Nothing Special   »   [go: up one dir, main page]

JP2017005663A - Planar antenna - Google Patents

Planar antenna Download PDF

Info

Publication number
JP2017005663A
JP2017005663A JP2015121172A JP2015121172A JP2017005663A JP 2017005663 A JP2017005663 A JP 2017005663A JP 2015121172 A JP2015121172 A JP 2015121172A JP 2015121172 A JP2015121172 A JP 2015121172A JP 2017005663 A JP2017005663 A JP 2017005663A
Authority
JP
Japan
Prior art keywords
flat plate
short
planar antenna
parasitic
ground plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015121172A
Other languages
Japanese (ja)
Inventor
池田 正和
Masakazu Ikeda
正和 池田
田中 君明
Kimiaki Tanaka
君明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2015121172A priority Critical patent/JP2017005663A/en
Publication of JP2017005663A publication Critical patent/JP2017005663A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar antenna forming a single directivity pattern, enabling miniaturization and plain formation.SOLUTION: A planar antenna (1) includes a plurality of zeroth-order resonant metamaterial elements (10, 20) respectively including: bottom plates (11, 21) which are conductors of a tabular shape; flat plates (12, 22) disposed in a manner to face the bottom plates apart therefrom; and at least each one short-circuit part (13, 23) which short-circuits between the bottom plate and the flat plate. One of the plurality of metamaterial elements is configured as a feed element (10) having a feeding part connected to the flat plate to feed, whereas other metamaterial elements than the feed element are configured as passive elements (20) having passive parts (24) which make the flat plate short-circuited with the bottom plate. The feed element and the passive element are arranged along a beam radiation direction.SELECTED DRAWING: Figure 1

Description

本発明は、アンテナの単一指向性パターンを形成する技術に関する。   The present invention relates to a technique for forming a unidirectional pattern of an antenna.

従来、小型の単一指向性アンテナとして、それぞれが給電素子、誘導素子、反射素子として作用する複数のモノポールを配列した八木・宇田アンテナが知られている(特許文献1参照)。なお、八木・宇田アンテナは、給電素子前方に誘導素子、後方に反射素子を配置することで前方方向へ単一指向性を形成するものである。   Conventionally, as a small unidirectional antenna, a Yagi / Uda antenna is known in which a plurality of monopoles each acting as a feeding element, an induction element, and a reflection element are arranged (see Patent Document 1). The Yagi / Uda antenna forms unidirectionality in the forward direction by arranging an inductive element in front of the feed element and a reflective element in the rear.

特開2001−189620号公報JP 2001-189620 A

しかしながら、八木・宇田アンテナを構成する各モノポールは、動作周波数の1/4波長程度の長さが必要であり、更なる小型化や平面化が要求される車載アンテナには不向きであるという問題があった。   However, each monopole composing the Yagi / Uda antenna needs to be about 1/4 wavelength of the operating frequency, and is not suitable for in-vehicle antennas that require further miniaturization and planarization. was there.

本発明は、こうした問題に鑑みてなされたものであり、小型化や平面化が可能な単一指向性パターンを形成する平面アンテナを提供することを目的とする。   The present invention has been made in view of these problems, and an object thereof is to provide a planar antenna that forms a unidirectional pattern that can be miniaturized and planarized.

本発明の平面アンテナは、地板、平板、少なくとも一つの短絡部を有し、0次共振するように構成された複数のメタマテリアル素子を備える。地板は、板状に形成された導体であり、平板は、地板と離隔して対向するように配置された導体である。短絡部は、地板と平板間を短絡する。そして、複数のメタマテリアル素子の一つは、平板に接続され給電を行う給電部を備える給電素子、給電素子以外の前記メタマテリアル素子は、平板を地板に短絡する無給電部を備える無給電素子として構成され、給電素子および無給電素子が、ビームの放射方向に沿って配列されている。なお、0次共振する平面アンテナは、モノポールアンテナと同等の特性が得られる。   The planar antenna of the present invention includes a ground plate, a flat plate, and at least one short-circuit portion, and includes a plurality of metamaterial elements configured to perform zero-order resonance. The ground plane is a conductor formed in a plate shape, and the flat plate is a conductor disposed so as to be opposed to the ground plane. A short circuit part short-circuits between a ground plane and a flat plate. One of the plurality of metamaterial elements includes a power feeding element including a power feeding unit that is connected to a flat plate to feed power, and the metamaterial element other than the power feeding element includes a parasitic unit that short-circuits the flat plate to the ground plane. The feeding element and the parasitic element are arranged along the radiation direction of the beam. Note that a planar antenna with zero-order resonance can obtain the same characteristics as a monopole antenna.

このような構成によれば、モノポールアンテナと比較してより小型化かつ平面化できる平面アンテナによって、八木・宇田アンテナと同等の単一指向性パターンを実現することができる。   According to such a configuration, a unidirectional pattern equivalent to that of a Yagi / Uda antenna can be realized by a planar antenna that can be made smaller and more planar than a monopole antenna.

なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。   In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this invention is limited is not.

第1実施形態の平面アンテナの斜視図である。It is a perspective view of the planar antenna of a 1st embodiment. 第1実施形態の平面アンテナの構成を示す図であり、(a)が平面図、(b)が断面図である。It is a figure which shows the structure of the planar antenna of 1st Embodiment, (a) is a top view, (b) is sectional drawing. 平面アンテナの放射特性を示すグラフであり、(a)が第1実施形態の平面アンテナ、(b)が比較例である給電素子だけで構成された平面アンテナである。It is a graph which shows the radiation characteristic of a planar antenna, (a) is a planar antenna of 1st Embodiment, (b) is a planar antenna comprised only by the feed element which is a comparative example. 第2実施形態の平面アンテナの構成を示す図であり、(a)が平面図、(b)が断面図である。It is a figure which shows the structure of the planar antenna of 2nd Embodiment, (a) is a top view, (b) is sectional drawing. 平面アンテナの垂直面内での放射特性を示すグラフであり、(a)が地板を分離した場合、(b)が地板を一体にした場合を示す。It is a graph which shows the radiation | emission characteristic in the vertical plane of a planar antenna, (a) isolate | separates a ground plane, (b) shows the case where a ground plane is united. 第3実施形態の平面アンテナの構成を示す平面図である。It is a top view which shows the structure of the planar antenna of 3rd Embodiment. 第3実施形態の変形例の構成を示す平面図である。It is a top view which shows the structure of the modification of 3rd Embodiment. 平面アンテナの他の実施形態の構成を示す平面図である。It is a top view which shows the structure of other embodiment of a planar antenna.

以下に本発明が適用された実施形態について、図面を用いて説明する。
[1.第1実施形態]
[1.1.構成]
本実施形態の平面アンテナ1は、図1および図2に示すように、第1メタマテリアル素子10、第2メタマテリアル素子20を備える。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
[1. First Embodiment]
[1.1. Constitution]
The planar antenna 1 of the present embodiment includes a first metamaterial element 10 and a second metamaterial element 20 as shown in FIGS. 1 and 2.

[1.2.第1メタマテリアル素子/給電素子]]
第1メタマテリアル素子10は、地板11、平板12、短絡部13、給電部14を備える。
[1.2. First metamaterial element / feeding element]]
The first metamaterial element 10 includes a ground plane 11, a flat plate 12, a short-circuit portion 13, and a power feeding portion 14.

地板11および平板12は、いずれも矩形板状に形成された導体からなり、両者は離隔して対向配置される。
短絡部13は、地板11と平板12とを電気的に接続して短絡する筒状または柱状の導体からなり、平板12の中央に配置される。
Each of the ground plane 11 and the flat plate 12 is made of a conductor formed in a rectangular plate shape, and both are spaced apart from each other.
The short-circuit portion 13 is formed of a cylindrical or columnar conductor that electrically connects the ground plane 11 and the flat plate 12 to short-circuit, and is disposed at the center of the flat plate 12.

給電部14は、地板11と平板12の間に接続され、給電導体141、給電回路142を備える。給電導体141は、棒状に形成された導体であり、一端が平板12に接続されている。給電回路142は、一端が地板11に接続され、他端が給電導体141を介して平板12に接続されている。給電回路142は、発振器、増幅回路、インピーダンス整合回路等を備え、地板11と平板12との間に高周波信号を印加する。   The power feeding unit 14 is connected between the ground plane 11 and the flat plate 12 and includes a power feeding conductor 141 and a power feeding circuit 142. The power supply conductor 141 is a conductor formed in a rod shape, and one end thereof is connected to the flat plate 12. The power supply circuit 142 has one end connected to the ground plane 11 and the other end connected to the flat plate 12 via the power supply conductor 141. The power feeding circuit 142 includes an oscillator, an amplifier circuit, an impedance matching circuit, and the like, and applies a high frequency signal between the ground plane 11 and the flat plate 12.

そして、第1メタマテリアル素子10は、誘電率および透磁率がいずれも負の値となり、かつ、共振モードの次数が0となる0次共振器となるように、各部のサイズや使用する材料が選択される。なお0次共振するメタマテリアル素子の構成方法は公知であるため、ここではその詳細についての説明は省略する。以下では、第1メタマテリアル素子10を給電素子10と称する。   The first metamaterial element 10 has a size of each part and a material used so that the first metamaterial element 10 becomes a zero-order resonator in which both the dielectric constant and the magnetic permeability are negative values and the order of the resonance mode is zero. Selected. In addition, since the structure method of the metamaterial element which carries out 0th order resonance is well-known, the description about the detail is abbreviate | omitted here. Hereinafter, the first metamaterial element 10 is referred to as a power feeding element 10.

このように構成された給電素子10では、給電回路142から地板11と短絡部13とを通って平板12に到る電流経路で電流が流れる。これにより地板11と平板12との間に垂直電界が発生し、平板12の端部から平板12の面に沿った全方位に電波を放射する。また、給電素子10の共振周波数fは、平板12や短絡部23が持つインダクタンス分をL、地板11と平板12とが形成するコンデンサの容量分をCとして、(1)式に示す関係を有する。給電回路142は、この共振周波数fを動作周波数として、動作周波数を有する高周波信号を生成する。   In the power supply element 10 configured as described above, a current flows through a current path from the power supply circuit 142 through the ground plane 11 and the short-circuit portion 13 to the flat plate 12. As a result, a vertical electric field is generated between the ground plane 11 and the flat plate 12, and radio waves are radiated from the end of the flat plate 12 in all directions along the plane of the flat plate 12. Further, the resonance frequency f of the power feeding element 10 has a relationship expressed by the equation (1), where L is an inductance component of the flat plate 12 and the short-circuit portion 23 and C is a capacitance component of the capacitor formed by the ground plane 11 and the flat plate 12. . The power feeding circuit 142 generates a high-frequency signal having an operating frequency using the resonance frequency f as an operating frequency.

Figure 2017005663
[1.3.第2メタマテリアル素子/無給電素子]
第2メタマテリアル素子20は、地板21、平板22、短絡部23、無給電部24を備える。
Figure 2017005663
[1.3. Second metamaterial element / parasitic element]
The second metamaterial element 20 includes a ground plane 21, a flat plate 22, a short-circuit portion 23, and a parasitic portion 24.

地板21、平板22、短絡部23は、第1メタマテリアル素子10の地板11、平板12、短絡部13と同様のものであるため、説明を省略する。但し、地板21は、地板11と一体に形成され互いに導通した状態にある。   Since the ground plane 21, the flat plate 22, and the short circuit part 23 are the same as the ground plane 11, the flat plate 12, and the short circuit part 13 of the 1st metamaterial element 10, description is abbreviate | omitted. However, the ground plane 21 is formed integrally with the ground plane 11 and is in a conductive state.

無給電部24は、給電導体141と同様に、棒状に形成された導体からなり、一端が地板21に他端が平板22に接続され、地板21と平板22を短絡するように構成されている。また、平板22は、共振周波数fの高周波信号の波長をλとして、平板12,22の中心間の距離が、λ/4程度離れるように配置される。   Similarly to the power supply conductor 141, the non-feeding portion 24 is made of a rod-shaped conductor, and one end is connected to the ground plate 21 and the other end is connected to the flat plate 22, and the ground plate 21 and the flat plate 22 are short-circuited. . The flat plate 22 is arranged such that the distance between the centers of the flat plates 12 and 22 is about λ / 4, where λ is the wavelength of the high frequency signal having the resonance frequency f.

そして、第2メタマテリアル素子20は、給電素子10と同様に、0次共振器となるように構成される。但し、共振周波数は給電素子10より低くなるように構成されている。以下では、第2メタマテリアル素子20を無給電素子20と称する。   And the 2nd metamaterial element 20 is comprised so that it may become a 0th order resonator similarly to the electric power feeding element 10. FIG. However, the resonance frequency is configured to be lower than that of the feeding element 10. Hereinafter, the second metamaterial element 20 is referred to as a parasitic element 20.

このように構成された、無給電素子20では、平板22から短絡部23、地板21、無給電部24を通って平板22に到る電流経路で電流が流れる。これにより、給電素子10からの放射波を受信し、平板22の端部から平板22の面に沿った全方位に電波を再放射する。   In the parasitic element 20 configured as described above, a current flows from the flat plate 22 through the short-circuit portion 23, the ground plane 21, and the parasitic portion 24 to the flat plate 22. Thereby, the radiated wave from the power feeding element 10 is received, and the radio wave is re-radiated from the end of the flat plate 22 in all directions along the surface of the flat plate 22.

なお、無給電素子20の共振周波数は、平板22を給電素子10の平板12より大きな面積とすることで、給電素子10の共振周波数より低くなるように設定されている。つまり、地板21と平板22とが形成するコンデンサの容量は、地板21と平板22とが形成するコンデンサの容量より大きく、その結果、(1)式からわかるように、無給電素子20の共振周波数は、給電素子10の共振周波数(即ち動作周波数)より低くなる。この場合、無給電素子20は、動作周波数において誘導性となり、無給電素子20が直接波を受信したときに無給電素子20内に流れる電流の位相が遅れること、および給電素子10との位置関係から、給電素子10から放射された直接波を反射する反射素子として機能する。   The resonance frequency of the parasitic element 20 is set to be lower than the resonance frequency of the feed element 10 by making the flat plate 22 have a larger area than the flat plate 12 of the feed element 10. That is, the capacitance of the capacitor formed by the ground plane 21 and the flat plate 22 is larger than the capacitance of the capacitor formed by the ground plane 21 and the flat plate 22, and as a result, as can be seen from the equation (1), the resonant frequency of the parasitic element 20. Is lower than the resonance frequency (that is, the operating frequency) of the feed element 10. In this case, the parasitic element 20 is inductive at the operating frequency, the phase of the current flowing in the parasitic element 20 is delayed when the parasitic element 20 receives a direct wave, and the positional relationship with the feeder element 10. Therefore, it functions as a reflecting element that reflects the direct wave radiated from the feeding element 10.

[1.4.動作]
このように構成された平面アンテナ1は、図3(a)に示すように、無給電素子20から給電素子10に向かう方向にビームが形成され、これとは反対方向への放射が抑制された放射特性を有する。なお、この放射特性は、動作周波数を2400MHz、地板11,21と平板12,22との間隔を5mm、短絡部13,23の直径を1mm、給電素子10の平板12を一辺が20.2[mm]の正方形、無給電素子20の平板22を一辺が22[mm]の正方形、平板12,22の中心間距離を22[mm]として、シミュレーションによって求めた結果である。参考までに、給電素子10だけで構成された平面アンテナの放射特性を図3(b)に示す。この場合、モノポールアンテナと同等の放射特性を有することがわかる。
[1.4. Operation]
As shown in FIG. 3A, the planar antenna 1 configured as described above has a beam formed in a direction from the parasitic element 20 toward the feeding element 10, and radiation in the opposite direction is suppressed. Has radiation characteristics. This radiation characteristic is such that the operating frequency is 2400 MHz, the distance between the ground planes 11 and 21 and the flat plates 12 and 22 is 5 mm, the diameters of the short-circuit portions 13 and 23 are 1 mm, and the flat plate 12 of the feeding element 10 has a side of 20.2 [ mm], the flat plate 22 of the parasitic element 20 is a square having a side of 22 [mm], and the distance between the centers of the flat plates 12 and 22 is 22 [mm]. For reference, FIG. 3B shows the radiation characteristics of a planar antenna composed only of the feed element 10. In this case, it can be seen that the radiation characteristic is equivalent to that of the monopole antenna.

[1.5.効果]
以上説明したように、平面アンテナ1によれば、八木・宇田アンテナと同等の単一指向性パターンを、モノポールアンテナを用いる場合と比較して、より小型かつ平面的な構造によって実現することができる。
[1.5. effect]
As described above, according to the planar antenna 1, a unidirectional pattern equivalent to that of the Yagi / Uda antenna can be realized by a smaller and planar structure as compared with the case of using a monopole antenna. it can.

[2.第2実施形態]
[2.1.構成]
第2実施形態の平面アンテナ1aは、基本的な構成は第1実施形態の平面アンテナ1と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
[2. Second Embodiment]
[2.1. Constitution]
Since the basic configuration of the planar antenna 1a of the second embodiment is the same as that of the planar antenna 1 of the first embodiment, the description of the common configuration will be omitted, and differences will be mainly described.

第1実施形態では、給電素子10および無給電素子20の地板11,21が一体に形成されている。これに対し、第2実施形態の平面アンテナ1aでは、図4に示すように、給電素子10aの地板11aと無給電素子20aの地板21aが分離され、互いに非導通となるように構成されている。   In the first embodiment, the ground plates 11 and 21 of the feeding element 10 and the parasitic element 20 are integrally formed. On the other hand, as shown in FIG. 4, the planar antenna 1a according to the second embodiment is configured such that the ground plane 11a of the feed element 10a and the ground plane 21a of the parasitic element 20a are separated from each other and become non-conductive. .

なお、地板11a,21aを分離することによって、給電素子10aと無給電素子20bの位置関係を固定することが困難になるため、地板11a,21aは、同一のプリント基板3上に形成されている。   In addition, since it becomes difficult to fix the positional relationship between the feeding element 10a and the parasitic element 20b by separating the ground planes 11a and 21a, the ground planes 11a and 21a are formed on the same printed circuit board 3. .

[2.2.効果]
このように構成された、平面アンテナ1aによれば、第1実施形態の平面アンテナ1と同等の効果を得ることができる。更に、平面アンテナ1aでは、地板11a,21aを分離したことで、給電素子10aおよび無給電素子20aの動作を平衡動作とすることができ、その結果、図5に示すように、第1実施形態の平面アンテナ1の放射特性(図5(b)参照)と比較して、水平面に対する最大放射方向の打ち上りを抑制することができる(図5(a)参照)。
[2.2. effect]
According to the planar antenna 1a configured as described above, an effect equivalent to that of the planar antenna 1 of the first embodiment can be obtained. Furthermore, in the planar antenna 1a, by separating the ground planes 11a and 21a, the operations of the feeding element 10a and the parasitic element 20a can be balanced, and as a result, as shown in FIG. Compared with the radiation characteristic of the flat antenna 1 (see FIG. 5B), the launch in the maximum radiation direction with respect to the horizontal plane can be suppressed (see FIG. 5A).

[3.第3実施形態]
第3実施形態の平面アンテナ1bは、基本的な構成は第1実施形態の平面アンテナ1と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
[3. Third Embodiment]
Since the basic configuration of the planar antenna 1b according to the third embodiment is the same as that of the planar antenna 1 according to the first embodiment, the description of the common configuration will be omitted, and differences will be mainly described.

[3.1.構成]
平面アンテナ1bは、図6に示すように、第1メタマテリアル素子(以下、給電素子という)10b、第2メタマテリアル素子(以下、無給電素子という)20bを備える。
[3.1. Constitution]
As illustrated in FIG. 6, the planar antenna 1 b includes a first metamaterial element (hereinafter referred to as a power feeding element) 10 b and a second metamaterial element (hereinafter referred to as a parasitic element) 20 b.

[3.2.第1メタマテリアル素子/給電素子]
給電素子10bは、地板11b、平板12b、M(図ではM=4)個の短絡部13、給電部14を備える。
[3.2. First Metamaterial Element / Feeding Element]
The power feeding element 10 b includes a ground plane 11 b, a flat plate 12 b, M (M = 4 in the drawing) short-circuit portions 13, and a power feeding portion 14.

地板11bおよび平板12bは、いずれも矩形板状に形成された導体からなり、両者は離隔して対向配置される。平板12bは、第1実施形態の平板12をM個一列に連結した形状に形成され、平板12bの形状の短手方向が給電素子10bおよび無給電素子20bの配列方向と一致するように配置されている。   Each of the ground plane 11b and the flat plate 12b is made of a conductor formed in a rectangular plate shape, and the both are spaced apart from each other. The flat plate 12b is formed in a shape in which M flat plates 12 of the first embodiment are connected in a row, and is arranged so that the short direction of the shape of the flat plate 12b coincides with the arrangement direction of the feeding element 10b and the parasitic element 20b. ing.

短絡部13は、平板12bを平板12の大きさで長手方向にM分割した各部位の中央にそれぞれ配置されている。つまり、M個の短絡部13は、給電素子10bおよび無給電素子20bの配列方向に対する直交方向、即ち平板12bの形状の長手方向に沿って1列に配置されている。   The short circuit part 13 is each arrange | positioned in the center of each site | part which divided the flat plate 12b into M by the magnitude | size of the flat plate 12 in the longitudinal direction. In other words, the M short-circuit portions 13 are arranged in a line along the direction orthogonal to the arrangement direction of the feeding element 10b and the parasitic element 20b, that is, the longitudinal direction of the shape of the flat plate 12b.

給電部14は、給電導体141および給電回路142を備え、平板12bの中央付近に配置されている。具体的には、平板12bの中央からその短手方向に少しずれた位置に配置されている。   The power feeding unit 14 includes a power feeding conductor 141 and a power feeding circuit 142, and is disposed near the center of the flat plate 12b. Specifically, it is arranged at a position slightly shifted in the short direction from the center of the flat plate 12b.

つまり、給電素子10bは、第1実施形態の給電素子10から給電部14を除いたものを単位セルとして、この単位セルをM個一列に連結し、かつ、その中央付近に給電部14を設けた構造を有する。   In other words, the power supply element 10b is obtained by connecting the unit cells in a row with the unit cell excluding the power supply element 14 from the power supply element 10 of the first embodiment, and providing the power supply part 14 near the center. Has a structure.

[3.3.第2メタマテリアル素子/無給電素子]
無給電素子20bは、地板21b、平板22b、N(図ではN=4)個の短絡部23、給電部24を備える。
[3.3. Second metamaterial element / parasitic element]
The parasitic element 20 b includes a ground plane 21 b, a flat plate 22 b, N (N = 4 in the figure) short-circuit portions 23, and a power supply portion 24.

地板21bおよび平板22bは、いずれも矩形板状に形成された導体からなり、両者は離隔して対向配置される。平板22bは、第1実施形態の平板22をN個一列に連結した形状に形成され、平板22bの形状の短手方向が給電素子10bおよび無給電素子20bの配列方向と一致するように配置されている。なお、地板21bは、地板11bと一体に構成されている。   Each of the ground plane 21b and the flat plate 22b is made of a conductor formed in a rectangular plate shape, and both are spaced apart from each other. The flat plate 22b is formed in a shape in which N flat plates 22 of the first embodiment are connected in a row, and is arranged so that the short direction of the shape of the flat plate 22b coincides with the arrangement direction of the feeding element 10b and the parasitic element 20b. ing. In addition, the ground plane 21b is comprised integrally with the ground plane 11b.

短絡部23は、平板22bを平板22の大きさで長手方向にN分割した各部位の中央にそれぞれ配置されている。つまり、N個の短絡部23は、給電素子10bおよび無給電素子20bの配列方向に対する直交方向、即ち平板22bの形状の長手方向に沿って1列に配置されている。具体的には、平板22bの中央からその短手方向に少しずれた位置に配置されている。   The short circuit part 23 is each arrange | positioned in the center of each site | part which divided the flat plate 22b into the size of the flat plate 22 in the longitudinal direction. In other words, the N short-circuit portions 23 are arranged in a line along a direction orthogonal to the arrangement direction of the feeding element 10b and the parasitic element 20b, that is, the longitudinal direction of the shape of the flat plate 22b. Specifically, it is arranged at a position slightly shifted from the center of the flat plate 22b in the short direction.

給電部24は、平板22bの中央付近に配置されている。
つまり、無給電素子20bは、第1実施形態の無給電素子20から無給電部24を除いたものを単位セルとして、この単位セルをN個一列に連結し、かつ、その中央付近に無給電部24を設けた構造を有する。
The power feeding unit 24 is disposed near the center of the flat plate 22b.
That is, the parasitic element 20b is formed by removing the parasitic element 24 from the parasitic element 20 of the first embodiment as a unit cell, connecting the unit cells in a row, and forming a parasitic cell near the center. The portion 24 is provided.

[3.4.作用/効果]
このように構成された平面アンテナ1bでは、給電素子10cおよび無給電素子20cの共振周波数は、単位セル当たりの容量分およびインダクタンス分により決まる。つまり、0次共振するメタマテリアル素子の特徴として、単位セルを並列接続しても共振周波数が変わらず各単位セルには同位相の垂直電界が発生するため、単位セル単体の場合と同一の効果が得られる。
[3.4. Action / Effect]
In the planar antenna 1b configured as described above, the resonance frequencies of the feeding element 10c and the parasitic element 20c are determined by the capacitance per unit cell and the inductance. That is, as a feature of the metamaterial element that performs zero-order resonance, even if unit cells are connected in parallel, the resonance frequency does not change and a vertical electric field having the same phase is generated in each unit cell. Is obtained.

このように構成された平面アンテナ1bによれば、第1実施形態の平面アンテナ1と同等の効果を得ることができる。更に、平面アンテナ1bでは、給電素子10bおよび無給電素子20bが複数の単位セルで構成されているため、アンテナ開口面に相当する平板12bの長手方向のサイズを十分に確保することができ、その結果、指向性ビームをより絞った形状にすることができる。   According to the planar antenna 1b configured as described above, an effect equivalent to that of the planar antenna 1 of the first embodiment can be obtained. Furthermore, in the planar antenna 1b, since the feeding element 10b and the parasitic element 20b are configured by a plurality of unit cells, the size in the longitudinal direction of the flat plate 12b corresponding to the antenna opening surface can be sufficiently secured. As a result, the directional beam can be made more narrowed.

なお、給電素子10bおよび無給電素子20bを構成する単位セルの数、即ち、短絡部13,23の数M,Nは、図7に示す平面アンテナ1cのように、給電素子10cと無給電素子20cとで異なっていてもよい。図では、M=2、N=4の場合を示す。なお、地板11c,21cは一体に形成され、平板12cはM個の単位セル、平板22cはN個の単位セルに相当する大きさに形成されている。   Note that the number of unit cells constituting the feeding element 10b and the parasitic element 20b, that is, the numbers M and N of the short-circuit portions 13 and 23 are the same as those of the planar antenna 1c shown in FIG. It may be different from 20c. In the figure, the case of M = 2 and N = 4 is shown. The ground planes 11c and 21c are integrally formed, the flat plate 12c is formed in a size corresponding to M unit cells, and the flat plate 22c is formed in a size corresponding to N unit cells.

[4.他の実施形態]
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得る。
[4. Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention can take a various form, without being limited to the said embodiment.

(1)上記実施形態では、無給電素子20の共振周波数を、給電素子10の共振周波数(動作周波数)とは異なる値に設定するために、平板12,22の面積を異ならせることで、給電素子10および無給電素子20の容量分を調整しているが、これに限るものではない。例えば、図8に示す平面アンテナ1dのように、無給電素子20dの平板22dを給電素子10の平板12と同じ大きさにして、短絡部23dの径を短絡部13とは異ならせることで、無給電素子20dのインダクタンス分を調整してもよい。   (1) In the above embodiment, in order to set the resonance frequency of the parasitic element 20 to a value different from the resonance frequency (operation frequency) of the feed element 10, the areas of the flat plates 12 and 22 are made different. Although the capacity | capacitance part of the element 10 and the parasitic element 20 is adjusted, it is not restricted to this. For example, like the planar antenna 1d shown in FIG. 8, the flat plate 22d of the parasitic element 20d is made the same size as the flat plate 12 of the feed element 10, and the diameter of the short-circuit portion 23d is different from that of the short-circuit portion 13. The inductance of the parasitic element 20d may be adjusted.

(2)上記実施形態では、無給電素子の共振周波数を、給電素子の共振周波数(動作周波数)より低く設定することで、無給電素子を誘導性の反射素子として機能するように構成されているが、これに限定されるものではない。例えば、無給電素子の共振周波数を、動作周波数より高く設定すること、具体的には、給電素子と比較して、無給電素子の平板の面積を小さくするか、短絡部の径を大きくすることで、無給電素子を容量性の導波器として機能するように構成してもよい。   (2) In the said embodiment, it is comprised so that a parasitic element may function as an inductive reflective element by setting the resonant frequency of a parasitic element lower than the resonant frequency (operating frequency) of a feeder element. However, the present invention is not limited to this. For example, the resonant frequency of the parasitic element is set higher than the operating frequency, specifically, the area of the flat plate of the parasitic element is reduced or the diameter of the short-circuited portion is increased compared to the feeder element. Thus, the parasitic element may be configured to function as a capacitive director.

(3)上記実施形態では、無給電素子の共振周波数を、動作周波数とは異ならせているが、動作周波数と同じにしてもよい。この場合、無給電素子から給電素子側に向かう無給電素子からの再放射波の位相と、これと同方向に向かう給電素子からの放射波の位相が同位相となるように、給電素子と無給電素子20との配置間隔を適宜調整すればよい。   (3) In the above embodiment, the resonance frequency of the parasitic element is different from the operating frequency, but may be the same as the operating frequency. In this case, the phase of the re-radiated wave from the parasitic element going from the parasitic element to the side of the feed element and the phase of the radiated wave from the feeding element going in the same direction are the same as the phase of the radiated wave from the parasitic element. What is necessary is just to adjust the arrangement | positioning space | interval with the electric power feeding element 20 suitably.

(4)上記実施形態では、無給電素子が一つである場合について説明したが、これに限定されるものではない。例えば、給電素子を挟んでその両側に、反射素子として機能する誘導性の無給電素子と、導波器として機能する容量性の無給電素子とを一列に配置してもよい。更に、導波器として機能する容量性の無給電素子は複数設けられていてもよい。なお、これら複数の無給電素子の配置は、ダイポールアンテナを用いて構成される八木・宇田アンテナと同様に設計することができる。   (4) In the above embodiment, the case where there is one parasitic element has been described, but the present invention is not limited to this. For example, an inductive parasitic element that functions as a reflecting element and a capacitive parasitic element that functions as a director may be arranged in a row on both sides of the feeding element. Furthermore, a plurality of capacitive parasitic elements that function as a director may be provided. The arrangement of the plurality of parasitic elements can be designed in the same manner as the Yagi / Uda antenna configured using a dipole antenna.

(5)上記実施形態における一つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を一つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換等してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。   (5) The functions of one component in the above embodiment may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. Further, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this invention.

(6)上述した平面アンテナ他、当該平面アンテナを構成要素とするシステムなど、種々の形態で実現することもできる。   (6) In addition to the planar antenna described above, the present invention can be realized in various forms such as a system including the planar antenna as a constituent element.

1,1a〜1d…平面アンテナ、10,10a〜10c…第1メタマテリアル素子(給電素子)、11,11a〜11c,21,21a,21c…地板、12,12b,12c,22,22b〜22d…平板、13,23,23d…短絡部、14,24…給電部、20,20a〜20d…第2メタマテリアル素子(無給電素子)、141…給電導体、142…給電回路   DESCRIPTION OF SYMBOLS 1,1a-1d ... Planar antenna, 10, 10a-10c ... 1st metamaterial element (feeding element), 11, 11a-11c, 21, 21a, 21c ... Ground plane, 12, 12b, 12c, 22, 22b-22d ... Flat plate, 13, 23, 23d ... Short circuit part, 14, 24 ... Feeding part, 20, 20a to 20d ... Second metamaterial element (parasitic element), 141 ... Feeding conductor, 142 ... Feeding circuit

Claims (7)

それぞれが、板状に形成された導体である地板(11,21)、前記地板と離隔して対向するように配置された導体である平板(12,22)、前記地板と前記平板間を短絡する少なくとも一つの短絡部(13,23)を有し0次共振する複数のメタマテリアル素子(10,20)を備え、
前記複数のメタマテリアル素子の一つは、前記平板に接続され給電を行う給電部(14)を備える給電素子(10)、前記給電素子以外の前記メタマテリアル素子は、前記平板を地板に短絡する無給電部(24)を備えた無給電素子(20)として構成され、
前記給電素子および前記無給電素子が、ビームの放射方向に沿って配列されていることを特徴とする平面アンテナ。
Each of them is a ground plate (11, 21) which is a conductor formed in a plate shape, flat plates (12, 22) which are conductors arranged so as to be spaced apart from the ground plate, and short-circuits between the ground plate and the flat plate A plurality of metamaterial elements (10, 20) having at least one short-circuited portion (13, 23) and having zero-order resonance,
One of the plurality of metamaterial elements is a power feeding element (10) including a power feeding unit (14) connected to the flat plate to feed power, and the metamaterial elements other than the power feeding element short-circuit the flat plate to a ground plane. It is configured as a parasitic element (20) with a parasitic part (24),
The planar antenna, wherein the feeding element and the parasitic element are arranged along a beam radiation direction.
前記無給電素子の少なくとも一つは、前記給電素子より共振周波数が高く設定された容量性の無給電素子、または前記給電素子より共振周波数が低く設定された誘導性の無給電素子として構成されていることを特徴とする請求項1に記載の平面アンテナ。   At least one of the parasitic elements is configured as a capacitive parasitic element whose resonance frequency is set higher than that of the feeding element, or an inductive parasitic element whose resonance frequency is set lower than that of the feeding element. The planar antenna according to claim 1, wherein: 前記無給電素子の共振周波数は、前記平板の面積を前記短絡部の数で除した短絡部当たりの面積を前記給電素子とは異ならせることによって調整されていることを特徴とする請求項2に記載の平面アンテナ。   The resonance frequency of the parasitic element is adjusted by making the area per short-circuited portion obtained by dividing the area of the flat plate by the number of short-circuited portions different from that of the power-feeding element. The described planar antenna. 前記無給電素子の共振周波数は、前記短絡部の径を前記給電素子とは異ならせることによって調整されていることを特徴とする請求項2に記載の平面アンテナ。   The planar antenna according to claim 2, wherein the resonance frequency of the parasitic element is adjusted by making a diameter of the short-circuit portion different from that of the feeder element. 前記短絡部を複数備えた前記メタマテリアル素子(10b,10c,20b,20c)は、前記メタマテリアル素子の配列方向に対する直交方向に沿って前記短絡部が配置されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の平面アンテナ。   The said short circuit part is arrange | positioned along the orthogonal direction with respect to the arrangement direction of the said metamaterial element, as for the said metamaterial element (10b, 10c, 20b, 20c) provided with the said multiple short circuit part, The said short circuit part is arrange | positioned. The planar antenna according to any one of claims 1 to 4. 前記給電素子を構成する地板と前記無給電素子を構成する地板が導通していることを特徴とする請求項1ないし請求項5のいずれか1項に記載の平面アンテナ。   The planar antenna according to any one of claims 1 to 5, wherein a ground plane constituting the feeding element and a ground plane constituting the parasitic element are electrically connected. 前記給電素子を構成する地板と前記無給電素子を構成する地板は非導通であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の平面アンテナ。   The planar antenna according to any one of claims 1 to 5, wherein a ground plane constituting the feeder element and a ground plane constituting the parasitic element are non-conductive.
JP2015121172A 2015-06-16 2015-06-16 Planar antenna Pending JP2017005663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121172A JP2017005663A (en) 2015-06-16 2015-06-16 Planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121172A JP2017005663A (en) 2015-06-16 2015-06-16 Planar antenna

Publications (1)

Publication Number Publication Date
JP2017005663A true JP2017005663A (en) 2017-01-05

Family

ID=57752598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121172A Pending JP2017005663A (en) 2015-06-16 2015-06-16 Planar antenna

Country Status (1)

Country Link
JP (1) JP2017005663A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195110A1 (en) * 2019-03-26 2020-10-01 株式会社Soken Antenna device
WO2020217746A1 (en) * 2019-04-26 2020-10-29 株式会社デンソー Position determination system
JP2021180452A (en) * 2020-05-15 2021-11-18 株式会社Soken Antenna device
WO2022009697A1 (en) * 2020-07-06 2022-01-13 株式会社デンソー Antenna mounted system
US11271310B2 (en) 2019-04-10 2022-03-08 Denso Corporation Antenna device
DE112022001761T5 (en) 2021-03-26 2024-02-08 Denso Corporation ANTENNA DEVICE AND COMMUNICATION DEVICE
US12013476B2 (en) 2019-04-26 2024-06-18 Denso Corporation Positioning system
US12142852B2 (en) * 2019-03-26 2024-11-12 Denso Corporation Antenna device for parallel resonance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037077A (en) * 2004-09-30 2007-02-08 Toto Ltd Microstrip antenna and high-frequency sensor employing the same
US7911386B1 (en) * 2006-05-23 2011-03-22 The Regents Of The University Of California Multi-band radiating elements with composite right/left-handed meta-material transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037077A (en) * 2004-09-30 2007-02-08 Toto Ltd Microstrip antenna and high-frequency sensor employing the same
US7911386B1 (en) * 2006-05-23 2011-03-22 The Regents Of The University Of California Multi-band radiating elements with composite right/left-handed meta-material transmission line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.SANADA ET AL.: ""A Planar Zeroth-Order Resonator Antenna Using a Left-Handed Transmission Line"", 34TH EUROPEAN MICROWAVE CONFERENCE 2004, JPN6019012781, 2004, pages 1341 - 1344, ISSN: 0004015114 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195110A1 (en) * 2019-03-26 2020-10-01 株式会社Soken Antenna device
JP2020161957A (en) * 2019-03-26 2020-10-01 株式会社Soken Antenna device
US12142852B2 (en) * 2019-03-26 2024-11-12 Denso Corporation Antenna device for parallel resonance
CN113632318B (en) * 2019-03-26 2024-08-02 株式会社电装 Antenna device
CN113632318A (en) * 2019-03-26 2021-11-09 株式会社电装 Antenna device
US20220006195A1 (en) * 2019-03-26 2022-01-06 Denso Corporation Antenna device
JP7028212B2 (en) 2019-03-26 2022-03-02 株式会社Soken Antenna device
US11271310B2 (en) 2019-04-10 2022-03-08 Denso Corporation Antenna device
CN113939636A (en) * 2019-04-26 2022-01-14 株式会社电装 Position determination system
JP7151611B2 (en) 2019-04-26 2022-10-12 株式会社Soken Position determination system
CN113939636B (en) * 2019-04-26 2023-01-13 株式会社电装 Position determination system
US12013476B2 (en) 2019-04-26 2024-06-18 Denso Corporation Positioning system
JP2020182158A (en) * 2019-04-26 2020-11-05 株式会社Soken Position determination system
WO2020217746A1 (en) * 2019-04-26 2020-10-29 株式会社デンソー Position determination system
JP2021180452A (en) * 2020-05-15 2021-11-18 株式会社Soken Antenna device
JP7180635B2 (en) 2020-05-15 2022-11-30 株式会社Soken antenna device
WO2022009697A1 (en) * 2020-07-06 2022-01-13 株式会社デンソー Antenna mounted system
DE112022001761T5 (en) 2021-03-26 2024-02-08 Denso Corporation ANTENNA DEVICE AND COMMUNICATION DEVICE

Similar Documents

Publication Publication Date Title
JP2017005663A (en) Planar antenna
US10340609B2 (en) Multiband antenna, multiband antenna array, and wireless communications device
US10756420B2 (en) Multi-band antenna and radio communication device
JP6528496B2 (en) Antenna device
JP6318941B2 (en) Antenna device
EP3533109B1 (en) Arrangement comprising antenna elements
WO2003003503A2 (en) Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US10205244B2 (en) Platform independent antenna
SE525359C2 (en) The multiband antenna
US9799956B2 (en) Three-dimensional compound loop antenna
US10476132B2 (en) Antenna, antenna array, and radio communication apparatus
US11240909B2 (en) Antenna device
CN110337757B (en) Antenna device
JP6411593B1 (en) In-vehicle antenna device
JP6401835B1 (en) Antenna device
WO2016143724A1 (en) Antenna device and communication terminal apparatus
CN112204816A (en) Conductor, antenna and communication device
KR20130048791A (en) Antenna
JP5078732B2 (en) Antenna device
US11509044B2 (en) Antenna device for vehicle
JP2009246460A (en) Microstrip antenna
US20170149136A1 (en) Eight-frequency band antenna
JP2020174285A (en) Antenna device
JP6311512B2 (en) Integrated antenna device
WO2019044151A1 (en) Antenna device and inverted f antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416