Nothing Special   »   [go: up one dir, main page]

JP2017004603A - Non-aqueous electrolyte and non-aqueous secondary battery - Google Patents

Non-aqueous electrolyte and non-aqueous secondary battery Download PDF

Info

Publication number
JP2017004603A
JP2017004603A JP2015113943A JP2015113943A JP2017004603A JP 2017004603 A JP2017004603 A JP 2017004603A JP 2015113943 A JP2015113943 A JP 2015113943A JP 2015113943 A JP2015113943 A JP 2015113943A JP 2017004603 A JP2017004603 A JP 2017004603A
Authority
JP
Japan
Prior art keywords
phosphate
electrolyte
carbonate
bis
trifluoroethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015113943A
Other languages
Japanese (ja)
Other versions
JP6549420B2 (en
Inventor
青木 雅裕
Masahiro Aoki
雅裕 青木
大輔 平山
Daisuke Hirayama
大輔 平山
英之 三村
Hideyuki Mimura
英之 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh F Tech Inc
Original Assignee
Tosoh F Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh F Tech Inc filed Critical Tosoh F Tech Inc
Priority to JP2015113943A priority Critical patent/JP6549420B2/en
Publication of JP2017004603A publication Critical patent/JP2017004603A/en
Application granted granted Critical
Publication of JP6549420B2 publication Critical patent/JP6549420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte which achieves both safety and high ion conductivity and, furthermore, to provide a non-aqueous secondary battery superior in safety and output characteristics.SOLUTION: As a non-aqueous solvent, a non-aqueous electrolyte contains fluorine-containing phosphate ester having a 1-6C linear or branched alkyl group, a 6-10C aryl group or 1-6 linear, or a branched fluorine-containing alkyl group. Also, as electrolyte salt, the non-aqueous electrolyte contains fluorosulfonyl imide lithium salt having a fluorine atom or 1-4C linear, a branched alkyl group or 1-4C linear, or a branched fluorine-containing alkyl group.SELECTED DRAWING: None

Description

本発明は非水系二次電池に用いられる安全性とイオン伝導性に優れた非水電解液に関する。より詳細には、非水電解液の溶媒中に含フッ素リン酸エステルを含有させ、電解質塩としてフルオロスルホニルイミドリチウム塩を用いることによる、安全性と良好なイオン伝導性を有する非水電解液、および安全性と出力特性に優れる非水系二次電池に関する。   The present invention relates to a non-aqueous electrolyte excellent in safety and ion conductivity used for a non-aqueous secondary battery. More specifically, a nonaqueous electrolytic solution having safety and good ionic conductivity by containing a fluorine-containing phosphate ester in a solvent of the nonaqueous electrolytic solution and using a fluorosulfonylimide lithium salt as an electrolyte salt, The present invention also relates to a non-aqueous secondary battery having excellent safety and output characteristics.

リチウムイオン二次電池に代表される非水系二次電池は、高出力密度、高エネルギー密度を有し、携帯電話、ノートパソコン、タブレット型コンピューター等の電源として汎用されている。また、近年は二酸化炭素排出量の少ないクリーンなエネルギーとして、電力貯蔵や電気自動車用の大容量電源として、実用化がすすめられている。この様な大型の蓄電池、特に電気自動車やハイブリッド自動車では、瞬間的に大きな電流値を取り出す性能、即ち優れた出力性能を有する必要がある。この様な要求に対して、非水電解液には高いイオン伝導性が求められている(非特許文献1)。   Non-aqueous secondary batteries represented by lithium ion secondary batteries have high output density and high energy density, and are widely used as power sources for mobile phones, notebook computers, tablet computers, and the like. In recent years, it has been put into practical use as clean energy with low carbon dioxide emissions and as a large capacity power source for electric power storage and electric vehicles. Such a large storage battery, particularly an electric vehicle or a hybrid vehicle, needs to have a performance for taking out a large current value instantaneously, that is, an excellent output performance. In response to such demands, high ion conductivity is required for non-aqueous electrolytes (Non-Patent Document 1).

一方、このリチウムイオン二次電池に使われている非水電解液にはエチレンカーボネートやジメチルカーボネート等の可燃性溶媒に電解質として六フッ化リン酸リチウム(LiPF)を溶解した可燃性の電解液が用いられており、電池の大型化に伴いこれら可燃性非水電解液の安全性の向上が求められている(非特許文献2)。 On the other hand, the non-aqueous electrolyte used in this lithium ion secondary battery is a flammable electrolyte obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a flammable solvent such as ethylene carbonate or dimethyl carbonate. Therefore, improvement of the safety of these combustible non-aqueous electrolytes is required with the increase in size of batteries (Non-Patent Document 2).

こうした非水電解液の安全性の向上に対しては、非水電解液溶媒として含フッ素リン酸エステル(特許文献1〜4)や含フッ素エーテル(特許文献5、6)、含フッ素エステル(特許文献7、8)、含フッ素カーボネート(特許文献9、10)等の含フッ素溶媒を用いることが提案されている。中でも含フッ素リン酸エステルを含む非水電解液は、特に難燃性に優れており、引火点を有さない高度な安全性を有する電解液を構築できることが知られている(特許文献4)。   For improving the safety of such non-aqueous electrolytes, fluorine-containing phosphate esters (Patent Documents 1 to 4), fluorine-containing ethers (Patent Documents 5 and 6), and fluorine-containing esters (patents) Documents 7 and 8) and fluorine-containing solvents such as fluorine-containing carbonates (Patent Documents 9 and 10) have been proposed. Among these, non-aqueous electrolytes containing fluorine-containing phosphates are particularly excellent in flame retardancy, and it is known that an electrolyte with high safety that does not have a flash point can be constructed (Patent Document 4). .

この含フッ素リン酸エステルは、高エネルギー密度化を目的としたリチウムに対して4.5V以上の電位で動作する正極活物質を含むリチウムイオン二次電池に対しても、電解液の分解に由来するガス発生が少なく優れたサイクル特性に寄与する非水電解液溶媒として提案されている(特許文献11)。また、こうした高電位で動作するリチウムイオン二次電池用の非水電解液の分解を更に抑制するための被膜形成剤として、非水電解液中にフルオロスルホニルアニオンを添加することについても提案されている(特許文献12)。   This fluorine-containing phosphate ester is derived from the decomposition of the electrolytic solution even for a lithium ion secondary battery including a positive electrode active material that operates at a potential of 4.5 V or more with respect to lithium for the purpose of increasing energy density. It has been proposed as a non-aqueous electrolyte solvent that contributes to excellent cycle characteristics with less gas generation (Patent Document 11). In addition, as a film forming agent for further suppressing the decomposition of the non-aqueous electrolyte for a lithium ion secondary battery operating at such a high potential, the addition of a fluorosulfonyl anion to the non-aqueous electrolyte has also been proposed. (Patent Document 12).

特開平8−88023号公報JP-A-8-88023 特開2007−141760号公報JP 2007-141760 A 特開2007−258067号公報JP 2007-258067 A 特開2013−20713号公報JP 2013-20713 A 特開平9−097627号公報Japanese Patent Laid-Open No. 9-097627 特開平11−26015号公報JP-A-11-26015 特開平6−20719号公報JP-A-6-20719 特開平10−116627号公報JP-A-10-116627 特開平7−6786号公報Japanese Patent Laid-Open No. 7-6786 特開2007−305352号公報JP 2007-305352 A 国際公開2012/077712号International Publication 2012/0777712 国際公開2014/080870号International Publication No. 2014/080870

「自動車用リチウムイオン電池」金村聖志編著、日刊工業新聞社、2010年12月20日発行"Automotive Lithium Ion Battery" edited by Seiji Kanamura, published by Nikkan Kogyo Shimbun, December 20, 2010 「リチウムイオン電池の高安全技術と材料」、株式会社シーエムシ―出版、佐藤登、吉野彰監修、2009年2月13日発行"High-safety technology and materials for lithium-ion batteries", CMC Publishing Co., Ltd., supervised by Noboru Sato and Akira Yoshino, published February 13, 2009

この様に含フッ素リン酸エステルは、非水系二次電池、特にリチウム二次電池の電解液として有用である事が知られているが、例えば、特許文献3に記載されている様に、多量にリン酸エステル類を添加することにより非水電解液の粘度の上昇及びイオン解離度の低下が引き起こされ、その結果イオン伝導度が低下し非水系二次電池の出力特性が低下することが知られていた。   Thus, the fluorine-containing phosphate ester is known to be useful as an electrolyte solution for non-aqueous secondary batteries, particularly lithium secondary batteries. For example, as described in Patent Document 3, It is known that the addition of phosphoric acid esters causes an increase in the viscosity of the nonaqueous electrolyte and a decrease in the degree of ionic dissociation, resulting in a decrease in ionic conductivity and a decrease in the output characteristics of the nonaqueous secondary battery. It was done.

本発明はこれらの課題に鑑みてなされたものである。即ち本発明は、非水電解液溶媒として含フッ素リン酸エステルを含む安全性の高い非水電解液において、従来困難であったイオン伝導性に優れた非水電解液を提供すること、さらには、この非水電解液を用いることによる出力特性に優れた非水系二次電池を提供することにある。   The present invention has been made in view of these problems. That is, the present invention provides a highly safe non-aqueous electrolyte containing a fluorinated phosphate ester as a non-aqueous electrolyte solvent, and provides a non-aqueous electrolyte having excellent ion conductivity, which has been difficult in the past. An object of the present invention is to provide a non-aqueous secondary battery having excellent output characteristics by using this non-aqueous electrolyte.

本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、非水電解液の溶媒に含フッ素リン酸エステルを含み、電解質塩として特定のイミドリチウム塩を用いることにより、安全性に優れ且つ優れたイオン伝導性を有する非水電解液が得られることを見出した。さらに本発明の非水電解液は、従来のLiPF6を電解質塩として用いた場合に比べて、凝固点が低く、より低温での使用が可能になるという予期しなかった効果を有することも見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have included a fluorine-containing phosphate ester in the solvent of the non-aqueous electrolyte solution, and by using a specific imidolithium salt as an electrolyte salt, safety can be achieved. It was found that a non-aqueous electrolyte having excellent ion conductivity and excellent ion conductivity can be obtained. Furthermore, the nonaqueous electrolytic solution of the present invention has also been found to have an unexpected effect that the freezing point is low and can be used at a lower temperature than when conventional LiPF6 is used as an electrolyte salt. The invention has been completed.

即ち、本発明は下記の要旨に係わるものである。   That is, the present invention relates to the following gist.

(1) 非水溶媒として、下記一般式(1) (1) As a nonaqueous solvent, the following general formula (1)

(式中、Rf、Rf及びRfは、それぞれ独立して、炭素数1〜6の直鎖もしくは分岐のアルキル基もしくは炭素数6〜10のアリール基または炭素数1〜6の直鎖もしくは分岐の含フッ素アルキル基を表し、且つRf〜Rfの少なくとも1つは含フッ素アルキル基である)で表される含フッ素リン酸エステルを含み、電解質塩として下記一般式(2) (In the formula, Rf 1 , Rf 2 and Rf 3 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a linear chain having 1 to 6 carbon atoms. Or a branched fluorine-containing alkyl group, and at least one of Rf 1 to Rf 3 is a fluorine-containing alkyl group), and an electrolyte salt represented by the following general formula (2)

(式中Rfはフッ素原子または炭素数1〜4の直鎖もしくは分岐のアルキル基または炭素数1〜4の直鎖もしくは分岐の含フッ素アルキル基を表す)で表されるフルオロスルホニルイミドリチウム塩を含む非水電解液。 (In the formula, Rf 4 represents a fluorine atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched fluorine-containing alkyl group having 1 to 4 carbon atoms). Non-aqueous electrolyte containing.

(2) 非水溶媒として、更に環状カーボネート、鎖状カーボネート、環状エステル及びリン酸エステルから成る群から選ばれる少なくとも1種を存在させる(1)項に記載の非水電解液。 (2) The nonaqueous electrolytic solution according to (1), wherein at least one selected from the group consisting of a cyclic carbonate, a chain carbonate, a cyclic ester, and a phosphate ester is present as a nonaqueous solvent.

(3) 上記一般式(1)で表される含フッ素リン酸エステルが、リン酸トリス(2,2−ジフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸ビス(2,2,2−トリフルオロエチル)メチル、リン酸ビス(2,2,2−トリフルオロエチル)エチル、リン酸ビス(2,2,2−トリフルオロエチル)フェニル、リン酸ビス(2,2,2−トリフルオロエチル)2,2−ジフルオロエチル、リン酸ビス(2,2,2−トリフルオロエチル)2,2,3,3−テトラフルオロプロピル、リン酸ビス(2,2−ジフルオロエチル)2,2,2−トリフルオロエチル、リン酸ビス(2,2,3,3−テトラフルオロプロピル)2,2,2−トリフルオロエチル及びリン酸(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)メチルからなる群から選ばれる少なくとも1種である(1)項または(2)項に記載の非水電解液。 (3) The fluorine-containing phosphate represented by the general formula (1) is tris (2,2-difluoroethyl) phosphate, tris (2,2,2-trifluoroethyl) phosphate, trisphosphate. (2,2,3,3-tetrafluoropropyl), bis (2,2,2-trifluoroethyl) methyl phosphate, bis (2,2,2-trifluoroethyl) ethyl phosphate, bis ( 2,2,2-trifluoroethyl) phenyl, bis (2,2,2-trifluoroethyl) phosphate 2,2-difluoroethyl, bis (2,2,2-trifluoroethyl) phosphate 2,2 , 3,3-tetrafluoropropyl, bis (2,2-difluoroethyl) phosphate 2,2,2-trifluoroethyl, bis (2,2,3,3-tetrafluoropropyl) 2,2, 2-Trifluoroe Or (2), which is at least one selected from the group consisting of (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl phosphate and phosphoric acid The non-aqueous electrolyte described.

(4) 電解質塩がジフルオロスルホニルイミドリチウムである(1)項から(3)項のいずれか1項に記載の非水電解液。 (4) The nonaqueous electrolytic solution according to any one of (1) to (3), wherein the electrolyte salt is difluorosulfonylimide lithium.

(5) 電解質塩として更にLiPFまたはLiBFを含み、フルオロスルホニルイミドリチウム塩に対するLiPFまたはLiBFの使用量がモル比で0.01〜2である(1)項〜(4)項のいずれか1項に記載の非水電解液。 (5) further comprises LiPF 6 or LiBF 4 as an electrolyte salt, the amount of LiPF 6 or LiBF 4 relative fluorosulfonyl imide lithium salt is 0.01 to 2 molar ratio (1) to (4) of section The nonaqueous electrolytic solution according to any one of the above.

(6) 更に存在させる非水溶媒がエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートからなる群から選ばれる少なくとも1種の環状カーボネートである(2)項に記載の非水電解液。 (6) The nonaqueous solvent to be further present is at least one cyclic carbonate selected from the group consisting of ethylene carbonate, propylene carbonate, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate and difluoroethylene carbonate. Non-aqueous electrolyte.

(7) 更に存在させる非水溶媒がジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートからなる群から選ばれる少なくとも1種の鎖状カーボネートである(2)項に記載の非水電解液。 (7) The nonaqueous electrolytic solution according to (2), wherein the nonaqueous solvent to be further present is at least one chain carbonate selected from the group consisting of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.

(8) 更に存在させる非水溶媒がγ − ブチロラクトン、γ − バレロラクトン、δ−バレロラクトン、ε−カプロラクトン及びγ−ヘキサノラクトンからなる群から選ばれる少なくとも1種の環状エステルである(2)項に記載の非水電解液。 (8) The nonaqueous solvent to be further present is at least one cyclic ester selected from the group consisting of γ-butyrolactone, γ-valerolactone, δ-valerolactone, ε-caprolactone and γ-hexanolactone (2) The nonaqueous electrolytic solution according to Item.

(9) 更に存在させる非水溶媒がリン酸トリメチル、リン酸トリエチル、リン酸トリ−n−プロピル、リン酸トリイソプロピル、リン酸トリ−n−ブチル、リン酸トリイソブチル及びリン酸トリフェニルからなる群から選ばれる少なくとも1種のリン酸エステルである(2)項に記載の非水電解液。 (9) Further, the non-aqueous solvent to be present comprises trimethyl phosphate, triethyl phosphate, tri-n-propyl phosphate, triisopropyl phosphate, tri-n-butyl phosphate, triisobutyl phosphate, and triphenyl phosphate. The nonaqueous electrolytic solution according to item (2), which is at least one phosphate ester selected from the group.

(10)(1)項から(9)項のいずれか1項に記載の非水電解液を含む非水系二次電池。 (10) A nonaqueous secondary battery comprising the nonaqueous electrolyte solution according to any one of items (1) to (9).

本発明によれば、非水溶媒中に含フッ素リン酸エステルを含む電解液において、特定のフルオロスルホニルイミドリチウム塩を電解質塩として用いることにより、従来の電解液では困難であった安全性と高イオン伝導性を両立した非水電解液を提供できる。さらには、本発明の非水電解液を用いることにより、安全性と出力特性に優れた非水系二次電池を提供することができる。   According to the present invention, in an electrolytic solution containing a fluorine-containing phosphate ester in a non-aqueous solvent, by using a specific fluorosulfonylimide lithium salt as an electrolyte salt, safety and high performance that have been difficult with conventional electrolytic solutions are improved. A nonaqueous electrolytic solution having both ionic conductivity can be provided. Furthermore, by using the nonaqueous electrolytic solution of the present invention, a nonaqueous secondary battery excellent in safety and output characteristics can be provided.

測定例1[イオン伝導度]の測定で使用した白金電極を向い合せに組み合わせたガラス製電気化学セルを示す説明図である。It is explanatory drawing which shows the electrochemical cell made from glass which combined the platinum electrode used by the measurement of the measurement example 1 [ion conductivity] facing each other. 実施例6−1、比較例6−1で使用したコインセル型の非水系二次電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the coin cell type non-aqueous secondary battery used in Example 6-1 and Comparative Example 6-1.

本発明の非水電解液は、第1の成分として前記一般式(1)で表される含フッ素リン酸エステルを含有する。一般式(1)において、Rf、Rf及びRfは、それぞれ独立して、炭素数1〜6の直鎖もしくは分岐のアルキル基もしくは炭素数6〜10のアリール基または炭素数1〜6の直鎖もしくは分岐の含フッ素アルキル基を表し、且つRf〜Rfの少なくとも1つは含フッ素アルキル基である。 The nonaqueous electrolytic solution of the present invention contains a fluorine-containing phosphate represented by the general formula (1) as a first component. In the general formula (1), Rf 1 , Rf 2 and Rf 3 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or 1 to 6 carbon atoms. A linear or branched fluorine-containing alkyl group, and at least one of Rf 1 to Rf 3 is a fluorine-containing alkyl group.

炭素数1〜6の直鎖もしくは分岐のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、およびn−ヘキシル基等が挙げられ、炭素数1〜6の直鎖もしくは分岐の含フッ素アルキル基としては、トリフルオロメチル基、2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、2,2,3,3,3−ペンタフルオロプロピル基、ヘキサフルオロイソプロピル基、2,2,3,3,4,4,5,5−オクタフルオロペンチル基、2,2,3,3,4,4,5,5,5−ノナフルオロペンチル基及び3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等を挙げることができる。このような含フッ素リン酸エステルとして、例えば、リン酸トリス(トリフルオロメチル)、リン酸トリス(2,2−ジフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸トリス(2,2,3,3,3−ペンタフルオロプロピル)、リン酸トリス(ヘキサフルオロイソプロピル)、リン酸トリス(2,2,3,3,4,4,5,5−オクタフルオロペンチル)、リン酸トリス(2,2,3,3,4,4,5,5,5−ノナフルオロペンチル)、リン酸トリス(3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル)、リン酸ビス(2,2,2−トリフルオロエチル)メチル、リン酸ビス(2,2,2−トリフルオロエチル)エチル、リン酸ビス(2,2,2−トリフルオロエチル)2,2−ジフルオロエチル、リン酸ビス(2,2,2−トリフルオロエチル)2,2,3,3−テトラフルオロプロピル、リン酸ビス(2,2,3,3−テトラフルオロプロピル)2,2,2−トリフルオロエチル及びリン酸ビス(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)メチル等を挙げることができる。   Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, and n -Hexyl group and the like, and examples of the linear or branched fluorine-containing alkyl group having 1 to 6 carbon atoms include trifluoromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, hexafluoroisopropyl group, 2,2,3,3,4,4,5,5-octa Fluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, etc. Can be mentioned. Examples of such a fluorine-containing phosphate ester include tris phosphate (trifluoromethyl), tris phosphate (2,2-difluoroethyl), tris phosphate (2,2,2-trifluoroethyl), and phosphoric acid. Tris (2,2,3,3-tetrafluoropropyl), Tris phosphate (2,2,3,3,3-pentafluoropropyl), Tris phosphate (hexafluoroisopropyl), Tris phosphate (2,2 , 3,3,4,4,5,5-octafluoropentyl), tris phosphate (2,2,3,3,4,4,5,5,5-nonafluoropentyl), tris phosphate (3 , 3,4,4,5,5,6,6,6-nonafluorohexyl), bis (2,2,2-trifluoroethyl) methyl phosphate, bis (2,2,2-trifluorophosphate) Ethyl) ethyl, biphosphate (2,2,2-trifluoroethyl) 2,2-difluoroethyl, bis (2,2,2-trifluoroethyl) phosphate 2,2,3,3-tetrafluoropropyl, bis (2, 2,3,3-tetrafluoropropyl) 2,2,2-trifluoroethyl and bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) methyl, etc. Can be mentioned.

これら含フッ素リン酸エステルのうち、特に、構造中に含フッ素アルキル基を2つ以上有するリン酸トリス(2,2−ジフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸ビス(2,2,2−トリフルオロエチル)メチル、リン酸ビス(2,2,2−トリフルオロエチル)エチル、リン酸ビス(2,2,2−トリフルオロエチル)フェニル、リン酸ビス(2,2,2−トリフルオロエチル)2,2−ジフルオロエチル、リン酸ビス(2,2,2−トリフルオロエチル)2,2,3,3−テトラフルオロプロピル、リン酸ビス(2,2,3,3−テトラフルオロプロピル)2,2,2−トリフルオロエチル、リン酸ビス(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)メチル等は、それ自体が不燃性を示すことからより好ましい。   Among these fluorine-containing phosphate esters, in particular, tris phosphate (2,2-difluoroethyl) having two or more fluorine-containing alkyl groups in the structure, tris phosphate (2,2,2-trifluoroethyl), Tris (2,2,3,3-tetrafluoropropyl) phosphate, bis (2,2,2-trifluoroethyl) methyl phosphate, bis (2,2,2-trifluoroethyl) ethyl phosphate, phosphorus Bis (2,2,2-trifluoroethyl) phenyl phosphate, bis (2,2,2-trifluoroethyl) phosphate, 2,2-difluoroethyl phosphate, bis (2,2,2-trifluoroethyl phosphate) 2,2,3,3-tetrafluoropropyl, bis (2,2,3,3-tetrafluoropropyl) 2,2,2-trifluoroethyl phosphate, bis (2,2,2-trifluorophosphate) Echi ) (2,2,3,3-tetrafluoro propyl) methyl and the like are themselves more preferable because it exhibits a non-flammable.

これら含フッ素リン酸エステルは、含フッ素エーテルや含フッ素カーボネートに比べて、電解質塩の溶解性に優れるため、含フッ素リン酸エステルを単独で電解液溶媒として使用することができるが、イオン伝導性をより向上させるためには、他の非水溶媒を共存させることが好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート及びジフルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、ε−カプロラクトン、γ−ヘキサノラクトン等の環状エステル、リン酸トリメチル、リン酸トリエチル、リン酸トリ−n−プロピル、リン酸トリイソプロピル、リン酸トリ−n−ブチル、リン酸トリイソブチル、リン酸トリフェニル等のリン酸エステル、酢酸メチル、酢酸エチル、酪酸メチル等の鎖状エステル、テトラヒドロフラン、1,3−ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、トリグライム、テトラグライム等のエーテル類、アセトニトリル、ベンゾニトリル、アジポニトリル、グルタロニトリル等のニトリル類、ジオキソラン又はその誘導体、ジメチルスルホン、ジエチルスルホン等の鎖状スルホン類、スルホラン等の環状スルホン類、プロパンスルトン、ブタンスルトンの環状スルホン酸エステル等を例示することができる。これらの非水溶媒の中で、環状カーボネート、環状エステル、鎖状カーボネート、リン酸エステルからなる群から選ばれる少なくとも1種類または2種以上の混合物である事がイオン導電性の点から好ましい。   These fluorine-containing phosphate esters are superior in solubility to electrolyte salts compared to fluorine-containing ethers and fluorine-containing carbonates. Therefore, fluorine-containing phosphate esters can be used alone as an electrolyte solvent. In order to improve further, it is preferable to coexist other non-aqueous solvent. Nonaqueous solvents include ethylene carbonate, propylene carbonate, vinylene carbonate, vinyl ethylene carbonate, cyclic carbonates such as fluoroethylene carbonate and difluoroethylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, γ-butyrolactone, Cyclic esters such as γ-valerolactone, δ-valerolactone, ε-caprolactone, γ-hexanolactone, trimethyl phosphate, triethyl phosphate, tri-n-propyl phosphate, triisopropyl phosphate, tri-n phosphate -Phosphate esters such as butyl, triisobutyl phosphate, triphenyl phosphate, chain esters such as methyl acetate, ethyl acetate, methyl butyrate, tetrahydrofuran, 1,3-dioxane, di- Ethers such as methoxyethane, diethoxyethane, methoxyethoxyethane, triglyme and tetraglyme, nitriles such as acetonitrile, benzonitrile, adiponitrile and glutaronitrile, dioxolane or derivatives thereof, and chain sulfones such as dimethylsulfone and diethylsulfone And cyclic sulfones such as sulfolane, propane sultone, butane sultone cyclic sulfonate, and the like. Among these non-aqueous solvents, at least one kind or a mixture of two or more kinds selected from the group consisting of cyclic carbonate, cyclic ester, chain carbonate, and phosphate ester is preferable from the viewpoint of ion conductivity.

本発明の非水電解液は第2の必須成分として、電解質塩として前記一般式(2)で表されるフルオロスルホニルイミドリチウム塩を用いる。代表的なフルオロスルホニルイミドリチウム塩としては、ビス(フルオロスルホニル)イミドリチウム、フルオロスルホニル(トリフルオロメチルスルホニル)イミドリチウム、フルオロスルホニル(ペンタフルオロエチルスルホニル)イミドリチウムを例示することができ、その中でも特にビス(フルオロスルホニル)イミドリチウムがイオン伝導性をより向上できる点で好ましい。   The nonaqueous electrolytic solution of the present invention uses, as a second essential component, a fluorosulfonylimide lithium salt represented by the general formula (2) as an electrolyte salt. Examples of typical fluorosulfonylimide lithium salts include bis (fluorosulfonyl) imide lithium, fluorosulfonyl (trifluoromethylsulfonyl) imide lithium, and fluorosulfonyl (pentafluoroethylsulfonyl) imide lithium. Bis (fluorosulfonyl) imidolithium is preferred because it can further improve ionic conductivity.

また、本発明の非水電解液では、電解質塩として、LiPF、LiBF、LiClO、LiN(SOCF、LiN(SO等の他のリチウム塩を併用して用いてもよい。特にLiPFまたはLiBFを併用した場合に、高いイオン伝導性を維持しながら非水系二次電池の寿命が改善される等の効果が得られる場合がある。この際、フルオロスルホニルイミドリチウム塩に対する他のリチウム塩との使用量は、モル比で0.01〜2倍、好ましくは0.1〜1倍である。使用量が0.01倍未満の場合、併用の効果が得られず、2倍を超える場合はイオン伝導性が十分でない。また、非水電解液における電解質塩の濃度の合計は0.2〜3.0mol/Lの範囲とすることが望ましく、特に1.0〜3.0mol/Lの高濃度で溶解させた場合にイオン伝導性が高く、長寿命の非水系二次電池が得られ易いため好ましい。0.2mol/L未満の場合、イオン伝導性が十分でなく、3.0mol/Lを超える場合は電解質塩が析出し易い等の問題がある。 In the non-aqueous electrolyte of the present invention, other lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 are used as the electrolyte salt. You may use together. In particular, when LiPF 6 or LiBF 4 is used in combination, effects such as improvement of the lifetime of the non-aqueous secondary battery may be obtained while maintaining high ionic conductivity. Under the present circumstances, the usage-amount with the other lithium salt with respect to the fluoro sulfonyl imide lithium salt is 0.01 to 2 times by mole ratio, Preferably it is 0.1 to 1 time. When the amount used is less than 0.01 times, the combined effect cannot be obtained, and when it exceeds 2 times, the ion conductivity is not sufficient. Further, the total concentration of the electrolyte salt in the non-aqueous electrolyte is preferably in the range of 0.2 to 3.0 mol / L, particularly when dissolved at a high concentration of 1.0 to 3.0 mol / L. It is preferable because a non-aqueous secondary battery having high ion conductivity and a long life can be easily obtained. When the concentration is less than 0.2 mol / L, the ion conductivity is not sufficient, and when it exceeds 3.0 mol / L, there is a problem that the electrolyte salt is likely to precipitate.

本発明の非水電解液を用いた非水系二次電池は、少なくとも正極、負極およびセパレータから成る。負極材料としては、金属リチウム、リチウム合金あるいはリチウムイオンをドープ・脱ドープ可能な炭素材料やケイ素材料、スズやチタンとリチウムの複合酸化物等を用いることができる。正極材料としては、例えば、LiCoO、LiNiO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi1/4Mn3/4、LiFeO、LiFePO等のリチウムと遷移金属の複合酸化物が用いられる。セパレータとしては、イオン透過性で電気絶縁性を有するものであれば使用できるが、敢えて例示すると、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂あるいはポリフッ化ビニリデン等のフッ素系樹脂の微多孔膜、セルロースや不織布等の線維状物質等を用いることができる。非水系二次電池の形状、形態としては、特に限定するものではないが、例えば、円筒型、角型、コイン型、カード型等が適宜選択される。 The non-aqueous secondary battery using the non-aqueous electrolyte of the present invention comprises at least a positive electrode, a negative electrode, and a separator. As the negative electrode material, metallic lithium, a lithium alloy, a carbon material that can be doped / undoped with lithium ions, a silicon material, a composite oxide of tin, titanium, and lithium, or the like can be used. Examples of the positive electrode material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/4 Mn 3/4 O 4 , LiFeO 2 , LiFePO 4, and the like. A composite oxide of lithium and transition metal is used. The separator can be used as long as it is ion-permeable and electrically insulating. For example, a polyolefin resin such as polyethylene or polypropylene, or a microporous film of a fluorine resin such as polyvinylidene fluoride, cellulose or nonwoven fabric. Fibrous substances such as can be used. The shape and form of the nonaqueous secondary battery are not particularly limited, and for example, a cylindrical shape, a square shape, a coin shape, a card shape, and the like are appropriately selected.

以下に実施例を用いて本発明を詳細に説明するが、本発明はこの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the examples.

測定例1
[イオン伝導度]
非水電解液のイオン伝導度(単位:mS/cm)の測定は、「電気化学測定マニュアル、基礎編、2002、45、電気化学会編、丸善株式会社」に記載の方法を用いて行った。すなわち、図1に記載のように白金電極2を向い合せに組み合わせたガラス製電気化学セル1に、あらかじめ電気伝導度既知の標準液でセル定数を算出した。調製した電解液をこの電気化学セルに注入し密封した。得られた電気化学セルを、20℃恒温槽中に1時間静置した後、ポテンショスタット/ガルバノスタット(東陽テクニカ社製、VersaSTAT4−400)を用い、複素インピーダンス法により溶液抵抗を測定した。得られた溶液抵抗値より、各非水電解液のイオン伝導度を算出した。
Measurement example 1
[Ionic conductivity]
The ion conductivity (unit: mS / cm) of the non-aqueous electrolyte was measured using the method described in “Electrochemical Measurement Manual, Fundamentals, 2002, 45, Electrochemical Society, Maruzen Co., Ltd.”. . That is, as shown in FIG. 1, cell constants were calculated in advance using a standard solution having a known electrical conductivity in a glass electrochemical cell 1 in which platinum electrodes 2 were combined facing each other. The prepared electrolyte was poured into this electrochemical cell and sealed. The obtained electrochemical cell was allowed to stand in a constant temperature bath at 20 ° C. for 1 hour, and then the solution resistance was measured by a complex impedance method using a potentiostat / galvanostat (manufactured by Toyo Technica, VersaSTAT4-400). The ionic conductivity of each non-aqueous electrolyte was calculated from the obtained solution resistance value.

算出式:イオン伝導度(mS/cm)=溶液抵抗値(Ω)/セル定数   Calculation formula: ion conductivity (mS / cm) = solution resistance value (Ω) / cell constant

測定例2
[粘度]
非水電解液の粘度(単位:mPa・sec)の測定は、コーンプレート型回転粘度計(BrookField社製、DV−I PRIME)を用いて行った。すなわち、流動式恒温装置を接続した回転粘度計のカップに、調製した電解液を導入し、温度が20℃で一定となるまで流通させて測定した。
Measurement example 2
[viscosity]
The viscosity (unit: mPa · sec) of the non-aqueous electrolyte was measured using a cone plate type rotational viscometer (manufactured by BrookField, DV-I PRIME). That is, the prepared electrolytic solution was introduced into a cup of a rotational viscometer connected with a fluid thermostat, and measured until the temperature became constant at 20 ° C.

測定例3
[凝固点]
非水電解液の凝固点(単位:℃)の測定は、JIS K0065「化学製品の凝固点測定方法」に準じて行った。すなわち、ガラス製二重管容器に、調製した電解液を導入し、氷浴(もしくは寒剤)によって間接的に冷却する。上下に振とうするガラス製のかき混ぜ棒により一定の速度で撹拌し、徐々に電解液を冷却する。凝固点の測定は、過冷却がない場合は静止した温度を読み取り、過冷却によって一度凝固点以下に温度が下がった後、再び一定の凝固点を示す場合は、温度上昇の最高温度を読み取ることで測定した。
Measurement example 3
[Freezing point]
Measurement of the freezing point (unit: ° C.) of the non-aqueous electrolyte was performed according to JIS K0065 “Method for measuring freezing point of chemical products”. That is, the prepared electrolyte solution is introduced into a glass double tube container and indirectly cooled by an ice bath (or cryogen). Stir at a constant speed with a glass stirring rod that shakes up and down, and gradually cool the electrolyte. The freezing point was measured by reading the static temperature when there was no supercooling, and by reading the maximum temperature of the temperature rise when it showed a certain freezing point again after the temperature once decreased below the freezing point due to supercooling. .

実施例1−1
リン酸トリス(2,2,2−トリフルオロエチル)(以下TFEPと略す)に、電解質としてリチウムビス(フルオロスルホニル)イミド(以下、LiFSIと略す)を1.0mol/Lの濃度となるように加え、20℃にて充分に撹拌して完全に溶解し、電解液を作成した(LiFSI濃度=11.5質量%)。この電解液を用いて、測定例1の方法でイオン伝導度を測定した。また、同様の電解液を用いて、測定例2の方法で粘度を測定した。結果を表1に記す。
Example 1-1
Lithium bis (fluorosulfonyl) imide (hereinafter abbreviated as LiFSI) as an electrolyte is adjusted to a concentration of 1.0 mol / L in tris (2,2,2-trifluoroethyl) phosphate (hereinafter abbreviated as TFEP). In addition, the mixture was sufficiently stirred at 20 ° C. and completely dissolved to prepare an electrolyte solution (LiFSI concentration = 11.5% by mass). Using this electrolytic solution, the ionic conductivity was measured by the method of Measurement Example 1. Moreover, the viscosity was measured by the method of Measurement Example 2 using the same electrolytic solution. The results are shown in Table 1.

比較例1−1
TFEPに、電解質として六フッ化リン酸リチウム(以下、LiPFと略す)を0.5mol/Lの濃度となるように加え、20℃にて充分に撹拌して完全に溶解し、電解液を作成した(LiPF濃度=4.5質量%)。この電解液を用いて、測定例1の方法でイオン伝導度を測定した。また、同様の電解液を用いて、測定例2の方法で粘度を測定した。結果を表1に記す。
Comparative Example 1-1
To TFEP, lithium hexafluorophosphate (hereinafter abbreviated as LiPF 6 ) was added as an electrolyte so as to have a concentration of 0.5 mol / L, and the mixture was thoroughly stirred at 20 ° C. to completely dissolve the electrolyte. It was prepared (LiPF 6 concentration = 4.5% by mass). Using this electrolytic solution, the ionic conductivity was measured by the method of Measurement Example 1. Moreover, the viscosity was measured by the method of Measurement Example 2 using the same electrolytic solution. The results are shown in Table 1.

比較例1−2
電解質としてリチウムビス(トリフルオロメチルスルホニル)イミド(以下、LiTFSIと略す)を用いた以外は実施例1−1と同様の方法で電解液を調製し、イオン伝導度、粘度を測定した(LiTFSI濃度=17.2質量%)。結果を表1に記す。
Comparative Example 1-2
An electrolyte solution was prepared in the same manner as in Example 1-1 except that lithium bis (trifluoromethylsulfonyl) imide (hereinafter abbreviated as LiTFSI) was used as the electrolyte, and the ionic conductivity and viscosity were measured (LiTFSI concentration). = 17.2 mass%). The results are shown in Table 1.

実施例1−2
リン酸ビス(2,2,2−トリフルオロエチル)メチル(以下BTFEMPと略す)に、電解質としてLiFSIを1.0mol/Lの濃度となるように加えた以外は実施例1−1と同様の方法で電解液を調製し、イオン伝導度、粘度を測定した(LiFSI濃度=12.0質量%)。結果を表1に記す。
Example 1-2
The same as Example 1-1 except that LiFSI was added to bis (2,2,2-trifluoroethyl) methyl phosphate (hereinafter abbreviated as BTFEMP) as an electrolyte so as to have a concentration of 1.0 mol / L. An electrolytic solution was prepared by the method, and ionic conductivity and viscosity were measured (LiFSI concentration = 12.0% by mass). The results are shown in Table 1.

比較例1−3
電解質としてLiPFを用いた以外は実施例1−2と同様の方法で1.0mol/Lの電解液を調製し、イオン伝導度、粘度を測定した(LiPF濃度=9.7質量%)。結果を表1に記す。
Comparative Example 1-3
A 1.0 mol / L electrolytic solution was prepared in the same manner as in Example 1-2 except that LiPF 6 was used as the electrolyte, and the ionic conductivity and viscosity were measured (LiPF 6 concentration = 9.7% by mass). . The results are shown in Table 1.

比較例1−4
電解質としてLiTFSIを用いた以外は実施例1−2と同様の方法で1.0mol/Lの電解液を調製し、イオン伝導度、粘度を測定した(LiTFSI濃度=18.1質量%)。結果を表1に記す。
Comparative Example 1-4
A 1.0 mol / L electrolytic solution was prepared in the same manner as in Example 1-2 except that LiTFSI was used as the electrolyte, and the ionic conductivity and viscosity were measured (LiTFSI concentration = 18.1% by mass). The results are shown in Table 1.

実施例1−3
リン酸ビス(2,2,2−トリフルオロエチル)エチル(以下BTFEEPと略す)に、電解質としてLiFSIを1.0mol/Lの濃度となるように加えた以外は実施例1−1と同様の方法で電解液を調製し、イオン伝導度、粘度を測定した(LiFSI濃度=12.4質量%)。結果を表1に記す。
Example 1-3
The same as Example 1-1 except that LiFSI was added to bis (2,2,2-trifluoroethyl) ethyl phosphate (hereinafter abbreviated as BTFEEP) as an electrolyte so as to have a concentration of 1.0 mol / L. An electrolytic solution was prepared by the method, and ionic conductivity and viscosity were measured (LiFSI concentration = 12.4% by mass). The results are shown in Table 1.

比較例1−5
電解質としてLiPFを用いた以外は実施例1−3と同様の方法で1.0mol/Lの電解液を調製し、イオン伝導度、粘度を測定した(LiPF濃度=10.2質量%)。結果を表1に記す。
Comparative Example 1-5
A 1.0 mol / L electrolytic solution was prepared in the same manner as in Example 1-3 except that LiPF 6 was used as the electrolyte, and the ionic conductivity and viscosity were measured (LiPF 6 concentration = 10.2% by mass). . The results are shown in Table 1.

比較例1−6
電解質としてLiTFSIを用いた以外は実施例1−3と同様の方法で1.0mol/Lの電解液を調製し、イオン伝導度、粘度を測定した(LiTFSI濃度=19.1質量%)。結果を表1に記す。
Comparative Example 1-6
A 1.0 mol / L electrolytic solution was prepared in the same manner as in Example 1-3 except that LiTFSI was used as the electrolyte, and the ionic conductivity and viscosity were measured (LiTFSI concentration = 19.1% by mass). The results are shown in Table 1.

LiFSI:リチウムビス(フルオロスルホニル)イミド
LiPF:六フッ化リン酸リチウム
LiTFSI:リチウムビス(トリフルオロメチルスルホニル)イミド
TFEP:リン酸トリス(2,2,2−トリフルオロエチル)
BTFEMP:リン酸ビス(2,2,2−トリフルオロエチル)メチル
BTFEEP:リン酸ビス(2,2,2−トリフルオロエチル)エチル
LiFSI: Lithium bis (fluorosulfonyl) imide LiPF 6 : Lithium hexafluorophosphate LiTFSI: Lithium bis (trifluoromethylsulfonyl) imide TFEP: Tris (2,2,2-trifluoroethyl phosphate)
BTFEMP: bis (2,2,2-trifluoroethyl) methyl phosphate BTFEEP: bis (2,2,2-trifluoroethyl) ethyl phosphate

表1に示した実施例、比較例の結果から、フッ素系リン酸エステル単独の溶媒系において、LiFSIを電解質として用いた場合は、LiPFやLiTFSIと比較してイオン伝導度が大きく向上していることが判る。このようにイオン伝導度が向上した理由は明らかではないが、LiFSIと含フッ素リン酸エステルとの相互作用によるLiFSIの解離状態及びLiカチオンへの含フッ素リン酸エステルの配位状態が関係していると考えられる。 From the results of Examples and Comparative Examples shown in Table 1, when LiFSI is used as an electrolyte in a solvent system of a fluorine-based phosphate ester alone, the ionic conductivity is greatly improved compared to LiPF 6 and LiTFSI. I know that. The reason why the ionic conductivity is improved in this way is not clear, but is related to the dissociation state of LiFSI due to the interaction between LiFSI and the fluorine-containing phosphate ester and the coordination state of the fluorine-containing phosphate ester to the Li cation. It is thought that there is.

実施例1−4
TFEPに対するLiFSIの飽和溶解度を測定した。すなわち、TFEPに過剰量のLiFSIを混合し、撹拌条件下、20℃の恒温条件で溶解した。10時間以上撹拌し、十分溶解したことを確認してから、2時間静置し、上澄み中のLiFSI濃度を19F-NMR(BRUKER製 AVANCE II 400)により定量することで、TFEP中のLiFSI濃度を算出した。その結果、20℃におけるTFEP中のLiFSI飽和溶解度は22.9質量%(1.27mol/L)であった。
Example 1-4
The saturation solubility of LiFSI in TFEP was measured. That is, an excess amount of LiFSI was mixed with TFEP and dissolved under constant temperature conditions of 20 ° C. under stirring conditions. After stirring for 10 hours or more and confirming that it was sufficiently dissolved, the mixture was allowed to stand for 2 hours, and the LiFSI concentration in the supernatant was determined by 19 F-NMR (AVANCE II 400 manufactured by BRUKER) to determine the LiFSI concentration in TFEP. Was calculated. As a result, the LiFSI saturated solubility in TFEP at 20 ° C. was 22.9% by mass (1.27 mol / L).

比較例1−7
電解質をLiPFに代えた以外は、実施例1−4と同様の操作で飽和溶解度を測定した。その結果、20℃におけるTFEP中のLiPF飽和溶解度は5.6質量%(0.58mol/L)であった。
Comparative Example 1-7
Saturation solubility was measured in the same manner as in Example 1-4, except that the electrolyte was changed to LiPF 6 . As a result, the LiPF 6 saturated solubility in TFEP at 20 ° C. was 5.6% by mass (0.58 mol / L).

実施例2−1
エチレンカーボネート(以下、ECと略す)とジメチルカーボネート(以下、DMCと略す)とTFEPを体積比、35/35/30の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=12.5質量%)。この電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表2に記す。
Example 2-1
Ethylene carbonate (hereinafter abbreviated as EC), dimethyl carbonate (hereinafter abbreviated as DMC) and TFEP were mixed at a volume ratio of 35/35/30, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L ( LiFSI concentration = 12.5% by mass). The electrolyte solution was measured for ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 2.

比較例2−1
電解質にLiPFを用いた以外は、実施例2−1と同様の方法でイオン伝導度、粘度の測定を行った(LiPF濃度=10.1質量%)。結果を表2に記す。
Comparative Example 2-1
Ion conductivity and viscosity were measured in the same manner as in Example 2-1, except that LiPF 6 was used as the electrolyte (LiPF 6 concentration = 10.1% by mass). The results are shown in Table 2.

EC:エチレンカーボネート、DMC:ジメチルカーボネート EC: ethylene carbonate, DMC: dimethyl carbonate

実施例2−1、比較例2−1は、フッ素系リン酸エステルに環状カーボネートと鎖状カーボネートを混合した場合のイオン伝導度、粘度の測定例である。この結果からも明らかな様に、本発明のLiFSIとの組み合せた場合にイオン伝導度の向上が認められる。   Example 2-1 and Comparative Example 2-1 are measurement examples of ion conductivity and viscosity when a cyclic carbonate and a chain carbonate are mixed with a fluorine-based phosphate ester. As is apparent from this result, an improvement in ionic conductivity is observed when combined with the LiFSI of the present invention.

実施例2−2
ECとTFEPを体積比、7/3の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=12.7質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表3に記す。
Example 2-2
EC and TFEP were mixed at a volume ratio of 7/3, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 12.7% by mass). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 3.

実施例2−3
EC/TFEPの混合比を体積比で5/5で混合した以外は、実施例2−2と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=12.3質量%)。結果を表3に記す。
Example 2-3
An electrolytic solution was prepared in the same manner as in Example 2-2 except that the EC / TFEP mixing ratio was 5/5 by volume, and the ionic conductivity and viscosity were measured (LiFSI concentration = 12). .3% by mass). The results are shown in Table 3.

さらにこの電解液を使用して、測定例3の方法で凝固点を測定した結果、凝固点は−5.1℃であった。比較例2−3の結果と比較するとLiFSIを電解質として用いた場合、LiPFに比べて凝固点が低下するという驚くべき効果を有することが判った。 Furthermore, as a result of measuring the freezing point by the method of Measurement Example 3 using this electrolytic solution, the freezing point was -5.1 ° C. If the LiFSI when compared with the results of Comparative Example 2-3 was used as the electrolyte, the freezing point as compared with LiPF 6 was found to have a surprising effect decreases.

実施例2−4
EC/TFEPの混合比を体積比で3/7で混合した以外は、実施例2−2と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=12.0質量%)。結果を表3に記す。
Example 2-4
An electrolytic solution was prepared in the same manner as in Example 2-2 except that the EC / TFEP mixing ratio was 3/7 by volume, and the ionic conductivity and viscosity were measured (LiFSI concentration = 12). 0.0 mass%). The results are shown in Table 3.

比較例2−2
電解質にLiPF6を使用した以外は、実施例2−2と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=10.1質量%)。結果を表3に記す。
Comparative Example 2-2
Except using LiPF6 as the electrolyte, an electrolyte solution was prepared in the same manner as in Example 2-2, the ion conductivity, the measurement of the viscosity was performed (LiPF 6 concentration = 10.1 mass%). The results are shown in Table 3.

比較例2−3
電解質にLiPFを使用した以外は、実施例2−3と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=9.9質量%)。結果を表3に記す。
Comparative Example 2-3
An electrolyte solution was prepared in the same manner as in Example 2-3, except that LiPF 6 was used as the electrolyte, and ion conductivity and viscosity were measured (LiPF 6 concentration = 9.9% by mass). The results are shown in Table 3.

さらにこの電解液を使用して、測定例3の方法で凝固点を測定した結果、凝固点は4.1℃であった。   Furthermore, as a result of measuring the freezing point by the method of Measurement Example 3 using this electrolytic solution, the freezing point was 4.1 ° C.

比較例2−4
電解質にLiPFを使用した以外は、実施例2−4と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=9.8質量%)。結果を表3に記す。
Comparative Example 2-4
An electrolyte solution was prepared in the same manner as in Example 2-4 except that LiPF 6 was used as the electrolyte, and the ionic conductivity and viscosity were measured (LiPF 6 concentration = 9.8% by mass). The results are shown in Table 3.

実施例2−2〜2−4、比較例2−2〜2−4は、フッ素系リン酸エステルと非水溶媒の比率を変えて検討した例である。全ての比率において、LiFSIを混合した方が、LiPFを混合した場合を上回るイオン伝導度を示す。 Examples 2-2 to 2-4 and Comparative Examples 2-2 to 2-4 are examples examined by changing the ratio of the fluorine-based phosphate ester and the nonaqueous solvent. In all proportions, who were mixed LiFSI indicates ionic conductivity of greater than when mixed with LiPF 6.

実施例2−5
プロピレンカーボネート(以下PCと略す)とTFEPを体積比、5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=12.8質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表4に記す。
Example 2-5
Propylene carbonate (hereinafter abbreviated as PC) and TFEP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 12.8 mass%). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 4.

実施例2−6
フルオロエチレンカーボネート(以下FECと略す)とTFEPを体積比、5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=11.8質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表4に記す。
Example 2-6
Fluoroethylene carbonate (hereinafter abbreviated as FEC) and TFEP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 11.8% by mass). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 4.

実施例2−7
γ−ブチロラクトン(以下GBLと略す)とTFEPを体積比、5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=13.4質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表4に記す。
Example 2-7
γ-Butyrolactone (hereinafter abbreviated as GBL) and TFEP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 13.4% by mass). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 4.

実施例2−8
PCとBTFEMPを体積比、5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=13.3質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表4に記す。
Example 2-8
PC and BTFEMP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 13.3 mass%). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 4.

実施例2−9
GBLとBTFEMPを体積比、5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=13.3質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表4に記す。
Example 2-9
GBL and BTFEMP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 13.3 mass%). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 4.

比較例2−5
電解質にLiPFを使用した以外は、実施例2−5と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=10.3質量%)。結果を表4に記す。
Comparative Example 2-5
An electrolyte solution was prepared in the same manner as in Example 2-5, except that LiPF 6 was used as the electrolyte, and ionic conductivity and viscosity were measured (LiPF 6 concentration = 10.3 mass%). The results are shown in Table 4.

比較例2−6
電解質にLiPFを使用した以外は、実施例2−6と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=9.5質量%)。結果を表4に記す。
Comparative Example 2-6
An electrolyte solution was prepared in the same manner as in Example 2-6, except that LiPF 6 was used as the electrolyte, and ionic conductivity and viscosity were measured (LiPF 6 concentration = 9.5 mass%). The results are shown in Table 4.

比較例2−7
電解質にLiPFを使用した以外は、実施例2−7と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=10.7質量%)。結果を表4に記す。
Comparative Example 2-7
An electrolyte solution was prepared in the same manner as in Example 2-7, except that LiPF 6 was used as the electrolyte, and ionic conductivity and viscosity were measured (LiPF 6 concentration = 10.7% by mass). The results are shown in Table 4.

比較例2−8
電解質にLiPFを使用した以外は、実施例2−8と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=10.7質量%)。結果を表4に記す。
Comparative Example 2-8
Except for using LiPF 6 as the electrolyte, an electrolytic solution was prepared in the same manner as in Example 2-8, and the ionic conductivity and viscosity were measured (LiPF 6 concentration = 10.7% by mass). The results are shown in Table 4.

比較例2−9
電解質にLiPFを使用した以外は、実施例2−9と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=11.0質量%)。結果を表4に記す。
Comparative Example 2-9
Except for using LiPF 6 as the electrolyte, an electrolytic solution was prepared in the same manner as in Example 2-9, and the ionic conductivity and viscosity were measured (LiPF 6 concentration = 11.0% by mass). The results are shown in Table 4.

PC:プロピレンカーボネート FEC:フルオロエチレンカーボネート
GBL:γ-ブチロラクトン
実施例2−5〜2−9、比較例2−5〜2−9は、EC以外の環状カーボネートや環状エステルを用いた例を示す。この様に、ECに限らず、様々な溶媒との組合せでイオン伝導度が向上することが判る。
PC: Propylene carbonate FEC: Fluoroethylene carbonate GBL: γ-butyrolactone Examples 2-5 to 2-9 and Comparative examples 2-5 to 2-9 show examples using cyclic carbonates and cyclic esters other than EC. Thus, it turns out that ion conductivity improves not only by EC but in combination with various solvents.

実施例3−1
リン酸トリエチル(以下、TEPと略す)とTFEPを体積比、7/3の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=14.5質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表5に記す。
Example 3-1
Triethyl phosphate (hereinafter abbreviated as TEP) and TFEP were mixed at a volume ratio of 7/3, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 14.5% by mass). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 5.

実施例3−2
TEP/TFEPの混合比を体積比で5/5で混合した以外は、実施例3−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=14.0質量%)。結果を表5に記す。
Example 3-2
An electrolyte solution was prepared in the same manner as in Example 3-1, except that the mixing ratio of TEP / TFEP was 5/5 by volume ratio, and ionic conductivity and viscosity were measured (LiFSI concentration = 14). 0.0 mass%). The results are shown in Table 5.

実施例3−3
TEP/TFEPの混合比を体積比で3/7で混合した以外は、実施例3−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=13.1質量%)。結果を表5に記す。
Example 3-3
An electrolyte solution was prepared in the same manner as in Example 3-1, except that the TEP / TFEP mixing ratio was 3/7 by volume, and the ionic conductivity and viscosity were measured (LiFSI concentration = 13). .1% by mass). The results are shown in Table 5.

実施例3−4
リン酸トリメチル(以下、TMPと略す)とTFEPを体積比、7/3の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った(LiFSI濃度=13.5質量%)。結果を表5に記す。
Example 3-4
Trimethyl phosphate (hereinafter abbreviated as TMP) and TFEP were mixed at a volume ratio of 7/3, and LiFSI as an electrolyte was dissolved at 1 mol / L. The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2 (LiFSI concentration = 13.5% by mass). The results are shown in Table 5.

実施例3−5
TMP/TFEPの混合比を体積比で5/5で混合した以外は、実施例3−4と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=13.2質量%)。結果を表5に記す。
Example 3-5
An electrolyte solution was prepared in the same manner as in Example 3-4, except that the mixing ratio of TMP / TFEP was 5/5 by volume ratio, and ionic conductivity and viscosity were measured (LiFSI concentration = 13). .2% by mass). The results are shown in Table 5.

実施例3−6
TMP/TFEPの混合比を体積比で3/7で混合した以外は、実施例3−4と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=12.2質量%)。結果を表5に記す。
Example 3-6
An electrolyte solution was prepared in the same manner as in Example 3-4, except that the TMP / TFEP mixing ratio was 3/7 by volume, and the ionic conductivity and viscosity were measured (LiFSI concentration = 12). .2% by mass). The results are shown in Table 5.

比較例3−1
電解質にリチウムビス(トリフルオロメチルスルホニル)イミド(以下、LiTFSIと略す)を使用した以外は、実施例3−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiTFSI濃度=22.3質量%)。結果を表5に記す。
Comparative Example 3-1
An electrolyte solution was prepared in the same manner as in Example 3-1, except that lithium bis (trifluoromethylsulfonyl) imide (hereinafter abbreviated as LiTFSI) was used as the electrolyte, and ionic conductivity and viscosity were measured. (LiTFSI concentration = 22.3 mass%). The results are shown in Table 5.

比較例3−2
電解質にLiTFSIを使用した以外は、実施例3−2と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiTFSI濃度=21.2質量%)。結果を表5に記す。
Comparative Example 3-2
Except that LiTFSI was used as the electrolyte, an electrolytic solution was prepared in the same manner as in Example 3-2, and ionic conductivity and viscosity were measured (LiTFSI concentration = 21.2 mass%). The results are shown in Table 5.

さらにこの電解液を使用して、測定例3の方法で凝固点を測定した結果、凝固点は4.1℃であった。   Furthermore, as a result of measuring the freezing point by the method of Measurement Example 3 using this electrolytic solution, the freezing point was 4.1 ° C.

比較例3−3
電解質にLiTFSIを使用した以外は、実施例3−3と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiTFSI濃度=19.5質量%)。結果を表5に記す。
Comparative Example 3-3
An electrolyte solution was prepared in the same manner as in Example 3-3 except that LiTFSI was used as the electrolyte, and ionic conductivity and viscosity were measured (LiTFSI concentration = 19.5 mass%). The results are shown in Table 5.

比較例3−4
電解質にLiTFSIを使用した以外は、実施例3−4と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiTFSI濃度=20.9質量%)。結果を表5に記す。
Comparative Example 3-4
An electrolyte solution was prepared in the same manner as in Example 3-4 except that LiTFSI was used as the electrolyte, and ionic conductivity and viscosity were measured (LiTFSI concentration = 20.9 mass%). The results are shown in Table 5.

比較例3−5
電解質にLiTFSIを使用した以外は、実施例3−5と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiTFSI濃度=20.0質量%)。結果を表5に記す。
Comparative Example 3-5
Except having used LiTFSI for the electrolyte, an electrolytic solution was prepared in the same manner as in Example 3-5, and ionic conductivity and viscosity were measured (LiTFSI concentration = 20.0 mass%). The results are shown in Table 5.

比較例3−6
電解質にLiTFSIを使用した以外は、実施例3−5と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiTFSI濃度=19.0質量%)。結果を表5に記す。
Comparative Example 3-6
Except having used LiTFSI for the electrolyte, an electrolytic solution was prepared in the same manner as in Example 3-5, and ionic conductivity and viscosity were measured (LiTFSI concentration = 19.0 mass%). The results are shown in Table 5.

TEP:リン酸トリエチル TMP:リン酸トリメチル
LiTFSI:リチウムビス(トリフルオロメチルスルホニル)イミド
TEP: Triethyl phosphate TMP: Trimethyl phosphate LiTFSI: Lithium bis (trifluoromethylsulfonyl) imide

実施例3−1〜3−6、比較例3−1〜3−6は、フッ素系リン酸エステルに非フッ素のリン酸エステルを混合し、比較電解質としてLiTFSIを用いた例を示す。この結果から明らかな様に、非フッ素のリン酸エステルと組合わせた場合でも、LiFSI電解質を用いた方が、イオン伝導度が向上することが判る。   Examples 3-1 to 3-6 and Comparative Examples 3-1 to 3-6 show examples in which a non-fluorine phosphate ester is mixed with a fluorine phosphate ester and LiTFSI is used as a comparative electrolyte. As is clear from this result, even when combined with a non-fluorine phosphate ester, it is understood that the ionic conductivity is improved by using the LiFSI electrolyte.

実施例4−1
ECとBTFEMPを体積比、7/3の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=12.8質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表6に記す。
Example 4-1
EC and BTFEMP were mixed at a volume ratio of 7/3, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L (LiFSI concentration = 12.8% by mass). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 6.

実施例4−2
EC/BTFEMPの混合比を体積比で5/5で混合した以外は、実施例4−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=12.5質量%)。結果を表6に記す。
Example 4-2
An electrolytic solution was prepared in the same manner as in Example 4-1, except that the EC / BTFEMP mixing ratio was 5/5 by volume ratio, and the ionic conductivity and viscosity were measured (LiFSI concentration = 12). .5% by mass). The results are shown in Table 6.

実施例4−3
EC/BTFEMPの混合比を体積比で3/7で混合した以外は、実施例4−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=12.4質量%)。結果を表6に記す。
Example 4-3
An electrolyte solution was prepared in the same manner as in Example 4-1, except that the EC / BTFEMP mixing ratio was 3/7 by volume, and the ionic conductivity and viscosity were measured (LiFSI concentration = 12). .4 mass%). The results are shown in Table 6.

比較例4−1
電解質にLiPF6を使用した以外は、実施例4−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=10.4質量%)。結果を表6に記す。
Comparative Example 4-1
Except using LiPF6 as the electrolyte, an electrolyte solution was prepared in the same manner as in Example 4-1, the ion conductivity, the measurement of the viscosity was performed (LiPF 6 concentration = 10.4 mass%). The results are shown in Table 6.

比較例4−2
電解質にLiPF6を使用した以外は、実施例4−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=10.2質量%)。結果を表6に記す。
Comparative Example 4-2
Except using LiPF6 as the electrolyte, an electrolyte solution was prepared in the same manner as in Example 4-1, the ion conductivity, the measurement of the viscosity was performed (LiPF 6 concentration = 10.2 mass%). The results are shown in Table 6.

比較例4−3
電解質にLiPF6を使用した以外は、実施例4−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=9.9質量%)。結果を表6に記す。
Comparative Example 4-3
Except using LiPF6 as the electrolyte, an electrolyte solution was prepared in the same manner as in Example 4-1, the ion conductivity, the measurement of the viscosity was performed (LiPF 6 concentration = 9.9 wt%). The results are shown in Table 6.

実施例5−1
ECとTFEPを体積比、5/5の比率で混合し、電解質としてLiFSIを0.5mol/L、LiPF6を0.5mol/Lとなるように溶解した(LiFSI濃度=6.1質量%、LiPF濃度=5.0質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表7に記す。
Example 5-1
EC and TFEP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved at 0.5 mol / L and LiPF6 was dissolved at 0.5 mol / L (LiFSI concentration = 6.1 mass%, LiPF 6 concentration = 5.0 mass%). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 7.

比較例5−1
電解質にLiPF6を1mol/L溶解し、この電解液に1wt%のLiFSIを加えた以外は、実施例5−1と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=9.9質量%)。結果を表7に記す。
Comparative Example 5-1
An electrolyte solution was prepared in the same manner as in Example 5-1, except that 1 mol / L of LiPF6 was dissolved in the electrolyte, and 1 wt% LiFSI was added to the electrolyte solution, and ionic conductivity and viscosity were measured. (LiPF 6 concentration = 9.9% by mass). The results are shown in Table 7.

実施例5−2
ECとTFEP、1,3-プロパンスルトンを体積比、47.5/47.5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した(LiFSI濃度=12.3質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表8に記す。
Example 5-2
EC, TFEP, and 1,3-propane sultone were mixed at a volume ratio of 47.5 / 47.5 / 5, and LiFSI as an electrolyte was dissolved at 1 mol / L (LiFSI concentration = 12.3 mass). %). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 8.

比較例5−2
電解質にLiPF6を1mol/L溶解した以外は、実施例5−2と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=9.9質量%)。結果を表8に記す。
Comparative Example 5-2
Except that LiPF6 in the electrolyte was dissolved 1 mol / L, the electrolytic solution was prepared in the same manner as in Example 5-2, the ion conductivity, the measurement of the viscosity was performed (LiPF 6 concentration = 9.9 wt%). The results are shown in Table 8.

実施例5−3
ECとTFEPを体積比、5/5の比率で混合し、電解質としてLiFSIを0.5mol/Lとなるように溶解した(LiFSI濃度=6.2質量%)。このように調製した電解液を測定例1、測定例2の方法によりイオン伝導度、粘度の測定を行った。結果を表9に記す。
Example 5-3
EC and TFEP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 0.5 mol / L (LiFSI concentration = 6.2% by mass). The electrolyte solution thus prepared was subjected to measurement of ion conductivity and viscosity by the methods of Measurement Example 1 and Measurement Example 2. The results are shown in Table 9.

実施例5−4
LiFSIの濃度を2mol/Lになるように調製した以外は、実施例5−3と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=23.7質量%)。結果を表9に記す。
Example 5-4
Except that the LiFSI concentration was adjusted to 2 mol / L, an electrolyte solution was prepared in the same manner as in Example 5-3, and ionic conductivity and viscosity were measured (LiFSI concentration = 23.7 mass). %). The results are shown in Table 9.

実施例5−5
LiFSIの濃度を3mol/Lになるように調製した以外は、実施例5−3と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiFSI濃度=34.3質量%)。結果を表9に記す。
Example 5-5
Except that the LiFSI concentration was adjusted to 3 mol / L, an electrolyte solution was prepared in the same manner as in Example 5-3, and ion conductivity and viscosity were measured (LiFSI concentration = 34.3 mass). %). The results are shown in Table 9.

比較例5−3
電解質にLiPF6を0.5mol/Lの濃度で溶解した以外は、実施例5−3と同様の方法で電解液を調製し、イオン伝導度、粘度の測定を行った(LiPF濃度=5.1質量%)。結果を表9に記す。
Comparative Example 5-3
Except that LiPF6 in the electrolyte was dissolved at a concentration of 0.5 mol / L, the electrolytic solution was prepared in the same manner as in Example 5-3, the ion conductivity was measured for viscosity (LiPF 6 concentration = 5. 1% by mass). The results are shown in Table 9.

比較例5−4
電解質にLiPF6を2mol/Lの濃度で溶解した以外は、実施例5−4と同様の方法で電解液の調製を試みた。しかし、電解質は完全に溶解せず、電解液そのものが固結し、電解液の調製はできなかった。
Comparative Example 5-4
An electrolytic solution was prepared in the same manner as in Example 5-4 except that LiPF6 was dissolved in the electrolyte at a concentration of 2 mol / L. However, the electrolyte was not completely dissolved, and the electrolytic solution itself solidified, and the electrolytic solution could not be prepared.

比較例5−5
電解質にLiPF6を3mol/Lの濃度で溶解した以外は、実施例5−5と同様の方法で電解液の調製を試みた。しかし、電解質は完全に溶解せず、電解液そのものが固結し、電解液の調製はできなかった。
Comparative Example 5-5
An electrolytic solution was prepared in the same manner as in Example 5-5 except that LiPF6 was dissolved in the electrolyte at a concentration of 3 mol / L. However, the electrolyte was not completely dissolved, and the electrolytic solution itself solidified, and the electrolytic solution could not be prepared.

参考として、実施例2−3、比較例2−3の結果を併記する。   For reference, the results of Example 2-3 and Comparative Example 2-3 are also shown.

実施例5−4、5−5と比較例5−4、5−5の様に、溶解性に差が表れた理由は明らかではないが、含フッ素リン酸エステルとLiFSIもしくはLiPF6の相互作用の違いにより、この様な溶解性の差を示したのではないかと考えられる。   The reason for the difference in solubility as in Examples 5-4 and 5-5 and Comparative Examples 5-4 and 5-5 is not clear, but the interaction between the fluorine-containing phosphate ester and LiFSI or LiPF6 is not clear. It is thought that such a difference in solubility was shown due to the difference.

作成例1
[コインセル型リチウムイオン二次電池の作成]
実施例6−1、比較例6−1では、非水電解液二次電池として、以下の方法でコインセル型リチウムイオン二次電池を作成し、充放電サイクル試験を行った。
Creation example 1
[Creation of coin cell type lithium ion secondary battery]
In Example 6-1 and Comparative Example 6-1, a coin cell type lithium ion secondary battery was prepared as a nonaqueous electrolyte secondary battery by the following method, and a charge / discharge cycle test was performed.

即ち、正極活物質としてLiCoOを用い、これに導電助剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)を重量比で、LiCoO:カーボンブラック:PVDF=90:5:5となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものをアルミ製集電体上に一定の膜厚で塗布し、乾燥させて正極を得た。 That is, LiCoO 2 is used as the positive electrode active material, carbon black is used as the conductive auxiliary agent, and polyvinylidene fluoride (PVDF) is used as the binder, so that LiCoO 2 : carbon black: PVDF = 90: 5: 5. What was blended and slurried using 1-methyl-2-pyrrolidone was applied on an aluminum current collector with a constant film thickness and dried to obtain a positive electrode.

負極活物質としては天然球状グラファイトを用い、バインダーとしてPVDFを重量比で、グラファイト:PVDF=9:1となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものを銅製集電体上に一定の膜厚で塗布し、乾燥させて負極を得た。   Natural spherical graphite is used as the negative electrode active material, PVDF is blended as a binder in a weight ratio of graphite: PVDF = 9: 1, and a slurry obtained using 1-methyl-2-pyrrolidone is made of copper. The negative electrode was obtained by applying a constant film thickness on the electric conductor and drying it.

セパレータは無機フィラー含有ポリオレフィン多孔質膜を用いた。   As the separator, an inorganic filler-containing polyolefin porous membrane was used.

以上の構成要素に本発明の非水電解液を加えて、図2に示した構造のコイン型セルを用いたリチウム二次電池を作成した。リチウム二次電池はセパレータ10を挟んで正極3、負極7を対向配置し、これら正極3、セパレータ10および負極7からなる積層体をガスケット11に嵌め込んだ。このガスケット11には正極ステンレスキャップ5と負極ステンレスキャップ6を取り付け、負極ステンレスキャップ6の内側に設けたステンレスバネ9によって前記積層体を構成する正極3を正極ステンレスキャップ5の内側に押し付け、コインセル型リチウムイオン二次電池を作成した。   The non-aqueous electrolyte of the present invention was added to the above components to produce a lithium secondary battery using a coin-type cell having the structure shown in FIG. In the lithium secondary battery, the positive electrode 3 and the negative electrode 7 were disposed opposite to each other with the separator 10 interposed therebetween, and a laminate including the positive electrode 3, the separator 10, and the negative electrode 7 was fitted into the gasket 11. A positive electrode stainless steel cap 5 and a negative electrode stainless steel cap 6 are attached to the gasket 11, and the positive electrode 3 constituting the laminate is pressed against the inside of the positive electrode stainless steel cap 5 by a stainless spring 9 provided inside the negative electrode stainless steel cap 6. A lithium ion secondary battery was prepared.

実施例6−1
ECとTFEPを体積比、5/5の比率で混合し、電解質としてLiFSIを1mol/Lとなるように溶解した。この電解液を用いて、作成例4の方法でコインセル型リチウム二次電池を作成した。25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.2Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。この電池を25℃の恒温条件下、1Cの充電電流で4.2Vの定電流-定電圧充電を行い、1Cの放電電流で終止電圧3.0Vまで定電流放電を行った。結果を表10に記す。
Example 6-1
EC and TFEP were mixed at a volume ratio of 5/5, and LiFSI as an electrolyte was dissolved so as to be 1 mol / L. Using this electrolytic solution, a coin cell type lithium secondary battery was prepared by the method of Preparation Example 4. Under a constant temperature condition of 25 ° C., the battery was charged with an upper limit voltage of 4.2 V with a charging current of 0.1 C, and subsequently discharged to 3.0 V with a discharging current of 0.1 C. This battery was subjected to constant current-constant voltage charging at a constant current of 25 ° C. with a charging current of 1 C and a constant current discharging to a final voltage of 3.0 V with a discharging current of 1 C. The results are shown in Table 10.

比較例6−1
電解質にLiPF6を用いた以外は、実施例6−1と同様の方法で電解液を調製し、コインセル型リチウム二次電池を作成した。25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.2Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。この電池を25℃の恒温条件下、1Cの充電電流で4.2Vの定電流-定電圧充電を行い、1Cの放電電流で終止電圧3.0Vまで定電流放電を行った。結果を表10に記す。
Comparative Example 6-1
An electrolytic solution was prepared in the same manner as in Example 6-1 except that LiPF6 was used as the electrolyte, and a coin cell type lithium secondary battery was prepared. Under a constant temperature condition of 25 ° C., the battery was charged with an upper limit voltage of 4.2 V with a charging current of 0.1 C, and subsequently discharged to 3.0 V with a discharging current of 0.1 C. This battery was subjected to constant current-constant voltage charging at a constant current of 25 ° C. with a charging current of 1 C and a constant current discharging to a final voltage of 3.0 V with a discharging current of 1 C. The results are shown in Table 10.

実施例6−1、比較例6−1では電池の充放電性能について比較を行った。その結果、本発明の組成で、電池の充放電が可能になる事、また特に高レートでの試験でその差が顕著になることが明らかになった。この理由の詳細は明らかではないが、含フッ素リン酸エステルとLiFSIの相互作用により非水電解液のイオン伝導度が増加し、その結果、特に高レートでの電池容量が向上したと考えられる。   In Example 6-1 and Comparative Example 6-1, the charge / discharge performance of the batteries was compared. As a result, it has been clarified that the composition of the present invention makes it possible to charge and discharge the battery, and that the difference becomes remarkable particularly in a test at a high rate. Although the details of this reason are not clear, it is considered that the ionic conductivity of the nonaqueous electrolytic solution is increased by the interaction between the fluorine-containing phosphate ester and LiFSI, and as a result, the battery capacity at a particularly high rate is improved.

本発明は、従来の電解液では困難であった安全性と高イオン伝導性を両立した非水電解液、さらには、安全性と出力特性に優れた非水系二次電池として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a non-aqueous electrolyte that achieves both safety and high ionic conductivity, which was difficult with conventional electrolytes, and a non-aqueous secondary battery excellent in safety and output characteristics.

1 ガラス製電気化学セル
2 白金製電極
3 正極活物質
4 正極集電体
5 正極ステンレス製キャップ
6 負極ステンレス製キャップ
7 負極物質
8 負極集電体
9 ステンレス製板バネ
10 無機フィラー含有ポリオレフィン多孔質セパレータ
11 ガスケット
DESCRIPTION OF SYMBOLS 1 Electrochemical cell made of glass 2 Electrode made of platinum 3 Positive electrode active material 4 Positive electrode current collector 5 Positive electrode stainless steel cap 6 Negative electrode stainless steel cap 7 Negative electrode material 8 Negative electrode current collector 9 Stainless steel leaf spring 10 Inorganic filler-containing polyolefin porous separator 11 Gasket

Claims (10)

非水溶媒として下記一般式(1)
(式中、Rf、Rf及びRfは、それぞれ独立して、炭素数1〜6の直鎖もしくは分岐のアルキル基もしくは炭素数6〜10のアリール基または炭素数1〜6の直鎖もしくは分岐の含フッ素アルキル基を表し、且つRf〜Rfの少なくとも1つは含フッ素アルキル基である)で表される含フッ素リン酸エステルを含み、電解質塩として下記一般式(2)
(式中Rfはフッ素原子または炭素数1〜4の直鎖もしくは分岐のアルキル基または炭素数1〜4の直鎖もしくは分岐の含フッ素アルキル基を表す)で表されるフルオロスルホニルイミドリチウム塩を含む非水電解液。
The following general formula (1) as a non-aqueous solvent
(In the formula, Rf 1 , Rf 2 and Rf 3 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a linear chain having 1 to 6 carbon atoms. Or a branched fluorine-containing alkyl group, and at least one of Rf 1 to Rf 3 is a fluorine-containing alkyl group), and an electrolyte salt represented by the following general formula (2)
(In the formula, Rf 4 represents a fluorine atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched fluorine-containing alkyl group having 1 to 4 carbon atoms). Non-aqueous electrolyte containing.
非水溶媒として、更に環状カーボネート、鎖状カーボネート、環状エステル及びリン酸エステルから成る群から選ばれる少なくとも1種を存在させる請求項1に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 1, wherein at least one selected from the group consisting of a cyclic carbonate, a chain carbonate, a cyclic ester, and a phosphate ester is further present as the nonaqueous solvent. 一般式(1)で表される含フッ素リン酸エステルが、リン酸トリス(2,2−ジフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸ビス(2,2,2−トリフルオロエチル)メチル、リン酸ビス(2,2,2−トリフルオロエチル)エチル、リン酸ビス(2,2,2−トリフルオロエチル)フェニル、リン酸ビス(2,2,2−トリフルオロエチル)2,2−ジフルオロエチル、リン酸ビス(2,2,2−トリフルオロエチル)2,2,3,3−テトラフルオロプロピル、リン酸ビス(2,2−ジフルオロエチル)2,2,2−トリフルオロエチル、リン酸ビス(2,2,3,3−テトラフルオロプロピル)2,2,2−トリフルオロエチル及びリン酸(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)メチルからなる群から選ばれる少なくとも1種である請求項1または請求項2に記載の非水電解液。   The fluorine-containing phosphoric acid ester represented by the general formula (1) is tris (2,2-difluoroethyl) phosphate, tris (2,2,2-trifluoroethyl) phosphate, tris (2,2). , 3,3-tetrafluoropropyl), bis (2,2,2-trifluoroethyl) methyl phosphate, bis (2,2,2-trifluoroethyl) ethyl phosphate, bis (2,2,2) phosphate 2-trifluoroethyl) phenyl, bis (2,2,2-trifluoroethyl) phosphate 2,2-difluoroethyl, bis (2,2,2-trifluoroethyl) phosphate 2,2,3,3 -Tetrafluoropropyl, bis (2,2-difluoroethyl) phosphate 2,2,2-trifluoroethyl, bis (2,2,3,3-tetrafluoropropyl) phosphate 2,2,2-trifluoro Ethyl and phosphorus The nonaqueous electrolytic solution according to claim 1 or 2, which is at least one selected from the group consisting of (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl. . フルオロスルホニルイミドリチウム塩がビス(フルオロスルホニル)イミドリチウムである請求項1乃至請求項3のいずれか1項に記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 3, wherein the fluorosulfonylimide lithium salt is bis (fluorosulfonyl) imide lithium. 電解質塩として更にLiPFまたはLiBFを含み、フルオロスルホニルイミドリチウム塩に対するLiPFまたはLiBFの使用量がモル比で0.01〜2である請求項1乃至請求項4のいずれか1項に記載の非水電解液。 Further comprising a LiPF 6 or LiBF 4 as an electrolyte salt, any one of claims 1 to 4 usage LiPF 6 or LiBF 4 relative fluorosulfonyl imide lithium salt is 0.01 to 2 molar ratio The non-aqueous electrolyte described. 更に存在させる非水溶媒がエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートからなる群から選ばれる少なくとも1種の環状カーボネートである請求項2に記載の非水電解液。   The nonaqueous electrolysis according to claim 2, wherein the nonaqueous solvent to be further present is at least one cyclic carbonate selected from the group consisting of ethylene carbonate, propylene carbonate, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate and difluoroethylene carbonate. liquid. 更に存在させる非水溶媒がジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートからなる群から選ばれる少なくとも1種の鎖状カーボネートである請求項2に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 2, wherein the nonaqueous solvent to be further present is at least one chain carbonate selected from the group consisting of dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. 更に存在させる非水溶媒がγ − ブチロラクトン、γ − バレロラクトン、δ−バレロラクトン、ε−カプロラクタム及びγ−ヘキサノラクトンからなる群から選ばれる少なくとも1種の環状エステルである請求項2に記載の非水電解液。   The nonaqueous solvent to be further present is at least one cyclic ester selected from the group consisting of γ-butyrolactone, γ-valerolactone, δ-valerolactone, ε-caprolactam and γ-hexanolactone. Non-aqueous electrolyte. 更に存在させる非水溶媒がリン酸トリメチル、リン酸トリエチル、リン酸トリ−n−プロピル、リン酸トリイソプロピル、リン酸トリ−n−ブチル、リン酸トリイソブチル及びリン酸トリフェニルからなる群から選ばれる少なくとも1種のリン酸エステルである請求項2に記載の非水電解液。   Further, the non-aqueous solvent to be present is selected from the group consisting of trimethyl phosphate, triethyl phosphate, tri-n-propyl phosphate, triisopropyl phosphate, tri-n-butyl phosphate, triisobutyl phosphate and triphenyl phosphate. The nonaqueous electrolytic solution according to claim 2, which is at least one phosphate ester. 請求項1乃至請求項9のいずれか1項に記載の非水電解液を含む非水系二次電池。   A nonaqueous secondary battery comprising the nonaqueous electrolyte solution according to any one of claims 1 to 9.
JP2015113943A 2015-06-04 2015-06-04 Nonaqueous electrolyte and nonaqueous secondary battery using the same Active JP6549420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015113943A JP6549420B2 (en) 2015-06-04 2015-06-04 Nonaqueous electrolyte and nonaqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113943A JP6549420B2 (en) 2015-06-04 2015-06-04 Nonaqueous electrolyte and nonaqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2017004603A true JP2017004603A (en) 2017-01-05
JP6549420B2 JP6549420B2 (en) 2019-07-24

Family

ID=57751909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113943A Active JP6549420B2 (en) 2015-06-04 2015-06-04 Nonaqueous electrolyte and nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6549420B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152291A (en) * 2017-03-14 2018-09-27 株式会社豊田中央研究所 Electrolyte
US20200161705A1 (en) * 2018-11-15 2020-05-21 Samsung Electronics Co., Ltd. Electrolyte including an additive, and lithium secondary battery including the electrolyte
US20210104726A1 (en) * 2019-10-08 2021-04-08 Honda Motor Co., Ltd. Electrolytic solution for lithium ion secondary battery and a lithium ion secondary battery
JP2021111583A (en) * 2020-01-15 2021-08-02 株式会社豊田中央研究所 Power storage device
CN113764739A (en) * 2021-09-06 2021-12-07 中国科学院青岛生物能源与过程研究所 Wide-temperature-zone high-concentration double-salt flame-retardant electrolyte and application thereof in high-nickel lithium ion battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016212A1 (en) * 2009-08-04 2011-02-10 東ソー・エフテック株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
JP2013020713A (en) * 2011-07-07 2013-01-31 Tosoh F-Tech Inc Non-flammable electrolyte
JP2013030284A (en) * 2011-07-26 2013-02-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte battery
WO2013129346A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Secondary battery
WO2014080870A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
JP2014127370A (en) * 2012-12-26 2014-07-07 Nippon Shokubai Co Ltd Lithium secondary battery
JP2014209436A (en) * 2013-03-26 2014-11-06 株式会社東芝 Nonaqueous electrolyte battery, and battery pack
WO2015163139A1 (en) * 2014-04-23 2015-10-29 ソニー株式会社 Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
WO2016103412A1 (en) * 2014-12-25 2016-06-30 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
KR20160135513A (en) * 2015-05-18 2016-11-28 주식회사 엘지화학 Nonaqueous electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same
JP2016219419A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 Electrolytic solution for battery and battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016212A1 (en) * 2009-08-04 2011-02-10 東ソー・エフテック株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
JP2013020713A (en) * 2011-07-07 2013-01-31 Tosoh F-Tech Inc Non-flammable electrolyte
JP2013030284A (en) * 2011-07-26 2013-02-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte battery
WO2013129346A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Secondary battery
WO2014080870A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
JP2014127370A (en) * 2012-12-26 2014-07-07 Nippon Shokubai Co Ltd Lithium secondary battery
JP2014209436A (en) * 2013-03-26 2014-11-06 株式会社東芝 Nonaqueous electrolyte battery, and battery pack
WO2015163139A1 (en) * 2014-04-23 2015-10-29 ソニー株式会社 Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
WO2016103412A1 (en) * 2014-12-25 2016-06-30 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
KR20160135513A (en) * 2015-05-18 2016-11-28 주식회사 엘지화학 Nonaqueous electrolyte solution for lithium secondary battery and Lithium secondary battery comprising the same
JP2016219419A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 Electrolytic solution for battery and battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152291A (en) * 2017-03-14 2018-09-27 株式会社豊田中央研究所 Electrolyte
US20200161705A1 (en) * 2018-11-15 2020-05-21 Samsung Electronics Co., Ltd. Electrolyte including an additive, and lithium secondary battery including the electrolyte
US20210104726A1 (en) * 2019-10-08 2021-04-08 Honda Motor Co., Ltd. Electrolytic solution for lithium ion secondary battery and a lithium ion secondary battery
CN112635836A (en) * 2019-10-08 2021-04-09 本田技研工业株式会社 Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2021061198A (en) * 2019-10-08 2021-04-15 本田技研工業株式会社 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery
JP2021111583A (en) * 2020-01-15 2021-08-02 株式会社豊田中央研究所 Power storage device
JP7342709B2 (en) 2020-01-15 2023-09-12 株式会社豊田中央研究所 Energy storage device
CN113764739A (en) * 2021-09-06 2021-12-07 中国科学院青岛生物能源与过程研究所 Wide-temperature-zone high-concentration double-salt flame-retardant electrolyte and application thereof in high-nickel lithium ion battery

Also Published As

Publication number Publication date
JP6549420B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
JP6428631B2 (en) Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
JP6332033B2 (en) Lithium ion secondary battery
JP6255722B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP6216715B2 (en) LiPF6 stabilization method, electrolyte solution for non-aqueous secondary battery excellent in thermal stability, and non-aqueous secondary battery excellent in thermal stability
JP6607689B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
WO2010150508A1 (en) Lithium-ion secondary battery
JPWO2009110490A1 (en) Non-aqueous electrolyte battery
CN107534182A (en) Electrolyte system for high-voltage lithium ion battery
CN102412417A (en) Non-aqueous electrolyte for improving high-temperature electrochemical performance of lithium ion battery and application thereof
KR20130122364A (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
JP6476611B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP2015111552A (en) Lithium secondary battery
JP6549420B2 (en) Nonaqueous electrolyte and nonaqueous secondary battery using the same
JP4565707B2 (en) Nonaqueous electrolyte and secondary battery using the same
JP5903286B2 (en) Non-aqueous electrolyte secondary battery
JP2016131059A (en) Electrolytic solution for nonaqueous electrolyte battery and nonaqueous electrolyte battery arranged by use thereof
JP5819653B2 (en) Non-flammable electrolyte
JP2011014476A (en) Lithium ion secondary battery
JP6955672B2 (en) Electrolyte for lithium secondary battery
WO2016068033A1 (en) Lithium-ion secondary cell
JP2019175578A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP6681721B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery using the same
KR20240054372A (en) Electrolyte for metal lithium secondary batteries and evaluation method for metal lithium secondary batteries containing the electrolyte and electrolytes for metal lithium secondary batteries
JP5421803B2 (en) Additive for lithium ion secondary battery electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6549420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250