Nothing Special   »   [go: up one dir, main page]

JP2017009527A - Flow field measuring method and flow field measuring system - Google Patents

Flow field measuring method and flow field measuring system Download PDF

Info

Publication number
JP2017009527A
JP2017009527A JP2015127780A JP2015127780A JP2017009527A JP 2017009527 A JP2017009527 A JP 2017009527A JP 2015127780 A JP2015127780 A JP 2015127780A JP 2015127780 A JP2015127780 A JP 2015127780A JP 2017009527 A JP2017009527 A JP 2017009527A
Authority
JP
Japan
Prior art keywords
light
model
flow field
refractive index
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015127780A
Other languages
Japanese (ja)
Other versions
JP6593865B2 (en
Inventor
達也 濱田
Tatsuya Hamada
達也 濱田
邦弘 星野
Kunihiro Hoshino
邦弘 星野
康剛 川並
Yasutaka Kawanami
康剛 川並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2015127780A priority Critical patent/JP6593865B2/en
Publication of JP2017009527A publication Critical patent/JP2017009527A/en
Application granted granted Critical
Publication of JP6593865B2 publication Critical patent/JP6593865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow field measuring method and a flow field measuring system that can visualize a flow field of a place not applied by irradiation light around a model having a configuration with components stacked without using a high refractive index water solution.SOLUTION: A flow field measuring method is provided for forming a flow of water containing tracer particles around a model provided underwater, applying light around a model from a light source, receiving the light returning from the tracer particles by light receiving means, and measuring a flow field. The flow field measuring method is characterized in that a model ship 20 and a model component 30 are formed by using fluorine-based resin for passing through ultra-violet light and/or visible light and having a refraction index to the ultra-violet light and/or the visible light of 1.30 to 1.40, and the model ship 20 with a configuration of stacking the model component 30 of the model ship 20 is used in the irradiation of ultraviolet laser radiation 41 from a laser apparatus 40, and thereby a flow field is measured by applying ultraviolet laser radiation 41 in a sheet form from the laser apparatus 40.SELECTED DRAWING: Figure 1

Description

本発明は、トレーサ粒子を用いる流場計測方法及び流場計測システムに関する。   The present invention relates to a flow field measurement method and a flow field measurement system using tracer particles.

水中に設けた模型の周辺にトレーサ粒子を含んだ水の流れを形成し、トレーサ粒子の位置を追跡することによって流場を計測する技術が知られている。
流場を計測する技術は、例えば船舶の省エネルギー化の研究に用いられる。船舶の省エネルギー化に関し、船体やプロペラ周辺に装置や省エネ付加物を取付ける方法が考案されており、船舶の省エネ付加物としては様々な原理や方式のものが考案されているが基本的には粘性抵抗の低減や推進効率の向上を目的としたものが多い。実際の省エネ付加物の省エネ原理と効果を確認し、その高効率化を目指すためには付加物による流れの変化を詳細に知る必要があるため、模型船を用いた流場計測が行われている。船尾複雑流れの実験的アプローチによる解析は、レーザドップラー流速計(LDV)を用いた非接触での詳細な流場計測によってその信頼性は飛躍的に向上したが、レーザ光の届かない場所でのLDV計測は未だ困難である。レーザ光の届かない場所の1例として、省エネ効果を目的とした船体付加物の1つであるダクトの内側があげられる。
レーザ光の届かない場所の流場を計測するためには、透明性の高い材料で形成した模型と作用流体の屈折率を合致させる屈折率整合技術を用いることが考えられる。屈折率整合技術を用いることによって、LDVやPIV(Particle Image Velocimetry)のような光学計測に使用するトレーサ粒子の動きも屈折率整合を行った模型を通して可視化することが可能である。
A technique for measuring a flow field by forming a flow of water containing tracer particles around a model provided in water and tracking the position of the tracer particles is known.
The technique for measuring the flow field is used, for example, for research on energy saving of ships. Regarding energy saving of ships, methods for attaching devices and energy-saving additives around the hull and propeller have been devised, and various principles and methods have been devised as energy-saving additives for ships. Many are aimed at reducing resistance and improving propulsion efficiency. In order to confirm the energy-saving principle and effect of actual energy-saving adjuncts and to aim for higher efficiency, it is necessary to know in detail the changes in flow due to the adjuncts, so flow field measurements using model ships are performed. Yes. The analysis of the stern complex flow by the experimental approach shows that the reliability has been greatly improved by non-contact detailed flow field measurement using a laser Doppler velocimeter (LDV). LDV measurement is still difficult. An example of a place where the laser beam does not reach is the inside of a duct that is one of the hull appendages for the purpose of saving energy.
In order to measure the flow field where the laser beam does not reach, it is conceivable to use a refractive index matching technique that matches the refractive index of the working fluid with the model made of a highly transparent material. By using the refractive index matching technique, it is possible to visualize the movement of the tracer particles used for optical measurement such as LDV and PIV (Particle Image Velocity) through a model in which the refractive index is matched.

ここで特許文献1には、屈折率が1.30〜1.40で、かつ250〜700nmの波長範囲の光透過率が80%以上の含フッ素共重合体からなる可視化計測用もしくは光学的計測用成形体が開示されている。
また、特許文献2の表2には、300nmでの光透過率が81〜88%、600nmでの光透過率が91〜94%、屈折率が1.33〜1.35の含フッ素共重合体が開示されている。
また、特許文献3には、透明部材で流路の模型を形成すると共に、透明部材(例えばガラスやプラスチック)の屈折率と略同一の屈折率を有する液体(例えばフェノールフタレインを含有させたヨウ化ナトリウム)を模型内に流すことによって、流路内の液体の流れを観察する流動試験装置が開示されている。
また、特許文献4には、物体の内部における流体の流れをいわゆるピンぼけを起こすことなく可視化して計測するために、透明モデルを液体中に入れ、透明モデルの内部を流れる液体と外部を満たす液体との温度調節を行い、モデル材質(例えばシリコンゴム)と液体(例えばグリセリン水溶液)との屈折率のマッチングを図ると共に、このマッチングをレーザ装置と照射光の解析装置とを用いて判定するようにした三次元流れ場可視化装置が開示されている。
Here, Patent Document 1 discloses a visualization measurement or optical measurement made of a fluorinated copolymer having a refractive index of 1.30 to 1.40 and a light transmittance in the wavelength range of 250 to 700 nm of 80% or more. A molded product is disclosed.
In Table 2 of Patent Document 2, the light transmittance at 300 nm is 81 to 88%, the light transmittance at 600 nm is 91 to 94%, and the refractive index is 1.33 to 1.35. Coalescence is disclosed.
Patent Document 3 discloses that a flow path model is formed with a transparent member, and a liquid having a refractive index substantially the same as the refractive index of a transparent member (for example, glass or plastic) (for example, an iodine containing phenolphthalein). A flow test apparatus for observing the flow of a liquid in a flow path by flowing sodium chloride into a model is disclosed.
Further, in Patent Document 4, in order to visualize and measure the flow of fluid inside an object without causing a so-called blur, a transparent model is placed in the liquid, and the liquid that flows inside the transparent model and the liquid that fills the outside And adjusting the refractive index of the model material (for example, silicon rubber) and the liquid (for example, glycerin aqueous solution), and determining this matching by using a laser device and an irradiation light analyzing device. A three-dimensional flow field visualization device is disclosed.

特開2007−302708号公報JP 2007-302708 A 特開2004−217728号公報JP 2004-217728 A 特開昭61−148340号公報JP-A-61-148340 特開2005−300515号公報JP-A-2005-300515

これまで屈折率整合技術を用いた流場計測は、特許文献3又は4のように、一般的な透明材料(アクリルなど)の屈折率に作用流体(ヨウ化ナトリウム水溶液)の屈折率を近づけることで計測が行われてきた。表1及び表2にBudwigが纏めた透明材料と作用流体の屈折率を示す(Budwig, R., 1994, Refractive index matching methods for liquid flow investigations, Experiments in Fluids, Vol. 17, 1994.)。
表1は透明材料の屈折率であり、表2は作用流体の屈折率である。

Until now, flow field measurement using refractive index matching technology brings the refractive index of a working fluid (sodium iodide aqueous solution) closer to the refractive index of a general transparent material (such as acrylic) as described in Patent Document 3 or 4. Measurement has been carried out. Tables 1 and 2 show the refractive index of the transparent material and working fluid summarized by Budwig (Budwig, R., 1994, Refractive index matching methods for liquid flow investigations, Experiments in Fluids, Vol. 17, 1994).
Table 1 shows the refractive index of the transparent material, and Table 2 shows the refractive index of the working fluid.

しかしながら、水に屈折率調整用の薬品を加えると密度・粘性等が変化するので、計測結果の解析が困難となる。また、屈折率整合に用いられるヨウ化ナトリウム水溶液などの高屈折率水溶液には毒性があるので、安全性の確保が必要である。また、高屈折率水溶液は1日から数日放置すると淡黄色に着色するので、透明模型が見えてしまう。また、高屈折率水溶液は排水処理を専門の処理業者に依頼する必要がある。また、高屈折率水溶液は水に比べて金属の腐食が大きいので、防錆対策が必要である。また、高屈折率水溶液は電気的な特性が変わるため、接触型の計測器は水溶液に合わせて仕様変更が必要である。また、高効率水溶液を曳航水槽等の大型水槽施設に満たして実験することは安全性や費用の面から困難である。
また、特許文献1及び特許文献2には、水の屈折率(1.333)と屈折率が近く、透明性が高い含フッ素共重合体が開示されているが、模型船などの模型を用いたLDV又はPIVによる流場計測において、光源からの光の照射時にダクトやプロペラ等の部品が重畳して影となり光が遮られる間の部分の流場を計測する技術については何ら開示されていない。
However, if a chemical for adjusting the refractive index is added to water, the density, viscosity, and the like change, which makes it difficult to analyze the measurement results. Further, since a high refractive index aqueous solution such as a sodium iodide aqueous solution used for refractive index matching is toxic, it is necessary to ensure safety. In addition, when the high refractive index aqueous solution is left for 1 to several days, it is colored pale yellow, so that a transparent model can be seen. In addition, it is necessary to request a special treatment company for wastewater treatment of the high refractive index aqueous solution. In addition, since the high refractive index aqueous solution is more corroded by metal than water, rust prevention measures are necessary. Moreover, since the electrical characteristics of the high refractive index aqueous solution change, the specification of the contact-type measuring instrument needs to be changed according to the aqueous solution. In addition, it is difficult from the viewpoint of safety and cost to fill a large-scale tank facility such as a towing tank with a highly efficient aqueous solution.
Patent Document 1 and Patent Document 2 disclose a fluorine-containing copolymer having a refractive index close to that of water (1.333) and having a high refractive index, and uses a model such as a model ship. In the conventional flow field measurement by LDV or PIV, there is no disclosure of a technique for measuring the flow field in a portion where light such as a duct or a propeller is superimposed and shadows are blocked when light from a light source is irradiated. .

そこで本発明は、部品が重畳する構成の模型周辺の照射光の届かない場所の流場を、高屈折率水溶液を用いることなく可視化できる流場計測方法及び流場計測システムを提供することを目的とする。   Accordingly, the present invention has an object to provide a flow field measurement method and a flow field measurement system that can visualize a flow field in a place where irradiation light does not reach in the vicinity of a model having a structure in which components are superimposed without using a high refractive index aqueous solution. And

請求項1記載に対応した流場計測方法においては、水中に設けた模型の周辺にトレーサ粒子を含んだ水の流れを形成し、光源から模型の周辺に光を照射し、受光手段でトレーサ粒子から戻る光を受光して流場を計測する流場計測方法において、模型を、紫外光及び/又は可視光を透過するとともに紫外光及び/又は可視光に対する屈折率が1.30から1.40のフッ素系の材料を用いて形成し、かつ光源からの光の照射時に模型の部品が重畳する構成の模型を用い、光源の光として紫外光又は可視光を用いて流場を計測することを特徴とする。
請求項1に記載の本発明によれば、紫外光及び/又は可視光を透過する素材で模型を形成することによって、模型を構成する部品が重畳する間の部分、すなわち部品が照射光を遮る壁となってしまう部分であっても、その部品の奥側の流場計測が可能となる。また、模型の材料の屈折率に合わせて作用流体の屈折率を調整するのではなく、作用流体に水を用いて、その水の屈折率(1.333)に合う透明材料で模型を形成するので、水に屈折率調整用の薬品を加えることによる密度・粘性等の変化の問題、屈折率整合に用いられるヨウ化ナトリウム水溶液等が有する毒性の問題、また、屈折率調整を行なった作用流体を曳航水槽等の大型水槽施設に満たして実験することによる安全性やコスト面の問題の解決ができる。なお、フッ素系の材料としては、フッ素系の樹脂やフッ素系のゴム等を用いることができる。
The flow field measurement method according to claim 1, wherein a flow of water containing tracer particles is formed around a model provided in water, light is irradiated from the light source to the periphery of the model, and the tracer particles are received by a light receiving means. In the flow field measurement method for measuring the flow field by receiving the light returning from the surface, the model transmits ultraviolet light and / or visible light and has a refractive index of 1.30 to 1.40 for ultraviolet light and / or visible light. The flow field is measured using ultraviolet light or visible light as the light of the light source using the model of the structure that is formed using the fluorine-based material of the above and the model parts are superimposed when the light from the light source is irradiated. Features.
According to the first aspect of the present invention, by forming the model with a material that transmits ultraviolet light and / or visible light, the part that forms the model overlaps, that is, the part blocks the irradiation light. Even in a part that becomes a wall, it is possible to measure the flow field on the back side of the part. Also, instead of adjusting the refractive index of the working fluid in accordance with the refractive index of the model material, water is used as the working fluid, and the model is formed with a transparent material that matches the refractive index of the water (1.333). Therefore, problems such as changes in density and viscosity due to the addition of chemicals for refractive index adjustment to water, toxic problems of sodium iodide aqueous solution used for refractive index matching, and working fluids that have been adjusted for refractive index The problem of safety and cost can be solved by filling a large tank facility such as a towing tank and experiment. Note that as the fluorine-based material, a fluorine-based resin, a fluorine-based rubber, or the like can be used.

請求項2記載の本発明は、模型の複数の部位に対して光源と受光手段を移動させて流場を計測することを特徴とする。
請求項2に記載の本発明によれば、光源や光学系の再調整を行うことなく、複数の部位周りの流場を計測することができる。
The present invention according to claim 2 is characterized in that the flow field is measured by moving the light source and the light receiving means with respect to a plurality of parts of the model.
According to the second aspect of the present invention, it is possible to measure flow fields around a plurality of parts without readjusting the light source and the optical system.

請求項3記載の本発明は、光源は、紫外レーザ光又は可視レーザ光をシート状に照射することを特徴とする。
請求項3に記載の本発明によれば、トレーサ粒子の動きを捉えやすくなり、より精度良く流場計測を行うことができる。
The present invention according to claim 3 is characterized in that the light source irradiates ultraviolet laser light or visible laser light in a sheet form.
According to the third aspect of the present invention, the movement of the tracer particles can be easily grasped, and the flow field measurement can be performed with higher accuracy.

請求項4記載の本発明は、受光手段としてトレーサ粒子から戻る光を受光する分光カメラを用いることを特徴とする。
請求項4に記載の本発明によれば、撮像対象の分光画像を得ることができる。
According to a fourth aspect of the present invention, a spectroscopic camera that receives light returning from the tracer particles is used as the light receiving means.
According to the fourth aspect of the present invention, a spectral image of an imaging target can be obtained.

請求項5記載の本発明は、流場の計測に当り、多時刻追跡法を用いて真の流れの方向を推定することを特徴とする。
請求項5に記載の本発明によれば、多時刻にわたるトレーサ粒子の軌跡を追跡することによって流場の真の流れ方向を推定することができる。
The present invention according to claim 5 is characterized in that a true flow direction is estimated using a multi-time tracking method in measuring a flow field.
According to the fifth aspect of the present invention, the true flow direction of the flow field can be estimated by tracking the tracer particle trajectory over multiple times.

請求項6記載の本発明は、水と模型の屈折率の差を、水の温度の変更及び/又は水への添加物の添加により調整することを特徴とする。
請求項6に記載の本発明によれば、水と透明模型の屈折率に差がある場合にその差を調整することによって、模型を構成する部品が重畳する間の部分、すなわち部品が照射光を遮る壁となってしまう部分であっても、その部品の奥側の流場計測が精度よく可能となる。
The present invention according to claim 6 is characterized in that the difference in refractive index between water and the model is adjusted by changing the temperature of water and / or adding an additive to water.
According to the sixth aspect of the present invention, when there is a difference in the refractive index between water and the transparent model, the difference is adjusted, so that a part during which the parts constituting the model overlap, that is, the part is irradiated with light. Even if it is a part that becomes a wall that blocks the flow, it is possible to accurately measure the flow field on the back side of the part.

請求項7記載の本発明は、添加物としてショ糖を用いることを特徴とする。
請求項7に記載の本発明によれば、安全性が高く管理や排水処理が容易なショ糖を用いて、水と透明模型の屈折率の差を調整することができる。
The present invention according to claim 7 is characterized in that sucrose is used as an additive.
According to the seventh aspect of the present invention, it is possible to adjust the difference in refractive index between water and the transparent model using sucrose which is safe and easy to manage and drain.

請求項8記載の本発明は、模型は、フッ素系の材料を成形したものを更に残留応力を除去する処理をしたものであることを特徴とする。
請求項8に記載の本発明によれば、残留応力を除去することによって残留ひずみにより屈折率に差が生じる影響をなくすことができる。
The present invention according to claim 8 is characterized in that the model is obtained by further removing residual stress from a molded fluorine-based material.
According to the present invention described in claim 8, by removing the residual stress, it is possible to eliminate the influence of the difference in refractive index caused by the residual strain.

請求項9記載の本発明は、残留応力を除去する処理は、成形時に模型に振動を与えながら加熱及び冷却を行うことにより除去するものであることを特徴とする。
請求項9に記載の本発明によれば、残留応力を軽減することができる。
The present invention according to claim 9 is characterized in that the process for removing the residual stress is performed by heating and cooling while applying vibration to the model during molding.
According to this invention of Claim 9, a residual stress can be reduced.

請求項10記載に対応した流場計測システムにおいては、水槽と、水槽内に設ける模型と、模型の周辺にトレーサ粒子を含む水の流れを形成する水流形成手段と、模型の周辺に光を照射する光源手段と、トレーサ粒子から戻る光を受光する受光手段とを備え、模型が、紫外光及び/又は可視光を透過するとともに紫外光及び/又は可視光に対する屈折率が1.30から1.40のフッ素系の材料を用いて形成され、かつ光源手段からの光の照射時に模型の部品が重畳する条件に構成され、光源手段の光として紫外光又は可視光を照射して流場を計測することを特徴とする。
請求項10に記載の本発明によれば、紫外光及び/又は可視光を透過する素材で模型を形成することによって、模型を構成する部品が重畳する間の部分、すなわち部品が照射光を遮る壁となってしまう部分であっても、その部品の奥側の流場計測が可能となる。また、模型の材料の屈折率に合わせて作用流体の屈折率を調整するのではなく、作用流体に水を用いて、その水の屈折率(1.333)に合う透明材料で模型を形成するので、水に屈折率調整用の薬品を加えることによる密度・粘性等の変化の問題、屈折率整合に用いられるヨウ化ナトリウム水溶液等が有する毒性の問題、また、屈折率調整を行なった作用流体を曳航水槽等の大型水槽施設に満たして実験することによる安全性やコスト面の問題が無い。
In the flow field measurement system corresponding to claim 10, a water tank, a model provided in the water tank, a water flow forming means for forming a flow of water containing tracer particles around the model, and light irradiation to the periphery of the model And a light receiving means for receiving the light returning from the tracer particles, and the model transmits ultraviolet light and / or visible light and has a refractive index of 1.30 to 1 for ultraviolet light and / or visible light. It is formed using 40 fluorine-based materials, and is configured under the condition that model parts overlap when light is emitted from the light source means, and the flow field is measured by irradiating ultraviolet light or visible light as light from the light source means. It is characterized by doing.
According to the tenth aspect of the present invention, by forming the model with a material that transmits ultraviolet light and / or visible light, the part constituting the model is overlapped, that is, the part blocks the irradiation light. Even in a part that becomes a wall, it is possible to measure the flow field on the back side of the part. Also, instead of adjusting the refractive index of the working fluid in accordance with the refractive index of the model material, water is used as the working fluid, and the model is formed with a transparent material that matches the refractive index of the water (1.333). Therefore, problems such as changes in density and viscosity due to the addition of chemicals for refractive index adjustment to water, toxic problems of sodium iodide aqueous solution used for refractive index matching, and working fluids that have been adjusted for refractive index There is no problem of safety and cost by experimenting with large tank facilities such as towing tanks.

請求項11記載の本発明は、模型の複数の部位に対して光源手段と受光手段をセットとして移動させる移動手段を備えたことを特徴とする。
請求項11に記載の本発明によれば、光源や光学系の再調整を行うことなく、複数の部位周りの流場を計測することができる。
The eleventh aspect of the present invention is characterized by comprising a moving means for moving the light source means and the light receiving means as a set with respect to a plurality of parts of the model.
According to the eleventh aspect of the present invention, it is possible to measure flow fields around a plurality of regions without readjusting the light source and the optical system.

請求項12記載の本発明は、光源手段は、紫外光又は可視光として紫外レーザ光又は可視レーザ光を用い、紫外レーザ光又は可視レーザ光をシート状に照射することを特徴とする。
請求項12に記載の本発明によれば、トレーサ粒子の動きを捉えやすくなり、より精度良く流場計測を行うことができる。
The light source means uses ultraviolet laser light or visible laser light as ultraviolet light or visible light, and irradiates the ultraviolet laser light or visible laser light in a sheet form.
According to the present invention of the twelfth aspect, the movement of the tracer particles can be easily grasped, and the flow field measurement can be performed with higher accuracy.

請求項13記載の本発明は、受光手段としてトレーサ粒子から戻る光を受光する分光カメラを用いたことを特徴とする。
請求項13に記載の本発明によれば、撮像対象の分光画像を得ることができる。
The invention according to claim 13 is characterized in that a spectroscopic camera for receiving light returning from the tracer particles is used as the light receiving means.
According to the thirteenth aspect of the present invention, a spectral image of an imaging target can be obtained.

請求項14記載の本発明は、受光手段で得られた受光データを多時刻追跡法を用いて解析する流場解析手段を更に備え、真の流れの方向を推定することを特徴とする。
請求項14に記載の本発明によれば、多時刻にわたるトレーサ粒子の軌跡を追跡することによって流場の真の流れ方向を推定することができる。
The present invention according to claim 14 further includes a flow field analyzing means for analyzing the light reception data obtained by the light receiving means using a multi-time tracking method, and estimating the true flow direction.
According to the present invention as set forth in claim 14, the true flow direction of the flow field can be estimated by tracking the tracer particle trajectory over multiple times.

請求項15記載の本発明は、水槽は、曳航水槽又は回流水槽であることを特徴とする。
請求項15に記載の本発明によれば、曳航水槽又は回流水槽に模型を設けて流場計測を行うことができる。
The present invention according to claim 15 is characterized in that the water tank is a towing tank or a circulating water tank.
According to this invention of Claim 15, a model can be provided in a towing tank or a circulating water tank, and flow field measurement can be performed.

本発明の流場計測方法によれば、紫外光及び/又は可視光を透過する素材で模型を形成することによって、模型を構成する部品が重畳する間の部分、すなわち部品が照射光を遮る壁となってしまう部分であっても、その部品の奥側の流場計測が可能となる。また、模型の材料の屈折率に合わせて作用流体の屈折率を調整するのではなく、作用流体に水を用いて、その水の屈折率(1.333)に合う透明材料で模型を形成するので、水に屈折率調整用の薬品を加えることによる密度・粘性等の変化の問題、屈折率整合に用いられるヨウ化ナトリウム水溶液等が有する毒性の問題、また、屈折率調整を行なった作用流体を曳航水槽等の大型水槽施設に満たして実験することによる安全性やコスト面の問題の解決ができる。   According to the flow field measurement method of the present invention, a model is formed of a material that transmits ultraviolet light and / or visible light, so that a part during which parts constituting the model overlap, that is, a wall that blocks the irradiation light. Even in such a part, the flow field measurement on the back side of the part can be performed. Also, instead of adjusting the refractive index of the working fluid in accordance with the refractive index of the model material, water is used as the working fluid, and the model is formed with a transparent material that matches the refractive index of the water (1.333). Therefore, problems such as changes in density and viscosity due to the addition of chemicals for refractive index adjustment to water, toxic problems of sodium iodide aqueous solution used for refractive index matching, and working fluids that have been adjusted for refractive index The problem of safety and cost can be solved by filling a large tank facility such as a towing tank and experiment.

また、模型の複数の部位に対して光源と受光手段を移動させて流場を計測する場合には、光源や光学系の再調整を行うことなく、複数の部位周りの流場を計測することができる。   In addition, when measuring the flow field by moving the light source and light receiving means with respect to multiple parts of the model, measure the flow field around the multiple parts without re-adjusting the light source or optical system. Can do.

また、光源は、紫外レーザ光又は可視レーザ光をシート状に照射する場合には、トレーサ粒子の動きを捉えやすくなり、より精度良く流場計測を行うことができる。   Further, when the light source irradiates ultraviolet laser light or visible laser light in the form of a sheet, it becomes easy to capture the movement of the tracer particles, and the flow field measurement can be performed with higher accuracy.

また、受光手段としてトレーサ粒子から戻る光を受光する分光カメラを用いる場合には、撮像対象の分光画像を得ることができる。   Further, when a spectroscopic camera that receives light returning from the tracer particles is used as the light receiving means, a spectroscopic image to be imaged can be obtained.

また、流場の計測に当り、多時刻追跡法を用いて真の流れの方向を推定する場合には、多時刻にわたるトレーサ粒子の軌跡を追跡することによって流場の真の流れ方向を推定することができる。   Also, when estimating the true flow direction using the multi-time tracking method when measuring the flow field, the true flow direction of the flow field is estimated by tracking the tracer particle trajectory over multiple times. be able to.

また、水と模型の屈折率の差を、水の温度の変更及び/又は水への添加物の添加により調整することによって、模型を構成する部品が重畳する間の部分、すなわち部品が照射光を遮る壁となってしまう部分であっても、その部品の奥側の流場計測が精度よく可能となる。   In addition, by adjusting the difference in refractive index between water and the model by changing the temperature of the water and / or adding additives to the water, the part between the parts that make up the model overlaps, that is, the part is irradiated with light. Even if it is a part that becomes a wall that blocks the flow, it is possible to accurately measure the flow field on the back side of the part.

また、添加物としてショ糖を用いる場合には、安全性が高く管理や排水処理が容易な添加物を用いて、水と透明模型の屈折率の差を調整することができる。   Moreover, when using sucrose as an additive, the difference in refractive index between water and the transparent model can be adjusted by using an additive that is highly safe and easy to manage and drain.

また、模型は、フッ素系の材料を成形したものを更に残留応力を除去する場合には、残留ひずみにより屈折率に差が生じる影響をなくすことができる。   Further, in the case where the residual stress is further removed from a model obtained by molding a fluorine-based material, the effect of causing a difference in refractive index due to residual strain can be eliminated.

また、残留応力を除去する処理は、成形時に模型に振動を与えながら加熱及び冷却を行うことにより除去するものである場合には、残留応力を軽減することができる。   In addition, when the residual stress is removed by heating and cooling while applying vibration to the model during molding, the residual stress can be reduced.

また、本発明の流場計測システムによれば、紫外光及び/又は可視光を透過する素材で模型を形成することによって、模型を構成する部品が重畳する間の部分、すなわち部品が照射光を遮る壁となってしまう部分であっても、その部品の奥側の流場計測が可能となる。また、模型の材料の屈折率に合わせて作用流体の屈折率を調整するのではなく、作用流体に水を用いて、その水の屈折率(1.333)に合う透明材料で模型を形成するので、水に屈折率調整用の薬品を加えることによる密度・粘性等の変化の問題、屈折率整合に用いられるヨウ化ナトリウム水溶液等が有する毒性の問題、また、屈折率調整を行なった作用流体を曳航水槽等の大型水槽施設に満たして実験することによる安全性やコスト面の問題が無い。   Further, according to the flow field measurement system of the present invention, by forming a model with a material that transmits ultraviolet light and / or visible light, a part during which the parts constituting the model overlap, that is, the part emits irradiation light. Even in a part that becomes a blocking wall, it is possible to measure the flow field on the back side of the part. Also, instead of adjusting the refractive index of the working fluid in accordance with the refractive index of the model material, water is used as the working fluid, and the model is formed with a transparent material that matches the refractive index of the water (1.333). Therefore, problems such as changes in density and viscosity due to the addition of chemicals for refractive index adjustment to water, toxic problems of sodium iodide aqueous solution used for refractive index matching, and working fluids that have been adjusted for refractive index There is no problem of safety and cost by experimenting with large tank facilities such as towing tanks.

また、模型の複数の部位に対して光源手段と受光手段をセットとして移動させる移動手段を備えた場合には、光源や光学系の再調整を行うことなく、複数の部位周りの流場を計測することができる。   In addition, when a moving means that moves the light source means and the light receiving means as a set to a plurality of parts of the model is provided, the flow field around the plurality of parts is measured without readjustment of the light source and the optical system. can do.

また、光源手段は、紫外光又は可視光として紫外レーザ光又は可視レーザ光を用い、紫外レーザ光又は可視レーザ光をシート状に照射する場合には、トレーサ粒子の動きを捉えやすくなり、より精度良く流場計測を行うことができる。   In addition, the light source means uses ultraviolet laser light or visible laser light as ultraviolet light or visible light, and when irradiating the ultraviolet laser light or visible laser light in the form of a sheet, it becomes easier to capture the movement of the tracer particles, and more accurate. The flow field can be measured well.

また、受光手段としてトレーサ粒子から戻る光を受光する分光カメラを用いた場合には、撮像対象の分光画像を得ることができる。   Further, when a spectroscopic camera that receives light returning from the tracer particles is used as the light receiving means, a spectroscopic image to be imaged can be obtained.

また、受光手段で得られた受光データを多時刻追跡法を用いて解析する流場解析手段を更に備え、真の流れの方向を推定する場合には、多時刻にわたるトレーサ粒子の軌跡を追跡することによって流場の真の流れ方向を推定することができる。   The apparatus further comprises a flow field analyzing means for analyzing the light reception data obtained by the light receiving means by using a multi-time tracking method, and when tracing the true flow direction, traces the tracer particle trajectory over multiple times. Thus, the true flow direction of the flow field can be estimated.

また、水槽は、曳航水槽又は回流水槽である場合には、曳航水槽又は回流水槽に模型を設けて流場計測を行うことができる。   Moreover, when a water tank is a towing water tank or a circulating water tank, a model can be provided in a towing water tank or a circulating water tank, and flow field measurement can be performed.

本発明の一実施形態による流場計測システムの基本構成を示す概略構成図1 is a schematic configuration diagram showing a basic configuration of a flow field measurement system according to an embodiment of the present invention. 同流場計測システムの流場計測範囲の説明図Illustration of flow field measurement range of the same flow field measurement system チューブを通して格子を観察した様子を示す図The figure which shows a state of observing a lattice through a tube 本発明の他の実施形態による流場計測システムにおける流場計測範囲の説明図Explanatory drawing of the flow field measurement range in the flow field measurement system by other embodiment of this invention 従来の流場計測システムにおける流場計測範囲の説明図Illustration of flow field measurement range in a conventional flow field measurement system 従来の流場計測システムにおける流場計測範囲の説明図Illustration of flow field measurement range in a conventional flow field measurement system

以下に、本発明の実施形態による流場計測方法及び流場計測システムについて説明する。   Hereinafter, a flow field measurement method and a flow field measurement system according to an embodiment of the present invention will be described.

図1は本発明の一実施形態による流場計測システムの基本構成を示す概略構成図である。
図1は、水が満たされた水槽10内に設けた模型船20を下方から見た図であり、船底21が見えている。模型船20の船尾側には、模型プロペラ31及び模型舵32が設けられている。また、模型プロペラ31の前方に近接する位置には、省エネ付加物の一つである模型ダクト33が取り付けられている。模型プロペラ31、模型舵32及び模型ダクト33(以下これら三つの部品を纏めて「模型部品30」と称する)は、水中に設けられている。
水槽10は曳航水槽であり、模型船20は曳航手段(図示無し)によって水槽内を移動する。
FIG. 1 is a schematic configuration diagram showing a basic configuration of a flow field measurement system according to an embodiment of the present invention.
FIG. 1 is a view of a model ship 20 provided in a water tank 10 filled with water as viewed from below, and a ship bottom 21 is visible. A model propeller 31 and a model rudder 32 are provided on the stern side of the model ship 20. Further, a model duct 33 that is one of energy-saving addenda is attached at a position close to the front of the model propeller 31. The model propeller 31, the model rudder 32, and the model duct 33 (hereinafter, these three parts are collectively referred to as “model part 30”) are provided in water.
The water tank 10 is a towed water tank, and the model ship 20 moves in the water tank by towing means (not shown).

模型部品30周辺の流場を計測するために、模型部品30の周辺にトレーサ粒子を含む水の流れを形成する水流形成手段(図示無し)が設けられている。水流を形成する点からは、曳航手段も水流形成手段の一部を構成している。模型船20の船尾側の一方の側方には、紫外光を照射する光源手段であるレーザ装置40が配置され、模型船20の後方にはレーザ装置40からの照射光を浴びたトレーサ粒子から戻る光を受光する受光手段である複数の分光カメラ50が配置されている。
レーザ装置40は、紫外光として紫外レーザ光41を用い、紫外レーザ光41はシート状に模型部品30周辺に照射される。なお、図1においては、模型ダクト33の断面をとるように模型ダクト33の側面に向けて紫外レーザ光41が照射された状態を示している。紫外レーザ光41をシート状に照射することで、トレーサ粒子の動きを捉えやすくなり、より精度良く流場計測を行うことができる。
また、分光カメラ50は、可視光用のカメラである。複数の分光カメラ50を異なる位置に配置することで、三次元的に流場計測を行うことができる。なお、二次元的に流場計測を行う場合には、分光カメラ50は一台であってもよい。
In order to measure the flow field around the model component 30, water flow forming means (not shown) is provided around the model component 30 to form a flow of water containing tracer particles. From the point of forming the water flow, the towing means also constitutes a part of the water flow forming means. On one side of the stern side of the model ship 20, a laser device 40 that is a light source means for irradiating ultraviolet light is disposed, and behind the model ship 20 is tracer particles that have received light irradiated from the laser device 40. A plurality of spectroscopic cameras 50 as light receiving means for receiving the returning light are arranged.
The laser device 40 uses ultraviolet laser light 41 as ultraviolet light, and the ultraviolet laser light 41 is irradiated around the model component 30 in a sheet shape. FIG. 1 shows a state in which the ultraviolet laser light 41 is irradiated toward the side surface of the model duct 33 so as to take a cross section of the model duct 33. By irradiating the ultraviolet laser beam 41 in the form of a sheet, it becomes easy to capture the movement of the tracer particles, and the flow field measurement can be performed with higher accuracy.
The spectroscopic camera 50 is a visible light camera. By arranging a plurality of spectroscopic cameras 50 at different positions, it is possible to measure a flow field three-dimensionally. Note that when the flow field measurement is performed two-dimensionally, one spectroscopic camera 50 may be provided.

トレーサ粒子にはローダミンB等の蛍光性物質を用いる。レーザ装置40から照射されたシート状の紫外レーザ光41により励起されたトレーサ粒子は可視光の蛍光を発光する。このように紫外励起で可視光発光を得ることによって光の波長を異ならせ、トレーサ粒子の追跡を容易としている。なお、紫外レーザ光は連続光でもパルス光でもよい。また、励起用のレーザ光は可視光であってもよく、トレーサ粒子も水用に用いられる各種のトレーサ粒子が利用可能である。
分光カメラ50はトレーサ粒子の可視光を受光する。分光カメラ50を用いることによって、撮像対象である流場の分光画像を得ることができる。なお、分光カメラ50の代わりに一般の撮像手段と光学的フィルタを組み合わせたものを使用してもよい。
A fluorescent substance such as rhodamine B is used for the tracer particles. Tracer particles excited by the sheet-like ultraviolet laser light 41 emitted from the laser device 40 emit visible light fluorescence. Thus, by obtaining visible light emission by ultraviolet excitation, the wavelength of light is varied to facilitate tracing of tracer particles. The ultraviolet laser light may be continuous light or pulsed light. In addition, the excitation laser beam may be visible light, and various tracer particles used for water can be used as the tracer particles.
The spectroscopic camera 50 receives the visible light of the tracer particles. By using the spectroscopic camera 50, a spectroscopic image of a flow field that is an imaging target can be obtained. Instead of the spectroscopic camera 50, a combination of general imaging means and an optical filter may be used.

レーザ装置(光源手段)40とカメラ50(受光手段)とは、互いの位置関係を保ったまま模型部品30の複数の部位(模型プロペラ31、模型舵32及び模型ダクト33)に対してセットとして移動することができるように、船舶20の前後方向又は幅方向に移動可能な共通の台に配置されること等によってユニット化されている。レーザ装置(光源手段)40とカメラ50(受光手段)に至る光学系とをセットで移動させることによって、光学系の再調整を行うことなく、複数の部位(模型プロペラ31、模型舵32及び模型ダクト33)周りの流場を計測することができる。   The laser device (light source means) 40 and the camera 50 (light receiving means) are set as a set with respect to a plurality of parts (the model propeller 31, the model rudder 32, and the model duct 33) of the model component 30 while maintaining the mutual positional relationship. In order to be able to move, they are unitized by being arranged on a common platform that can move in the front-rear direction or the width direction of the ship 20. By moving the laser device (light source means) 40 and the optical system leading to the camera 50 (light receiving means) as a set, a plurality of parts (a model propeller 31, a model rudder 32, and a model can be obtained without readjustment of the optical system. The flow field around the duct 33) can be measured.

レーザ装置40及び複数の分光カメラ50は、流場解析手段であるパーソナルコンピュータ60と接続している。分光カメラ50で得られた受光データを流場解析手段(パーソナルコンピュータ)60で解析することによって、省エネ付加物の一つである模型ダクト33を設けたことによる流れの変化を知ることができる。
流場解析手段60は、分光カメラ50で得られた受光データを多時刻追跡法を用いて解析する。すなわち、所定の時間間隔で連続する時刻にわたってトレーサ粒子の位置を追跡する。なお、2時刻だとトレーサ粒子の位置が虚偽である可能性があるので、3時刻又は4時刻にわたってトレーサ粒子の位置を追跡し、トレーサ粒子の虚偽の位置を排除して正しい軌跡を得ることが好ましい。これによって流場の真の流れの方向を推定することができる。なお、流場解析には、異なる時刻における画像を比較する手法(パターンマッチング)や、個々のトレーサ粒子の位置を追跡する手法(トラッキング)を用いることができる。
The laser device 40 and the plurality of spectroscopic cameras 50 are connected to a personal computer 60 that is a flow field analysis means. By analyzing the received light data obtained by the spectroscopic camera 50 with a flow field analysis means (personal computer) 60, it is possible to know a change in flow due to the provision of the model duct 33 which is one of the energy-saving additive.
The flow field analysis means 60 analyzes the received light data obtained by the spectroscopic camera 50 using a multi-time tracking method. That is, the position of the tracer particle is tracked over a continuous time at a predetermined time interval. In addition, since the position of the tracer particle may be false at 2 hours, it is possible to track the position of the tracer particle for 3 or 4 hours and to obtain a correct locus by eliminating the false position of the tracer particle. preferable. This makes it possible to estimate the true flow direction of the flow field. For the flow field analysis, a method of comparing images at different times (pattern matching) or a method of tracking the positions of individual tracer particles (tracking) can be used.

図2は本実施形態による流場計測システムにおける流場計測範囲の説明図であり、図5は従来の流場計測システムにおける流場計測範囲の説明図である。なお、図2(a)及び図5(a)は模型船を他方の側方から見た図であり、図2(b)及び図5(d)は模型船を後方から見た図である。図2及び図5において、レーザ装置40は、模型船の船尾側の他方の側方に配置されている。
図5において、模型船320の模型プロペラ331、模型舵332、及び模型ダクト333は不透明材料で形成されている。レーザ装置40は、カメラ50との位置関係を保ったまま模型船320の前後方向に移動し、模型プロペラ331、模型舵332、及び模型ダクト333のそれぞれの断面をとるように紫外レーザ光41を照射する。例えば、まず模型ダクト333に向けて紫外レーザ光41を照射し、その後に後方に移動して模型プロペラ331に向けて紫外レーザ光41を照射し、さらにその後に後方に移動して模型舵332に向けて紫外レーザ光41を照射する。
しかしながら、レーザ装置40からの紫外レーザ光41の照射時に模型プロペラ331、及び模型ダクト333が重畳する構成のため、紫外レーザ光41が遮られてしまい、模型プロペラ331のプロペラ面、及び模型ダクト333の内側の流場を計測することができない。すなわち、模型プロペラ331にあっては、レーザ装置40側から見て模型プロペラ331の複数の羽根が重なる状況があり得る構成であり、模型ダクト333にあっては、模型ダクト333の手前側と奥側、また間に介在するスターンチューブが重なる構成である。模型プロペラ331、及び模型ダクト333は不透明材料(レーザ光を透過しない材料)で形成されているため、これらの部品が重畳する間の部分の流場は、部品が紫外レーザ光41を遮る壁となり、その部品の奥側の流場は、例え180度反対側から観察を行ったとしても計測することができない。また、表1に示すような一般的な透明材料を用いてこれらの部品を形成した場合は、紫外レーザ光41は透過するが、部品の屈折率と水の屈折率との差が大きいため、位置に狂いが生じて正確な観察ができない。したがって、模型プロペラ331、及び模型ダクト333を構成する部品が重畳する間の部分の流場は、部品の屈折率が水の屈折率と異なるため光が直進せず正確な流場計測ができない。
また、模型舵332の奥側の流場は、180度反対側から観察を行わなければ計測することができない。したがって、レーザ装置40を模型船320の他方の側方に移動させる必要がある。
FIG. 2 is an explanatory diagram of a flow field measurement range in the flow field measurement system according to the present embodiment, and FIG. 5 is an explanatory diagram of a flow field measurement range in the conventional flow field measurement system. 2A and 5A are views of the model ship as viewed from the other side, and FIGS. 2B and 5D are views of the model ship as viewed from the rear. . 2 and 5, the laser device 40 is disposed on the other side of the stern side of the model ship.
In FIG. 5, the model propeller 331, the model rudder 332, and the model duct 333 of the model ship 320 are made of an opaque material. The laser device 40 moves in the front-rear direction of the model ship 320 while maintaining the positional relationship with the camera 50, and emits the ultraviolet laser light 41 so as to take the cross sections of the model propeller 331, model rudder 332, and model duct 333. Irradiate. For example, first, the ultraviolet laser light 41 is irradiated toward the model duct 333, then moved rearward and irradiated with the ultraviolet laser light 41 toward the model propeller 331, and then moved rearward to the model rudder 332. Irradiate the ultraviolet laser beam 41 toward.
However, since the model propeller 331 and the model duct 333 are overlapped when the ultraviolet laser light 41 is irradiated from the laser device 40, the ultraviolet laser light 41 is blocked, and the propeller surface of the model propeller 331 and the model duct 333 are overlapped. The flow field inside can not be measured. That is, the model propeller 331 has a configuration in which a plurality of blades of the model propeller 331 may overlap when viewed from the laser device 40 side. The model duct 333 has a front side and a back side of the model duct 333. It is the structure which the stern tube intervening in the side and also overlaps. Since the model propeller 331 and the model duct 333 are made of an opaque material (a material that does not transmit laser light), the flow field in the part where these parts overlap is a wall that blocks the ultraviolet laser light 41. The flow field on the back side of the part cannot be measured even if it is observed from the opposite side of 180 degrees. In addition, when these parts are formed using a general transparent material as shown in Table 1, the ultraviolet laser beam 41 is transmitted, but the difference between the refractive index of the part and the refractive index of water is large. The position is distorted and accurate observation is not possible. Accordingly, the flow field in the portion where the components constituting the model propeller 331 and the model duct 333 overlap is different from the refractive index of water, so that the light does not travel straight and accurate flow field measurement cannot be performed.
Further, the flow field on the back side of the model rudder 332 cannot be measured unless observation is performed from the opposite side of 180 degrees. Therefore, it is necessary to move the laser device 40 to the other side of the model ship 320.

一方、図2において、レーザ装置40がカメラ50との位置関係を保ったまま模型船20の前後方向に移動し、模型プロペラ31、模型舵32、及び模型ダクト33のそれぞれの断面をとるように紫外レーザ光41を照射することと、レーザ装置40からの紫外レーザ光41の照射時に模型プロペラ31、及び模型ダクト33が重畳する構成であるのは模型船320と同様であるが、模型プロペラ31、模型舵32、及び模型ダクト33が、紫外光を透過するとともに、紫外光に対する屈折率が1.30から1.40のフッ素系の樹脂を用いて形成されている点が模型船320と異なる。なお、水の屈折率1.333と等しい屈折率を有するフッ素系の樹脂を用いることが好ましい。また、場合によっては、屈折率が1.30から1.40のフッ素系のゴムであってもよい。
このように模型部品30を透明かつ水の屈折率に合致する屈折率を有する材料で形成した場合には、模型部品30を水中で見えなくすることができるので、レーザ装置40からの紫外レーザ光41は水と模型部品30の境界で屈折することなく直進し、模型部品30に遮られることなく、狂いを生ずることなく模型部品30の奥側を可視化することができる。したがって、模型プロペラ31のプロペラ面、模型舵32の舵まわり(奥側を含む)、及び模型ダクト33の内側、すなわち重畳する部品の間の部分の流場を計測することができる。
なお、この図2に示す模型部品30のうち、レーザ装置40からの紫外レーザ光41の照射時に、模型部品30の部品が重畳する構成とは模型プロペラ31と模型ダクト33が相当する。すなわち模型プロペラ31にあっては、レーザ装置40側から見て模型プロペラ31の複数の羽根が重なる状況があり得る構成であり、模型ダクト33にあっては、模型ダクト33の手前側と奥側、また間に介在するスターンチューブが重なる構成である。上述のように、従来、これらの模型部品30を構成する部品が重畳する間の部分の流場は、光が遮られることや屈折率の違いから計測することが困難であった。
また、透明模型の屈折率に合わせてヨウ化ナトリウム水溶液等の作用流体の屈折率を調整するのではなく、作用流体に水を用いてその水の屈折率に合う透明材料を選定するので、水に屈折率調整用の薬品を加えることによる密度・粘性等の変化の問題、屈折率整合に用いられるヨウ化ナトリウム水溶液等が有する毒性の問題、また、屈折率調整を行なった作用流体を曳航水槽等の大型水槽施設に満たして実験することによる安全性やコスト面の問題解決ができる。
On the other hand, in FIG. 2, the laser device 40 moves in the front-rear direction of the model ship 20 while maintaining the positional relationship with the camera 50, and takes the respective cross sections of the model propeller 31, model rudder 32, and model duct 33. The model propeller 31 and the model duct 33 are configured to overlap with each other when irradiating the ultraviolet laser light 41 and irradiating the ultraviolet laser light 41 from the laser device 40. The model rudder 32 and the model duct 33 are different from the model ship 320 in that they transmit ultraviolet light and are formed using a fluorine-based resin having a refractive index with respect to ultraviolet light of 1.30 to 1.40. . Note that a fluorine-based resin having a refractive index equal to the refractive index of water 1.333 is preferably used. In some cases, a fluorine-based rubber having a refractive index of 1.30 to 1.40 may be used.
Thus, when the model component 30 is formed of a transparent material having a refractive index that matches the refractive index of water, the model component 30 can be made invisible underwater. 41 goes straight without being refracted at the boundary between water and the model part 30, and is not obstructed by the model part 30, so that the back side of the model part 30 can be visualized without causing any deviation. Therefore, it is possible to measure the flow field at the propeller surface of the model propeller 31, around the rudder of the model rudder 32 (including the back side), and inside the model duct 33, that is, between the overlapping parts.
In the model component 30 shown in FIG. 2, the model propeller 31 and the model duct 33 correspond to the configuration in which the components of the model component 30 overlap when the ultraviolet laser beam 41 is irradiated from the laser device 40. That is, the model propeller 31 has a configuration in which a plurality of blades of the model propeller 31 may overlap when viewed from the laser device 40 side. The model duct 33 has a front side and a back side of the model duct 33. In addition, the stern tubes interposed therebetween overlap each other. As described above, conventionally, it has been difficult to measure the flow field in the portion during which the components constituting the model component 30 are overlapped because light is blocked or the refractive index is different.
Also, instead of adjusting the refractive index of the working fluid such as sodium iodide aqueous solution according to the refractive index of the transparent model, water is used as the working fluid and a transparent material that matches the refractive index of the water is selected. The problem of changes in density, viscosity, etc. due to the addition of chemicals for refractive index adjustment, the toxicity problem of sodium iodide aqueous solution used for refractive index matching, and the working fluid with adjusted refractive index The problem of safety and cost can be solved by filling a large tank facility such as

模型部品30の材料となるフッ素系の樹脂としては、例えば表3に記載のものを用いることができる。これらのフッ素系の樹脂は、表1に示す一般的な透明材料より屈折率が非常に低い熱可塑性樹脂又はUV硬化型樹脂である。なお、屈折率は可視光での計測値である。
As a fluorine-type resin used as the material of the model component 30, for example, those shown in Table 3 can be used. These fluorine-based resins are thermoplastic resins or UV curable resins having a refractive index much lower than that of general transparent materials shown in Table 1. The refractive index is a measured value with visible light.

なお、模型部品30は、フッ素系の樹脂を成形したものを更に残留応力を除去する処理をしたものであることが好ましい。残留応力を除去することによって残留ひずみにより屈折率に差が生じる影響をなくすことができる。
例えばフッ素系の樹脂による成形時に模型部品30に振動を与えながら加熱及び冷却を行うことによって、残留応力を除去する処理を行う。ここで成形時とは、樹脂成形機(圧縮成形機又は射出成形機)において樹脂を注入して成形するとき、又は成形品が冷えて常温になるまでの間を含み、切削品においては部品として検査を受けるまでの間を含むものとする。成形時に模型部品30に振動を与えながら加熱及び冷却を行うことによって、残留応力を軽減することができる。
In addition, it is preferable that the model component 30 is the thing which further processed the removal of a residual stress from what shape | molded the fluorine-type resin. By removing the residual stress, it is possible to eliminate the influence of the difference in refractive index caused by the residual strain.
For example, the residual stress is removed by heating and cooling while applying vibration to the model component 30 during molding with a fluorine-based resin. Here, the time of molding includes when resin is injected and molded in a resin molding machine (compression molding machine or injection molding machine), or until the molded product cools down to room temperature, and as a part in a cut product The period until the inspection is taken. Residual stress can be reduced by heating and cooling while applying vibration to the model component 30 during molding.

また、形成した模型部品30と水槽10内の水の屈折率に若干の差がある場合は、水の温度の変更及び/又は水への添加物の添加によって調整する。このように温度及び/又は添加物によって水と模型部品30との屈折率を整合させることで、模型プロペラ31のプロペラ面、及び模型ダクト33の内側といった通常見えない部分の流場を計測することができる。
水の屈折率は、水温を上げると低くなり、水温を下げると高くなる。但し、水温の上下による水の屈折率の変化量は小さいので、水温の上下に代えて又はそれと併用して、水に添加物を添加する。水への添加物としてはショ糖を用いることができる。表4は、Brix(%)と屈折率(nD20℃ D線=589nm)の関係を示す図である(出典元:ICUMSA(国際砂糖統一分析委員会)。
Moreover, when there is a slight difference in the refractive index of the water in the model part 30 formed and the water tank 10, it adjusts by changing the temperature of water and / or adding the additive to water. In this way, by matching the refractive indexes of water and the model component 30 with temperature and / or additives, the flow field of the portion that is normally invisible such as the propeller surface of the model propeller 31 and the inside of the model duct 33 is measured. Can do.
The refractive index of water decreases with increasing water temperature and increases with decreasing water temperature. However, since the amount of change in the refractive index of water due to the rise and fall of the water temperature is small, an additive is added to the water instead of or together with the rise and fall of the water temperature. Sucrose can be used as an additive to water. Table 4 is a diagram showing the relationship between Brix (%) and refractive index (nD20 ° C., D-line = 589 nm) (Source: ICUMSA (International Sugar Unified Analysis Committee)).

ここで例として図3に、表3のうちスリーエムジャパン株式会社の商品名THVのチューブを通して格子を観察した様子を示す。事前にTHV2mm厚の平板の屈折率を計測し、肉厚にしたときの屈折率を調査した。2mm厚の平板の屈折率はnD=1.362と若干大きくなっていた。作用流体は砂糖水の濃度により屈折率整合の調整を行った。水温は20℃に調整している。図3(a)は砂糖水の濃度(Brix)が0%[屈折率nD=1.333]、図3(b)は砂糖水の濃度(Brix)20%[屈折率nD=1.364] 、図3(c)は砂糖水の濃度(Brix)24.2%[nD=1.371]である。図3(a)と図3(c)のときは屈折率整合ができていないので格子が歪んで見える。図3(b)のときには歪が完全になくなった。本来砂糖水の濃度(Brix)19%[nD=1.362] で屈折率が一致するはずであるが、これはショ糖ではなく食用の砂糖を使用したためと思われる。なお、水への添加物として塩を用いることも可能であるが、水槽やその他設備の腐食が懸念されるため、水へ添加しても毒性のないショ糖を用いることが好ましい。   Here, as an example, FIG. 3 shows a state in which the lattice is observed through a tube of the product name THV of 3M Japan Co., Ltd. in Table 3. The refractive index of a flat plate having a thickness of 2 mm was measured in advance, and the refractive index when the thickness was increased was investigated. The refractive index of the 2 mm-thick flat plate was slightly large as nD = 1.362. The working fluid was adjusted for refractive index matching by the concentration of sugar water. The water temperature is adjusted to 20 ° C. 3A shows a sugar water concentration (Brix) of 0% [refractive index nD = 1.333], and FIG. 3B shows a sugar water concentration (Brix) of 20% [refractive index nD = 1.364]. FIG. 3C shows a sugar water concentration (Brix) of 24.2% [nD = 1.371]. In FIGS. 3A and 3C, since the refractive index is not matched, the grating appears to be distorted. In the case of FIG. 3B, the distortion was completely eliminated. Originally, the refractive index should be the same at a sugar water concentration (Brix) of 19% [nD = 1.362]. This is probably because edible sugar was used instead of sucrose. In addition, although it is possible to use a salt as an additive to water, since there is a concern about corrosion of a water tank or other equipment, it is preferable to use sucrose which is not toxic even if added to water.

なお、上記実施形態では、光源手段は紫外レーザ光41を照射するレーザ装置40とし、トレーサ粒子は蛍光性物質とし、受光手段は紫外レーザ光41によって励起され可視光発光するトレーサ粒子から戻る光を受光する可視光用の分光カメラ50とするものとして説明したが、光源手段は同じく紫外レーザ光41を照射するレーザ装置40であって、トレーサ粒子は紫外光を反射及び/又は散乱する物質とし、受光手段は紫外レーザ光41を浴びたトレーサ粒子からの反射光及び/又は散乱光を受光する紫外光用の分光カメラとしてもよい。
また、上記実施形態では、紫外光のほうが可視光よりも水と透明模型との屈折率を整合させやすいので、光源の光として紫外光を用いているが、光源手段は可視レーザ光を照射するレーザ装置とし、トレーサ粒子は蛍光性物質あるいは可視光を反射及び/又は散乱する物質とし、受光手段はトレーサ粒子から戻る光を受光する可視光用の分光カメラ50とすることもできる。この場合は、模型部品30は、可視光を透過するとともに、可視光に対する屈折率が1.30から1.40のフッ素系の樹脂又はゴムを用いて形成する。
In the above embodiment, the light source means is the laser device 40 that irradiates the ultraviolet laser light 41, the tracer particles are fluorescent materials, and the light receiving means emits light returning from the tracer particles that are excited by the ultraviolet laser light 41 and emit visible light. Although described as the spectroscopic camera 50 for receiving visible light, the light source means is also a laser device 40 that irradiates the ultraviolet laser light 41, and the tracer particle is a substance that reflects and / or scatters ultraviolet light, The light receiving means may be a spectroscopic camera for ultraviolet light that receives reflected light and / or scattered light from tracer particles exposed to ultraviolet laser light 41.
In the above embodiment, since ultraviolet light is easier to match the refractive index of water and the transparent model than visible light, ultraviolet light is used as light source light, but the light source means irradiates visible laser light. In the laser device, the tracer particles may be a fluorescent material or a material that reflects and / or scatters visible light, and the light receiving means may be a visible light spectroscopic camera 50 that receives light returning from the tracer particles. In this case, the model component 30 is formed using a fluorine-based resin or rubber that transmits visible light and has a refractive index with respect to visible light of 1.30 to 1.40.

また、水槽10は、曳航水槽でなく、回流水槽であってもよい。回流水槽は、水槽の水に流れがあり模型船20の位置が固定されるものである。回流水槽は曳航水槽に比べて寸法を小さくしやすいので、水槽10を回流水槽とした場合には、水への添加物(ショ糖など)の量を少なくすることができる。   Further, the water tank 10 may be a circulating water tank instead of a towing tank. The circulating water tank has a flow in the water of the water tank, and the position of the model ship 20 is fixed. The size of the circulating water tank is smaller than that of the towed water tank. Therefore, when the water tank 10 is a circulating water tank, the amount of additives (sucrose, etc.) to the water can be reduced.

また、複数の部位を計測する場合に、レーザ装置40を動かすのではなく、測定部位ごとに照射するレーザ光の波長、又はトレーサ粒子に懸濁する物質を変え、所定位置のレーザ装置40から測定対象の複数の部位に向けて複数のレーザ光を同時に照射する方式とすることもできる。   Further, when measuring a plurality of parts, the laser device 40 is not moved, but the wavelength of the laser light irradiated for each measurement part or the substance suspended in the tracer particles is changed, and the measurement is performed from the laser device 40 at a predetermined position. A method of simultaneously irradiating a plurality of laser beams toward a plurality of target portions may be employed.

次に図4及び図6を用いて、本発明の他の実施形態による流場計測方法及び流場計測システムを説明する。図4は本実施形態による流場計測システムにおける流場計測範囲の説明図であり、図6は従来の流場計測システムにおける流場計測範囲の説明図である。また、図4及び図6は模型船を後方から見た図である。なお、上記した実施形態と同一機能部材には同一符号を付して説明を省略する。
図6において、模型船420は、船尾に一方の模型スケグ421aと他方の模型スケグ421bの二つの模型スケグを有し、一方の模型スケグ421aには一方の外側模型ダクト422ao及び一方の内側模型ダクト422aiを備え、他方の模型スケグ421bには他方の外側模型ダクト422bo及び他方の内側模型ダクト422biを備える。一方の外側模型ダクト422aoと一方の内側模型ダクト422aiとは形状が異なり、他方の外側模型ダクト422boと他方の内側模型ダクト422biとは形状が異なる。一方の模型スケグ421a、他方の模型スケグ421b、一方の外側模型ダクト422ao、一方の内側模型ダクト422ai、他方の外側模型ダクト422bo、及び他方の内側模型ダクト422biは不透明材料で形成されている。なお、レーザ装置40は、模型船420の船尾側の一方の側方に配置している。
レーザ装置40からの紫外レーザ光41の照射時に一方の模型スケグ421a、他方の模型スケグ421b、一方の外側模型ダクト422ao、一方の内側模型ダクト422ai、他方の外側模型ダクト422bo、及び他方の内側模型ダクト422biが重畳する構成のため、この場合は、一方の模型スケグ421a、他方の模型スケグ421b、一方の外側模型ダクト422ao、一方の内側模型ダクト422ai、他方の外側模型ダクト422bo、及び他方の内側模型ダクト422biの内側の流場を計測することができない。
Next, a flow field measurement method and a flow field measurement system according to another embodiment of the present invention will be described with reference to FIGS. FIG. 4 is an explanatory diagram of a flow field measurement range in the flow field measurement system according to the present embodiment, and FIG. 6 is an explanatory diagram of a flow field measurement range in the conventional flow field measurement system. 4 and 6 are views of the model ship as viewed from the rear. Note that members having the same functions as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
In FIG. 6, the model ship 420 has two model skegs, one model skeg 421a and the other model skeg 421b at the stern. One model skeg 421a includes one outer model duct 422ao and one inner model duct. 422ai, and the other model skeg 421b includes the other outer model duct 422bo and the other inner model duct 422bi. One outer model duct 422ao and one inner model duct 422ai have different shapes, and the other outer model duct 422bo and the other inner model duct 422bi have different shapes. One model skeg 421a, the other model skeg 421b, one outer model duct 422ao, one inner model duct 422ai, the other outer model duct 422bo, and the other inner model duct 422bi are formed of an opaque material. The laser device 40 is disposed on one side of the stern side of the model ship 420.
One model skeg 421a, the other model skeg 421b, one outer model duct 422ao, one inner model duct 422ai, the other outer model duct 422bo, and the other inner model during irradiation of the ultraviolet laser beam 41 from the laser device 40 Since the ducts 422bi overlap each other, in this case, one model skeg 421a, the other model skeg 421b, one outer model duct 422ao, one inner model duct 422ai, the other outer model duct 422bo, and the other inner side The flow field inside the model duct 422bi cannot be measured.

一方、図4において、模型船120は、一方の模型スケグ121a、他方の模型スケグ121b、一方の外側模型ダクト122ao、一方の内側模型ダクト122ai、他方の外側模型ダクト122bo、及び他方の内側模型ダクト122biを備え、レーザ装置40を模型船120の船尾側の一方の側方に配置しているのは模型船420と同様であるが、一方の模型スケグ121a、一方の外側模型ダクト122ao、及び一方の内側模型ダクト122aiを、紫外光を透過するとともに、紫外光に対する屈折率が1.30から1.40のフッ素系の樹脂を用いて形成している点が模型船420と異なる。
このように一方の模型スケグ121a、一方の外側模型ダクト122ao、及び一方の内側模型ダクト122aiを透明かつ水の屈折率に合致する屈折率を有する材料で形成することで、レーザ装置40からの紫外レーザ光41は、一方の模型スケグ121a、一方の外側模型ダクト122ao、及び一方の内側模型ダクト122aiに遮られることがない。したがって、一方の模型スケグ121a、一方の外側模型ダクト122ao、及び一方の内側模型ダクト122aiの内側、すなわち重畳する部品の間の部分の流場を計測することができる。
なお、一方の模型スケグ121aは、フッ素系の樹脂で全体を無垢に形成してもよく、表面のみをフッ素系の樹脂を用いて形成して内部に水を満たしておいてもよい。
On the other hand, in FIG. 4, the model ship 120 includes one model skeg 121a, the other model skeg 121b, one outer model duct 122ao, one inner model duct 122ai, the other outer model duct 122bo, and the other inner model duct. 122bi and the laser device 40 is arranged on one side of the stern side of the model ship 120 in the same manner as the model ship 420, but one model skeg 121a, one outer model duct 122ao, and one Is different from the model ship 420 in that the inner model duct 122ai is made of a fluorine-based resin that transmits ultraviolet light and has a refractive index with respect to ultraviolet light of 1.30 to 1.40.
In this way, one model skeg 121a, one outer model duct 122ao, and one inner model duct 122ai are formed of a material having a refractive index that is transparent and matches the refractive index of water. The laser beam 41 is not blocked by one model skeg 121a, one outer model duct 122ao, and one inner model duct 122ai. Therefore, it is possible to measure the flow field in the part of one model skeg 121a, one outer model duct 122ao, and one inner model duct 122ai, that is, between overlapping parts.
One model skeg 121a may be entirely formed of a fluorine-based resin, or may be formed only on the surface using a fluorine-based resin and filled with water.

なお、図示は省略するが、省エネ付加物の一つとして模型フィンを取り付けた場合も、その模型フィンを紫外光を透過するとともに、紫外光に対する屈折率が1.30から1.40のフッ素系の樹脂を用いて形成することで、フィン(船体・舵・ボスキャップ)まわりの流場を計測することができる。   In addition, although illustration is abbreviate | omitted, also when a model fin is attached as one of the energy-saving additions, while passing the model light through the ultraviolet light, the refractive index with respect to the ultraviolet light is 1.30 to 1.40. By using this resin, the flow field around the fins (hull, rudder, boss cap) can be measured.

本発明の流場計測方法及び流場計測システムは、プロペラ・舵・付加物自体が壁となってしまい可視化をすることが困難な場所、すなわちダクトの内側外側、舵まわり、回転しているプロペラ面内、その他ダクトプロペラのプロペラ面、船体・ボスキャップ・舵に取付けたフィンまわり等について、光源の配置を変えることなく紫外光又は可視光が届くため、PIV 又はLDVによる流場計測の可視化範囲を拡大することができる。また、船舶関係のみならず水中で部品が重畳する模型を用いて流場を計測する、多くの用途に適用が可能である。   The flow field measurement method and the flow field measurement system of the present invention provide a propeller / rudder / attachment itself that becomes a wall and is difficult to visualize, that is, a propeller rotating around the inside of the duct, around the rudder, and rotating. In-plane, other duct propeller propeller surface, around the fins attached to the hull, boss cap, rudder, etc. because ultraviolet light or visible light arrives without changing the light source arrangement, the visualization range of flow field measurement by PIV or LDV Can be enlarged. In addition, it can be applied to many applications in which a flow field is measured using a model in which parts are superimposed in water as well as in a ship.

10 水槽
20 模型船
30 模型部品
31 模型プロペラ
32 模型舵
33 模型ダクト
40 レーザ装置(光源手段)
41 紫外レーザ光
50 分光カメラ(受光手段)
60 パーソナルコンピュータ(流場解析手段)
DESCRIPTION OF SYMBOLS 10 Water tank 20 Model ship 30 Model parts 31 Model propeller 32 Model rudder 33 Model duct 40 Laser apparatus (light source means)
41 Ultraviolet laser beam 50 Spectroscopic camera (light receiving means)
60 Personal computer (flow field analysis means)

Claims (15)

水中に設けた模型の周辺にトレーサ粒子を含んだ水の流れを形成し、光源から前記模型の周辺に光を照射し、受光手段で前記トレーサ粒子から戻る光を受光して流場を計測する流場計測方法において、前記模型を、紫外光及び/又は可視光を透過するとともに前記紫外光及び/又は前記可視光に対する屈折率が1.30から1.40のフッ素系の材料を用いて形成し、かつ前記光源からの前記光の照射時に前記模型の部品が重畳する構成の前記模型を用い、前記光源の前記光として前記紫外光又は前記可視光を用いて流場を計測することを特徴とする流場計測方法。   A flow of water containing tracer particles is formed around a model provided in water, light is irradiated to the periphery of the model from a light source, and light returning from the tracer particles is received by a light receiving means to measure a flow field. In the flow field measurement method, the model is formed using a fluorine-based material that transmits ultraviolet light and / or visible light and has a refractive index of 1.30 to 1.40 with respect to the ultraviolet light and / or visible light. And using the model having a configuration in which parts of the model overlap when the light from the light source is irradiated, and measuring the flow field using the ultraviolet light or the visible light as the light of the light source. Flow field measurement method. 前記模型の複数の部位に対して前記光源と前記受光手段を移動させて前記流場を計測することを特徴とする請求項1に記載の流場計測方法。   The flow field measuring method according to claim 1, wherein the flow field is measured by moving the light source and the light receiving unit with respect to a plurality of parts of the model. 前記光源は、紫外レーザ光又は可視レーザ光をシート状に照射することを特徴とする請求項1又は請求項2に記載の流場計測方法。   The flow field measuring method according to claim 1, wherein the light source irradiates ultraviolet laser light or visible laser light in a sheet shape. 前記受光手段として前記トレーサ粒子から戻る光を受光する分光カメラを用いることを特徴とする請求項1から請求項3のうちの1項に記載の流場計測方法。   The flow field measurement method according to claim 1, wherein a spectroscopic camera that receives light returning from the tracer particles is used as the light receiving unit. 前記流場の計測に当り、多時刻追跡法を用いて真の流れの方向を推定することを特徴とする請求項1から請求項4のうちの1項に記載の流場計測方法。   5. The flow field measurement method according to claim 1, wherein in the measurement of the flow field, a true flow direction is estimated using a multi-time tracking method. 前記水と前記模型の屈折率の差を、前記水の温度の変更及び/又は前記水への添加物の添加により調整することを特徴とする請求項1から請求項5のうちの1項に記載の流場計測方法。   The difference in refractive index between the water and the model is adjusted by changing the temperature of the water and / or adding an additive to the water. The described flow field measurement method. 前記添加物としてショ糖を用いることを特徴とする請求項6に記載の流場計測方法。   The flow field measuring method according to claim 6, wherein sucrose is used as the additive. 前記模型は、前記フッ素系の材料を成形したものを更に残留応力を除去する処理をしたものであることを特徴とする請求項1から請求項7のうちの1項に記載の流場計測方法。   8. The flow field measurement method according to claim 1, wherein the model is a molded product of the fluorine-based material and further processed to remove residual stress. 9. . 前記残留応力を除去する前記処理は、成形時に前記模型に振動を与えながら加熱及び冷却を行うことにより除去するものであることを特徴とする請求項8に記載の流場計測方法。   9. The flow field measuring method according to claim 8, wherein the treatment for removing the residual stress is performed by heating and cooling while applying vibration to the model during molding. 水槽と、前記水槽内に設ける模型と、前記模型の周辺にトレーサ粒子を含む水の流れを形成する水流形成手段と、前記模型の周辺に光を照射する光源手段と、前記トレーサ粒子から戻る光を受光する受光手段とを備え、前記模型が、紫外光及び/又は可視光を透過するとともに前記紫外光及び/又は前記可視光に対する屈折率が1.30から1.40のフッ素系の材料を用いて形成され、かつ前記光源手段からの前記光の照射時に前記模型の部品が重畳する条件に構成され、前記光源手段の前記光として前記紫外光又は前記可視光を照射して流場を計測することを特徴とする流場計測システム。   A water tank, a model provided in the water tank, water flow forming means for forming a flow of water containing tracer particles around the model, light source means for irradiating light around the model, and light returning from the tracer particles Light receiving means for receiving the light, and the model transmits a fluorine-based material that transmits ultraviolet light and / or visible light and has a refractive index of 1.30 to 1.40 with respect to the ultraviolet light and / or visible light. The model part is configured to overlap when the light from the light source means is irradiated, and the flow field is measured by irradiating the ultraviolet light or the visible light as the light of the light source means. A flow field measurement system characterized by 前記模型の複数の部位に対して前記光源手段と前記受光手段をセットとして移動させる移動手段を備えたことを特徴とする請求項10に記載の流場計測システム。   The flow field measurement system according to claim 10, further comprising a moving unit that moves the light source unit and the light receiving unit as a set with respect to a plurality of parts of the model. 前記光源手段は、前記紫外光又は前記可視光として紫外レーザ光又は可視レーザ光を用い、前記紫外レーザ光又は前記可視レーザ光をシート状に照射することを特徴とする請求項10又は請求項11に記載の流場計測システム。   12. The light source means uses ultraviolet laser light or visible laser light as the ultraviolet light or the visible light, and irradiates the ultraviolet laser light or the visible laser light in a sheet shape. Flow field measurement system described in 1. 前記受光手段として前記トレーサ粒子から戻る光を受光する分光カメラを用いたことを特徴とする請求項10から請求項12のうちの1項に記載の流場計測システム。   The flow field measurement system according to claim 10, wherein a spectroscopic camera that receives light returning from the tracer particles is used as the light receiving unit. 前記受光手段で得られた受光データを多時刻追跡法を用いて解析する流場解析手段を更に備え、真の流れの方向を推定することを特徴とする請求項10から請求項13のうちの1項に記載の流場計測システム。   14. The flow field analyzing means for analyzing the light reception data obtained by the light receiving means using a multi-time tracking method is further provided, and the true flow direction is estimated. The flow field measurement system according to item 1. 前記水槽は、曳航水槽又は回流水槽であることを特徴とする請求項10から請求項14のうちの1項に記載の流場計測システム。
The flow field measurement system according to claim 10, wherein the water tank is a towing water tank or a circulating water tank.
JP2015127780A 2015-06-25 2015-06-25 Flow field measurement method and flow field measurement system Active JP6593865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127780A JP6593865B2 (en) 2015-06-25 2015-06-25 Flow field measurement method and flow field measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127780A JP6593865B2 (en) 2015-06-25 2015-06-25 Flow field measurement method and flow field measurement system

Publications (2)

Publication Number Publication Date
JP2017009527A true JP2017009527A (en) 2017-01-12
JP6593865B2 JP6593865B2 (en) 2019-10-23

Family

ID=57763681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127780A Active JP6593865B2 (en) 2015-06-25 2015-06-25 Flow field measurement method and flow field measurement system

Country Status (1)

Country Link
JP (1) JP6593865B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680477A (en) * 2018-01-12 2018-10-19 浙江大学 Based on laser measurement technology and the visual piping experimental rig of transparent soil and method
CN111125869A (en) * 2019-11-11 2020-05-08 北京空间机电研究所 Moving target atmospheric disturbance characteristic simulation method
CN114023473A (en) * 2021-11-03 2022-02-08 哈尔滨工程大学 Measuring device based on meniscus compensation method
CN115683066A (en) * 2022-09-06 2023-02-03 江苏科技大学 Non-contact attitude determination device and method for towing ship model

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120155U (en) * 1975-03-25 1976-09-29
JPH1019919A (en) * 1996-06-28 1998-01-23 Matsushita Electric Ind Co Ltd Method and apparatus for measuring streamline
JP2000329782A (en) * 1999-05-18 2000-11-30 Mitsuba Corp Device for visualizing flow of rotating blade
JP2005147744A (en) * 2003-11-12 2005-06-09 National Maritime Research Institute Wave pressure measurement instrumentation in experimental water tank
JP2005300515A (en) * 2004-03-17 2005-10-27 Yokohama National Univ Three-dimensional flow field visualization method and device, and refractive index changing fluid for visualization device
JP2007302708A (en) * 2006-05-08 2007-11-22 Yunimatekku Kk Molded material used for visualized measurement or optical measurement
JP2009264772A (en) * 2008-04-22 2009-11-12 Nikon Corp Flow evaluation apparatus and flow evaluation method
JP2012018309A (en) * 2010-07-08 2012-01-26 Canon Inc Method for forming optical element
JP2012251877A (en) * 2011-06-03 2012-12-20 Ihi Corp Method and device for measuring shear stress distribution of flow field
JP2013156140A (en) * 2012-01-30 2013-08-15 Ihi Corp Flow field observation method and flow field observation apparatus
JP2014044142A (en) * 2012-08-28 2014-03-13 Ihi Corp Flow field observation method and flow field observation apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120155U (en) * 1975-03-25 1976-09-29
JPH1019919A (en) * 1996-06-28 1998-01-23 Matsushita Electric Ind Co Ltd Method and apparatus for measuring streamline
JP2000329782A (en) * 1999-05-18 2000-11-30 Mitsuba Corp Device for visualizing flow of rotating blade
JP2005147744A (en) * 2003-11-12 2005-06-09 National Maritime Research Institute Wave pressure measurement instrumentation in experimental water tank
JP2005300515A (en) * 2004-03-17 2005-10-27 Yokohama National Univ Three-dimensional flow field visualization method and device, and refractive index changing fluid for visualization device
JP2007302708A (en) * 2006-05-08 2007-11-22 Yunimatekku Kk Molded material used for visualized measurement or optical measurement
JP2009264772A (en) * 2008-04-22 2009-11-12 Nikon Corp Flow evaluation apparatus and flow evaluation method
JP2012018309A (en) * 2010-07-08 2012-01-26 Canon Inc Method for forming optical element
JP2012251877A (en) * 2011-06-03 2012-12-20 Ihi Corp Method and device for measuring shear stress distribution of flow field
JP2013156140A (en) * 2012-01-30 2013-08-15 Ihi Corp Flow field observation method and flow field observation apparatus
JP2014044142A (en) * 2012-08-28 2014-03-13 Ihi Corp Flow field observation method and flow field observation apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
江藤 剛治 他: "水流の可視化に必要な関連技術の開発−比重整合・屈折率整合・多波長計測−", 土木学会論文集, vol. No.533/II−34, JPN6019007559, February 1996 (1996-02-01), pages 87 - 106, ISSN: 0003991128 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680477A (en) * 2018-01-12 2018-10-19 浙江大学 Based on laser measurement technology and the visual piping experimental rig of transparent soil and method
CN108680477B (en) * 2018-01-12 2024-04-12 浙江大学 Piping test device and method based on laser test technology and transparent soil visualization
CN111125869A (en) * 2019-11-11 2020-05-08 北京空间机电研究所 Moving target atmospheric disturbance characteristic simulation method
CN114023473A (en) * 2021-11-03 2022-02-08 哈尔滨工程大学 Measuring device based on meniscus compensation method
CN114023473B (en) * 2021-11-03 2024-06-11 哈尔滨工程大学 Measuring device based on meniscus compensation method
CN115683066A (en) * 2022-09-06 2023-02-03 江苏科技大学 Non-contact attitude determination device and method for towing ship model

Also Published As

Publication number Publication date
JP6593865B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6593865B2 (en) Flow field measurement method and flow field measurement system
Peng et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil
Anwer et al. Underwater 3-d scene reconstruction using kinect v2 based on physical models for refraction and time of flight correction
Bautista-Capetillo et al. A particle tracking velocimetry technique for drop characterization in agricultural sprinklers
CN107831485A (en) The method of the multiple water body optical signature parameters of the more visual field laser radar detections of boat-carrying
CN101295024B (en) Method for measuring particle size
CN104036518A (en) Camera calibration method based on vector method and three collinear points
CN111522019A (en) Error correction method and device for underwater photon position
Stolt et al. Study of leading-edge dimple effects on airfoil flow using tomographic PIV and temperature sensitive paint
JP2005300515A (en) Three-dimensional flow field visualization method and device, and refractive index changing fluid for visualization device
CN108180829B (en) Method for measuring target space orientation with parallel line characteristics
JP6366172B2 (en) Flow field measurement method using microbubbles and flow field measurement device for aquarium
Wu et al. Direct particle depth displacement measurement in DHPTV using spatial correlation of focus metric curves
García-Alba et al. Zonation of positively buoyant jets interacting with the water-free surface quantified by physical and numerical modelling
CN104729827A (en) Device used for observing of ventilating cavitation flow-field regularity
JPWO2011058899A1 (en) Sound source distribution measuring device in 3D space
Pao et al. Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
KR101261276B1 (en) Apparatus and method for searching a moving underwater target using spatial measurement of wake fields generated by the moving target and air vehicle loaded with the same apparatus
KR101876137B1 (en) 3d ldv system using 3 color and 5 beam laser
JP2020117943A (en) Floating body device
Constantinou et al. An underwater laser vision system for relative 3-D posture estimation to mesh-like targets
Berthe et al. Three-dimensional, three-component wall-PIV
KR101389428B1 (en) Vibration measuring system of nuclear fusion device using laser doppler vibrometry system
Kleinwächter et al. PIV as a novel full-scale measurement technique in cavitation research
Shiraishi et al. Cavity shape measurement using combination-line CCD camera measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6593865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250