Nothing Special   »   [go: up one dir, main page]

JP2017025242A - Fluorosulfonyl group-containing monomer, fluorosulfonyl group polymer, sulfonic acid group-containing polymer, liquid composition, membrane electrode conjugate and manufacturing method therefor - Google Patents

Fluorosulfonyl group-containing monomer, fluorosulfonyl group polymer, sulfonic acid group-containing polymer, liquid composition, membrane electrode conjugate and manufacturing method therefor Download PDF

Info

Publication number
JP2017025242A
JP2017025242A JP2015147410A JP2015147410A JP2017025242A JP 2017025242 A JP2017025242 A JP 2017025242A JP 2015147410 A JP2015147410 A JP 2015147410A JP 2015147410 A JP2015147410 A JP 2015147410A JP 2017025242 A JP2017025242 A JP 2017025242A
Authority
JP
Japan
Prior art keywords
group
polymer
fluorosulfonyl
fluorosulfonyl group
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015147410A
Other languages
Japanese (ja)
Other versions
JP6524835B2 (en
Inventor
丈嗣 平居
Taketsugu Hirai
丈嗣 平居
淳 渡壁
Atsushi Watakabe
淳 渡壁
貢 齋藤
Mitsugi Saito
貢 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015147410A priority Critical patent/JP6524835B2/en
Publication of JP2017025242A publication Critical patent/JP2017025242A/en
Application granted granted Critical
Publication of JP6524835B2 publication Critical patent/JP6524835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorosulfonyl group-containing monomer capable of providing a sulfonic acid group-containing polymer high in ion exchange capacity and being manufactured with less synthetic step, a fluorosulfonyl group-containing polymer using the same as a raw material, a sulfonic acid group-containing polymer, a liquid composition, a membrane electrode conjugate and a manufacturing method therefor.SOLUTION: There is provided a fluorosulfonyl group-containing monomer represented by the following formula (m1), in which n:0 or 1, R:perfluoroalkylene group or the like, X:a fluorine atom or a fluorosulfonyl group.SELECTED DRAWING: None

Description

本発明は、フルオロスルホニル基含有モノマー、フルオロスルホニル基含有ポリマー、スルホン酸基含有ポリマー、液状組成物、膜電極接合体およびそれらの製造方法に関する。   The present invention relates to a fluorosulfonyl group-containing monomer, a fluorosulfonyl group-containing polymer, a sulfonic acid group-containing polymer, a liquid composition, a membrane electrode assembly, and methods for producing them.

固体高分子形燃料電池用膜電極接合体における触媒層や固体高分子電解質膜、塩化アルカリ電解に用いられる陽イオン交換膜等に含まれるポリマーには、イオン交換容量が高いことが望まれている。イオン交換容量が高いとイオンの導電率が向上するため、たとえば、固体高分子形燃料電池の発電性能の向上や、塩化アルカリ電解における過電圧の低下といった実用上の利点が期待できる。   Polymers contained in catalyst layers, solid polymer electrolyte membranes, cation exchange membranes used for alkaline chloride electrolysis, etc. in membrane electrode assemblies for polymer electrolyte fuel cells are desired to have a high ion exchange capacity. . When the ion exchange capacity is high, the ion conductivity is improved, and therefore, practical advantages such as improvement in power generation performance of the polymer electrolyte fuel cell and reduction in overvoltage in alkali chloride electrolysis can be expected.

イオン交換容量が高いポリマーとしては、下式(m2)で表されるフルオロスルホニル基含有モノマーに由来する構成単位とテトラフルオロエチレンに由来する構成単位とを有するフルオロスルホニル基含有ポリマーのフルオロスルホニル基(−SOF)をスルホン酸基(−SOH)に変換したスルホン酸基含有ポリマーが提案されている(特許文献1)。 As a polymer having a high ion exchange capacity, a fluorosulfonyl group of a fluorosulfonyl group-containing polymer having a structural unit derived from a fluorosulfonyl group-containing monomer represented by the following formula (m2) and a structural unit derived from tetrafluoroethylene ( A sulfonic acid group-containing polymer obtained by converting —SO 2 F) into a sulfonic acid group (—SO 3 H) has been proposed (Patent Document 1).

Figure 2017025242
Figure 2017025242

ただし、mは0または1であり、RF1は単結合、炭素数1〜6の直鎖状のペルフルオロアルキレン基、または該ペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基であり、RF2は炭素数1〜6の直鎖状のペルフルオロアルキレン基、または該ペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基である。 However, m is 0 or 1, and R F1 is a single bond, a linear perfluoroalkylene group having 1 to 6 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group. R F2 is a linear perfluoroalkylene group having 1 to 6 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group.

特許第5141251号公報Japanese Patent No. 5141251

しかし、式(m2)で表されるフルオロスルホニル基含有モノマーを製造するにあたっては、特許文献1の例2において出発物質とされたCF=CFCFOCFCFSOFを得るまでに合成ステップが2ステップ(米国特許第4273729号明細書等)必要な上に、特許文献1の例2においてCF=CFCFOCFCFSOFから目的のフルオロスルホニル基含有モノマーまでにさらに合成ステップが4ステップ、合計で6ステップ必要である。そのため、式(m2)で表されるフルオロスルホニル基含有モノマーは、製造に手間がかかる。 However, in manufacturing the fluorosulfonyl group-containing monomer represented by the formula (m2) is synthesized until a CF 2 = CFCF 2 OCF 2 CF 2 SO 2 F , which is the starting material in Example 2 of Patent Document 1 In addition to the need for two steps (such as US Pat. No. 4,273,729), in Example 2 of Patent Document 1, further synthesis is performed from CF 2 = CFCF 2 OCF 2 CF 2 SO 2 F to the target fluorosulfonyl group-containing monomer. There are 4 steps, 6 steps in total. Therefore, the fluorosulfonyl group-containing monomer represented by the formula (m2) takes time to manufacture.

本発明は、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができ、かつ少ない合成ステップで製造できるフルオロスルホニル基含有モノマー、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができるフルオロスルホニル基含有ポリマー、イオン交換容量を高くできるスルホン酸基含有ポリマー、イオン交換容量が高いポリマーを含む膜を形成できる液状組成物、発電性能に優れた膜電極接合体およびそれらの製造方法を提供する。   The present invention can provide a sulfonic acid group-containing polymer having a high ion exchange capacity and a fluorosulfonyl group-containing monomer that can be produced with few synthesis steps, and a sulfonyl group-containing polymer having a high ion exchange capacity. Provided are a group-containing polymer, a sulfonic acid group-containing polymer capable of increasing ion exchange capacity, a liquid composition capable of forming a film containing a polymer having high ion exchange capacity, a membrane electrode assembly excellent in power generation performance, and a method for producing them.

本発明は、下記の態様を有する。
[1]下式(m1)で表される、フルオロスルホニル基含有モノマー。

Figure 2017025242
ただし、nは0または1であり、Rf1はペルフルオロアルキレン基、またはペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基であり、Xはフッ素原子またはフルオロスルホニル基である。
[2]前記Xがフルオロスルホニル基である、[1]のフルオロスルホニル基含有モノマー。
[3]前記nが1である、[1]または[2]のフルオロスルホニル基含有モノマー。
[4]前記Rf1が−CFCF−である、[1]〜[3]のいずれかのフルオロスルホニル基含有モノマー。
[5]前記[1]〜[4]のいずれかのフルオロスルホニル基含有モノマーに由来する構成単位を有する、フルオロスルホニル基含有ポリマー。
[6]テトラフルオロエチレンに由来する構成単位をさらに有する、[5]のフルオロスルホニル基含有ポリマー。
[7]前記[5]または[6]のフルオロスルホニル基含有ポリマーのフルオロスルホニル基をスルホン酸基に変換した、スルホン酸基含有ポリマー。
[8]前記[7]のスルホン酸基含有ポリマーと、液状媒体とを含む、液状組成物。
[9]触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された固体高分子電解質膜とを備えた固体高分子形燃料電池用膜電極接合体であって、前記カソードの触媒層、前記アノードの触媒層および前記固体高分子電解質膜からなる群から選ばれる少なくとも1つが、[7]のスルホン酸基含有ポリマーを含む、膜電極接合体。
[10]下式(14)で表される化合物とペルフルオロアリル化剤とをあらかじめ混合した液にフッ化物塩を添加して下式(m1)で表される化合物を得る、フルオロスルホニル基含有モノマーの製造方法。
Figure 2017025242
ただし、nは0または1であり、Rf1はペルフルオロアルキレン基、またはペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基であり、Xはフッ素原子またはフルオロスルホニル基である。
[11]前記ペルフルオロアリル化剤が、下式(12)で表される化合物である、[10]のフルオロスルホニル基含有モノマーの製造方法。
CF=CFCF−Z (12)
ただし、Zは−OSOF、−OSOf2、塩素原子、臭素原子またはヨウ素原子であり、Rf2はペルフルオロアルキル基である。
[12]前記Xがフルオロスルホニル基である、[10]または[11]のフルオロスルホニル基含有モノマーの製造方法。
[13]前記nが1である、[10]〜[12]のいずれかのフルオロスルホニル基含有モノマーの製造方法。
[14]前記Rf1が−CFCF−である、[10]〜[13]のいずれかのフルオロスルホニル基含有モノマーの製造方法。
[15]前記[10]〜[14]のいずれかの製造方法によってフルオロスルホニル基含有モノマーを製造し、該フルオロスルホニル基含有モノマーを含むモノマー成分を重合して前記フルオロスルホニル基含有モノマーに由来する構成単位を有するフルオロスルホニル基含有ポリマーを得る、フルオロスルホニル基含有ポリマーの製造方法。
[16]前記モノマー成分が、テトラフルオロエチレンをさらに含む、[15]のフルオロスルホニル基含有ポリマーの製造方法。
[17]前記[15]または[16]の製造方法によってフルオロスルホニル基含有ポリマーを製造し、該フルオロスルホニル基含有ポリマーのフルオロスルホニル基をスルホン酸基に変換することによってスルホン酸基含有ポリマーを得る、スルホン酸基含有ポリマーの製造方法。
[18]前記[17]の製造方法によってスルホン酸基含有ポリマーを製造し、該スルホン酸基含有ポリマーと、液状媒体とを混合して液状組成物を得る、液状組成物の製造方法。
[19]触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された固体高分子電解質膜とを備えた固体高分子形燃料電池用膜電極接合体を製造する方法であって、[18]の製造方法によって液状組成物を製造し、該液状組成物と触媒とを混合して触媒層形成用塗工液を調製し、該塗工液を用いて前記カソードおよび前記アノードのいずれか一方または両方の触媒層を形成する、膜電極接合体の製造方法。
[20]触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された固体高分子電解質膜とを備えた固体高分子形燃料電池用膜電極接合体を製造する方法であって、[18]の製造方法によって液状組成物を製造し、該液状組成物を用いて前記固体高分子電解質膜を形成する、膜電極接合体の製造方法。 The present invention has the following aspects.
[1] A fluorosulfonyl group-containing monomer represented by the following formula (m1).
Figure 2017025242
However, n is 0 or 1, R f1 is a perfluoroalkylene group or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group, and X is a fluorine atom or a fluorosulfonyl group.
[2] The fluorosulfonyl group-containing monomer of [1], wherein X is a fluorosulfonyl group.
[3] The fluorosulfonyl group-containing monomer of [1] or [2], wherein n is 1.
[4] The fluorosulfonyl group-containing monomer according to any one of [1] to [3], wherein R f1 is —CF 2 CF 2 —.
[5] A fluorosulfonyl group-containing polymer having a structural unit derived from the fluorosulfonyl group-containing monomer of any one of [1] to [4].
[6] The fluorosulfonyl group-containing polymer according to [5], further comprising a structural unit derived from tetrafluoroethylene.
[7] A sulfonic acid group-containing polymer obtained by converting the fluorosulfonyl group of the fluorosulfonyl group-containing polymer of [5] or [6] into a sulfonic acid group.
[8] A liquid composition comprising the sulfonic acid group-containing polymer of [7] and a liquid medium.
[9] A membrane electrode assembly for a polymer electrolyte fuel cell comprising an anode having a catalyst layer, a cathode having a catalyst layer, and a polymer electrolyte membrane disposed between the anode and the cathode. A membrane electrode assembly, wherein at least one selected from the group consisting of the cathode catalyst layer, the anode catalyst layer, and the solid polymer electrolyte membrane comprises the sulfonic acid group-containing polymer of [7].
[10] Fluorosulfonyl group-containing monomer for obtaining a compound represented by the following formula (m1) by adding a fluoride salt to a liquid obtained by mixing a compound represented by the following formula (14) and a perfluoroallylating agent in advance Manufacturing method.
Figure 2017025242
However, n is 0 or 1, R f1 is a perfluoroalkylene group or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group, and X is a fluorine atom or a fluorosulfonyl group.
[11] The method for producing a fluorosulfonyl group-containing monomer of [10], wherein the perfluoroallylating agent is a compound represented by the following formula (12).
CF 2 = CFCF 2 -Z (12 )
However, Z is -OSO 2 F, -OSO 2 R f2 , a chlorine atom, a bromine atom or an iodine atom, R f2 is a perfluoroalkyl group.
[12] The method for producing a fluorosulfonyl group-containing monomer of [10] or [11], wherein X is a fluorosulfonyl group.
[13] The method for producing a fluorosulfonyl group-containing monomer according to any one of [10] to [12], wherein n is 1.
[14] The method for producing a fluorosulfonyl group-containing monomer according to any one of [10] to [13], wherein R f1 is —CF 2 CF 2 —.
[15] A fluorosulfonyl group-containing monomer is produced by the production method of any one of [10] to [14], and a monomer component containing the fluorosulfonyl group-containing monomer is polymerized to derive from the fluorosulfonyl group-containing monomer. A method for producing a fluorosulfonyl group-containing polymer, wherein a fluorosulfonyl group-containing polymer having a structural unit is obtained.
[16] The method for producing a fluorosulfonyl group-containing polymer according to [15], wherein the monomer component further contains tetrafluoroethylene.
[17] A fluorosulfonyl group-containing polymer is produced by the production method of [15] or [16], and the fluorosulfonyl group of the fluorosulfonyl group-containing polymer is converted into a sulfonic acid group to obtain a sulfonic acid group-containing polymer. The manufacturing method of a sulfonic acid group containing polymer.
[18] A method for producing a liquid composition, comprising producing a sulfonic acid group-containing polymer by the production method of [17], and mixing the sulfonic acid group-containing polymer and a liquid medium to obtain a liquid composition.
[19] A membrane electrode assembly for a polymer electrolyte fuel cell comprising an anode having a catalyst layer, a cathode having a catalyst layer, and a polymer electrolyte membrane disposed between the anode and the cathode A liquid composition is produced by the production method of [18], a liquid composition and a catalyst are mixed to prepare a coating solution for forming a catalyst layer, and the coating solution is used. A method for producing a membrane electrode assembly, wherein the catalyst layer of any one or both of the cathode and the anode is formed.
[20] A membrane electrode assembly for a polymer electrolyte fuel cell, comprising: an anode having a catalyst layer; a cathode having a catalyst layer; and a solid polymer electrolyte membrane disposed between the anode and the cathode. A method for producing a membrane / electrode assembly, wherein a liquid composition is produced by the production method of [18], and the solid polymer electrolyte membrane is formed using the liquid composition.

本発明のフルオロスルホニル基含有モノマーによれば、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができる。また、本発明のフルオロスルホニル基含有モノマーは、少ない合成ステップで製造できる。
本発明のフルオロスルホニル基含有ポリマーによれば、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができる。
本発明のスルホン酸基含有ポリマーは、イオン交換容量を高くできる。
本発明の液状組成物によれば、イオン交換容量が高いポリマーを含む膜を形成できる。
本発明の膜電極接合体は、発電性能に優れる。
本発明のフルオロスルホニル基含有モノマーの製造方法によれば、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができるフルオロスルホニル基含有モノマーを少ない合成ステップで製造できる。
本発明のフルオロスルホニル基含有ポリマーの製造方法によれば、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができるフルオロスルホニル基含有ポリマーを製造できる。
本発明のスルホン酸基含有ポリマーの製造方法によれば、イオン交換容量が高いスルホン酸基含有ポリマーを製造できる。
本発明の液状組成物の製造方法によれば、イオン交換容量が高いポリマーを含む膜を形成できる液状組成物を製造できる。
本発明の膜電極接合体の製造方法によれば、発電性能に優れる膜電極接合体を製造できる。
According to the fluorosulfonyl group-containing monomer of the present invention, a sulfonic acid group-containing polymer having a high ion exchange capacity can be obtained. Further, the fluorosulfonyl group-containing monomer of the present invention can be produced with few synthesis steps.
According to the fluorosulfonyl group-containing polymer of the present invention, a sulfonic acid group-containing polymer having a high ion exchange capacity can be obtained.
The sulfonic acid group-containing polymer of the present invention can increase the ion exchange capacity.
According to the liquid composition of the present invention, a film containing a polymer having a high ion exchange capacity can be formed.
The membrane electrode assembly of the present invention is excellent in power generation performance.
According to the method for producing a fluorosulfonyl group-containing monomer of the present invention, a fluorosulfonyl group-containing monomer capable of obtaining a sulfonic acid group-containing polymer having a high ion exchange capacity can be produced with few synthesis steps.
According to the method for producing a fluorosulfonyl group-containing polymer of the present invention, a fluorosulfonyl group-containing polymer capable of obtaining a sulfonic acid group-containing polymer having a high ion exchange capacity can be produced.
According to the method for producing a sulfonic acid group-containing polymer of the present invention, a sulfonic acid group-containing polymer having a high ion exchange capacity can be produced.
According to the method for producing a liquid composition of the present invention, a liquid composition capable of forming a film containing a polymer having a high ion exchange capacity can be produced.
According to the method for producing a membrane electrode assembly of the present invention, a membrane electrode assembly excellent in power generation performance can be produced.

本発明の膜電極接合体の一例を示す断面図である。It is sectional drawing which shows an example of the membrane electrode assembly of this invention. 本発明の膜電極接合体の他の例を示す断面図である。It is sectional drawing which shows the other example of the membrane electrode assembly of this invention.

本明細書においては、式(m1)で表される化合物を、化合物(m1)と記す。他の式で表される化合物も同様に記す。
本明細書においては、式(u1)で表される構成単位を、構成単位(u1)と記す。他の式で表される構成単位も同様に記す。
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「ポリマー」とは、複数の構成単位から構成された構造を有する化合物を意味する。
「構成単位」とは、モノマーが重合することによって形成された該モノマーに由来する単位を意味する。構成単位は、モノマーの重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって該単位の一部が別の構造に変換された単位であってもよい。
「モノマー」とは、重合反応性の炭素−炭素二重結合を有する化合物を意味する。
「ペルフルオロアリル化剤」とは、CF=CFCF−で表される構造を他の化合物に導入し得る化合物を意味する。
In the present specification, a compound represented by the formula (m1) is referred to as a compound (m1). The same applies to compounds represented by other formulas.
In this specification, the structural unit represented by the formula (u1) is referred to as a structural unit (u1). The structural units represented by other formulas are also described in the same manner.
The following definitions of terms apply throughout this specification and the claims.
“Polymer” means a compound having a structure composed of a plurality of structural units.
“Structural unit” means a unit derived from a monomer formed by polymerization of the monomer. The structural unit may be a unit directly formed by a polymerization reaction of monomers, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
“Monomer” means a compound having a polymerization-reactive carbon-carbon double bond.
The “perfluoroallylating agent” means a compound that can introduce a structure represented by CF 2 ═CFCF 2 — into another compound.

<化合物(m1)>
本発明のフルオロスルホニル基含有モノマーは、化合物(m1)である。
<Compound (m1)>
The fluorosulfonyl group-containing monomer of the present invention is the compound (m1).

Figure 2017025242
Figure 2017025242

nは、0または1であり、より短いステップでの合成が可能となる点から、1が好ましい。   n is 0 or 1, and 1 is preferable from the viewpoint that synthesis in a shorter step is possible.

f1は、ペルフルオロアルキレン基、またはペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基である。
f1としては、−CFCF−、−CF−、−CFCFCF−、−CFCFCFCF−、−CFCF(CF)OCFCFCF−、−CFCF(CF)−等が挙げられ、より短いステップでの合成が可能であり、より高いイオン交換容量が得られる点から、−CFCF−が好ましい。
R f1 is a perfluoroalkylene group or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group.
The R f1, -CF 2 CF 2 - , - CF 2 -, - CF 2 CF 2 CF 2 -, - CF 2 CF 2 CF 2 CF 2 -, - CF 2 CF (CF 3) OCF 2 CF 2 CF 2- , —CF 2 CF (CF 3 ) — and the like are mentioned, and —CF 2 CF 2 — is preferable from the viewpoint that synthesis in a shorter step is possible and higher ion exchange capacity is obtained.

Xは、フッ素原子またはフルオロスルホニル基であり、イオン交換容量が高いポリマーを得ることができる点から、フルオロスルホニル基が好ましい。   X is a fluorine atom or a fluorosulfonyl group, and a fluorosulfonyl group is preferable because a polymer having a high ion exchange capacity can be obtained.

化合物(m1)としては、原料の入手性、化合物(m1)の蒸留精製のしやすさ、化合物(m1)の分子量の点から、化合物(m1−1)〜化合物(m1−10)が好ましく、化合物(m1−1)がより好ましい。ただし、xは1以上の整数である。   The compound (m1) is preferably a compound (m1-1) to a compound (m1-10) from the viewpoint of availability of raw materials, ease of distillation purification of the compound (m1), and molecular weight of the compound (m1). The compound (m1-1) is more preferable. However, x is an integer of 1 or more.

Figure 2017025242
Figure 2017025242

<化合物(m1)の製造方法>
化合物(m1)の製造方法は、化合物(14)とペルフルオロアリル化剤とをあらかじめ混合した液にフッ化物塩を添加して化合物(m1)を得る方法である。
<Method for Producing Compound (m1)>
The method for producing the compound (m1) is a method for obtaining the compound (m1) by adding a fluoride salt to a liquid in which the compound (14) and the perfluoroallylating agent are mixed in advance.

Figure 2017025242
Figure 2017025242

ただし、n、Rf1およびXは、上述したとおりであり、好ましい形態も同様である。MFは、フッ化物塩である。
従来のペルフルオロ−β−サルトン骨格を有する化合物とペルフルオロアリル化剤との反応においては、まず、ペルフルオロ−β−サルトン骨格を有する化合物とフッ化物塩(MF)とを混合してペルフルオロ−β−サルトン骨格を開環させてMO−CF−CF(SOF)−とし、ついで、ペルフルオロアリル化剤を添加していた。しかし、化合物(14)とペルフルオロアリル化剤との反応にこの手順を適用すると、MO−CF−CF(SOF)−構造の分解が生じ、化合物(m1)をまったく得ることができない。本発明においては、化合物(14)とペルフルオロアリル化剤とをあらかじめ混合した液にフッ化物塩を添加することによって、化合物(m1)を得ることができる。
However, n, R f1 and X are as described above, and preferred forms are also the same. MF is a fluoride salt.
In the reaction of a conventional compound having a perfluoro-β-sultone skeleton and a perfluoroallylating agent, first, a compound having a perfluoro-β-sultone skeleton and a fluoride salt (MF) are mixed to obtain perfluoro-β-sultone. skeleton by ring-opening a by MO-CF 2 -CF (SO 2 F) - and is, then, was added perfluoroallyl agent. However, when this procedure is applied to the reaction between the compound (14) and the perfluoroallylating agent, the MO—CF 2 —CF (SO 2 F) — structure is decomposed, and the compound (m1) cannot be obtained at all. In the present invention, compound (m1) can be obtained by adding a fluoride salt to a liquid in which compound (14) and a perfluoroallylating agent are mixed in advance.

化合物(14)とペルフルオロアリル化剤とを混合した液は、非プロトン性の極性溶媒を含むことが好ましい。
非プロトン性の極性溶媒としては、モノグライム、ジグライム、トリグライム、テトラグライム、アセトニトリル、プロピオニトリル、アジポニトリル、ベンゾニトリル、ジオキサン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、ニトロエタン等が挙げられる。
The liquid in which the compound (14) and the perfluoroallylating agent are mixed preferably contains an aprotic polar solvent.
Examples of the aprotic polar solvent include monoglyme, diglyme, triglyme, tetraglyme, acetonitrile, propionitrile, adiponitrile, benzonitrile, dioxane, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, nitroethane and the like.

フッ化物塩としては、フッ化カリウム、フッ化セシウム、フッ化銀、第四級アンモニウムフルオリド等が挙げられ、反応性とコストの点から、フッ化セシウム、フッ化カリウムが好ましい。
フッ化物塩は、化合物(14)とペルフルオロアリル化剤とを混合した液に、一括で添加してもよく、断続的または連続的に添加してもよい。
反応温度は、化合物(m1)の収率が比較的よい点から、−70〜0℃が好ましく、−50〜−20℃がより好ましい。
Examples of the fluoride salt include potassium fluoride, cesium fluoride, silver fluoride, quaternary ammonium fluoride, and the like, and cesium fluoride and potassium fluoride are preferable from the viewpoint of reactivity and cost.
The fluoride salt may be added all at once to the mixture of the compound (14) and the perfluoroallylating agent, or may be added intermittently or continuously.
The reaction temperature is preferably −70 to 0 ° C., more preferably −50 to −20 ° C., from the viewpoint that the yield of the compound (m1) is relatively good.

(ペルフルオロアリル化剤)
ペルフルオロアリル化剤としては、原料の入手性、ペルフルオロアリル化の反応性の点から、化合物(12)が好ましい。
CF=CFCF−Z (12)
ただし、Zは−OSOF、−OSOf2、塩素原子、臭素原子またはヨウ素原子であり、Rf2はペルフルオロアルキル基である。
(Perfluoroallylating agent)
As the perfluoroallylating agent, compound (12) is preferable from the viewpoint of availability of raw materials and reactivity of perfluoroallylation.
CF 2 = CFCF 2 -Z (12 )
However, Z is -OSO 2 F, -OSO 2 R f2 , a chlorine atom, a bromine atom or an iodine atom, R f2 is a perfluoroalkyl group.

化合物(12)としては、原料の入手性、ペルフルオロアリル化の反応性、合成の簡便さの点から、化合物(12−1)が好ましい。
CF=CFCF−OSOF (12−1)
化合物(12−1)の製造方法は、後述する。
As the compound (12), the compound (12-1) is preferable from the viewpoint of availability of raw materials, reactivity of perfluoroallylation, and ease of synthesis.
CF 2 = CFCF 2 -OSO 2 F (12-1)
A method for producing compound (12-1) will be described later.

(化合物(14))
化合物(14)は、たとえば、化合物(13)と三酸化硫黄とを反応させることによって得られる。三酸化硫黄としては、たとえば、濃硫酸に三酸化硫黄を吸収させた発煙硫酸が用いられる。また、市販の安定化無水硫酸、前記発煙硫酸、または安定化無水硫酸を蒸留して得られる三酸化硫黄も用いられる。
(Compound (14))
Compound (14) can be obtained, for example, by reacting compound (13) with sulfur trioxide. As sulfur trioxide, for example, fuming sulfuric acid in which sulfur trioxide is absorbed in concentrated sulfuric acid is used. In addition, commercially available stabilized sulfuric anhydride, fuming sulfuric acid, or sulfur trioxide obtained by distillation of stabilized sulfuric anhydride is also used.

Figure 2017025242
Figure 2017025242

ただし、n、Rf1およびXは、上述したとおりであり、好ましい形態も同様である。
化合物(14)としては、原料の入手性、化合物(14)の蒸留精製のしやすさ、合成の簡便さ、コストの点から、化合物(14−1)〜化合物(14−10)が好ましく、化合物(14−1)がより好ましい。ただし、xは1以上の整数である。
However, n, R f1 and X are as described above, and preferred forms are also the same.
Compound (14) is preferably Compound (14-1) to Compound (14-10) from the viewpoint of availability of raw materials, ease of distillation purification of Compound (14), ease of synthesis, and cost. Compound (14-1) is more preferred. However, x is an integer of 1 or more.

Figure 2017025242
Figure 2017025242

(化合物(13))
化合物(13)としては、原料の入手性、化合物(13)の蒸留精製のしやすさ、合成の簡便さ、コストの点から、化合物(13−1)〜化合物(13−10)が好ましく、化合物(13−1)がより好ましい。
CF=CF−CF−O−CFCF−SOF (13−1)
CF=CF−CF−CFCF−F (13−2)
CF=CF−(CFCF−F (13−3)
CF=CF−CF−CF−SOF (13−4)
CF=CF−CF−CFCFCF−SOF (13−5)
CF=CF−CF−O−CF−F (13−6)
CF=CF−CF−O−CFCF−F (13−7)
CF=CF−CF−O−CFCFCF−F (13−8)
CF=CF−CF−O−CFCF(CF)OCFCFCF−F (13−9)
CF=CF−CF−O−CFCF(CF)−SOF (13−10)
ただし、xは1以上の整数である。
(Compound (13))
Compound (13) is preferably Compound (13-1) to Compound (13-10) from the viewpoint of availability of raw materials, ease of distillation purification of Compound (13), ease of synthesis, and cost. Compound (13-1) is more preferred.
CF 2 = CF-CF 2 -O -CF 2 CF 2 -SO 2 F (13-1)
CF 2 = CF-CF 2 -CF 2 CF 2 -F (13-2)
CF 2 = CF- (CF 2 CF 2) x -F (13-3)
CF 2 = CF-CF 2 -CF 2 -SO 2 F (13-4)
CF 2 = CF-CF 2 -CF 2 CF 2 CF 2 -SO 2 F (13-5)
CF 2 = CF-CF 2 -O -CF 2 -F (13-6)
CF 2 = CF-CF 2 -O -CF 2 CF 2 -F (13-7)
CF 2 = CF-CF 2 -O -CF 2 CF 2 CF 2 -F (13-8)
CF 2 = CF-CF 2 -O -CF 2 CF (CF 3) OCF 2 CF 2 CF 2 -F (13-9)
CF 2 = CF-CF 2 -O -CF 2 CF (CF 3) -SO 2 F (13-10)
However, x is an integer of 1 or more.

化合物(13−1)は、米国特許第4273729号明細書、米国特許出願公開第2005/0037265号明細書、特開2010−018674号公報等に記載の方法で製造できる。具体的には、三フッ化ホウ素の存在下に化合物(11)と三酸化硫黄とを反応させることによって化合物(12−1)を得て、フッ化物塩の存在下に化合物(12−1)とFC(=O)CFSOFとを反応させて得られる。 Compound (13-1) can be produced by the methods described in US Pat. No. 4,273,729, US Patent Application Publication No. 2005/0037265, JP 2010-018674 A, and the like. Specifically, compound (12-1) is obtained by reacting compound (11) with sulfur trioxide in the presence of boron trifluoride, and compound (12-1) in the presence of a fluoride salt. And FC (═O) CF 2 SO 2 F.

Figure 2017025242
Figure 2017025242

FC(=O)CFSOFは、テトラフルオロエチレンと三酸化硫黄とを反応させてテトラフルオロ−β−サルトンを得て、テトラフルオロ−β−サルトンにフッ化物塩を添加して開環させることによって得られる。 FC (= O) CF 2 SO 2 F reacts with tetrafluoroethylene and sulfur trioxide to obtain tetrafluoro-β-sultone, and adds a fluoride salt to tetrafluoro-β-sultone to open the ring. To obtain.

Figure 2017025242
Figure 2017025242

化合物(13−2)は、特開2004−26800号公報の実施例10に記載の方法と同様の方法によって製造できる。具体的には、CFCFCFCFCFIをマグネシウム等の還元性を持つ金属の存在下、脱ハロゲン化することで得られる。CFCFCFCFCFIは、CFIとテトラフルオロエチレンとのテロメリゼーションによって得られる。 Compound (13-2) can be produced by a method similar to the method described in Example 10 of JP-A-2004-26800. Specifically, it can be obtained by dehalogenating CF 3 CF 2 CF 2 CF 2 CF 2 I in the presence of a reducing metal such as magnesium. CF 3 CF 2 CF 2 CF 2 CF 2 I is obtained by telomerization of CF 3 I with tetrafluoroethylene.

化合物(13−3)は、CFCFIとテトラフルオロエチレンとのテロメリゼーションにおいて、テトラフルオロエチレンの仕込み当量を適宜選択することによって、炭素数の異なるヨウ素化化合物CFCF−(CFCF−Iを得た後、該ヨウ素化化合物を脱ハロゲン化することによって得られる。 Compound (13-3) is an iodinated compound having a different carbon number, CF 3 CF 2 — (() by appropriately selecting the charged equivalent of tetrafluoroethylene in the telomerization of CF 3 CF 2 I and tetrafluoroethylene. after obtaining the CF 2 CF 2) x -I, obtained by dehalogenation the iodinated compound.

化合物(13−4)は、特表2002−528433号公報の実施例1に記載の方法によって製造できる。具体的には、米国特許第5350821号明細書の実施例1に記載の方法によって合成したCFClCFClCFCFIを、アジチオン酸ナトリウムの存在下でスルフィン化させてCFClCFClCFCFSONaを得て、水中で塩素と反応させることでCFClCFClCFCFSOClを得て、フッ化カリウムの存在下ハロゲン交換することでCFClCFClCFCFSOFを得て、最後に亜鉛の存在下で脱塩素反応させることによって得られる。 Compound (13-4) can be produced by the method described in Example 1 of JP-T-2002-528433. Specifically, CF 2 ClCFClCF 2 CF 2 I synthesized by the method described in Example 1 of US Pat. No. 5,350,821 is sulfinated in the presence of sodium azionate to form CF 2 ClCFClCF 2 CF 2 SO. 2 Na is obtained, and CF 2 ClCFClCF 2 CF 2 SO 2 Cl is obtained by reacting with chlorine in water, and CF 2 ClCFClCF 2 CF 2 SO 2 F is obtained by halogen exchange in the presence of potassium fluoride. And finally by dechlorination in the presence of zinc.

化合物(13−5)は、米国特許第5350821号明細書の実施例1に記載の方法によって合成したCFClCFClCFCFCFCFIを用い、化合物(13−4)と同様の方法によって得られる。CFClCFClCFCFCFCFIを選択率よく得るためには、米国特許第5350821号明細書の実施例1の条件において使用されるテトラフルオロエチレンの当量を増やせばよいことは、当業者にとって容易に想起できる。 Compound (13-5) was prepared in the same manner as Compound (13-4) using CF 2 ClCFClCF 2 CF 2 CF 2 CF 2 I synthesized by the method described in Example 1 of US Pat. No. 5,350,821. Obtained by. In order to obtain CF 2 ClCFClCF 2 CF 2 CF 2 CF 2 I with high selectivity, it is necessary to increase the equivalent of tetrafluoroethylene used in the conditions of Example 1 of US Pat. No. 5,350,821. It can be easily recalled by the contractor.

化合物(13−6)〜化合物(13−8)は、Molecules,2011年,16,p.6512−6540に記載の方法によって製造できる。具体的には、種々の炭素数のペルフルオロアルキルカルボン酸フルオリドとフッ化物塩との混合物に、ペルフルオロアリル化剤を添加し、反応させることによって得られる。   Compound (13-6) to Compound (13-8) are described in Molecules, 2011, 16, p. It can be produced by the method described in 6512-6540. Specifically, it can be obtained by adding a perfluoroallylating agent to a mixture of a perfluoroalkylcarboxylic acid fluoride having various carbon numbers and a fluoride salt and reacting them.

化合物(13−9)は、米国特許第4273729号明細書の実施例16に記載の方法によって製造できる。具体的には、ヘキサフルオロプロペンオキシド2量体とフッ化物塩との混合物に、ペルフルオロアリル化剤を添加し反応させることによって得られる。   Compound (13-9) can be produced by the method described in Example 16 of US Pat. No. 4,273,729. Specifically, it can be obtained by adding and reacting a perfluoroallylating agent to a mixture of hexafluoropropene oxide dimer and fluoride salt.

化合物(13−10)は、米国特許第4273729号明細書の実施例9に記載の方法によって製造できる。具体的には、ヘキサフルオロプロペンと三酸化硫黄との反応により得られるペルフルオロプロパン−2,3−サルトンと、フッ化物塩とを混合して得られるMO−CF−CF(CF)−SOFに、ペルフルオロアリル化剤を添加し反応させることによって得られる。 Compound (13-10) can be produced by the method described in Example 9 of US Pat. No. 4,273,729. Specifically, a perfluoropropane-2,3-sultone obtained by the reaction of hexafluoropropene and sulfur trioxide, MO-CF 2 -CF (CF 3) obtained by mixing a fluoride salt -SO It is obtained by adding a perfluoroallylating agent to 2 F and reacting it.

(作用機序)
以上説明した化合物(m1)にあっては、比較的分子量が低い化合物であるため、化合物(m1)に由来する構成単位を有するフルオロスルホニル基含有ポリマーのフルオロスルホニル基をスルホン酸基に変換したスルホン酸基含有ポリマーにおいて、スルホン酸基の1つあたりの分子量を低くすることができる。特に、化合物(m1)のXがフルオロスルホニル基の場合は、スルホン酸基含有ポリマーにおけるスルホン酸基の1つあたりの分子量をさらに低くすることができる。そのため、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができる。
また、以上説明した化合物(m1)の製造方法にあっては、比較的少ない合成ステップで得られる化合物(14)を用いている。たとえば化合物(11)から化合物(14−1)までの合成ステップが3ステップである。そのため、化合物(m1−1)を少ない合成ステップ(4ステップ)で製造できる。
(Mechanism of action)
Since the compound (m1) described above is a compound having a relatively low molecular weight, a sulfone obtained by converting a fluorosulfonyl group of a fluorosulfonyl group-containing polymer having a structural unit derived from the compound (m1) into a sulfonic acid group. In the acid group-containing polymer, the molecular weight per sulfonic acid group can be lowered. In particular, when X of the compound (m1) is a fluorosulfonyl group, the molecular weight per sulfonic acid group in the sulfonic acid group-containing polymer can be further reduced. Therefore, a sulfonic acid group-containing polymer having a high ion exchange capacity can be obtained.
Moreover, in the manufacturing method of the compound (m1) demonstrated above, the compound (14) obtained by a comparatively few synthesis step is used. For example, the synthesis step from compound (11) to compound (14-1) is 3 steps. Therefore, the compound (m1-1) can be produced with few synthesis steps (four steps).

<ポリマー(F)>
本発明のフルオロスルホニル基含有ポリマー(以下、ポリマー(F)とも記す。)は、化合物(m1)に由来する構成単位(u1)を有する。
<Polymer (F)>
The fluorosulfonyl group-containing polymer of the present invention (hereinafter also referred to as polymer (F)) has a structural unit (u1) derived from the compound (m1).

Figure 2017025242
Figure 2017025242

ただし、n、Rf1およびXは、上述したとおりであり、好ましい形態も同様である。
構成単位(u1)としては、原料の入手性、化合物(m1)の蒸留精製のしやすさ、合成の簡便さ、コストの点から、構成単位(u1−1)〜構成単位(u1−10)が好ましく、構成単位(u1−1)がより好ましい。ただし、xは1以上の整数である。
However, n, R f1 and X are as described above, and preferred forms are also the same.
As the structural unit (u1), from the viewpoint of availability of raw materials, ease of distillation purification of the compound (m1), ease of synthesis, and cost, the structural unit (u1-1) to the structural unit (u1-10). Is preferable, and the structural unit (u1-1) is more preferable. However, x is an integer of 1 or more.

Figure 2017025242
Figure 2017025242

ポリマー(F)は、テトラフルオロエチレン(以下、TFEとも記す。)に由来する構成単位をさらに有することが好ましい。TFEは高い結晶性を有するため、後述するスルホン酸基含有ポリマーが含水した際の膨潤を抑える効果があり、スルホン酸基含有ポリマーの含水率を低減できる。   The polymer (F) preferably further has a structural unit derived from tetrafluoroethylene (hereinafter also referred to as TFE). Since TFE has high crystallinity, it has an effect of suppressing swelling when the sulfonic acid group-containing polymer described later contains water, and the water content of the sulfonic acid group-containing polymer can be reduced.

ポリマー(F)は、化合物(m1)およびTFE以外の他のモノマーに由来する構成単位をさらに有していてもよい。
他のモノマーとしては、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、エチレン、プロピレン、ペルフルオロ(3−ブテニルビニルエーテル)、ペルフルオロ(アリルビニルエーテル)、ペルフルオロα−オレフィン(ヘキサフルオロプロピレン等)、(ペルフルオロアルキル)エチレン((ペルフルオロブチル)エチレン等)、(ペルフルオロアルキル)プロペン(3−ペルフルオロオクチル−1−プロペン等)、ペルフルオロ(アルキルビニルエーテル)、国際公開第2011/013578号に記載の5員環を有するペルフルオロポリマー等が挙げられる。
The polymer (F) may further have a structural unit derived from a monomer other than the compound (m1) and TFE.
Other monomers include chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, ethylene, propylene, perfluoro (3-butenyl vinyl ether), perfluoro (allyl vinyl ether), perfluoro α-olefin (hexafluoropropylene) Etc.), (perfluoroalkyl) ethylene ((perfluorobutyl) ethylene etc.), (perfluoroalkyl) propene (3-perfluorooctyl-1-propene etc.), perfluoro (alkyl vinyl ether), described in WO 2011/013578 Examples include perfluoropolymers having a 5-membered ring.

ポリマー(F)を構成する全構成単位の100モル%のうちの構成単位(u1)、TFEに由来する構成単位、他のモノマーに由来する構成単位の割合は、スルホン酸基含有ポリマーに要求される特性(イオン交換容量、機械的強度等)に応じて適宜決定すればよい。   The proportion of the structural unit (u1), the structural unit derived from TFE, and the structural unit derived from other monomers out of 100 mol% of all the structural units constituting the polymer (F) is required for the sulfonic acid group-containing polymer. What is necessary is just to determine suitably according to the characteristic (ion exchange capacity, mechanical strength, etc.) to be.

ポリマー(F)のTQ値は、200〜330℃が好ましい。ポリマー(F)のTQ値が前記下限値以上であれば、スルホン酸基含有ポリマーが充分な分子量を有し、機械的強度にも優れる。ポリマー(F)のTQ値が前記上限値以下であれば、スルホン酸基含有ポリマーの溶解性または分散性がよくなり、後述する液状組成物を調製しやすい。
TQ値は、ポリマーの分子量の指標であり、長さ1mm、内径1mmのノズルを用い、2.94MPaの押出し圧力の条件でポリマー(F)の溶融押出しを行った際の押出し量が100mm/秒となる温度である。
The TQ value of the polymer (F) is preferably 200 to 330 ° C. When the TQ value of the polymer (F) is at least the lower limit, the sulfonic acid group-containing polymer has a sufficient molecular weight and is excellent in mechanical strength. When the TQ value of the polymer (F) is not more than the above upper limit value, the solubility or dispersibility of the sulfonic acid group-containing polymer is improved, and a liquid composition described later can be easily prepared.
The TQ value is an index of the molecular weight of the polymer. The extrusion amount when the polymer (F) is melt-extruded under the condition of the extrusion pressure of 2.94 MPa using a nozzle having a length of 1 mm and an inner diameter of 1 mm is 100 mm 3 / This is the temperature in seconds.

<ポリマー(F)の製造方法>
ポリマー(F)の製造方法は、上述した化合物(m1)の製造方法によって化合物(m1)を製造し、化合物(m1)、必要に応じてTFE、他のモノマーを含むモノマー成分を重合してポリマー(F)を得る方法である。
<Method for producing polymer (F)>
The polymer (F) is produced by producing the compound (m1) by the above-described method for producing the compound (m1), and polymerizing the compound (m1) and, if necessary, monomer components including TFE and other monomers. This is a method for obtaining (F).

重合法としては、バルク重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合法が挙げられる。また、液体または超臨界の二酸化炭素中にて重合を行ってもよい。
重合は、ラジカルが生起する条件で行われる。ラジカルを生起させる方法としては、紫外線、γ線、電子線等の放射線を照射する方法、ラジカル開始剤を添加する方法等が挙げられる。
重合温度は、通常、10〜150℃である。
Examples of the polymerization method include known polymerization methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Moreover, you may superpose | polymerize in a liquid or supercritical carbon dioxide.
Polymerization is performed under conditions where radicals occur. Examples of the method for generating radicals include a method of irradiating radiation such as ultraviolet rays, γ rays, and electron beams, a method of adding a radical initiator, and the like.
The polymerization temperature is usually 10 to 150 ° C.

ラジカル開始剤としては、ビス(フルオロアシル)ペルオキシド類、ビス(クロロフルオロアシル)ペルオキシド類、ジアルキルペルオキシジカーボネート類、ジアシルペルオキシド類、ペルオキシエステル類、アゾ化合物類、過硫酸塩類等が挙げられ、不安定末端基が少ないポリマー(F)が得られる点から、ビス(フルオロアシル)ペルオキシド類等のペルフルオロ化合物が好ましい。   Examples of radical initiators include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, azo compounds, persulfates, etc. Perfluoro compounds such as bis (fluoroacyl) peroxides are preferred from the viewpoint of obtaining a polymer (F) having few stable end groups.

溶液重合法にて用いる溶媒としては、20〜350℃の沸点を有する溶媒が好ましく、40〜150℃の沸点を有する溶媒がより好ましい。溶媒としては、ペルフルオロトリアルキルアミン類(ペルフルオロトリブチルアミン等)、ペルフルオロカーボン類(ペルフルオロヘキサン、ペルフルオロオクタン等)、ハイドロフルオロカーボン類(1H,4H−ペルフルオロブタン、1H−ペルフルオロヘキサン等)、ハイドロクロロフルオロカーボン類(3,3−ジクロロ−1,1,1,2,2−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン等)、ハイドロフルオロエーテル類(CFCHOCFCFH等)が挙げられる。 As the solvent used in the solution polymerization method, a solvent having a boiling point of 20 to 350 ° C is preferable, and a solvent having a boiling point of 40 to 150 ° C is more preferable. As a solvent, perfluorotrialkylamines (perfluorotributylamine etc.), perfluorocarbons (perfluorohexane, perfluorooctane etc.), hydrofluorocarbons (1H, 4H-perfluorobutane, 1H-perfluorohexane etc.), hydrochlorofluorocarbons (3,3-dichloro-1,1,1,2,2-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, etc.), hydrofluoroethers (CF 3 CH 2 OCF 2 CF 2 H, etc.).

溶液重合法においては、溶媒中にモノマー、ラジカル開始剤等を添加し、溶媒中にてラジカルを生起させてモノマーの重合を行う。モノマーおよび開始剤の添加は、一括添加であってもよく、逐次添加であってもよく、連続添加であってもよい。   In the solution polymerization method, a monomer, a radical initiator or the like is added to a solvent, and radicals are generated in the solvent to polymerize the monomer. The monomer and initiator may be added all at once, sequentially, or continuously.

懸濁重合法においては、水を分散媒として用い、該分散媒中にモノマー、非イオン性のラジカル開始剤等を添加し、分散媒中にてラジカルを生起させてモノマーの重合を行う。
非イオン性のラジカル開始剤としては、ビス(フルオロアシル)ペルオキシド類、ビス(クロロフルオロアシル)ペルオキシド類、ジアルキルペルオキシジカーボネート類、ジアシルペルオキシド類、ペルオキシエステル類、ジアルキルペルオキシド類、ビス(フルオロアルキル)ペルオキシド類、アゾ化合物類等が挙げられる。
分散媒には、助剤として前記溶媒;懸濁粒子の凝集を防ぐ分散安定剤として界面活性剤;分子量調整剤として炭化水素系化合物(ヘキサン、メタノール等)等を添加してもよい。
In the suspension polymerization method, water is used as a dispersion medium, a monomer, a nonionic radical initiator or the like is added to the dispersion medium, and radicals are generated in the dispersion medium to polymerize the monomer.
Nonionic radical initiators include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, dialkyl peroxides, bis (fluoroalkyl) Examples thereof include peroxides and azo compounds.
The dispersion medium may contain the above-mentioned solvent as an auxiliary agent; a surfactant as a dispersion stabilizer that prevents aggregation of suspended particles; and a hydrocarbon compound (hexane, methanol, etc.) as a molecular weight regulator.

(作用機序)
以上説明したポリマー(F)にあっては、比較的分子量が低い化合物(m1)に由来する構成単位(u1)を有する。また、以上説明したポリマー(F)の製造方法にあっては、比較的分子量が低い化合物(m1)を含むモノマー成分を重合してポリマー(F)を得ている。そのため、ポリマー(F)のフルオロスルホニル基をスルホン酸基に変換したスルホン酸基含有ポリマーにおいて、スルホン酸基の1つあたりの分子量を低くすることができる。特に、化合物(m1)のXがフルオロスルホニル基の場合は、スルホン酸基含有ポリマーにおけるスルホン酸基の1つあたりの分子量をさらに低くすることができる。そのため、イオン交換容量が高いスルホン酸基含有ポリマーを得ることができる。
(Mechanism of action)
The polymer (F) described above has a structural unit (u1) derived from the compound (m1) having a relatively low molecular weight. Moreover, in the manufacturing method of the polymer (F) demonstrated above, the monomer component containing the compound (m1) with comparatively low molecular weight is superposed | polymerized, and the polymer (F) is obtained. Therefore, in the sulfonic acid group-containing polymer obtained by converting the fluorosulfonyl group of the polymer (F) into a sulfonic acid group, the molecular weight per sulfonic acid group can be lowered. In particular, when X of the compound (m1) is a fluorosulfonyl group, the molecular weight per sulfonic acid group in the sulfonic acid group-containing polymer can be further reduced. Therefore, a sulfonic acid group-containing polymer having a high ion exchange capacity can be obtained.

<ポリマー(H)>
本発明のスルホン酸基含有ポリマー(以下、ポリマー(H)とも記す。)は、ポリマー(F)のフルオロスルホニル基をスルホン酸基に変換したポリマーであり、構成単位(u’1)を有する。
<Polymer (H)>
The sulfonic acid group-containing polymer of the present invention (hereinafter also referred to as polymer (H)) is a polymer obtained by converting a fluorosulfonyl group of polymer (F) into a sulfonic acid group, and has a structural unit (u′1).

Figure 2017025242
Figure 2017025242

ただし、nおよびRf1は、上述したとおりであり、好ましい形態も同様である。X’は、フッ素原子またはスルホン酸基である。
構成単位(u’1)としては、原料の入手性、化合物(m1)の蒸留精製のしやすさ、合成の簡便さ、コストの点から、構成単位(u’1−1)〜構成単位(u’1−10)が好ましく、構成単位(u’1−1)がより好ましい。ただし、xは1以上の整数である。
However, n and R f1 are as described above, and preferred forms are also the same. X ′ is a fluorine atom or a sulfonic acid group.
As the structural unit (u′1), from the viewpoint of availability of raw materials, ease of distillation purification of the compound (m1), ease of synthesis, and cost, the structural unit (u′1-1) to the structural unit ( u′1-10) is preferable, and the structural unit (u′1-1) is more preferable. However, x is an integer of 1 or more.

Figure 2017025242
Figure 2017025242

ポリマー(H)は、TFEに由来する構成単位をさらに有することが好ましく、化合物(m1)およびTFE以外の他のモノマーに由来する構成単位をさらに有していてもよい。   The polymer (H) preferably further has a structural unit derived from TFE, and may further have a structural unit derived from a monomer other than the compound (m1) and TFE.

ポリマー(H)のイオン交換容量は、0.5〜2.5ミリ当量/g乾燥樹脂が好ましく、1.3〜2.3ミリ当量/g乾燥樹脂がより好ましい。イオン交換容量が前記範囲の下限値以上であれば、ポリマー(H)の導電性が高くなるため、固体高分子形燃料電池の触媒層に用いた場合、充分な電池出力を得ることできる。イオン交換容量が前記範囲の上限値以下であれば、ポリマー(H)が含水した際の膨潤が抑えられる。   The ion exchange capacity of the polymer (H) is preferably 0.5 to 2.5 meq / g dry resin, more preferably 1.3 to 2.3 meq / g dry resin. If the ion exchange capacity is at least the lower limit of the above range, the conductivity of the polymer (H) will be high, so that sufficient battery output can be obtained when used in the catalyst layer of a polymer electrolyte fuel cell. When the ion exchange capacity is equal to or less than the upper limit of the above range, swelling when the polymer (H) contains water is suppressed.

<ポリマー(H)の製造>
ポリマー(H)の製造方法は、ポリマー(F)の製造方法によってポリマー(F)を製造し、該ポリマー(F)のフルオロスルホニル基をスルホン酸基に変換することによってポリマー(H)を得る方法である。
<Manufacture of polymer (H)>
The method for producing the polymer (H) is a method for producing the polymer (F) by the method for producing the polymer (F) and obtaining the polymer (H) by converting the fluorosulfonyl group of the polymer (F) into a sulfonic acid group. It is.

フルオロスルホニル基をスルホン酸基に変換する方法としては、ポリマー(F)のフルオロスルホニル基を加水分解してスルホン酸塩とし、スルホン酸塩を酸型化してスルホン酸基に変換する方法が挙げられる。   Examples of the method for converting a fluorosulfonyl group into a sulfonic acid group include a method in which the fluorosulfonyl group of the polymer (F) is hydrolyzed to form a sulfonate, and the sulfonate is converted into an acid form to convert it into a sulfonic acid group. .

加水分解は、たとえば、溶媒中にてポリマー(F)と塩基性化合物とを接触させて行う。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。溶媒としては、水、水と極性溶媒との混合溶媒等が挙げられる。極性溶媒としては、アルコール(メタノール、エタノール等)、ジメチルスルホキシド等が挙げられる。
酸型化は、たとえば、スルホン酸塩を有するポリマーを、塩酸、硫酸等の水溶液に接触させて行う。
加水分解および酸型化は、通常、0〜120℃にて行う。
Hydrolysis is performed, for example, by contacting the polymer (F) with a basic compound in a solvent. Examples of the basic compound include sodium hydroxide and potassium hydroxide. Examples of the solvent include water, a mixed solvent of water and a polar solvent, and the like. Examples of the polar solvent include alcohol (methanol, ethanol, etc.), dimethyl sulfoxide and the like.
The acidification is performed, for example, by bringing a polymer having a sulfonate into contact with an aqueous solution such as hydrochloric acid or sulfuric acid.
Hydrolysis and acidification are usually performed at 0 to 120 ° C.

(作用機序)
以上説明したポリマー(H)にあっては、ポリマー(F)のフルオロスルホニル基をスルホン酸基に変換したポリマーであるため、イオン交換容量を高くできる。
また、以上説明したポリマー(H)の製造方法にあっては、ポリマー(F)のフルオロスルホニル基をスルホン酸基に変換しているため、イオン交換容量が高いポリマー(H)を製造できる。
(Mechanism of action)
Since the polymer (H) described above is a polymer obtained by converting the fluorosulfonyl group of the polymer (F) into a sulfonic acid group, the ion exchange capacity can be increased.
Moreover, in the manufacturing method of the polymer (H) demonstrated above, since the fluorosulfonyl group of the polymer (F) is converted into the sulfonic acid group, the polymer (H) with a high ion exchange capacity can be manufactured.

<液状組成物>
本発明の液状組成物は、ポリマー(H)と、液状媒体とを含む。
本発明の液状組成物は、液状媒体中にポリマー(H)が分散したものであってもよく、液状媒体中にポリマー(H)が溶解したものであってもよい。
<Liquid composition>
The liquid composition of the present invention contains a polymer (H) and a liquid medium.
The liquid composition of the present invention may be one in which the polymer (H) is dispersed in the liquid medium, or may be one in which the polymer (H) is dissolved in the liquid medium.

(液状媒体)
液状媒体としては、水と、有機溶媒とを含むものが好ましい。
水は、液状媒体に対するポリマー(H)の分散性または溶解性を向上させる。
有機溶媒は、割れにくい触媒層や固体高分子電解質膜を形成しやすくする。
(Liquid medium)
The liquid medium preferably contains water and an organic solvent.
Water improves the dispersibility or solubility of the polymer (H) in the liquid medium.
The organic solvent makes it easy to form a catalyst layer and a solid polymer electrolyte membrane that are difficult to break.

有機溶媒としては、割れにくい触媒層や固体高分子電解質膜を形成しやすい点から、炭素数が1〜4のアルコールの1種以上が好ましい。
炭素数が1〜4のアルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、3,3,3−トリフルオロ−1−プロパノール等が挙げられる。
As the organic solvent, at least one kind of alcohol having 1 to 4 carbon atoms is preferable from the viewpoint of easily forming a catalyst layer and a solid polymer electrolyte membrane which are not easily broken.
Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro- 1-propanol, 2,2,3,3-tetrafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 3,3,3-trifluoro-1-propanol Etc.

水の割合は、水と有機溶媒との合計(100質量%)のうち、10〜99質量%が好ましく、20〜99質量%がより好ましい。
有機溶媒の割合は、水と有機溶媒との合計(100質量%)のうち、1〜90質量%が好ましく、1〜80質量%がより好ましい。
水および有機溶媒の割合が前記範囲内であれば、分散媒に対するイオン交換基を有するポリマーの分散性に優れ、かつ割れにくい触媒層や固体高分子電解質膜を形成しやすい。
10-99 mass% is preferable among the sum (100 mass%) of water and an organic solvent, and, as for the ratio of water, 20-99 mass% is more preferable.
The ratio of the organic solvent is preferably 1 to 90% by mass and more preferably 1 to 80% by mass in the total (100% by mass) of water and the organic solvent.
If the ratio of water and the organic solvent is within the above range, it is easy to form a catalyst layer and a solid polymer electrolyte membrane that are excellent in dispersibility of the polymer having an ion exchange group with respect to the dispersion medium and are difficult to break.

ポリマー(H)の濃度は、液状組成物(100質量%)中、1〜50質量%が好ましく、3〜30質量%がより好ましい。ポリマー(H)の濃度が前記範囲の下限値以上であれば、製膜時に厚みのある膜を安定して得ることができる。また、触媒層を作製する際の触媒層形成用塗工液の調節が容易になる。ポリマー(H)の濃度が前記範囲の上限値以下であれば、液状組成物の粘度が過度に高くなるのを抑制できる。   1-50 mass% is preferable in a liquid composition (100 mass%), and, as for the density | concentration of a polymer (H), 3-30 mass% is more preferable. If the concentration of the polymer (H) is not less than the lower limit of the above range, a thick film can be stably obtained during film formation. Moreover, the adjustment of the coating liquid for forming the catalyst layer when preparing the catalyst layer is facilitated. If the density | concentration of a polymer (H) is below the upper limit of the said range, it can suppress that the viscosity of a liquid composition becomes high too much.

(液状組成物の用途)
本発明の液状組成物は、膜電極接合体における触媒層や固体高分子電解質膜の形成に好適に用いられる。また、他の膜(水電解、過酸化水素製造、オゾン製造、廃酸回収等に用いるプロトン選択透過膜、塩化アルカリ電解用陽イオン交換膜、レドックスフロー電池の隔膜、脱塩または製塩に用いる電気透析用陽イオン交換膜等)の形成にも用いることができる。
(Use of liquid composition)
The liquid composition of the present invention is suitably used for forming a catalyst layer or a solid polymer electrolyte membrane in a membrane / electrode assembly. In addition, other membranes (electrolysis used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, proton selective permeation membranes, cation exchange membranes for alkaline chloride electrolysis, redox flow battery membranes, desalting or salt production) It can also be used to form a cation exchange membrane for dialysis.

<液状組成物の製造方法>
本発明の液状組成物の製造方法は、ポリマー(H)の製造方法によってポリマー(H)を製造し、ポリマー(H)と、液状媒体とを混合して液状組成物を得る方法である。
<Method for producing liquid composition>
The method for producing a liquid composition of the present invention is a method for producing a polymer (H) by a method for producing a polymer (H), and mixing the polymer (H) and a liquid medium to obtain a liquid composition.

混合方法としては、たとえば、大気圧下、またはオートクレーブ等で密閉した状態下において、液状媒体中のポリマー(H)に撹拌等のせん断を加える方法が挙げられる。
撹拌時の温度は、0〜250℃が好ましく、20〜150℃がより好ましい。必要に応じて、超音波等のせん断を付与してもよい。
Examples of the mixing method include a method in which shearing such as stirring is applied to the polymer (H) in the liquid medium under atmospheric pressure or in a state sealed with an autoclave or the like.
0-250 degreeC is preferable and the temperature at the time of stirring has more preferable 20-150 degreeC. You may provide shearing, such as an ultrasonic wave, as needed.

ポリマー(H)と液状媒体とを混合した混合液に撹拌等のせん断を加える際は、ポリマー(H)に液状媒体を一度に全部加えた混合液に撹拌等のせん断を加えてもよいし、ポリマー(H)に液状媒体を複数回に分けて混合し、その合間に撹拌等のせん断を加えてもよい。たとえば、ポリマー(H)に液状媒体の一部を加えた混合液に撹拌等のせん断を加え、その後に、その混合液に残りの液状媒体を加えて再度撹拌等のせん断を加えるようにしてもよい。また、液状媒体に有機溶媒のみを加えて撹拌等のせん断を加え、その後に水のみを加えて再度、撹拌等のせん断を加えるようにしてもよい。   When applying shear such as stirring to the mixed liquid in which the polymer (H) and the liquid medium are mixed, shearing such as stirring may be added to the mixed liquid in which the liquid medium is added to the polymer (H) all at once, The liquid medium may be mixed with the polymer (H) in a plurality of times, and shearing such as stirring may be applied between them. For example, a mixture such as a polymer (H) with a part of the liquid medium is subjected to shearing such as stirring, and then the remaining liquid medium is added to the mixed liquid and then shearing such as stirring is applied again. Good. Alternatively, only an organic solvent may be added to the liquid medium and shearing such as stirring may be applied, and then only water may be added and shearing such as stirring may be applied again.

(作用機序)
以上説明した本発明の液状組成物にあっては、イオン交換容量を高くできるポリマー(H)を含むため、イオン交換容量が高いポリマーを含む膜を形成できる。
また、以上説明した本発明の液状組成物の製造方法にあっては、イオン交換容量を高くできるポリマー(H)と、液状媒体とを混合して液状組成物を得るため、イオン交換容量が高いポリマーを含む膜を形成できる液状組成物を製造できる。
(Mechanism of action)
Since the liquid composition of the present invention described above includes the polymer (H) that can increase the ion exchange capacity, a film including a polymer having a high ion exchange capacity can be formed.
Moreover, in the manufacturing method of the liquid composition of this invention demonstrated above, in order to obtain a liquid composition by mixing the polymer (H) which can raise ion exchange capacity, and a liquid medium, ion exchange capacity is high. A liquid composition capable of forming a film containing a polymer can be produced.

<膜電極接合体>
図1は、本発明の膜電極接合体の一例を示す断面図である。膜電極接合体10は、触媒層11およびガス拡散層12を有するアノード13と、触媒層11およびガス拡散層12を有するカソード14と、アノード13とカソード14との間に、触媒層11に接した状態で配置される固体高分子電解質膜15とを具備する。
<Membrane electrode assembly>
FIG. 1 is a cross-sectional view showing an example of the membrane electrode assembly of the present invention. The membrane electrode assembly 10 is in contact with the catalyst layer 11 between the anode 13 having the catalyst layer 11 and the gas diffusion layer 12, the cathode 14 having the catalyst layer 11 and the gas diffusion layer 12, and the anode 13 and the cathode 14. And a solid polymer electrolyte membrane 15 arranged in the above state.

膜電極接合体10においては、カソード14の触媒層11、アノード13の触媒層11および固体高分子電解質膜15からなる群から選ばれる少なくとも1つが、ポリマー(H)を含む。触媒層11がポリマー(H)を含む場合は、少なくともカソード14の触媒層11がポリマー(H)を含むことが好ましい。   In the membrane electrode assembly 10, at least one selected from the group consisting of the catalyst layer 11 of the cathode 14, the catalyst layer 11 of the anode 13, and the solid polymer electrolyte membrane 15 contains a polymer (H). When the catalyst layer 11 contains a polymer (H), it is preferable that at least the catalyst layer 11 of the cathode 14 contains a polymer (H).

(触媒層)
触媒層は、触媒と、イオン交換基を有するポリマーとを含む層である。
触媒としては、カーボン担体に白金または白金合金を担持した担持触媒が挙げられる。
カーボン担体としては、カーボンブラック粉末が挙げられる。
イオン交換基を有するポリマーとしては、ポリマー(H)、公知のイオン交換基を有するペルフルオロポリマー等が挙げられる。
(Catalyst layer)
The catalyst layer is a layer containing a catalyst and a polymer having an ion exchange group.
Examples of the catalyst include a supported catalyst in which platinum or a platinum alloy is supported on a carbon support.
Examples of the carbon carrier include carbon black powder.
Examples of the polymer having an ion exchange group include a polymer (H) and a perfluoropolymer having a known ion exchange group.

(ガス拡散層)
ガス拡散層は、触媒層に均一にガスを拡散させる機能および集電体としての機能を有する。
ガス拡散層としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。
ガス拡散層は、ポリテトラフルオロエチレン等によって撥水化処理されていることが好ましい。
(Gas diffusion layer)
The gas diffusion layer has a function of uniformly diffusing gas in the catalyst layer and a function as a current collector.
Examples of the gas diffusion layer include carbon paper, carbon cloth, carbon felt and the like.
The gas diffusion layer is preferably subjected to water repellent treatment with polytetrafluoroethylene or the like.

(カーボン層)
図2に示すように、膜電極接合体10は、触媒層11とガス拡散層12との間にカーボン層16を有してもよい。
カーボン層を配置することにより、触媒層の表面のガス拡散性が向上し、固体高分子形燃料電池の発電性能が大きく向上する。
カーボン層は、カーボンと非イオン性含フッ素ポリマーとを含む層である。
カーボンとしては、カーボン粒子、カーボンファイバー等が挙げられ、繊維径1〜1000nm、繊維長1000μm以下のカーボンナノファイバーが好ましい。
非イオン性含フッ素ポリマーとしては、ポリテトラフルオロエチレン等が挙げられる。
(Carbon layer)
As shown in FIG. 2, the membrane electrode assembly 10 may have a carbon layer 16 between the catalyst layer 11 and the gas diffusion layer 12.
By disposing the carbon layer, the gas diffusibility on the surface of the catalyst layer is improved, and the power generation performance of the polymer electrolyte fuel cell is greatly improved.
The carbon layer is a layer containing carbon and a nonionic fluorine-containing polymer.
Examples of carbon include carbon particles and carbon fibers, and carbon nanofibers having a fiber diameter of 1 to 1000 nm and a fiber length of 1000 μm or less are preferable.
Examples of the nonionic fluorine-containing polymer include polytetrafluoroethylene.

(固体高分子電解質膜)
固体高分子電解質膜は、イオン交換基を有するポリマーを含む膜である。
イオン交換基を有するポリマーとしては、ポリマー(H)、公知のイオン交換基を有するペルフルオロポリマー等が挙げられる。
(Solid polymer electrolyte membrane)
The solid polymer electrolyte membrane is a membrane containing a polymer having an ion exchange group.
Examples of the polymer having an ion exchange group include a polymer (H) and a perfluoropolymer having a known ion exchange group.

固体高分子電解質膜は、補強材で補強されていてもよい。補強材としては、多孔体、繊維、織布、不織布等が挙げられる。補強材の材料としては、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド等が挙げられる。   The solid polymer electrolyte membrane may be reinforced with a reinforcing material. Examples of the reinforcing material include porous bodies, fibers, woven fabrics, and nonwoven fabrics. Examples of the reinforcing material include polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, polyethylene, polypropylene, polyphenylene sulfide, and the like.

固体高分子電解質膜は、耐久性をさらに向上させるために、セリウムおよびマンガンからなる群から選ばれる1種以上の原子を含んでいてもよい。セリウム、マンガンは、固体高分子電解質膜の劣化を引き起こす原因物質である過酸化水素を分解する。セリウム、マンガンは、イオンとして固体高分子電解質膜中に存在することが好ましく、イオンとして存在すれば固体高分子電解質膜中でどのような状態で存在してもかまわない。   The solid polymer electrolyte membrane may contain one or more atoms selected from the group consisting of cerium and manganese in order to further improve the durability. Cerium and manganese decompose hydrogen peroxide, which is a causative substance that causes deterioration of the solid polymer electrolyte membrane. Cerium and manganese are preferably present as ions in the solid polymer electrolyte membrane, and as long as they are present as ions, they may be present in any state in the solid polymer electrolyte membrane.

<膜電極接合体の製造方法>
膜電極接合体がカーボン層を有しない場合、膜電極接合体は、たとえば、下記の方法にて製造される。
・固体高分子電解質膜上に触媒層を形成して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層で挟み込む方法。
・ガス拡散層上に触媒層を形成して電極(アノード、カソード)とし、固体高分子電解質膜を該電極で挟み込む方法。
<Method for producing membrane electrode assembly>
When the membrane / electrode assembly does not have a carbon layer, the membrane / electrode assembly is produced, for example, by the following method.
A method in which a catalyst layer is formed on a solid polymer electrolyte membrane to form a membrane catalyst layer assembly, and the membrane catalyst layer assembly is sandwiched between gas diffusion layers.
A method in which a catalyst layer is formed on a gas diffusion layer to form electrodes (anode, cathode), and a solid polymer electrolyte membrane is sandwiched between the electrodes.

膜電極接合体がカーボン層を有する場合、膜電極接合体は、たとえば、下記の方法にて製造される。
・基材フィルム上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層を形成し、カーボン層上に触媒層を形成し、触媒層と固体高分子電解質膜とを貼り合わせ、基材フィルムを剥離して、カーボン層を有する膜触媒層接合体とし、該膜触媒層接合体をガス拡散層で挟み込む方法。
・ガス拡散層上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層を形成し、固体高分子電解質膜上に触媒層を形成した膜触媒層接合体を、カーボン層を有するガス拡散層で挟み込む方法。
When the membrane / electrode assembly has a carbon layer, the membrane / electrode assembly is produced, for example, by the following method.
-A dispersion containing carbon and a nonionic fluorine-containing polymer is applied on a base film, dried to form a carbon layer, a catalyst layer is formed on the carbon layer, and the catalyst layer and the solid polymer electrolyte membrane And the base film is peeled to form a membrane catalyst layer assembly having a carbon layer, and the membrane catalyst layer assembly is sandwiched between gas diffusion layers.
A membrane / catalyst layer assembly in which a dispersion containing carbon and a nonionic fluoropolymer is applied on a gas diffusion layer and dried to form a carbon layer, and a catalyst layer is formed on a solid polymer electrolyte membrane. And sandwiching with a gas diffusion layer having a carbon layer.

(触媒層の形成方法)
触媒層の形成方法としては、下記の方法が挙げられる。
・触媒層形成用塗工液を、固体高分子電解質膜、ガス拡散層、またはカーボン層上に塗布し、乾燥させる方法。
・触媒層形成用塗工液を基材フィルム上に塗布し、乾燥させて触媒層を形成し、該触媒層を固体高分子電解質膜上に転写する方法。
(Method for forming catalyst layer)
Examples of the method for forming the catalyst layer include the following methods.
A method in which a coating liquid for forming a catalyst layer is applied on a solid polymer electrolyte membrane, a gas diffusion layer, or a carbon layer and dried.
A method in which a catalyst layer forming coating solution is applied on a substrate film, dried to form a catalyst layer, and the catalyst layer is transferred onto a solid polymer electrolyte membrane.

触媒層形成用塗工液は、イオン交換基を有するポリマーおよび触媒を分散媒に分散させた液である。触媒層形成用塗工液は、たとえば、本発明の液状組成物と、触媒の分散液とを混合することにより調製できる。   The coating liquid for forming a catalyst layer is a liquid in which a polymer having an ion exchange group and a catalyst are dispersed in a dispersion medium. The coating liquid for forming a catalyst layer can be prepared, for example, by mixing the liquid composition of the present invention and a catalyst dispersion.

(固体高分子電解質膜の形成方法)
固体高分子電解質膜は、たとえば、液状組成物を基材フィルムまたは触媒層上に塗布し、乾燥させる方法(キャスト法)により形成できる。
液状組成物は、水および有機溶媒を含む分散媒に、イオン交換基を有するポリマーを分散させた分散液である。液状組成物として、本発明の液状組成物を用いてもよい。
(Method for forming solid polymer electrolyte membrane)
The solid polymer electrolyte membrane can be formed, for example, by a method (cast method) in which a liquid composition is applied on a substrate film or a catalyst layer and dried.
The liquid composition is a dispersion liquid in which a polymer having an ion exchange group is dispersed in a dispersion medium containing water and an organic solvent. As the liquid composition, the liquid composition of the present invention may be used.

固体高分子電解質膜を安定化させるために、アニール処理を行うことが好ましい。アニール処理の温度は、イオン交換基を有する含フッ素ポリマーの種類にもよるが、130〜200℃が好ましい。アニール処理の温度が130℃以上であれば、イオン交換基を有するポリマーが過度に含水しなくなる。アニール処理の温度が200℃以下であれば、イオン交換基の熱分解が抑えられる。   In order to stabilize the solid polymer electrolyte membrane, it is preferable to perform an annealing treatment. The temperature of the annealing treatment is preferably 130 to 200 ° C., although it depends on the type of fluorine-containing polymer having an ion exchange group. If the temperature of annealing treatment is 130 degreeC or more, the polymer which has an ion exchange group will not contain water excessively. If the temperature of annealing treatment is 200 degrees C or less, the thermal decomposition of an ion exchange group will be suppressed.

(作用機序)
以上説明した本発明の膜電極接合体にあっては、カソードの触媒層、アノードの触媒層および固体高分子電解質膜からなる群から選ばれる少なくとも1つが、イオン交換容量を高くできるポリマー(H)を含むため、発電性能に優れる。
また、以上説明した本発明の膜電極接合体の製造方法にあっては、カソードの触媒層、アノードの触媒層および固体高分子電解質膜からなる群から選ばれる少なくとも1つの形成に、イオン交換容量が高いポリマーを含む膜を形成できる本発明の液状組成物を用いているため、発電性能に優れる膜電極接合体を製造できる。
(Mechanism of action)
In the membrane electrode assembly of the present invention described above, at least one selected from the group consisting of a cathode catalyst layer, an anode catalyst layer and a solid polymer electrolyte membrane is a polymer (H) capable of increasing the ion exchange capacity. Power generation performance is excellent.
In the method for producing a membrane electrode assembly of the present invention described above, at least one selected from the group consisting of a cathode catalyst layer, an anode catalyst layer, and a solid polymer electrolyte membrane is used for ion exchange capacity. Since the liquid composition of the present invention capable of forming a film containing a high polymer is used, a membrane electrode assembly excellent in power generation performance can be produced.

<固体高分子形燃料電池>
本発明の膜電極接合体の両面に、ガスの流路となる溝が形成されたセパレータを配置することにより、固体高分子形燃料電池が得られる。
セパレータとしては、金属製セパレータ、カーボン製セパレータ、黒鉛と樹脂を混合した材料からなるセパレータ等、各種導電性材料からなるセパレータが挙げられる。
固体高分子形燃料電池においては、カソードに酸素を含むガス、アノードに水素を含むガスを供給することにより、発電が行われる。また、アノードにメタノールを供給して発電を行うメタノール燃料電池にも、膜電極接合体を適用できる。
<Solid polymer fuel cell>
A polymer electrolyte fuel cell can be obtained by disposing separators in which grooves serving as gas flow paths are formed on both surfaces of the membrane electrode assembly of the present invention.
Examples of the separator include a separator made of various conductive materials such as a metal separator, a carbon separator, and a separator made of a material in which graphite and a resin are mixed.
In a polymer electrolyte fuel cell, power generation is performed by supplying a gas containing oxygen to the cathode and a gas containing hydrogen to the anode. The membrane electrode assembly can also be applied to a methanol fuel cell that generates power by supplying methanol to the anode.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
例1、2は製造例であり、例3、4、10〜12は実施例であり、例5は参考例であり、例6〜9は比較例である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Examples 1 and 2 are production examples, Examples 3, 4, and 10 to 12 are examples, Example 5 is a reference example, and Examples 6 to 9 are comparative examples.

19F−NMR)
19F−NMRは、282.7MHz、溶媒:CDCl、化学シフト基準:CFClの条件にて測定した。生成物の定量は、19F−NMRの分析結果および内部標準試料(1,3−ビス(トリフルオロメチル)ベンゼン)の添加量から行った。
(19 F-NMR)
19 F-NMR was measured under the conditions of 282.7 MHz, solvent: CDCl 3 , chemical shift standard: CFCl 3 . The product was quantitatively determined from the analysis result of 19 F-NMR and the amount of internal standard sample (1,3-bis (trifluoromethyl) benzene) added.

(ポリマー(H)のイオン交換容量)
ポリマー(H)の膜を120℃で12時間真空乾燥して、ポリマー(H)の膜から水分を除去した。ポリマー(H)の膜を0.85モル/gの水酸化ナトリウム溶液(溶媒:水/メタノール=10/90(質量比))に浸漬して、ポリマー(H)のスルホン酸基を中和しスルホン酸ナトリウム塩に変換した。中和後の水酸化ナトリウム溶液を0.1モル/Lの塩酸で逆滴定することによってポリマー(H)のイオン交換容量を求めた。
(Ion exchange capacity of polymer (H))
The polymer (H) film was vacuum-dried at 120 ° C. for 12 hours to remove moisture from the polymer (H) film. The polymer (H) membrane was immersed in a 0.85 mol / g sodium hydroxide solution (solvent: water / methanol = 10/90 (mass ratio)) to neutralize the sulfonic acid groups of the polymer (H). Converted to sulfonic acid sodium salt. The ion exchange capacity of the polymer (H) was determined by back titrating the neutralized sodium hydroxide solution with 0.1 mol / L hydrochloric acid.

(例1)
化合物(12−1)および化合物(13−1)の製造:
(Example 1)
Production of Compound (12-1) and Compound (13-1):

Figure 2017025242
Figure 2017025242

米国特許第4273729号明細書の実施例に記載の方法にしたがって、化合物(12−1)および化合物(13−1)を得た。   Compound (12-1) and Compound (13-1) were obtained according to the method described in Examples of US Pat. No. 4,273,729.

(例2)
化合物(14−1)の製造:
(Example 2)
Production of compound (14-1):

Figure 2017025242
Figure 2017025242

撹拌機、コンデンサ、温度計、滴下ロートを備えた500mLの4つ口フラスコに、窒素シール下、60%発煙硫酸の235gを仕込んだ。フラスコをオイルバスにセットし、内温を35〜40℃に保ったまま化合物(13−1)の291gを20分かけて滴下した。滴下完了後に緩やかな発熱が見られ、内温は50℃まで上昇した。その後内温を40℃に保ったまま28時間撹拌を継続した。反応液を室温まで冷却した後、500mLの分液ロートへ反応液を移して静置すると、白濁した上層と橙色透明の下層に分離した。下層を抜き出した後、157gの濃硫酸を加え、よく振り混ぜた上で静置した後に下層を抜き出した。再度31gの濃硫酸を加え、よく振り混ぜた上で静置した後に下層を抜き出した。分液ロート内に残った266gの上層を回収した。回収した上層を19F−NMRによって分析し、内部標準試料の添加量から定量を行ったところ、目的の化合物(14−1)が収率69%で生成していることを確認した。原料の化合物(13−1)の残存は確認されなかった。 A 500 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 235 g of 60% fuming sulfuric acid under a nitrogen seal. The flask was set in an oil bath, and 291 g of the compound (13-1) was added dropwise over 20 minutes while maintaining the internal temperature at 35 to 40 ° C. A mild exotherm was observed after completion of the dropping, and the internal temperature rose to 50 ° C. Thereafter, stirring was continued for 28 hours while maintaining the internal temperature at 40 ° C. After cooling the reaction solution to room temperature, the reaction solution was transferred to a 500 mL separatory funnel and allowed to stand to separate into a white turbid upper layer and an orange transparent lower layer. After extracting the lower layer, 157 g of concentrated sulfuric acid was added, and after shaking well, the mixture was allowed to stand and then the lower layer was extracted. 31 g of concentrated sulfuric acid was added again, the mixture was shaken well and allowed to stand, and then the lower layer was extracted. The upper layer of 266 g remaining in the separatory funnel was recovered. The recovered upper layer was analyzed by 19 F-NMR and quantified from the amount of the internal standard sample added. As a result, it was confirmed that the target compound (14-1) was produced in a yield of 69%. Residual compound (13-1) was not confirmed.

撹拌機、温度計、不規則充填物を充填した蒸留塔(内径3cm×塔長50cm、充填長36cm)を備えた1Lの4つ口フラスコに、回収した上層を移し、減圧蒸留を行った。蒸留の結果、無色透明の化合物(14−1)の540gが得られた。化合物(14−1)の留出温度は、25mmHg(絶対圧力)の圧力下で57.1℃であった。   The recovered upper layer was transferred to a 1 L four-necked flask equipped with a stirrer, a thermometer, and a distillation column (inner diameter 3 cm × column length 50 cm, packing length 36 cm) packed with irregular packing, and vacuum distillation was performed. As a result of distillation, 540 g of a colorless and transparent compound (14-1) was obtained. The distillation temperature of the compound (14-1) was 57.1 ° C. under a pressure of 25 mmHg (absolute pressure).

化合物(14−1)の19F−NMRスペクトル:45.80ppm(SOF、1F、p、J=6.1Hz)、−76.30ppmおよび−77.00ppm(CF−CF−O、2F、m)、−81.70(環状部CF、1F、dd、J=107、7.6Hz)、−88.46ppm(環状部CF、1F、dt、J=107、13.0Hz)、−81.85ppm(O−CF−CF、2F、m)、−112.50ppm(CF−SOF、2F、m)、−151.51ppm(環状部CF、1F、p、J=7.6Hz)。 19 F-NMR spectrum of the compound (14-1): 45.80 ppm (SO 2 F, 1F, p, J = 6.1 Hz), −76.30 ppm and −77.00 ppm (CF—CF 2 —O, 2F) M), −81.70 (annular portion CF 2 , 1F, dd, J = 107, 7.6 Hz), −88.46 ppm (annular portion CF 2 , 1F, dt, J = 107, 13.0 Hz), −81.85 ppm (O—CF 2 —CF 2 , 2F, m), −112.50 ppm (CF 2 —SO 2 F, 2F, m), −151.51 ppm (annular portion CF, 1F, p, J = 7.6 Hz).

(例3)
化合物(m1−1)の製造:
(Example 3)
Production of compound (m1-1):

Figure 2017025242
Figure 2017025242

撹拌機、コンデンサ、温度計、滴下ロートを備えた50mLの4つ口フラスコに、窒素シール下、化合物(12−1)の3.93g、化合物(14−1)の6.98g、ジグライムの9.65gを仕込んだ。フラスコを冷媒にて冷却し、内温が−50℃まで下がった後にフッ化カリウムの1.00gを10分間掛けて添加した。滴下時には発熱が確認された。添加後内温を−40〜−30℃で維持しながら9時間撹拌を継続した後、冷却を停止し室温まで昇温した。反応液を50mLの分液ロートへ移して静置すると、淡黄色の上層と無色の下層とに相分離した。回収した下層の8.95gを19F−NMRにより分析し、内部標準試料の添加量から定量を行ったところ、目的の化合物(m1−1)が収率16%で生成しているのを確認した。主生成物は化合物(13−1)(収率36%)だった。結果を表1に示す。 In a 50 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel, under a nitrogen seal, 3.93 g of compound (12-1), 6.98 g of compound (14-1), 9 of diglyme .65 g was charged. The flask was cooled with a refrigerant, and after the internal temperature dropped to −50 ° C., 1.00 g of potassium fluoride was added over 10 minutes. Exotherm was confirmed at the time of dropping. After the addition, stirring was continued for 9 hours while maintaining the internal temperature at −40 to −30 ° C., then cooling was stopped and the temperature was raised to room temperature. When the reaction solution was transferred to a 50 mL separatory funnel and allowed to stand, the phase was separated into a pale yellow upper layer and a colorless lower layer. 8.95 g of the recovered lower layer was analyzed by 19 F-NMR and quantified from the amount of the internal standard sample added. As a result, it was confirmed that the target compound (m1-1) was produced in a yield of 16%. did. The main product was the compound (13-1) (yield 36%). The results are shown in Table 1.

(例4)
化合物(m1−1)の製造:
化合物(12−1)の118.0g、化合物(14−1)の210.4g、ジグライムの313.0g、フッ化カリウムの31.3gを用い、1Lの反応器を用い、添加後内温を−50〜−30℃とした以外は例3と同様にして反応を行った。分液操作により回収した下層(249.8g)の定量分析から、目的の化合物(m1−1)が収率20%で生成しているのを確認した。主生成物は化合物(13−1)(収率35%)だった。結果を表1に示す。
(Example 4)
Production of compound (m1-1):
118.0 g of compound (12-1), 210.4 g of compound (14-1), 313.0 g of diglyme and 31.3 g of potassium fluoride were used, and the internal temperature after addition was adjusted using a 1 L reactor. The reaction was performed in the same manner as in Example 3 except that the temperature was −50 to −30 ° C. From the quantitative analysis of the lower layer (249.8 g) collected by the liquid separation operation, it was confirmed that the target compound (m1-1) was produced in a yield of 20%. The main product was compound (13-1) (yield 35%). The results are shown in Table 1.

例3および例4にて回収した下層を、撹拌機、温度計、不規則充填物を充填した蒸留塔(内径3cm×塔長50cm、充填長36cm)を備えた500mLの4つ口フラスコに移し減圧蒸留を行った。蒸留の結果、無色透明の化合物(m1−1)の70gが得られた。化合物(m1−1)の留出温度は3.9mmHg(絶対圧力)の圧力下で60.7℃であった。   The lower layer collected in Examples 3 and 4 was transferred to a 500 mL four-necked flask equipped with a stirrer, thermometer, and distillation column (inner diameter 3 cm × column length 50 cm, packing length 36 cm) packed with irregular packing. Vacuum distillation was performed. As a result of distillation, 70 g of a colorless and transparent compound (m1-1) was obtained. The distillation temperature of the compound (m1-1) was 60.7 ° C. under a pressure of 3.9 mmHg (absolute pressure).

化合物(m1−1)の19F−NMRスペクトル:55.37ppm(CF−SOF、1F、m)、45.83ppm(CF−SOF、1F、m)、−71.88ppm(CF=CF−CF−O−、2F、m)、−74.04ppmおよび−74.64ppm(O−CF−CF(SOF)CF−O、2F&2F、m)、−82.12ppm(O−CF−CF−SOF、2F、m)、−71.88ppm(CF=CF、1F、ddt、J=49、39、8Hz)、−103.65ppm(CF=CF、1F、ddt、J=118.0、49、26Hz)、−112.50ppm(CF−SOF、2F、m)、−164.83ppm(CF−SOF、1F、m)、−190.83ppm(CF=CF、1F、ddt、J=118、39、14Hz)。 19 F-NMR spectrum of the compound (m1-1): 55.37 ppm (CF—SO 2 F, 1F, m), 45.83 ppm (CF 2 —SO 2 F, 1F, m), −71.88 ppm (CF 2 = CF-CF 2 -O-, 2F, m), - 74.04ppm and -74.64ppm (O-CF 2 -CF ( SO 2 F) CF 2 -O, 2F & 2F, m), - 82.12ppm (O—CF 2 —CF 2 —SO 2 F, 2F, m), −71.88 ppm (CF 2 = CF, 1F, ddt, J = 49, 39, 8 Hz), −103.65 ppm (CF 2 = CF 1F, ddt, J = 18.0, 49, 26 Hz), −112.50 ppm (CF 2 —SO 2 F, 2F, m), −164.83 ppm (CF—SO 2 F, 1F, m), − 190.83 ppm CF 2 = CF, 1F, ddt , J = 118,39,14Hz).

Figure 2017025242
Figure 2017025242

(例5)
化合物(14−1)の異性化体:
(Example 5)
Isomerized compound (14-1):

Figure 2017025242
Figure 2017025242

撹拌子、コンデンサ、温度計、滴下ロートを備えた10mLの3つ口フラスコに、窒素シール下、フッ化ナトリウムの0.19gを仕込んだ。フラスコを冷媒にて冷却し、内温が−35℃まで下がった後に化合物(14−1)の3.04gを撹拌子で撹拌しながら滴下した。滴下時には発熱は確認されなかった。冷却を停止し内温を室温まで戻した。内液を19F−NMRで分析したところ、化合物(14−1)はほとんど反応していなかった。フラスコを加熱し、100℃で5時間反応させたところ、化合物(14−1)の異性化体である化合物(15−1)が生成していることを確認した。 In a 10 mL three-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel, 0.19 g of sodium fluoride was charged under a nitrogen seal. The flask was cooled with a refrigerant, and after the internal temperature dropped to -35 ° C, 3.04 g of the compound (14-1) was added dropwise while stirring with a stirrer. No exotherm was observed during the dropwise addition. Cooling was stopped and the internal temperature was returned to room temperature. When the internal solution was analyzed by 19 F-NMR, the compound (14-1) hardly reacted. When the flask was heated and reacted at 100 ° C. for 5 hours, it was confirmed that compound (15-1), which is an isomer of compound (14-1), was produced.

化合物(15−1)の19F−NMRスペクトル:54.3ppm(CF−SOF、1F、m)、45.6ppm(CF−SOF、1F、m)、33.6ppm(CF−COF、1F、m)、−75.4ppm(CF−CF−O、2F、m)、−82.3ppm(O−CF−CF−SOF、2F、m)、−112.8ppm(CF−SOF、2F、m)、−159.4ppm(CF、1F、m)。 19 F-NMR spectrum of compound (15-1): 54.3 ppm (CF—SO 2 F, 1F, m), 45.6 ppm (CF 2 —SO 2 F, 1F, m), 33.6 ppm (CF— COF, 1F, m), - 75.4ppm (CF-CF 2 -O, 2F, m), - 82.3ppm (O-CF 2 -CF 2 -SO 2 F, 2F, m), - 112.8ppm (CF 2 -SO 2 F, 2F , m), - 159.4ppm (CF, 1F, m).

例5の結果から、置換基の比較的大きいβ−サルトン化合物である化合物(14−1)においてもテトラフルオロ−β−サルトンと同様に開環反応が起こり、化合物(15−1)が生成することが分かる。つまり置換基が比較的大きい基質においても、開環反応自体は何ら問題なく起こる。
本発明により目的物の化合物(m1−1)の収率が著しく向上する理由は以下の通りと考えられる。
化合物(14−1)または化合物(15−1)とフッ化物塩(MF)との反応により、ペルフルオロアリル化における活性種であるMO−CF−CF(SOF)−構造が生成するが、置換基が比較的大きい化合物(14−1)または化合物(15−1)由来の活性種は安定性が乏しいものと考えられる。すなわち、あらかじめ化合物(14−1)とフッ化物塩とを混合する従来の方法の場合、活性種がペルフルオロアリル化剤の添加前に分解してしまい、目的物の化合物(m1−1)を得ることができないものと考えられる。一方、本発明に示す通り、あらかじめ化合物(14−1)とペルフルオロアリル化剤を混合した状態でフッ化物塩を加えると、生成した活性種が速やかにペルフルオロアリル化剤と反応することができるため、目的物の化合物(m1−1)の収率が著しく向上するものと考えられる。
From the results of Example 5, the compound (14-1), which is a β-sultone compound having a relatively large substituent, undergoes a ring-opening reaction in the same manner as tetrafluoro-β-sultone, thereby producing the compound (15-1). I understand that. That is, even with a substrate having a relatively large substituent, the ring-opening reaction itself occurs without any problem.
The reason why the yield of the target compound (m1-1) is remarkably improved by the present invention is considered as follows.
The reaction of the compound (14-1) or the compound (15-1) with a fluoride salt (MF) produces an MO—CF 2 —CF (SO 2 F) — structure which is an active species in perfluoroallylation. The active species derived from the compound (14-1) or the compound (15-1) having a relatively large substituent is considered to have poor stability. That is, in the case of the conventional method in which the compound (14-1) and the fluoride salt are mixed in advance, the active species are decomposed before the addition of the perfluoroallylating agent to obtain the target compound (m1-1). It is considered impossible. On the other hand, as shown in the present invention, when a fluoride salt is added in a state where the compound (14-1) and the perfluoroallylating agent are mixed in advance, the generated active species can react with the perfluoroallylating agent quickly. The yield of the target compound (m1-1) is considered to be significantly improved.

(例6)   (Example 6)

Figure 2017025242
Figure 2017025242

撹拌機、コンデンサ、温度計、滴下ロートを備えた50mLの4つ口フラスコに、窒素シール下、フッ化カリウムの1.05gおよびジグライムの10.52gを仕込んだ。フラスコを冷媒にて冷却し、内温が−20℃まで下がった後に化合物(14−1)の6.96gを滴下した。滴下時には発熱が確認された。−30〜−10℃で1時間撹拌を継続した後、化合物(12−1)の3.93gを滴下した。−20〜−10℃で1時間撹拌した後、冷却を停止し内温を室温まで昇温させた。16時間室温で撹拌した後、撹拌を停止した。反応液を50mLの分液ロートへ移して静置すると、淡黄色の上層と無色の下層とに相分離した。回収した下層の7.37gを19F−NMRにより分析し、内部標準試料の添加量から定量を行ったところ、目的の化合物(m1−1)が収率1%で生成しているのを確認した。主生成物は化合物(13−1)(収率50%)だった。結果を表2に示す。 A 50 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 1.05 g of potassium fluoride and 10.52 g of diglyme under a nitrogen seal. The flask was cooled with a refrigerant, and 6.96 g of the compound (14-1) was added dropwise after the internal temperature dropped to −20 ° C. Exotherm was confirmed at the time of dropping. After stirring at -30 to -10 ° C for 1 hour, 3.93 g of the compound (12-1) was added dropwise. After stirring at -20 to -10 ° C for 1 hour, cooling was stopped and the internal temperature was raised to room temperature. After stirring for 16 hours at room temperature, stirring was stopped. When the reaction solution was transferred to a 50 mL separatory funnel and allowed to stand, the phase was separated into a pale yellow upper layer and a colorless lower layer. 7.37 g of the recovered lower layer was analyzed by 19 F-NMR, and quantified from the amount of internal standard sample added. As a result, it was confirmed that the target compound (m1-1) was produced at a yield of 1%. did. The main product was the compound (13-1) (yield 50%). The results are shown in Table 2.

(例7)
ジグライムの代わりにテトラグライムの5.25gを用い、温度を表2に示すように変更した以外は例6と同様に反応を行った。分液操作後の定量分析からは、目的の化合物(m1−1)は痕跡量しか確認できなかった。結果を表2に示す。
(Example 7)
The reaction was performed in the same manner as in Example 6 except that 5.25 g of tetraglyme was used instead of diglyme and the temperature was changed as shown in Table 2. From the quantitative analysis after the liquid separation operation, only the trace amount of the target compound (m1-1) was confirmed. The results are shown in Table 2.

(例8)
ジグライムの代わりにテトラグライムの11.57gを、フッ化カリウムの代わりにフッ化銀の2.27gを用い、温度を表2に示すように変更した以外は例6と同様に反応を行った。分液操作後の定量分析からは、目的の化合物(m1−1)は痕跡量しか確認できなかった。結果を表2に示す。
(Example 8)
The reaction was conducted in the same manner as in Example 6 except that 11.57 g of tetraglyme was used instead of diglyme, 2.27 g of silver fluoride was used instead of potassium fluoride, and the temperature was changed as shown in Table 2. From the quantitative analysis after the liquid separation operation, only the trace amount of the target compound (m1-1) was confirmed. The results are shown in Table 2.

(例9)
撹拌機、コンデンサ、温度計、滴下ロートを備えた50mLの4つ口フラスコに、窒素シール下、フッ化ナトリウムの0.77gおよびジグライムの4.06gを仕込んだ。フラスコを冷媒にて冷却し、内温が−20℃まで下がった後に化合物(14−1)の6.98gを滴下した。冷却を停止し内温を室温まで昇温させた。内温が25℃に達した後、化合物(12−1)の3.91gを滴下した。発熱は確認されなかった。その後反応液をガスクロマトグラフ分析にて確認しながら70℃まで加熱したが、目的の化合物(m1−1)の生成は確認されなかった。結果を表2に示す。
(Example 9)
A 50 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 0.77 g of sodium fluoride and 4.06 g of diglyme under a nitrogen seal. The flask was cooled with a refrigerant, and 6.98 g of the compound (14-1) was added dropwise after the internal temperature dropped to −20 ° C. Cooling was stopped and the internal temperature was raised to room temperature. After the internal temperature reached 25 ° C., 3.91 g of the compound (12-1) was added dropwise. An exotherm was not confirmed. Thereafter, the reaction solution was heated to 70 ° C. while being confirmed by gas chromatographic analysis, but formation of the target compound (m1-1) was not confirmed. The results are shown in Table 2.

Figure 2017025242
Figure 2017025242

(例10)
ポリマー(F)の製造:
オートクレーブ(内容積30mL、ハステロイ製)に、化合物(m1−1)の23.0gを入れ、液体窒素で冷却して脱気した。オートクレーブにTFEの1.44gを導入し、内温が100℃になるまでオイルバスにて加温した。この時の圧力は0.475MPaG(ゲージ圧)であった。重合開始剤であるペルフルオロ−ジ−tert−ブチルペルオキシドの0.017gと化合物(m1−1)の0.921gとの混合液をオートクレーブ内に圧入した。さらに圧入ラインから窒素ガスを導入し、圧入ライン内の圧入液を完全に押し込んだ。この操作により気相部のTFEが希釈された結果、圧力は0.90MPaGまで増加した。圧力を0.90MPaGで維持したままTFEを連続添加し重合を行った。6.5時間でTFEの添加量が4.2gになったところでオートクレーブ内を冷却して重合を停止し、系内のガスをパージした。反応液をHFC−52−13p(CF(CFH)で希釈後、HFE−347pc−f(CFCHOCFCFH)を添加し、ポリマーを凝集してろ過した。その後、HFC−52−13p中でポリマーを撹拌して、HFE−347pc−fで再凝集する操作を2回繰り返した。120℃で真空乾燥して、TFEと化合物(m1−1)との共重合体であるポリマー(F−1)の7.7gを得た。
(Example 10)
Production of polymer (F):
In an autoclave (internal volume: 30 mL, manufactured by Hastelloy), 23.0 g of the compound (m1-1) was placed, cooled with liquid nitrogen, and deaerated. 1.44 g of TFE was introduced into the autoclave and heated in an oil bath until the internal temperature reached 100 ° C. The pressure at this time was 0.475 MPaG (gauge pressure). A mixed liquid of 0.017 g of perfluoro-di-tert-butyl peroxide as a polymerization initiator and 0.921 g of the compound (m1-1) was press-fitted into the autoclave. Further, nitrogen gas was introduced from the press-in line, and the press-in liquid in the press-in line was completely pushed in. As a result of the dilution of TFE in the gas phase by this operation, the pressure increased to 0.90 MPaG. While maintaining the pressure at 0.90 MPaG, TFE was continuously added for polymerization. When the amount of TFE added reached 4.2 g in 6.5 hours, the inside of the autoclave was cooled to stop the polymerization, and the gas in the system was purged. The reaction solution was diluted with HFC-52-13p (CF 3 (CF 2 ) 5 H), HFE-347pc-f (CF 3 CH 2 OCF 2 CF 2 H) was added, and the polymer was aggregated and filtered. Thereafter, the operation of stirring the polymer in HFC-52-13p and reaggregating with HFE-347pc-f was repeated twice. It vacuum-dried at 120 degreeC and obtained 7.7g of the polymer (F-1) which is a copolymer of TFE and a compound (m1-1).

ポリマー(F−1)を加圧プレス成形(240℃,4MPa)してポリマー(F−1)の膜を得た。フィルム(厚さ:125μm)に加工した。   The polymer (F-1) was press-molded (240 ° C., 4 MPa) to obtain a polymer (F-1) film. It was processed into a film (thickness: 125 μm).

(例11)
ポリマー(H)の製造:
ポリマー(F−1)の膜を、20質量%の水酸化カリウム水溶液中に80℃で20時間浸漬させることによって、ポリマー(F−1)中のフルオロスルホニル基(−SOF)を加水分解し、−SOKに変換した。さらに該ポリマーの膜を、3モル/Lの塩酸水溶液に室温で1時間浸漬した後、室温の超純水に30分間浸漬した。塩酸水溶液への浸漬と超純水への浸漬のサイクルを合計5回実施し、−SOKをスルホン酸基(−SOH)に変換した。その後ポリマーの膜を浸漬している水のpHが7となるまで超純水洗浄を繰り返した。最後にポリマーの膜をろ紙に挟んで風乾し、ポリマー(H)の膜を得た。
ポリマー(H)の膜からイオン交換容量を求めところ、1.55ミリ当量/g乾燥樹脂であった。イオン交換容量から算出されるポリマー(F−1)中のTFEに由来する構成単位および化合物(m1−1)に由来する構成単位の割合は、それぞれ88.0モル%および12.0モル%であった。
(Example 11)
Production of polymer (H):
The polymer (F-1) membrane is immersed in a 20% by mass aqueous potassium hydroxide solution at 80 ° C. for 20 hours to hydrolyze the fluorosulfonyl group (—SO 2 F) in the polymer (F-1). and it was converted to -SO 3 K. Further, the polymer film was immersed in a 3 mol / L hydrochloric acid aqueous solution for 1 hour at room temperature, and then immersed in ultrapure water at room temperature for 30 minutes. A total of five cycles of immersion in an aqueous hydrochloric acid solution and immersion in ultrapure water were performed to convert —SO 3 K into sulfonic acid groups (—SO 3 H). Thereafter, washing with ultrapure water was repeated until the pH of the water in which the polymer film was immersed was 7. Finally, the polymer film was sandwiched between filter papers and air-dried to obtain a polymer (H) film.
The ion exchange capacity was determined from the polymer (H) membrane and found to be 1.55 meq / g dry resin. The proportions of the structural unit derived from TFE and the structural unit derived from the compound (m1-1) in the polymer (F-1) calculated from the ion exchange capacity were 88.0 mol% and 12.0 mol%, respectively. there were.

(例12)
液状組成物の製造:
200mLのガラス製オートクレーブに、細かく切断したポリマー(H)の膜の3.6g、ならびに1−プロパノール、1−ブタノールおよび水の混合溶媒(24/33/43(質量比))の49.9gを加えた。撹拌しながらオートクレーブを加熱した。溶解状態を見ながら100℃から徐々に温度を上げていき、180℃まで昇温したところでポリマー(H)が混合溶媒に分散したことを確認した。加温時間は合計27時間であった。冷却後、加圧ろ過(ろ紙:アドバンテック東洋社製、PF100)を行い、ポリマー(H)が混合溶媒に約7質量%の濃度で分散した液状組成物を得た。
液状組成物をシャーレ上にキャストし、乾燥器中で溶媒を揮散させることで、ポリマー(H)からなる厚さ300μmの固体高分子電解質膜を得た。
(Example 12)
Production of liquid composition:
In a 200 mL glass autoclave, 3.6 g of a finely cut polymer (H) film and 49.9 g of a mixed solvent of 1-propanol, 1-butanol and water (24/33/43 (mass ratio)) added. The autoclave was heated with stirring. The temperature was gradually raised from 100 ° C. while observing the dissolved state, and when the temperature was raised to 180 ° C., it was confirmed that the polymer (H) was dispersed in the mixed solvent. The heating time was a total of 27 hours. After cooling, pressure filtration (filter paper: manufactured by Advantech Toyo Co., Ltd., PF100) was performed to obtain a liquid composition in which the polymer (H) was dispersed in the mixed solvent at a concentration of about 7% by mass.
The liquid composition was cast on a petri dish and the solvent was volatilized in a drier to obtain a solid polymer electrolyte membrane having a thickness of 300 μm made of polymer (H).

本発明のフルオロスルホニル基含有モノマーは、固体高分子形燃料電池用、または固体高分子形水電解用膜電極接合体における触媒層や固体高分子電解質膜、塩化アルカリ電解や電気透析に用いられる陽イオン交換膜等に含まれるポリマーの原料として有用である。
また、本発明のフルオロスルホニル基含有モノマーは、レドックスフロー二次電池用の隔膜に含まれるポリマーの原料としても有用である。
The fluorosulfonyl group-containing monomer of the present invention is used for a catalyst layer, a solid polymer electrolyte membrane, an alkali chloride electrolysis or electrodialysis in a membrane electrode assembly for a polymer electrolyte fuel cell or a polymer electrolyte water electrolysis. It is useful as a raw material for polymers contained in ion exchange membranes and the like.
Further, the fluorosulfonyl group-containing monomer of the present invention is also useful as a raw material for a polymer contained in a diaphragm for a redox flow secondary battery.

10 膜電極接合体、11 触媒層、12 ガス拡散層、13 アノード、14 カソード、15 固体高分子電解質膜、16 カーボン層。   DESCRIPTION OF SYMBOLS 10 Membrane electrode assembly, 11 Catalyst layer, 12 Gas diffusion layer, 13 Anode, 14 Cathode, 15 Solid polymer electrolyte membrane, 16 Carbon layer

Claims (20)

下式(m1)で表される化合物である、フルオロスルホニル基含有モノマー。
Figure 2017025242
ただし、nは0または1であり、Rf1はペルフルオロアルキレン基、またはペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基であり、Xはフッ素原子またはフルオロスルホニル基である。
A fluorosulfonyl group-containing monomer, which is a compound represented by the following formula (m1).
Figure 2017025242
However, n is 0 or 1, R f1 is a perfluoroalkylene group or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group, and X is a fluorine atom or a fluorosulfonyl group.
前記Xがフルオロスルホニル基である、請求項1に記載のフルオロスルホニル基含有モノマー。   The fluorosulfonyl group-containing monomer according to claim 1, wherein X is a fluorosulfonyl group. 前記nが1である、請求項1または2に記載のフルオロスルホニル基含有モノマー。   The fluorosulfonyl group-containing monomer according to claim 1 or 2, wherein n is 1. 前記Rf1が−CFCF−である、請求項1〜3のいずれか一項に記載のフルオロスルホニル基含有モノマー。 Wherein R f1 is -CF 2 CF 2 - a, fluorosulfonyl group-containing monomer according to any one of claims 1 to 3. 請求項1〜4のいずれか一項に記載のフルオロスルホニル基含有モノマーに由来する構成単位を有する、フルオロスルホニル基含有ポリマー。   The fluorosulfonyl group containing polymer which has a structural unit derived from the fluorosulfonyl group containing monomer as described in any one of Claims 1-4. テトラフルオロエチレンに由来する構成単位をさらに有する、請求項5に記載のフルオロスルホニル基含有ポリマー。   The fluorosulfonyl group-containing polymer according to claim 5, further comprising a structural unit derived from tetrafluoroethylene. 請求項5または6に記載のフルオロスルホニル基含有ポリマーのフルオロスルホニル基をスルホン酸基に変換した、スルホン酸基含有ポリマー。   A sulfonic acid group-containing polymer obtained by converting the fluorosulfonyl group of the fluorosulfonyl group-containing polymer according to claim 5 or 6 into a sulfonic acid group. 請求項7に記載のスルホン酸基含有ポリマーと、液状媒体とを含む、液状組成物。   A liquid composition comprising the sulfonic acid group-containing polymer according to claim 7 and a liquid medium. 触媒層を有するアノードと、
触媒層を有するカソードと、
前記アノードと前記カソードとの間に配置された固体高分子電解質膜と
を備えた固体高分子形燃料電池用膜電極接合体であって、
前記カソードの触媒層、前記アノードの触媒層および前記固体高分子電解質膜からなる群から選ばれる少なくとも1つが、請求項7に記載のスルホン酸基含有ポリマーを含む、膜電極接合体。
An anode having a catalyst layer;
A cathode having a catalyst layer;
A membrane electrode assembly for a polymer electrolyte fuel cell comprising a polymer electrolyte membrane disposed between the anode and the cathode,
The membrane electrode assembly, wherein at least one selected from the group consisting of the cathode catalyst layer, the anode catalyst layer, and the solid polymer electrolyte membrane comprises the sulfonic acid group-containing polymer according to claim 7.
下式(14)で表される化合物とペルフルオロアリル化剤とをあらかじめ混合した液にフッ化物塩を添加して下式(m1)で表される化合物を得る、フルオロスルホニル基含有モノマーの製造方法。
Figure 2017025242
ただし、nは0または1であり、Rf1はペルフルオロアルキレン基、またはペルフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基であり、Xはフッ素原子またはフルオロスルホニル基である。
A method for producing a fluorosulfonyl group-containing monomer, wherein a fluoride salt is added to a liquid in which a compound represented by the following formula (14) and a perfluoroallylating agent are mixed in advance to obtain a compound represented by the following formula (m1) .
Figure 2017025242
However, n is 0 or 1, R f1 is a perfluoroalkylene group or a group having an etheric oxygen atom between carbon-carbon atoms of the perfluoroalkylene group, and X is a fluorine atom or a fluorosulfonyl group.
前記ペルフルオロアリル化剤が、下式(12)で表される化合物である、請求項10に記載のフルオロスルホニル基含有モノマーの製造方法。
CF=CFCF−Z (12)
ただし、Zは−OSOF、−OSOf2、塩素原子、臭素原子またはヨウ素原子であり、Rf2はペルフルオロアルキル基である。
The method for producing a fluorosulfonyl group-containing monomer according to claim 10, wherein the perfluoroallylating agent is a compound represented by the following formula (12).
CF 2 = CFCF 2 -Z (12 )
However, Z is -OSO 2 F, -OSO 2 R f2 , a chlorine atom, a bromine atom or an iodine atom, R f2 is a perfluoroalkyl group.
前記Xがフルオロスルホニル基である、請求項10または11に記載のフルオロスルホニル基含有モノマーの製造方法。   The method for producing a fluorosulfonyl group-containing monomer according to claim 10 or 11, wherein X is a fluorosulfonyl group. 前記nが1である、請求項10〜12のいずれか一項に記載のフルオロスルホニル基含有モノマーの製造方法。   The method for producing a fluorosulfonyl group-containing monomer according to any one of claims 10 to 12, wherein n is 1. 前記Rf1が−CFCF−である、請求項10〜13のいずれか一項に記載のフルオロスルホニル基含有モノマーの製造方法。 Wherein R f1 is -CF 2 CF 2 - is a method for producing a fluorosulfonyl group-containing monomer according to any one of claims 10 to 13. 請求項10〜14のいずれか一項に記載の製造方法によってフルオロスルホニル基含有モノマーを製造し、該フルオロスルホニル基含有モノマーを含むモノマー成分を重合して前記フルオロスルホニル基含有モノマーに由来する構成単位を有するフルオロスルホニル基含有ポリマーを得る、フルオロスルホニル基含有ポリマーの製造方法。   A structural unit derived from the fluorosulfonyl group-containing monomer by producing a fluorosulfonyl group-containing monomer by the production method according to any one of claims 10 to 14, and polymerizing a monomer component containing the fluorosulfonyl group-containing monomer. A method for producing a fluorosulfonyl group-containing polymer, which obtains a fluorosulfonyl group-containing polymer having 前記モノマー成分が、テトラフルオロエチレンをさらに含む、請求項15に記載のフルオロスルホニル基含有ポリマーの製造方法。   The method for producing a fluorosulfonyl group-containing polymer according to claim 15, wherein the monomer component further comprises tetrafluoroethylene. 請求項15または16に記載の製造方法によってフルオロスルホニル基含有ポリマーを製造し、該フルオロスルホニル基含有ポリマーのフルオロスルホニル基をスルホン酸基に変換することによってスルホン酸基含有ポリマーを得る、スルホン酸基含有ポリマーの製造方法。   A sulfonic acid group-containing polymer is produced by the production method according to claim 15 or 16, and a sulfonic acid group-containing polymer is obtained by converting the fluorosulfonyl group of the fluorosulfonyl group-containing polymer into a sulfonic acid group. A method for producing a containing polymer. 請求項17に記載の製造方法によってスルホン酸基含有ポリマーを製造し、該スルホン酸基含有ポリマーと、液状媒体とを混合して液状組成物を得る、液状組成物の製造方法。   The manufacturing method of a liquid composition which manufactures a sulfonic acid group containing polymer by the manufacturing method of Claim 17, and mixes this sulfonic acid group containing polymer and a liquid medium, and obtains a liquid composition. 触媒層を有するアノードと、
触媒層を有するカソードと、
前記アノードと前記カソードとの間に配置された固体高分子電解質膜と
を備えた固体高分子形燃料電池用膜電極接合体を製造する方法であって、
請求項18に記載の製造方法によって液状組成物を製造し、該液状組成物と触媒とを混合して触媒層形成用塗工液を調製し、該塗工液を用いて前記カソードおよび前記アノードのいずれか一方または両方の触媒層を形成する、膜電極接合体の製造方法。
An anode having a catalyst layer;
A cathode having a catalyst layer;
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell comprising a polymer electrolyte membrane disposed between the anode and the cathode,
A liquid composition is produced by the production method according to claim 18, the liquid composition and a catalyst are mixed to prepare a coating solution for forming a catalyst layer, and the cathode and the anode are prepared using the coating solution. A process for producing a membrane electrode assembly, wherein either one or both of the catalyst layers are formed.
触媒層を有するアノードと、
触媒層を有するカソードと、
前記アノードと前記カソードとの間に配置された固体高分子電解質膜と
を備えた固体高分子形燃料電池用膜電極接合体を製造する方法であって、
請求項18に記載の製造方法によって液状組成物を製造し、該液状組成物を用いて前記固体高分子電解質膜を形成する、膜電極接合体の製造方法。
An anode having a catalyst layer;
A cathode having a catalyst layer;
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell comprising a polymer electrolyte membrane disposed between the anode and the cathode,
The manufacturing method of a membrane electrode assembly which manufactures a liquid composition with the manufacturing method of Claim 18, and forms the said solid polymer electrolyte membrane using this liquid composition.
JP2015147410A 2015-07-27 2015-07-27 Method for producing fluorosulfonyl group-containing monomer, fluorosulfonyl group-containing polymer, sulfonic acid group-containing polymer, liquid composition and membrane electrode assembly Active JP6524835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147410A JP6524835B2 (en) 2015-07-27 2015-07-27 Method for producing fluorosulfonyl group-containing monomer, fluorosulfonyl group-containing polymer, sulfonic acid group-containing polymer, liquid composition and membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147410A JP6524835B2 (en) 2015-07-27 2015-07-27 Method for producing fluorosulfonyl group-containing monomer, fluorosulfonyl group-containing polymer, sulfonic acid group-containing polymer, liquid composition and membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2017025242A true JP2017025242A (en) 2017-02-02
JP6524835B2 JP6524835B2 (en) 2019-06-05

Family

ID=57945468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147410A Active JP6524835B2 (en) 2015-07-27 2015-07-27 Method for producing fluorosulfonyl group-containing monomer, fluorosulfonyl group-containing polymer, sulfonic acid group-containing polymer, liquid composition and membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6524835B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045063A1 (en) * 2017-09-01 2019-03-07 Agc株式会社 Fluorosulfonyl group-containing compound, fluorosulfonyl group-containing monomer, and production methods for same
WO2020116652A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Production method of fluorine-containing polymer containing fluorosulfonyl group, production method of fluorine-containing polymer containing salt-type sulfonic acid group, and production method of fluorine-containing polymer containing acid-type sulfonic acid group
WO2020116648A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
WO2020218619A1 (en) * 2019-04-26 2020-10-29 ダイキン工業株式会社 Composition production method and composition
WO2021079904A1 (en) * 2019-10-21 2021-04-29 Agc株式会社 Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
CN115991833A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Breathable fluorine-containing ionic polymer and preparation method thereof
WO2024068677A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024068675A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024068676A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024149802A1 (en) 2023-01-12 2024-07-18 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018674A (en) * 2008-07-09 2010-01-28 Asahi Glass Co Ltd Polymer, method for producing the same, electrolyte membrane for solid polymer type fuel cell, and membrane electrode assembly
JP2013181128A (en) * 2012-03-02 2013-09-12 Asahi Glass Co Ltd Method for manufacturing polymer, electrolyte membrane for solid polymer type fuel cell, and membrane electrode assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018674A (en) * 2008-07-09 2010-01-28 Asahi Glass Co Ltd Polymer, method for producing the same, electrolyte membrane for solid polymer type fuel cell, and membrane electrode assembly
JP2013181128A (en) * 2012-03-02 2013-09-12 Asahi Glass Co Ltd Method for manufacturing polymer, electrolyte membrane for solid polymer type fuel cell, and membrane electrode assembly

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022044614A (en) * 2017-09-01 2022-03-17 Agc株式会社 Polymer containing fluorosulfonyl group or sulfonic acid group, method for producing the same, and applications of the same
WO2019045064A1 (en) * 2017-09-01 2019-03-07 Agc株式会社 Polymer containing fluorosulfonyl group or sulfonic acid group, method for producing same, and use of same
CN111051368A (en) * 2017-09-01 2020-04-21 Agc株式会社 Polymer containing fluorosulfonyl group or sulfonic group, process for producing the same, and use thereof
KR20200047516A (en) * 2017-09-01 2020-05-07 에이지씨 가부시키가이샤 Polymer containing fluorosulfonyl group or sulfonic acid group, manufacturing method and use thereof
KR102616339B1 (en) 2017-09-01 2023-12-20 에이지씨 가부시키가이샤 Polymer containing fluorosulfonyl group or sulfonic acid group, manufacturing method and use thereof
JP7173019B2 (en) 2017-09-01 2022-11-16 Agc株式会社 Fluorosulfonyl group-containing compound, fluorosulfonyl group-containing monomer, and production method thereof
JPWO2019045063A1 (en) * 2017-09-01 2020-10-01 Agc株式会社 Fluorosulfonyl group-containing compounds, fluorosulfonyl group-containing monomers and methods for producing them
WO2019045063A1 (en) * 2017-09-01 2019-03-07 Agc株式会社 Fluorosulfonyl group-containing compound, fluorosulfonyl group-containing monomer, and production methods for same
US11414502B2 (en) 2017-09-01 2022-08-16 AGC Inc. Fluorosulfonyl group or sulfonic acid group-containing polymer, its production method and its application
JPWO2019045064A1 (en) * 2017-09-01 2020-10-29 Agc株式会社 Fluorosulfonyl group or sulfonic acid group-containing polymer, its production method and application
JP7056664B2 (en) 2017-09-01 2022-04-19 Agc株式会社 Fluorosulfonyl group or sulfonic acid group-containing polymer, its production method and application
CN111051368B (en) * 2017-09-01 2022-04-12 Agc株式会社 Polymer containing fluorosulfonyl group or sulfonic group, process for producing the same, and use thereof
EP3892651A4 (en) * 2018-12-07 2022-08-24 Agc Inc. Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JPWO2020116648A1 (en) * 2018-12-07 2021-10-21 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell
CN113195554A (en) * 2018-12-07 2021-07-30 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
CN113166304A (en) * 2018-12-07 2021-07-23 Agc株式会社 Method for producing fluorosulfonyl group-containing fluoropolymer, method for producing salt-type sulfonic group-containing fluoropolymer, and method for producing acid-type sulfonic group-containing fluoropolymer
JP7543910B2 (en) 2018-12-07 2024-09-03 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
US11898018B2 (en) 2018-12-07 2024-02-13 AGC Inc. Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell
WO2020116652A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Production method of fluorine-containing polymer containing fluorosulfonyl group, production method of fluorine-containing polymer containing salt-type sulfonic acid group, and production method of fluorine-containing polymer containing acid-type sulfonic acid group
CN113166304B (en) * 2018-12-07 2022-08-30 Agc株式会社 Method for producing fluorosulfonyl group-containing fluoropolymer, method for producing fluoropolymer containing salt-type sulfonic acid groups, and method for producing fluoropolymer containing acid-type sulfonic acid groups
WO2020116648A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP7295456B2 (en) 2019-04-26 2023-06-21 ダイキン工業株式会社 Composition manufacturing method and composition
WO2020218619A1 (en) * 2019-04-26 2020-10-29 ダイキン工業株式会社 Composition production method and composition
JPWO2020218619A1 (en) * 2019-04-26 2020-10-29
WO2021079904A1 (en) * 2019-10-21 2021-04-29 Agc株式会社 Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
CN115991836B (en) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 Phosphonic acid sulfonic acid copolymer ion resin and preparation method thereof
CN115991833A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Breathable fluorine-containing ionic polymer and preparation method thereof
CN115991834A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Fluorine-containing sulfonic acid phosphonic acid resin with high oxygen permeability and high temperature proton conductivity and preparation method thereof
CN115991832A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Mixed fluorine-containing ion resin
CN115991832B (en) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 Mixed fluorine-containing ion resin
CN115991833B (en) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 Breathable fluorine-containing ionic polymer and preparation method thereof
CN115991834B (en) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 Fluorine-containing sulfonic acid phosphonic acid resin with high oxygen permeability and high temperature proton conductivity and preparation method thereof
CN115991836A (en) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 Phosphonic acid sulfonic acid copolymer ion resin and preparation method thereof
WO2024068677A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024068675A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024068676A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024149802A1 (en) 2023-01-12 2024-07-18 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers

Also Published As

Publication number Publication date
JP6524835B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6524835B2 (en) Method for producing fluorosulfonyl group-containing monomer, fluorosulfonyl group-containing polymer, sulfonic acid group-containing polymer, liquid composition and membrane electrode assembly
JP5141251B2 (en) Fluorosulfonyl group-containing compound, production method thereof and polymer thereof
JP7238957B2 (en) Fluorosulfonyl group or sulfonic acid group-containing polymer, production method and use thereof
JP5217708B2 (en) Polymer, production method thereof, electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP5286797B2 (en) Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP5499478B2 (en) Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP6593346B2 (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
WO2016002889A1 (en) Electrolyte material, liquid composition, membrane electrode assembly for solid polymer fuel cell, and fluorine-containing branched polymer
JP7287404B2 (en) Method for producing fluoropolymer containing fluorosulfonyl group, method for producing fluoropolymer containing salt-type sulfonic acid group, and method for producing fluoropolymer containing acid-type sulfonic acid group
KR20190021206A (en) ELECTROLYTIC MATERIALS, MANUFACTURING METHOD THEREFOR
CN107849364B (en) Liquid composition, method for producing same, and method for producing membrane electrode assembly
JPWO2020116645A1 (en) Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, polymer electrolyte fuel cell
JP7355037B2 (en) Acid-type sulfonic acid group-containing polymers, liquid compositions, solid polymer electrolyte membranes, membrane electrode assemblies, polymer electrolyte fuel cells, and ion exchange membranes for water electrolysis
EP3643728A1 (en) Method for producing fluorine-containing polymer, fluorine-containing polymer having functional group and electrolyte membrane
JP5082470B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250