの負極活物質層の片面の体積は0.594cm3と算出された。
(Negative electrode C)
Negative electrode C was produced in the same manner as negative electrode A, except that the bonded product after heating was cut into a predetermined shape (rectangular shape of 136 mm × 108.5 mm). The thickness of the negative electrode active material layer of the negative electrode C was 43 μm. From this, the volume of one surface of the negative electrode active material layer of the negative electrode C was calculated to be 0.594 cm 3 .
ここで、負極Cの負極活物質層の片面の質量は723.0mgであった。負極活物質層の質量と、負極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を負極活物質層の片面の体積0.594cm3から減じて空隙量を算出した。負極Cの負極活物質層の片面の空隙量は0.374mlであった。 Here, the mass of one surface of the negative electrode active material layer of the negative electrode C was 723.0 mg. The sum of the theoretical volume calculated from the mass of the negative electrode active material layer, the blending amount (parts by mass) and the true density of each component contained in the negative electrode active material layer is the volume of one side of the negative electrode active material layer. The void amount was calculated by subtracting from 594 cm 3 . The amount of voids on one side of the negative electrode active material layer of negative electrode C was 0.374 ml.
(負極D)
加熱後の接合物を、所定の形状(136mm×108.5mmの矩形状)に切り取った以外は負極Bと同様にして負極Dを作製した。負極Dの負極活物質層の片面の厚さは77μmであった。ここから、負極Dの負極活物質層の片面の体積は1.136cm3と算出された。
(Negative electrode D)
A negative electrode D was produced in the same manner as the negative electrode B except that the bonded product after heating was cut into a predetermined shape (rectangular shape of 136 mm × 108.5 mm). The thickness of one surface of the negative electrode active material layer of the negative electrode D was 77 μm. From this, the volume of one side of the negative electrode active material layer of the negative electrode D was calculated to be 1.136 cm 3 .
ここで、負極Dの負極活物質層の片面の質量は1.619gであった。負極活物質層の質量と、負極活物質層に含まれる各成分の配合量(質量部)及び真密度から算出した理論上の各成分の体積の和を負極活物質層の片面の体積1.136cm3から減じて空隙量を算出した。負極Dの負極活物質層の片面の空隙量は0.416mlであった。 Here, the mass of one surface of the negative electrode active material layer of the negative electrode D was 1.619 g. The volume of one side of the negative electrode active material layer is the sum of the theoretical volume calculated from the mass of the negative electrode active material layer, the blending amount (parts by mass) of each component contained in the negative electrode active material layer, and the true density. The void amount was calculated by subtracting from 136 cm 3 . The amount of voids on one side of the negative electrode active material layer of negative electrode D was 0.416 ml.
(セパレータ)
セパレータとして多孔性のポリエチレンフィルムを準備した。ポリエチレンフィルムの矩形状シート(48mm×88mm、厚さ25μm)の空隙量は0.049mlであり、ポリエチレンフィルムの矩形状シート(136mm×112mm、厚さ25μm)の空隙量は0.179mlであった。
(Separator)
A porous polyethylene film was prepared as a separator. The void amount of the rectangular sheet of polyethylene film (48 mm × 88 mm, thickness 25 μm) was 0.049 ml, and the void amount of the rectangular sheet of polyethylene film (136 mm × 112 mm, thickness 25 μm) was 0.179 ml. .
<ラミネート型リチウムイオン二次電池作製>
(実施例1−1)
実施例1−1のラミネート型リチウムイオン二次電池を次のようにして作製した。
<Production of laminated lithium-ion secondary battery>
(Example 1-1)
The laminate type lithium ion secondary battery of Example 1-1 was produced as follows.
上記の正極Aを1枚及び負極Aを2枚用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとして多孔性のポリエチレンフィルムからなる矩形状シート(48mm×88mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。この時の正極A1枚、負極A2枚及びセパレータ2枚の空隙量の総和は0.52mlであり、電解液の注液量は、電解液量/空隙量=0.89となるようにした。 A laminate type lithium ion secondary battery was manufactured using one positive electrode A and two negative electrodes A. Specifically, a rectangular sheet (48 mm × 88 mm, thickness 25 μm) made of a porous polyethylene film as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. At this time, the total amount of voids of one positive electrode A, two negative electrodes A, and two separators was 0.52 ml, and the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids = 0.89.
電解液としてエチレンカーボネート(以下ECと称す。)と、エチルメチルカーボネート(以下EMCと称す。)と、ジメチルカーボネート(以下DMCと称す。)をEC:EMC:DMC=3:3:4(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブ部を備え、このタブ部の一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1−1のラミネート型リチウムイオン二次電池を作製した。 As an electrolyte, ethylene carbonate (hereinafter referred to as EC), ethyl methyl carbonate (hereinafter referred to as EMC), and dimethyl carbonate (hereinafter referred to as DMC) were EC: EMC: DMC = 3: 3: 4 (volume ratio). ) Was used to dissolve LiPF 6 to 1 mol / l. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. The positive electrode and the negative electrode have a tab portion that can be electrically connected to the outside, and a part of the tab portion extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate type lithium ion secondary battery of Example 1-1 was produced.
(実施例1−2)
電極の大きさ及び積層枚数を変更した以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして実施例1−2のラミネート型リチウムイオン二次電池を作製した。上記正極Aと正極Cは、電極の大きさが違うだけでその構成は同一である。また同様に負極Aと負極Cは電極の大きさが違うだけでその構成は同一である。
(Example 1-2)
A laminated lithium ion secondary battery of Example 1-2 was produced in the same manner as the laminated lithium ion secondary battery of Example 1-1 except that the size of the electrode and the number of stacked layers were changed. The positive electrode A and the positive electrode C have the same configuration except for the size of the electrodes. Similarly, the negative electrode A and the negative electrode C have the same configuration except for the size of the electrodes.
具体的には正極Cを67枚及び負極Cを68枚用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、各正極および各負極の間に、セパレータとして多孔性のポリエチレンフィルムからなる矩形状シート(136mm×112mm、厚さ25μm)を挟装して積層して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。この時の正極C67枚、負極C68枚及びセパレータ134枚の空隙量の総和は107.0mlであり、電解液の注液量は、電解液量/空隙量=0.89となるようにした。 Specifically, a laminate type lithium ion secondary battery was manufactured using 67 positive electrodes C and 68 negative electrodes C. Specifically, a rectangular sheet (136 mm × 112 mm, thickness 25 μm) made of a porous polyethylene film as a separator was sandwiched between each positive electrode and each negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. At this time, the total amount of voids of the positive electrode C67 sheets, the negative electrode C68 sheets, and the separator 134 sheets was 107.0 ml, and the injection amount of the electrolytic solution was set to the electrolytic solution amount / void amount = 0.89.
(実施例2−1)
電解液の注液量を、電解液量/空隙量=0.94となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして実施例2−1のラミネート型リチウムイオン二次電池を作製した。
(Example 2-1)
The laminate type of Example 2-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids = 0.94. A lithium ion secondary battery was produced.
(実施例2−2)
電解液の注液量を、電解液量/空隙量=0.94となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして実施例2−2のラミネート型リチウムイオン二次電池を作製した。
(Example 2-2)
The laminate type of Example 2-2 was the same as the laminate type lithium ion secondary battery of Example 1-2 except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 0.94. A lithium ion secondary battery was produced.
(実施例3−1)
電解液の注液量を、電解液量/空隙量=0.98となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして実施例3−1のラミネート型リチウムイオン二次電池を作製した。
(Example 3-1)
The laminate type of Example 3-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 0.98. A lithium ion secondary battery was produced.
(実施例3−2)
電解液の注液量を、電解液量/空隙量=0.98となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして実施例3−2のラミネート型リチウムイオン二次電池を作製した。
(Example 3-2)
The laminate type of Example 3-2 was the same as the laminate type lithium ion secondary battery of Example 1-2 except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 0.98. A lithium ion secondary battery was produced.
(実施例4−1)
電解液の注液量を、電解液量/空隙量=1.04となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして実施例4−1のラミネート型リチウムイオン二次電池を作製した。
(Example 4-1)
The laminate type of Example 4-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids was 1.04. A lithium ion secondary battery was produced.
(実施例4−2)
電解液の注液量を、電解液量/空隙量=1.04となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして実施例4−2のラミネート型リチウムイオン二次電池を作製した。
(Example 4-2)
The laminate type of Example 4-2 was the same as the laminate type lithium ion secondary battery of Example 1-2, except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids was 1.04. A lithium ion secondary battery was produced.
(実施例5−1)
電解液の注液量を、電解液量/空隙量=1.11となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして実施例5−1のラミネート型リチウムイオン二次電池を作製した。
(Example 5-1)
The laminate type of Example 5-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.11. A lithium ion secondary battery was produced.
(実施例5−2)
電解液の注液量を、電解液量/空隙量=1.11となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして実施例5−2のラミネート型リチウムイオン二次電池を作製した。
(Example 5-2)
The laminate type of Example 5-2 was the same as the laminate type lithium ion secondary battery of Example 1-2 except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.11. A lithium ion secondary battery was produced.
(実施例6−1)
電解液の注液量を、電解液量/空隙量=1.12となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして実施例6−1のラミネート型リチウムイオン二次電池を作製した。
(Example 6-1)
The laminate type of Example 6-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.12. A lithium ion secondary battery was produced.
(実施例6−2)
電解液の注液量を、電解液量/空隙量=1.12となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして実施例6−2のラミネート型リチウムイオン二次電池を作製した。
(Example 6-2)
The laminate type of Example 6-2 was the same as the laminate type lithium ion secondary battery of Example 1-2, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.12. A lithium ion secondary battery was produced.
(比較例1−1)
電解液の注液量を、電解液量/空隙量=0.79となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして比較例1−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 1-1)
The laminate type of Comparative Example 1-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids = 0.79. A lithium ion secondary battery was produced.
(比較例1−2)
電解液の注液量を、電解液量/空隙量=0.79となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして比較例1−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 1-2)
The laminate type of Comparative Example 1-2 was the same as the laminate type lithium ion secondary battery of Example 1-2, except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids = 0.79. A lithium ion secondary battery was produced.
(比較例2−1)
電解液の注液量を、電解液量/空隙量=0.83となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして比較例2−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 2-1)
The laminate type of Comparative Example 2-1 was the same as the laminate type lithium ion secondary battery of Example 1-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 0.83. A lithium ion secondary battery was produced.
(比較例2−2)
電解液の注液量を、電解液量/空隙量=0.83となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして比較例2−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 2-2)
The laminate type of Comparative Example 2-2 was the same as the laminate type lithium ion secondary battery of Example 1-2 except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 0.83. A lithium ion secondary battery was produced.
(比較例3−1)
正極B及び負極Bを用い、電解液の注液量を、電解液量/空隙量=0.91となるようにした以外は実施例1−1のラミネート型リチウムイオン二次電池と同様にして比較例3−1のラミネート型リチウムイオン二次電池を作製した。この時の正極B1枚、負極B2枚及びセパレータ2枚の空隙量の総和は0.634mlであった。
(Comparative Example 3-1)
The positive electrode B and the negative electrode B were used, and the amount of electrolyte solution injected was the same as that of the laminated lithium ion secondary battery of Example 1-1 except that the amount of electrolyte solution / amount of voids was 0.91. A laminated lithium ion secondary battery of Comparative Example 3-1 was produced. At this time, the total amount of voids of one positive electrode B, two negative electrodes B, and two separators was 0.634 ml.
(比較例3−2)
正極D及び負極Dを用い、電解液の注液量を、電解液量/空隙量=0.91となるようにした以外は実施例1−2のラミネート型リチウムイオン二次電池と同様にして比較例3−2のラミネート型リチウムイオン二次電池を作製した。この時の正極D65枚、負極D66枚及びセパレータ130枚の空隙量の総和は105.5mlであった。
(Comparative Example 3-2)
Using the positive electrode D and the negative electrode D, the amount of electrolyte solution injected was the same as that of the laminated lithium ion secondary battery of Example 1-2 except that the amount of electrolyte solution / amount of voids was 0.91. A laminated lithium ion secondary battery of Comparative Example 3-2 was produced. At this time, the total amount of voids in the 65 positive electrodes, 66 negative electrodes, and 130 separators was 105.5 ml.
(比較例4−1)
電解液の注液量を、電解液量/空隙量=0.97となるようにした以外は比較例3−1のラミネート型リチウムイオン二次電池と同様にして比較例4−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 4-1)
The laminate type of Comparative Example 4-1 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / amount of voids = 0.97. A lithium ion secondary battery was produced.
(比較例4−2)
電解液の注液量を、電解液量/空隙量=0.97となるようにした以外は比較例3−2のラミネート型リチウムイオン二次電池と同様にして比較例4−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 4-2)
The laminate type of Comparative Example 4-2 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-2 except that the amount of electrolyte solution injected was such that the electrolyte amount / void amount = 0.97. A lithium ion secondary battery was produced.
(比較例5−1)
電解液の注液量を、電解液量/空隙量=1.05となるようにした以外は比較例3−1のラミネート型リチウムイオン二次電池と同様にして比較例5−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 5-1)
The laminate type of Comparative Example 5-1 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / amount of voids was 1.05. A lithium ion secondary battery was produced.
(比較例5−2)
電解液の注液量を、電解液量/空隙量=1.05となるようにした以外は比較例3−2のラミネート型リチウムイオン二次電池と同様にして比較例5−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 5-2)
The laminate type of Comparative Example 5-2 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-2 except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids was 1.05. A lithium ion secondary battery was produced.
(比較例6−1)
電解液の注液量を、電解液量/空隙量=1.13となるようにした以外は比較例3−1のラミネート型リチウムイオン二次電池と同様にして比較例6−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 6-1)
The laminate type of Comparative Example 6-1 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.13. A lithium ion secondary battery was produced.
(比較例6−2)
電解液の注液量を、電解液量/空隙量=1.13となるようにした以外は比較例3−2のラミネート型リチウムイオン二次電池と同様にして比較例6−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 6-2)
The laminate type of Comparative Example 6-2 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-2 except that the amount of the electrolyte solution injected was such that the electrolyte amount / void amount = 1.13. A lithium ion secondary battery was produced.
(比較例7−1)
電解液の注液量を、電解液量/空隙量=1.21となるようにした以外は比較例3−1のラミネート型リチウムイオン二次電池と同様にして比較例7−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 7-1)
The laminate type of Comparative Example 7-1 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.21. A lithium ion secondary battery was produced.
(比較例7−2)
電解液の注液量を、電解液量/空隙量=1.21となるようにした以外は比較例3−2のラミネート型リチウムイオン二次電池と同様にして比較例7−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 7-2)
The laminate type of Comparative Example 7-2 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-2 except that the amount of electrolyte solution injected was such that the amount of electrolyte solution / the amount of voids = 1.21. A lithium ion secondary battery was produced.
(比較例8−1)
電解液の注液量を、電解液量/空隙量=1.29となるようにした以外は比較例3−1のラミネート型リチウムイオン二次電池と同様にして比較例8−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 8-1)
The laminate type of Comparative Example 8-1 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-1, except that the amount of electrolyte injected was such that the amount of electrolyte solution / the amount of voids = 1.29. A lithium ion secondary battery was produced.
(比較例8−2)
電解液の注液量を、電解液量/空隙量=1.29となるようにした以外は比較例3−2のラミネート型リチウムイオン二次電池と同様にして比較例8−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 8-2)
The laminate type of Comparative Example 8-2 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-2, except that the amount of electrolyte solution injected was such that the electrolyte amount / void amount = 1.29. A lithium ion secondary battery was produced.
(比較例9−1)
電解液の注液量を、電解液量/空隙量=1.37となるようにした以外は比較例3−1のラミネート型リチウムイオン二次電池と同様にして比較例9−1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 9-1)
The laminate type of Comparative Example 9-1 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-1, except that the amount of electrolyte injected was such that the amount of electrolytic solution / amount of voids = 1.37. A lithium ion secondary battery was produced.
(比較例9−2)
電解液の注液量を、電解液量/空隙量=1.37となるようにした以外は比較例3−2のラミネート型リチウムイオン二次電池と同様にして比較例9−2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 9-2)
The laminate type of Comparative Example 9-2 was the same as the laminate type lithium ion secondary battery of Comparative Example 3-2 except that the amount of electrolyte injected was such that the amount of electrolyte solution / amount of voids = 1.37. A lithium ion secondary battery was produced.
ここで、例えば実施例1−1のラミネート型リチウムイオン二次電池と実施例1−2のラミネート型リチウムイオン二次電池は、電極の大きさ及び電極の積層枚数が異なるだけで、他の電池構成は同一である。以下、試験結果を称す場合は、実施例1−1の結果と実施例1−2の結果をまとめて実施例1と称すことがあり、他の実施例及び比較例も同様に称すことがある。例えば実施例2と称す場合は実施例2−1及び実施例2−2のどちらか一方又は両方を指す場合がある。 Here, for example, the laminate type lithium ion secondary battery of Example 1-1 and the laminate type lithium ion secondary battery of Example 1-2 differ from each other only in the size of the electrode and the number of stacked electrodes. The configuration is the same. Hereinafter, when the test results are referred to, the results of Example 1-1 and the results of Example 1-2 may be collectively referred to as Example 1, and other examples and comparative examples may also be referred to similarly. . For example, when referred to as Example 2, it may refer to either or both of Example 2-1 and Example 2-2.
また上記した各ラミネート型リチウムイオン二次電池は、電解液量が異なるが、正極材料及び負極材料が同じであるものがある。具体的には、実施例1〜6、比較例1及び比較例2のラミネート型リチウムイオン二次電池は電解液量は異なるが同じ電極材料構成のラミネート型リチウムイオン二次電池であり、比較例3〜比較例9のラミネート型リチウムイオン二次電池は、電解液量は異なるが同じ電極材料構成のラミネート型リチウムイオン二次電池である。 Each of the above-described laminate type lithium ion secondary batteries has the same positive electrode material and negative electrode material, although the amount of the electrolyte is different. Specifically, the laminated lithium ion secondary batteries of Examples 1 to 6, Comparative Example 1 and Comparative Example 2 are laminated lithium ion secondary batteries having the same electrode material configuration, although the amount of the electrolyte is different. The laminated lithium ion secondary battery of 3 to Comparative Example 9 is a laminated lithium ion secondary battery having the same electrode material configuration although the amount of electrolyte is different.
<電池抵抗評価>
実施例1−1、2−1、3−1、4−1、5−1、6−1、比較例1−1、2−1、3−1、4−1、5−1、6−1、7−1、8−1及び9−1のラミネート型リチウムイオン二次電池の電池抵抗を測定した。電池抵抗(Ω)は、SOC(State of charge)20%時の電圧にて2.5Cレート、10秒放電にて測定した。
<Battery resistance evaluation>
Examples 1-1, 2-1, 3-1, 4-1, 5-1, 6-1; Comparative Examples 1-1, 2-1, 3-1, 4-1, 5-1, 6- The battery resistances of the laminate type lithium ion secondary batteries 1, 7-1, 8-1 and 9-1 were measured. The battery resistance (Ω) was measured at a voltage of 20% SOC (State of charge) at a 2.5 C rate and 10 seconds of discharge.
各ラミネート型二次電池の電池抵抗(Ω)を測定し、同じ電極材料構成で電解液量を変化させた各ラミネート型リチウムイオン二次電池の電池抵抗を比較した。具体的に同じ電極材料構成の電池とは、実施例1〜6、比較例1及び比較例2のラミネート型リチウムイオン二次電池であり、また比較例3〜比較例9のラミネート型リチウムイオン二次電池である。実施例1〜6、比較例1及び比較例2のラミネート型リチウムイオン二次電池の電池抵抗を互いに比較し、比較例3〜比較例9のラミネート型リチウムイオン二次電池の電池抵抗を互いに比較すると、各ラミネート型リチウムイオン二次電池の電池抵抗はそれぞれの電池材料構成において電解液量を多くするにつれて、高い値からある一定の電池抵抗の値になって、電解液量がさらに増えてもある一定の電池抵抗から変わらなくなった。そこで各々の電池材料構成において、変化しなくなった電池抵抗の値を1として、その他の電池抵抗値の比を求めた。この比の値を規格化抵抗と称す。結果を表1に示す。 The battery resistance (Ω) of each laminate-type secondary battery was measured, and the battery resistance of each laminate-type lithium ion secondary battery in which the amount of electrolyte was changed with the same electrode material configuration was compared. Specifically, the batteries having the same electrode material configuration are the laminated lithium ion secondary batteries of Examples 1 to 6, Comparative Example 1 and Comparative Example 2, and the laminated lithium ion batteries of Comparative Examples 3 to 9. Next battery. The battery resistances of the laminated lithium ion secondary batteries of Examples 1 to 6, Comparative Example 1 and Comparative Example 2 are compared with each other, and the battery resistances of the laminated lithium ion secondary batteries of Comparative Examples 3 to 9 are compared with each other. Then, the battery resistance of each laminated lithium ion secondary battery increases from the high value to a certain battery resistance value as the amount of electrolyte increases in each battery material configuration, and even if the amount of electrolyte increases further. It no longer changes from a certain battery resistance. Therefore, in each battery material configuration, the value of the battery resistance that no longer changed was set to 1, and the ratio of the other battery resistance values was obtained. The value of this ratio is called normalized resistance. The results are shown in Table 1.
<寿命特性評価>
実施例1−2、2−2、3−2、4−2、5−2、6−2、比較例1−2、2−2、3−2、4−2、5−2、6−2、7−2、8−2及び9−2のラミネート型リチウムイオン二次電池を用い、それぞれ温度25℃、1CレートのCC充電(定電流充電)の条件下においてSOC85%時の電圧まで充電し、1分間休止した後、1CレートのCC放電(定電流放電)でSOC15%時の電圧まで放電し、1分間休止するサイクルを500サイクル繰り返すサイクル試験を行った。500サイクル後の放電容量を測定した。
<Evaluation of life characteristics>
Examples 1-2, 2-2, 3-2, 4-2, 5-2, 6-2, Comparative Examples 1-2, 2-2, 3-2, 4-2, 5-2, 6- Charged up to a voltage of 85% SOC under the conditions of CC charging (constant current charging) at a temperature of 25 ° C. and a 1C rate, respectively, using laminated type lithium ion secondary batteries of 2, 7-2, 8-2 and 9-2 Then, after a 1-minute pause, a cycle test was conducted in which a cycle of 1-C rate CC discharge (constant current discharge) was discharged to a voltage of 15% SOC and paused for 1 minute for 500 cycles. The discharge capacity after 500 cycles was measured.
実施例1〜6、比較例1及び比較例2のラミネート型リチウムイオン二次電池の500サイクル後の放電容量を互いに比較し、比較例3〜比較例9のラミネート型リチウムイオン二次電池の500サイクル後の放電容量を互いに比較すると、各ラミネート型リチウムイオン二次電池の500サイクル後の放電容量は電解液量を多くするにつれて、小さい値からある一定の放電容量の値になって、電解液量がさらに増えてもある一定の放電容量の値から変わらなくなった。そこで各々の電池材料構成において、変化しなくなった放電容量の値を1として、その他の放電容量の値の比を求めた。この比の値を規格化寿命と称す。結果を表1に示す。 The discharge capacities after 500 cycles of the laminated lithium ion secondary batteries of Examples 1 to 6, Comparative Example 1 and Comparative Example 2 were compared with each other, and 500 of the laminated lithium ion secondary batteries of Comparative Examples 3 to 9 were compared. Comparing the discharge capacities after cycling with each other, the discharge capacities after 500 cycles of each laminate-type lithium ion secondary battery change from a small value to a certain discharge capacity as the amount of the electrolytic solution increases. Even if the amount increased further, it did not change from a certain discharge capacity value. Therefore, in each battery material configuration, the value of the discharge capacity that no longer changed was set to 1, and the ratio of the other discharge capacity values was determined. The value of this ratio is referred to as the normalized life. The results are shown in Table 1.
表1の実施例1と比較例3の電解液量/空隙量、規格化抵抗及び規格化寿命を比較すると、負極材料に珪素を含む材料を有しない比較例3では、空隙量に対して電解液量が9割程度では、規格化抵抗が1.31、規格化寿命が0.43と、電池抵抗が高く、500サイクル試験後の放電容量も大幅に低下した。それに対して、負極材料に珪素を含む材料を有する実施例1では、空隙量に対して電解液量が9割程度であっても規格化抵抗が1.12及び規格化寿命が0.90と、電池抵抗もそれほど上がらず、500サイクル試験後の放電容量もそれほど低下しなかった。このことから、珪素を含む材料を有しない負極材料を使用した場合に比べて珪素を含む材料を有する負極材料を使用した場合のほうが、リチウムイオン二次電池の電解液量が少なくても寿命が低下しにくいことが推察された。 Comparing the amount of electrolytic solution / void amount, normalized resistance, and normalized life of Example 1 and Comparative Example 3 in Table 1, in Comparative Example 3 in which the negative electrode material does not include a material containing silicon, electrolysis is performed with respect to the void amount. When the liquid amount was about 90%, the standardized resistance was 1.31, the standardized life was 0.43, the battery resistance was high, and the discharge capacity after the 500 cycle test was also greatly reduced. On the other hand, in Example 1 having a material containing silicon as the negative electrode material, the normalized resistance is 1.12 and the normalized life is 0.90 even when the amount of the electrolyte is about 90% of the void amount. The battery resistance did not increase so much, and the discharge capacity after the 500 cycle test did not decrease so much. Therefore, compared to the case of using a negative electrode material having no silicon-containing material, the use of the negative electrode material having a silicon-containing material has a longer life even when the amount of the electrolyte of the lithium ion secondary battery is small. It was inferred that it was difficult to decrease.
また実施例1〜6及び比較例3〜6を比較すると、電解液量/空隙量が0.89以上1.13未満の範囲で比較例3〜6では電池抵抗が高くなり、500サイクル試験後の放電容量が低下するが、電解液量/空隙量が0.89以上1.13未満の範囲で、負極材料に珪素を含む材料を有する実施例1〜6では、電池抵抗もそれほど上がらず、500サイクル試験後の放電容量もそれほど低下しないことがわかった。 Moreover, when Examples 1-6 and Comparative Examples 3-6 are compared, battery resistance becomes high in Comparative Examples 3-6 in the range where the amount of electrolyte solution / void amount is 0.89 or more and less than 1.13, and after 500 cycle tests. In Examples 1 to 6 having a material containing silicon in the negative electrode material in a range where the electrolytic solution amount / void amount is 0.89 or more and less than 1.13, the battery resistance does not increase so much. It was found that the discharge capacity after the 500 cycle test did not decrease so much.
このことから珪素を含む負極を有し、電解液量/空隙量を0.89以上1.13未満の範囲とすればリチウムイオン二次電池の電池抵抗もそれほど高くならず、寿命も短くならないことがわかった。 Therefore, if a negative electrode containing silicon is included and the amount of electrolyte / void is in the range of 0.89 to less than 1.13, the battery resistance of the lithium ion secondary battery will not be so high, and the lifetime will not be shortened. I understood.
Claims (5)
下記式(1)を満たすように前記非水電解液の液量を設定する液量設定工程を含むことを特徴とするリチウムイオン二次電池の製造方法。
0.89≦非水電解液の液量(ml)÷(正極活物質層の空隙量(ml)+セパレータの空隙量(ml)+負極活物質層の空隙量(ml))<1.13・・・・式(1) A method for producing a lithium ion secondary battery comprising a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer containing silicon, a separator, and a non-aqueous electrolyte,
The manufacturing method of the lithium ion secondary battery characterized by including the liquid quantity setting process which sets the liquid quantity of the said non-aqueous electrolyte so that following formula (1) may be satisfy | filled.
0.89 ≦ Non-aqueous electrolyte volume (ml) / (Positive electrode active material layer void volume (ml) + Separator void volume (ml) + Negative electrode active material layer void volume (ml)) <1.13 .... Formula (1)
前記層状シリコン化合物を300℃以上で加熱してシリコン材料を製造する工程と、
前記シリコン材料を含む負極を製造する負極製造工程と、
を有する請求項1に記載のリチウムイオン二次電池の製造方法。 A step of reacting CaSi 2 with an acid to produce a layered silicon compound mainly composed of layered polysilane;
Heating the layered silicon compound at 300 ° C. or higher to produce a silicon material;
A negative electrode manufacturing process for manufacturing a negative electrode containing the silicon material;
The manufacturing method of the lithium ion secondary battery of Claim 1 which has these.
前記非水電解液の液量は下記式(1)を満たすことを特徴とするリチウムイオン二次電池。
0.89≦非水電解液の液量(ml)÷(正極活物質層の空隙量(ml)+セパレータの空隙量(ml)+負極活物質層の空隙量(ml))<1.13・・・・式(1) Including a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer containing silicon, a separator, and a non-aqueous electrolyte,
The lithium ion secondary battery, wherein the amount of the non-aqueous electrolyte satisfies the following formula (1).
0.89 ≦ Non-aqueous electrolyte volume (ml) / (Positive electrode active material layer void volume (ml) + Separator void volume (ml) + Negative electrode active material layer void volume (ml)) <1.13 .... Formula (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015144892A JP2017027772A (en) | 2015-07-22 | 2015-07-22 | Lithium ion secondary battery and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015144892A JP2017027772A (en) | 2015-07-22 | 2015-07-22 | Lithium ion secondary battery and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017027772A true JP2017027772A (en) | 2017-02-02 |
Family
ID=57949900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015144892A Pending JP2017027772A (en) | 2015-07-22 | 2015-07-22 | Lithium ion secondary battery and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017027772A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020137562A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
WO2020137561A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
JP7483192B2 (en) | 2020-03-19 | 2024-05-15 | 太平洋セメント株式会社 | Composite particles and method for producing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319689A (en) * | 2000-05-08 | 2001-11-16 | Matsushita Electric Ind Co Ltd | Lithium-polymer secondary battery |
JP2012256542A (en) * | 2011-06-09 | 2012-12-27 | Nec Corp | Secondary battery |
WO2014080608A1 (en) * | 2012-11-21 | 2014-05-30 | 株式会社豊田自動織機 | Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device |
-
2015
- 2015-07-22 JP JP2015144892A patent/JP2017027772A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319689A (en) * | 2000-05-08 | 2001-11-16 | Matsushita Electric Ind Co Ltd | Lithium-polymer secondary battery |
JP2012256542A (en) * | 2011-06-09 | 2012-12-27 | Nec Corp | Secondary battery |
WO2014080608A1 (en) * | 2012-11-21 | 2014-05-30 | 株式会社豊田自動織機 | Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020137562A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
WO2020137561A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
CN113169416A (en) * | 2018-12-26 | 2021-07-23 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery |
JPWO2020137561A1 (en) * | 2018-12-26 | 2021-11-11 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
JPWO2020137562A1 (en) * | 2018-12-26 | 2021-11-11 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
JP7474966B2 (en) | 2018-12-26 | 2024-04-26 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
JP7474965B2 (en) | 2018-12-26 | 2024-04-26 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
US12132225B2 (en) | 2018-12-26 | 2024-10-29 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP7483192B2 (en) | 2020-03-19 | 2024-05-15 | 太平洋セメント株式会社 | Composite particles and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6673331B2 (en) | Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery | |
JP5255143B2 (en) | Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material | |
JP5716093B2 (en) | Positive electrode active material for lithium ion capacitor and method for producing the same | |
WO2017013827A1 (en) | Lithium ion secondary battery | |
KR20180114061A (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery | |
JP6807010B2 (en) | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery and manufacturing method thereof | |
JP6288257B2 (en) | Nanosilicon material, method for producing the same, and negative electrode of secondary battery | |
JP5664685B2 (en) | Nonaqueous electrolyte solution and lithium ion secondary battery | |
US9130230B2 (en) | Negative electrode active material with improved safety, and secondary battery comprising same | |
JP5505480B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
US10164255B2 (en) | Silicon material and negative electrode of secondary battery | |
KR102206590B1 (en) | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same | |
JP6044453B2 (en) | Method for manufacturing power storage device | |
JP5482858B2 (en) | Lithium ion secondary battery | |
JP6061143B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2015111514A (en) | Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP2014112505A (en) | Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery having the same | |
JP2017027772A (en) | Lithium ion secondary battery and method for manufacturing the same | |
JP5557067B1 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
KR101480216B1 (en) | Silicon oxide anode active material, method for preparing the same, and secondary battery using the same | |
CN113678287A (en) | Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery comprising same | |
US10217990B2 (en) | Silicon material and negative electrode of secondary battery | |
JP5999430B2 (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same | |
KR20190057952A (en) | Preparing method of the positive electrode active material for lithium secondary battery | |
JP5609485B2 (en) | Active material, method for producing active material, electrode, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190903 |