JP2017001235A - 断熱構造体 - Google Patents
断熱構造体 Download PDFInfo
- Publication number
- JP2017001235A JP2017001235A JP2015115914A JP2015115914A JP2017001235A JP 2017001235 A JP2017001235 A JP 2017001235A JP 2015115914 A JP2015115914 A JP 2015115914A JP 2015115914 A JP2015115914 A JP 2015115914A JP 2017001235 A JP2017001235 A JP 2017001235A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thermal
- intermediate layer
- base material
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
- Laminated Bodies (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
【課題】内燃機関の燃焼室に臨む部分に断熱層を設けることで冷却損失低減による熱効率の改善を図るようにした内燃機関において、高回転域においても、吸入気体の過熱等に起因するポンプ損失が生じるのを抑制できるようにした断熱構造体を提供する。【解決手段】断熱構造体Aは、アルミニウム合金である基材3の表面に形成される中間層2および遮熱層1を備える断熱構造体Aであって、中間層2は基材3に対して銅粒子がコールドスプレーされた層であり、遮熱層1は中間層2に対してジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された層であり、中間層2の厚みは20〜150μm、遮熱層1の厚みは10〜250μmであり、遮熱層1の熱伝導率λ1は基材3の熱伝導率λ3よりも小さく、かつ、中間層2の熱伝導率λ2は基材3の熱伝導率λ3よりも大きい。【選択図】図1
Description
本発明は、断熱構造体に関する。
内燃機関の熱効率を高める目的で、燃焼室に臨む部分を遮熱膜とすることが知られている。その一例が特許文献1に記載されており、そこに記載の遮熱膜は、ピストン基材に対して溶射されたジルコニア粒子と気孔部とを含む第1酸化物層と、前記第1酸化物層に対して溶射された、当該第1酸化物層のジルコニア粒子の平均粒径よりも平均粒径が小さい、アルミナ、シリカおよびジルコニアよりなる群から選ばれる1種を主成分とする酸化物粒子を含む第2酸化物層とを有するとともに、前記ピストン基材と前記第1酸化物層との間には、両者の密着性をよくするために、アンダーコート層として、Ni−20Cr合金がピストン基材表面にプラズマ溶射されている。
燃焼室に特許文献1に記載の構造の遮熱膜を備えた内燃機関では、遮熱膜(断熱層)が存在することで、外部に熱として奪われるエネルギーである冷却損失を低減することができ、熱効率の改善が期待できる。また、第1酸化物層に含まれる気孔部が第2酸化物層によって封孔されることで、燃料等が断熱構造体に浸み込むのも抑制される。
しかし、高回転域での運転となると燃焼間隔が短くなり、遮熱膜の表面温度が次の燃焼までに十分に下がりきれず、遮熱膜の表面の温度(ベース壁温)が上がっていく現象が生じる。図8はその状態を説明する図であり、横軸はクランク角(°)を、縦軸は遮熱膜の表面温度(℃)を示している。高回転域となり燃焼間隔が短くなると図に(a)で示すように温度の低下が不十分となり、次第にベース壁温が図に破線(b)で示すように上昇する。ベース壁温が上昇すると、吸気行程中に吸入気体が受熱して膨張することから充填効率が低下し、また、圧縮行程中に作動ガスが受熱してシリンダ内圧力が上昇することで圧縮行程での負の仕事が増大する等により、ポンプ損失が増大する。高回転域で生じるこのポンプ損失増大の影響で、当該内燃機関に本来期待されている冷却損失低減効果が相殺されるようになり、全体として燃費の改善効果が得られないことが起こる。
本発明は、上記の課題を解決することを課題としており、具体的には、内燃機関の燃焼室に臨む部分に断熱層を設けることで冷却損失低減による熱効率の改善を図るようにした内燃機関において、高回転域においても、吸入気体の過熱等に起因するポンプ損失が生じるのを抑制できるようにした断熱構造体を提供することを課題とする。
本発明による断熱構造体は、アルミニウム合金である基材の表面に形成される中間層および遮熱層を備える断熱構造体であって、前記中間層は前記基材であるアルミニウム合金基材に対して銅粒子がコールドスプレーされた層であり、前記遮熱層は前記中間層に対してジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された層であり、前記中間層の厚みは20〜150μm、前記遮熱層の厚みは10〜250μmであり、前記遮熱層の熱伝導率は前記基材の熱伝導率よりも小さく、かつ、前記中間層の熱伝導率は前記基材の熱伝導率よりも大きい、ことを特徴とする。
本発明による断熱構造体は、アルミニウム合金である基材と、前記基材の表面にコールドスプレーされた銅粒子からなる中間層と、前記中間層に溶射されたジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子からなる遮熱層とで構成される。そして、前記遮熱層の熱伝導率をλ1、前記中間層の熱伝導率をλ2、前記基材の熱伝導率をλ3としたときに、各熱伝導率λは、λ1<λ3<λ2の関係にある。したがって、遮熱層が保有する熱は、遮熱層が基材に直接溶射されている場合に遮熱層から基材に伝熱するのと比較して、中間層に対して伝熱しやすくなる。また、λ3<λ2の関係にあるので、中間層から基材への伝熱は抑制される。
そのために、本発明による断熱構造体を燃焼室に臨む部分に備えるようにした場合、低回転域では外部に熱として奪われるエネルギーである冷却損失を低減することができる。また、高回転域において燃焼間隔が短くなった場合でも、燃焼室内の熱は断熱構造体を構成する遮熱層から中間層に伝熱しやすくなっていることから、ベース壁温である遮熱層の表面温度が過度に上昇するのを回避でき、空気過熱が生じ難くなる。そのために、高回転域における吸気過熱等に起因するポンプ損失の増大を回避することが可能となり、当該内燃機関に本来期待されている冷却損失低減効果を高回転域においてもそのまま維持できるようになる。
特に、後の実施例に示すように、前記中間層の厚みは20〜150μm、前記遮熱層の厚みは10〜250μmであることで、所期の目的は確実に達成される。
本発明による本発明による断熱構造体を燃焼室に臨む部分に備えるようにすることにより、その内燃機関は、高回転域での吸気過熱が生じ難くなり、吸気加熱によるポンプ損失が抑制され、冷却損失低減効果が相殺されることなく、燃費改善効果が大きくなる。
以下、本発明の実施の形態を図面を参照しながら説明する。図1は本発明による断熱構造体の一実施の形態を模式的に示す図であり、図2は本発明による断熱構造体を備えた内燃機関を模式的に示す図である。
図1に示されるように、本発明による断熱構造体Aは、基本構成として、遮熱層1と中間層2と基材3とを備える。基材3はアルミニウム合金からなる層であり、中間層2は前記基材3であるアルミニウム合金基材に対して銅粒子がコールドスプレーされた層であり、遮熱層1は前記中間層2に対してジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された層である。断熱構造体Aは断熱を要する任意の箇所で使用できるが、好ましくは、図2に示すように、内燃機関Bにおける燃焼室に臨む部分に用いられる。
図2において、11はシリンダーブロック、12はシリンダーヘッドであり、シリンダーブロック11のシリンダーボア13内をピストン14が往復動している。シリンダーヘッド12には吸気ポート15や排気ポート16等が設けられ、そこには吸気弁17や排気弁18が取り付けられている。このような内燃機関Bにおいて、シリンダーボア13とシリンダーヘッド12とピストン14で囲まれる領域が一般に燃焼室と呼ばれており、前記したように、内燃機関の熱効率を高める目的で、燃焼室に臨む部分に遮熱膜19を形成することが行われる。具体的には、シリンダーボア13の内周面、シリンダーヘッド12のシリンダーボア13に面する面、吸気ポート15や排気ポート16のリンダーボア13に面する面、ピストン14の頂面などに遮熱膜19が形成される。
図1に示した本発明による断熱構造体Aが、前記した燃焼室に臨む部分に適用される場合には、前記した基材3がシリンダーブロック11あるいはシリンダーヘッド12に対応することとなり、それらはアルミニウム合金であることがほとんどであることから、本発明による断熱構造体Aにおいて、基材3はアルミニウム合金である基材とされている。そして、前記中間層2および遮熱層1は、シリンダーブロック11あるいはシリンダーヘッド12等の燃焼室に面した側に形成される。
断熱構造体Aにおいて、前記中間層2は前記基材3(シリンダーブロック11あるいはシリンダーヘッド12等)であるアルミニウム合金基材に対して銅粒子がコールドスプレーされた層であり、中間層2の熱伝導率λ2は、基材3であるシリンダーブロック11あるいはシリンダーヘッド12を構成するアルミニウム合金の熱伝導率λ3(通常96W/mK程度)よりも大きい。また、中間層2はコールドスプレー被膜であり、コールドスプレー被膜は溶射皮膜と比較してほとんど酸化されず、材料粒子の特性を維持することができ、かつ気孔率が低いという特性も備える。
遮熱層1は、前記中間層2に対してジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された層であり、遮熱層1の熱伝導率λ1は通常2W/mK程度以下であり、前記基材3であるシリンダーブロック11あるいはシリンダーヘッド12を構成するアルミニウム合金の熱伝導率λ3よりも小さい。すなわち、本発明による断熱構造体Aにおいては、遮熱層1の熱伝導率λ1<基材3の熱伝導率λ3<中間層2の熱伝導率λ2、の関係になっている。また、前記中間層2の厚みは20〜150μmであり、前記遮熱層1の厚みは10〜250μmである。
次に、本発明者らが行ったシミュレーションモデルによる解析結果について説明する。
図3はシミュレーションモデルを示しており、基材3には厚さt=8mmのアルミニウム合金AC4Dを想定した。アルミニウム合金AC4Dの熱伝導率λ3は96.2W/mK、体積比熱は2638kJ/m3Kである。遮熱層1には厚さt=80μmのジルコニア溶射膜(ZrO2−33wt%SiO2)を想定した。このジルコニア溶射膜熱伝導率λ1は0.95W/mK、体積比熱は1850kJ/m3Kである。
図3はシミュレーションモデルを示しており、基材3には厚さt=8mmのアルミニウム合金AC4Dを想定した。アルミニウム合金AC4Dの熱伝導率λ3は96.2W/mK、体積比熱は2638kJ/m3Kである。遮熱層1には厚さt=80μmのジルコニア溶射膜(ZrO2−33wt%SiO2)を想定した。このジルコニア溶射膜熱伝導率λ1は0.95W/mK、体積比熱は1850kJ/m3Kである。
中間層2には、本発明に相当するものとして、コールドスプレーにて銅粒子を成膜した場合と、従来技術に相当するものとして、Ni−20Crのプラズマ溶射皮膜(前記した特許文献1:特開2013−185202号公報に記載される断熱構造体におけるアンダーコート層)を想定した場合の2水準とした。いずれも、厚さt=50μmと想定した。なお、コールドスプレーにて銅粒子を成膜した中間層2(本発明に該当する)の熱伝導率λ3は389W/mK、体積比熱は3440kJ/m3Kであり、Ni−20Crのプラズマ溶射皮膜である中間層2(従来技術に該当する)の熱伝導率λ3は12.6W/mK、体積比熱は3660kJ/m3Kである。
シミュレーションでは、遮熱層1の表面を入熱側とし、基材3の外側面から放熱されるとした。入熱条件は、図4に示すように、低回転域である800rpm(図4(a))と、高回転域である2400rpm(図4(b))の2水準を想定した。なお、図4において、横軸は時間(sec)であり、縦軸は熱伝達率(W/m2K)である。また、放熱条件は、95degreeの冷却水に5000W/m2Kの熱伝達率で常時放熱されるとした。
計算には、計算ソフトANSYS Professionalを用い、有限要素法による過渡(非定常)伝熱解析によった。そして、定常時での遮熱層1の表面温度T1の変化および中間層2の表面温度T2の変化を求めた。また、遮熱層1の表面温度T1の変化から、遮熱層1表面温度の変化幅(スイング幅)ΔTを求めた。それらの結果を図5に示した。なお、図5において、横軸はクランク角(°)であり、縦軸は温度(℃)である。
図5に示すように、低回転域である800rpmにおいては、前記スイング幅ΔTは、従来技術相当では219℃、本発明相当では216℃であり、ほぼ等しい値であるが、高回転域である2400rpmでは、従来技術相当では243℃、本発明相当では290℃であり、本発明相当でのスイング幅ΔTは、従来技術相当に比べて大きくなっている。これは、高回転域(2400rpm)でも、最高温度はともに460〜470℃であるが、図4(b)に示すように、高回転域では燃焼間隔が短くなることで、従来技術相当では、遮熱層1の表面温度の低下が不十分になり、吸気開始時に279℃まで上昇するのに対し、本発明相当では、遮熱層1の表面温度が吸気開始時に223℃までの上昇であり、その差がスイング幅ΔTの違いになっていることがわかる。
本発明相当において、高回転域(2400rpm)で従来技術相当と比較して遮熱層1の表面温度の低下が生じるのは、中間層2を、その熱伝導率λ2が、ジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された遮熱層1の熱伝導率λ1より大きく、かつアルミニウム合金である基材3の熱伝導率λ3よりも大きい、銅粒子の層により形成した結果である。
次に、中間層2および遮熱層1の厚みについて検証した。中間層2については、前記した2400rpmのシミュレーションを中間層2の厚みを変えて実施し、膜厚(μm)とスイング幅ΔT(℃)との関係を求めた。その結果を図6に示した。図6において、横軸は中間層2の膜厚(μm)、縦軸はスイング幅ΔT(℃)である。図6に示すように、膜厚20μm未満では従来技術相当とスイング幅ΔTの有意差は不十分であり、膜厚が150μmを超えるとスイング幅ΔTの増加は見られなくなった。このことから、本発明相当において、中間層2の膜厚は、20〜150μmの範囲が有意な範囲である。
遮熱層1については、遮熱層1の膜厚と燃費改善率(BSFC)の影響を、上記したシミュレーションで得られた温度結果を内燃機関モデル(GTPower)に錬成させ燃費を試算することにより解析した。図7にその解析結果を示した。図7において、横軸は遮熱層1の膜厚(μm)であり、縦軸はBSFC改善率(%)である。
前記したように、内燃機関において燃焼室に臨む部分を遮熱すると、ヘッド側に逃げてしまったエネルギー(冷却損失)が減り、ガスがピストンを押す力がアップするので(すなわち、正味出力が向上)、燃費は小さく(良く)なる。計算では、前記内燃機関モデルに所要の条件を入れると、その時の燃費が算出されるので、ヘッドの温度を、アルミニウム合金である基材のみのとき(従来技術相当)と、基材の上に本発明による中間層2と遮熱層1を形成したときの2通り計算し、その差の割合で「BSFC改善率(%)」を表した。ただし、コールドスプレーにて銅粒子を成膜した中間層2の厚みt=50μmで一定とし、ジルコニア溶射膜(ZrO2−33wt%SiO2)である遮熱層1の厚みを3μm〜300μmの間で変化させた。
図7に示すように、遮熱層1の膜厚が増大するにつれて改善率は向上するが、50〜60μm前後で最大となり、それ以上厚くなると次第に改善率は低下していく。0.15%以上の改善率であれば有意な改善率とみなすことができるので、本発明相当において、遮熱層1の膜厚は、図7のグラフから、10〜250μmの範囲が有意な範囲であるとみなすことができる。
上記のように、本発明相当の内燃機関では、燃焼室に臨む部分に本発明による断熱構造体を備えることにより、高回転域において、従来技術のものと比較して、前記スイング幅ΔT(℃)が増加し(図5で(イ)で示される)、それにより冷却損失低減効果が改善され、また、吸気時の遮熱膜表面温度の低下により(図5で(ロ)で示される)、吸気過熱が生じ難くなり、吸気加熱によるポンプ損失が低減することがわかる。それにより、冷却損失低減効果が相殺されることなく、燃費改善効果が大きくなる。
次に、本発明による断熱構造体を内燃機関の燃焼室に臨む部分に実際に形成した例を説明する。
鋳物用アルミ合金AC4D製のE/Gヘッド下面に、マスキングを装着し、OCPS社製のDymet413を用いて、コールドスプレーにより銅粒子を50μmで成膜した。コールドスプレーの条件は、ノズル径5mmφ、投射距離10mm、ガス温度500℃、ガス圧4.7bar、ガス流量300l/min、ガス種Air、N2、またはHe、銅粒子粉末(福田金属箔工業製、Cu−At−G−100、平均粒子径52μm、分布150μm)、銅粒子粉末の供給量40g・min、で行った。
上記のコールドスプレー後、エリコンメテコ社製SinplexProを用いて、セラミックス(ZrO2−33wt%SiO2、平均粒子径28μm、分布−10+45μm)をプラズマ溶射により150μm程度に成膜した。成膜条件は、出力40kW、Arガス流量60l/min、H2ガス流量10l/min、溶射距離100mm、粉末供給量60g/minとした。
成膜後、マスキングを取り外し、所定膜厚(80μm)まで研削し、その後、内部に浸入した粉末の洗浄を実施した。これにより、E/Gヘッド下面に本発明による断熱構造体を備えた部材が得られた。
A…本発明による断熱構造体、
1…ジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された遮熱層、
2…銅粒子がコールドスプレーされた中間層、
3…アルミニウム合金である基材。
1…ジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された遮熱層、
2…銅粒子がコールドスプレーされた中間層、
3…アルミニウム合金である基材。
Claims (1)
- アルミニウム合金である基材の表面に形成される中間層および遮熱層を備える断熱構造体であって、
前記中間層は前記基材であるアルミニウム合金基材に対して銅粒子がコールドスプレーされた層であり、
前記遮熱層は前記中間層に対してジルコニアおよびシリカよりなる群から選ばれる少なくとも1種を主成分とする酸化物粒子を溶射して形成された層であり、
前記中間層の厚みは20〜150μm、前記遮熱層の厚みは10〜250μmであり、
前記遮熱層の熱伝導率は前記基材の熱伝導率よりも小さく、かつ、前記中間層の熱伝導率は前記基材の熱伝導率よりも大きい、
ことを特徴とする断熱構造体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015115914A JP2017001235A (ja) | 2015-06-08 | 2015-06-08 | 断熱構造体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015115914A JP2017001235A (ja) | 2015-06-08 | 2015-06-08 | 断熱構造体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017001235A true JP2017001235A (ja) | 2017-01-05 |
Family
ID=57751046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015115914A Pending JP2017001235A (ja) | 2015-06-08 | 2015-06-08 | 断熱構造体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017001235A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106939421A (zh) * | 2017-02-16 | 2017-07-11 | 中国船舶重工集团公司第七二五研究所 | 一种铝合金壳体的低压冷喷涂修复方法 |
JP2018172997A (ja) * | 2017-03-31 | 2018-11-08 | マツダ株式会社 | エンジンの燃焼室構造 |
JP2021161977A (ja) * | 2020-04-01 | 2021-10-11 | マツダ株式会社 | エンジンの燃焼室構造 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003342751A (ja) * | 2002-05-23 | 2003-12-03 | Japan Fine Ceramics Center | 耐熱構造部材およびその製造方法 |
JP2006097042A (ja) * | 2004-09-28 | 2006-04-13 | Hitachi Ltd | 遮熱被覆を有する耐熱部材およびガスタービン |
JP2008266698A (ja) * | 2007-04-18 | 2008-11-06 | Hitachi Ltd | 遮熱被覆を有する耐熱部材 |
JP2009299192A (ja) * | 2009-09-24 | 2009-12-24 | Hitachi Ltd | 遮熱被覆を有する耐熱部材およびガスタービン |
JP2011167994A (ja) * | 2010-02-22 | 2011-09-01 | Hitachi Ltd | 遮熱コーティングを有する耐熱部材と、それを用いたガスタービン用部品 |
JP2013067825A (ja) * | 2011-09-20 | 2013-04-18 | Nhk Spring Co Ltd | 積層体及び積層体の製造方法 |
JP2016000849A (ja) * | 2014-06-11 | 2016-01-07 | 日本発條株式会社 | 積層体の製造方法及び積層体 |
-
2015
- 2015-06-08 JP JP2015115914A patent/JP2017001235A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003342751A (ja) * | 2002-05-23 | 2003-12-03 | Japan Fine Ceramics Center | 耐熱構造部材およびその製造方法 |
JP2006097042A (ja) * | 2004-09-28 | 2006-04-13 | Hitachi Ltd | 遮熱被覆を有する耐熱部材およびガスタービン |
JP2008266698A (ja) * | 2007-04-18 | 2008-11-06 | Hitachi Ltd | 遮熱被覆を有する耐熱部材 |
JP2009299192A (ja) * | 2009-09-24 | 2009-12-24 | Hitachi Ltd | 遮熱被覆を有する耐熱部材およびガスタービン |
JP2011167994A (ja) * | 2010-02-22 | 2011-09-01 | Hitachi Ltd | 遮熱コーティングを有する耐熱部材と、それを用いたガスタービン用部品 |
JP2013067825A (ja) * | 2011-09-20 | 2013-04-18 | Nhk Spring Co Ltd | 積層体及び積層体の製造方法 |
JP2016000849A (ja) * | 2014-06-11 | 2016-01-07 | 日本発條株式会社 | 積層体の製造方法及び積層体 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106939421A (zh) * | 2017-02-16 | 2017-07-11 | 中国船舶重工集团公司第七二五研究所 | 一种铝合金壳体的低压冷喷涂修复方法 |
JP2018172997A (ja) * | 2017-03-31 | 2018-11-08 | マツダ株式会社 | エンジンの燃焼室構造 |
JP2021161977A (ja) * | 2020-04-01 | 2021-10-11 | マツダ株式会社 | エンジンの燃焼室構造 |
JP7396173B2 (ja) | 2020-04-01 | 2023-12-12 | マツダ株式会社 | エンジンの燃焼室構造 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6232954B2 (ja) | 内燃機関 | |
JP5655813B2 (ja) | 内燃機関とその製造方法 | |
JP2017001235A (ja) | 断熱構造体 | |
US10859033B2 (en) | Piston having an undercrown surface with insulating coating and method of manufacture thereof | |
JP5617785B2 (ja) | 内燃機関 | |
JP2016223303A (ja) | 内燃機関 | |
JP5974701B2 (ja) | エンジンの燃焼室構造 | |
US2225807A (en) | Cooling of internal combustion engine | |
JP6591443B2 (ja) | 鋳造部品およびそのような鋳造部品のための埋め金 | |
JP2017115781A (ja) | 内燃機関のピストン、内燃機関、及び内燃機関のピストンの製造方法 | |
JP2013024142A (ja) | ピストン | |
CN105986921A (zh) | 用于内燃机的活塞、包括其的内燃机及其制造方法 | |
JP7063246B2 (ja) | 内燃機関 | |
CN106837585B (zh) | 气缸体 | |
JPS5815742A (ja) | 触火面を有するエンジン用部品 | |
JP6451581B2 (ja) | エンジン燃焼室の断熱構造 | |
JP6446973B2 (ja) | 内燃機関 | |
JP2014034917A (ja) | エンジンのピストン構造 | |
JP2014088863A (ja) | 内燃機関 | |
JPH04311611A (ja) | セラミックコーティングエンジンバルブ | |
JP2018145957A (ja) | 内燃機関用ピストン | |
US10066546B2 (en) | Internal combustion engine | |
JP2015224362A (ja) | 内燃機関 | |
JP6526456B2 (ja) | ディーゼルエンジン | |
JP2018012875A (ja) | 溶射膜の成膜方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180508 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181106 |