Nothing Special   »   [go: up one dir, main page]

JP2017081177A - Manufacturing method of woody board - Google Patents

Manufacturing method of woody board Download PDF

Info

Publication number
JP2017081177A
JP2017081177A JP2017021311A JP2017021311A JP2017081177A JP 2017081177 A JP2017081177 A JP 2017081177A JP 2017021311 A JP2017021311 A JP 2017021311A JP 2017021311 A JP2017021311 A JP 2017021311A JP 2017081177 A JP2017081177 A JP 2017081177A
Authority
JP
Japan
Prior art keywords
heat storage
board
latent heat
storage material
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017021311A
Other languages
Japanese (ja)
Other versions
JP6403817B2 (en
Inventor
治郎 西尾
Jiro Nishio
治郎 西尾
正伸 川添
Masanobu Kawazoe
正伸 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidai Co Ltd
Original Assignee
Eidai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidai Co Ltd filed Critical Eidai Co Ltd
Priority to JP2017021311A priority Critical patent/JP6403817B2/en
Publication of JP2017081177A publication Critical patent/JP2017081177A/en
Application granted granted Critical
Publication of JP6403817B2 publication Critical patent/JP6403817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a woody board, which can increase strength of the woody board and improve its thermal storage property compared to conventional products.SOLUTION: The manufacturing method of a woody board includes a step of immersing a board-shaped woody molded article 1a obtained by integrating and pressure-molding a wooden material in a latent heat storage material 5a. In the immersion step, the board-shaped woody molded article 1a is immersed in the latent heat storage material 5a so that a continuous heat storage layer 5 is formed all over the surface of the wooden material while leaving voids 8 inside the woody molded article 1a.SELECTED DRAWING: Figure 1

Description

本発明は、潜熱蓄熱材を利用した木質ボードの製造方法に関する。   The present invention relates to a method for manufacturing a wooden board using a latent heat storage material.

最近の住宅では、スマートハウスに代表されるように、「省エネ」、「創エネ」、「蓄エネ」をキーワードとして、快適で二酸化炭素を排出させない住宅造りを目指している。一方で、パッシブハウスという考え方があり、高性能な断熱性能を備えることで、高い省エネルギー性と快適性を実現した住宅造りが注目されている。いずれの住宅においても、住宅の断熱性能と熱環境に対する性能の向上が必要不可欠とされている。他方では、二酸化炭素排出削減のために、「木材利用促進法」の制定に見られるように、できるだけ木材を利用して住宅を建てようという傾向が高まってきている。そういった背景から、木質材との組み合わせを考え、住宅の床、壁で蓄熱し、省エネで快適な住空間を提供できる蓄熱性を有した建材の研究・開発が盛んとなってきている。   In recent housing, as represented by smart houses, the keywords are "energy saving", "energy creation", and "energy storage", and the goal is to create a comfortable housing that does not emit carbon dioxide. On the other hand, there is a concept of a passive house, and attention has been paid to housing construction that realizes high energy saving and comfort by providing high-performance heat insulation performance. In any house, it is essential to improve the heat insulation performance of the house and the performance against the thermal environment. On the other hand, as seen in the enactment of the “Wood Utilization Promotion Law” to reduce carbon dioxide emissions, there is an increasing tendency to build houses using wood as much as possible. Against this background, research and development of building materials with thermal storage properties that can conserve heat on floors and walls of houses and provide an energy-saving and comfortable living space are becoming active, considering combinations with wooden materials.

たとえば、太陽光等の自然エネルギー、冷暖房装置等により発生する熱エネルギー、または、生活において発生する熱エネルギー等を潜熱蓄熱材に蓄熱し、外気温の変動に対して吸熱・放熱を行うことで室内の温度変化を極力少なくしようという提案や試みがなされてきた。   For example, natural energy such as sunlight, heat energy generated by an air conditioner or the like, or heat energy generated in daily life, etc. is stored in the latent heat storage material to absorb heat and dissipate against fluctuations in the outside air temperature. Proposals and attempts have been made to minimize the temperature change of.

このような点を鑑みて、たとえば、潜熱蓄熱材を金属やプラスチック等の容器に封入した蓄熱ボード(たとえば、特許文献1参照)や、潜熱蓄熱材を内包するマイクロカプセルと木質繊維、および接着剤からなる組成物を、熱圧着成形した蓄熱性繊維ボードが提案されている(例えば、特許文献2参照)。また、別の技術として、潜熱蓄熱材を含浸した木材チップに、セメントなどの無機質硬化体をマトリクスとして成形した蓄熱性無機硬化体が提案されている(例えば、特許文献3参照)。   In view of such points, for example, a heat storage board (see, for example, Patent Document 1) in which a latent heat storage material is enclosed in a metal or plastic container, a microcapsule and a wood fiber containing the latent heat storage material, and an adhesive There has been proposed a heat storage fiberboard obtained by thermocompression-molding a composition comprising (see, for example, Patent Document 2). As another technique, there has been proposed a heat storage inorganic cured body formed by molding an inorganic cured body such as cement on a wood chip impregnated with a latent heat storage material (for example, see Patent Document 3).

特開平3−160298号公報Japanese Patent Laid-Open No. 3-160298 特開2003−260705号公報JP 2003-260705 A 特開2006−248834号公報JP 2006-248834 A

しかしながら、特許文献1の如く、容器に潜熱蓄熱材を封入した蓄熱ボードは、潜熱蓄熱材が蓄熱ボードから滲み出すことを抑えることができるが、容器とこれを収容したボードの凹部壁面との間に隙間が生じるため、熱伝導性が良いものとはいえない。   However, as in Patent Document 1, a heat storage board in which a latent heat storage material is sealed in a container can prevent the latent heat storage material from seeping out from the heat storage board, but between the container and the concave wall surface of the board that accommodates the heat storage board. Therefore, it cannot be said that the thermal conductivity is good.

このような点を鑑みると、特許文献2の如く、蓄熱性繊維ボードの内部に、マイクロカプセル化した潜熱蓄熱材を混入させることが考えられるが、この場合には、製造上マイクロカプセルを混入できる量が限られて、単位重量あたりの蓄熱量も減少する。マイクロカプセル化した潜熱蓄熱材同士は、蓄熱性繊維ボード内において分散して配置されることになるので、潜熱蓄熱材同士の直接的な熱伝導を期待することができず、潜熱蓄熱材による蓄熱の応答性は高いものであるとはいえない。さらに、特に、パラフィン系の潜熱蓄熱材を用いた場合には、成形時にマイクロカプセルがパンクするおそれがある。   In view of such points, it is conceivable to mix a microcapsulated latent heat storage material into the heat storage fiber board as in Patent Document 2, but in this case, microcapsules can be mixed in manufacturing. The amount is limited, and the amount of heat stored per unit weight is also reduced. Since the microencapsulated latent heat storage materials are distributed and arranged in the heat storage fiberboard, direct heat conduction between the latent heat storage materials cannot be expected, and the heat storage by the latent heat storage material is not possible. The responsiveness of is not high. Furthermore, particularly when a paraffin-based latent heat storage material is used, the microcapsules may be punctured during molding.

そこで、特許文献3の如く、木質系材料を潜熱蓄熱材に含浸されたものを、ボード状に加圧成形することも考えられるが、木質系材料同士の接着性を確保するためには、マトリクスとなるセメントなどの無機質硬化体を介在させねばならない。この結果、潜熱蓄熱材の蓄熱量は十分なものであるといえず、蓄熱の応答性を高めることができないことがある。この点を鑑みて、木質系材料同士を接するように成形した場合には、木質系材料同士はほとんど接合しないため、木質ボードの強度が低下してしまうことがあった。   Therefore, as in Patent Document 3, it is conceivable to press-mold a wooden material impregnated with a latent heat storage material into a board shape, but in order to ensure the adhesion between the wooden materials, a matrix may be used. It is necessary to interpose an inorganic hardened material such as cement. As a result, it cannot be said that the heat storage amount of the latent heat storage material is sufficient, and the responsiveness of heat storage may not be improved. In view of this point, when the wood-based materials are molded so as to be in contact with each other, the wood-based materials are hardly joined to each other, so that the strength of the wood board may be lowered.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、木質ボードの強度を向上させるとともに、これまでのものに比べて蓄熱性を高めることができる木質ボードおよびその製造方法を提供することにある。   This invention is made in view of such a point, The place made into the objective is improving the intensity | strength of a wooden board, and the wooden board which can improve heat storage property compared with the former thing, and It is in providing the manufacturing method.

このような点を鑑みて、発明者らが鋭意検討を重ねた結果、木質成形体に、直接的に潜熱蓄熱材を含浸させることにより、木質ボードの強度を保持しつつより多くの潜熱蓄熱材を木質ボード内に含有させることができると考えた。この際に、木質成形体に好適に潜熱蓄熱材を含浸させ、含浸させた潜熱蓄熱材を木質成形体内に保持するには、木質成形体の密度が重要であるとの知見を得た。   In view of these points, as a result of the intensive studies by the inventors, as a result of impregnating the wooden molded body directly with the latent heat storage material, more latent heat storage material while maintaining the strength of the wooden board. It was thought that can be contained in the wooden board. At this time, the present inventors have found that the density of the wooden molded body is important for suitably impregnating the wooden molded body with the latent heat storage material and holding the impregnated latent heat storage material in the wooden molded body.

本発明は発明者らのこの新たな知見に基づくものであり、本発明に係る木質ボードの製造方法は、木質系材料を集積して加圧成形したボード状の木質成形体に、潜熱蓄熱材を含浸する工程を含み、前記潜熱蓄熱材を含浸する工程において、前記木質成形体として、密度が0.3〜0.5g/cmの範囲にある木質成形体を用いることを特徴とする。 The present invention is based on the inventors' new knowledge, and the method of manufacturing a wooden board according to the present invention is a method for producing a latent heat storage material on a board-shaped wooden molded body obtained by accumulating and compressing wooden materials. In the step of impregnating the latent heat storage material, a wooden molded body having a density in the range of 0.3 to 0.5 g / cm 3 is used as the wooden molded body.

本発明によれば、上述した密度範囲となるように予め木質系材料を集積してボード状に加圧成形された木質成形体に対して、潜熱蓄熱材を含浸させるので、強度低下を招くことなく、木質ボードに対して単位重量あたりの潜熱蓄熱材の含有量をこれまでのものに比べて高めた木質ボードを得ることができる。さらに、含浸後の潜熱蓄熱材は、放冷などにより冷却されるので、木質ボード内に潜熱蓄熱材を保持することができる。   According to the present invention, a wood molded body that is pre-stacked with wood-based materials and press-molded into a board shape so as to be in the above-described density range is impregnated with a latent heat storage material, resulting in a decrease in strength. In addition, it is possible to obtain a wood board in which the content of the latent heat storage material per unit weight is higher than that of conventional wood boards. Furthermore, since the latent heat storage material after impregnation is cooled by cooling or the like, the latent heat storage material can be held in the wooden board.

ここで、0.3g/cm未満の木質成形体を、加圧成形により成形することが難しい場合があり、たとえ成形されたとしても、含浸の際に木質ボードの強度が不足するおそれがある。一方、木質成形体の密度が0.5g/cmを超えた場合には、潜熱蓄熱材が十分に木質成形体に含浸され難いばかりでなく、含浸した潜熱蓄熱材が溶出する(滲み出す)ことがある。 Here, there are cases where it is difficult to form a wooden molded body of less than 0.3 g / cm 3 by pressure molding, and even if molded, the strength of the wooden board may be insufficient during impregnation. . On the other hand, when the density of the wooden molded body exceeds 0.5 g / cm 3 , not only is the latent heat storage material difficult to be sufficiently impregnated into the wooden molded body, but also the impregnated latent heat storage material is eluted (bleeds out). Sometimes.

より好ましい態様としては、前記潜熱蓄熱材を含浸する工程において、前記木質ボードに潜熱蓄熱材が0.20〜0.33g/cm含有するように、該木質成形体を構成する木質系材料の内部および木質系材料同士の間に前記潜熱蓄熱材を含浸させる。 As a more preferred embodiment, in the step of impregnating the latent heat storage material, the wooden material constituting the wooden molded body is configured such that the latent heat storage material is contained in the wooden board at 0.20 to 0.33 g / cm 3 . The latent heat storage material is impregnated between the interior and the woody material.

この態様によれば、上述した密度範囲の木質成形体に対して、潜熱蓄熱材を0.20〜0.33g/cm含有するので、木質ボードからの潜熱蓄熱材の溶出を抑えるとともに、木質ボードの蓄熱性を高めることができる。また、木質系材料の表面には潜熱蓄熱材が連続して層状に覆われ、木質ボード内において層状の潜熱蓄熱材がネットワーク状(網目状)に形成されることになる。この結果、含浸後の木質ボードの機械的強度を大幅に向上させることができる。 According to this aspect, since the latent heat storage material is contained in an amount of 0.20 to 0.33 g / cm 3 with respect to the above-described wood compact in the density range, the elution of the latent heat storage material from the wooden board is suppressed, and the wood The heat storage property of the board can be increased. Moreover, the latent heat storage material is continuously covered in layers on the surface of the wood-based material, and the layered latent heat storage material is formed in a network shape (mesh shape) in the wooden board. As a result, the mechanical strength of the wood board after impregnation can be greatly improved.

上述した密度範囲の木質成形体に対して、潜熱蓄熱材の含有量が0.2g/cm未満の場合には、潜熱蓄熱材による蓄熱性を十分に期待することができないばかりでなく、潜熱蓄熱材を含浸しても木質ボードの機械的強度の大幅な向上が望めないこともある。一方、上述した密度範囲の木質成形体に対して、潜熱蓄熱材の含有量が0.33g/cmを越える場合には、木質ボードから潜熱蓄熱材が溶出するおそれがある。 When the content of the latent heat storage material is less than 0.2 g / cm 3 with respect to the above-described density range woody molded article, not only the heat storage performance by the latent heat storage material can be expected, but also the latent heat Even if impregnated with a heat storage material, the mechanical strength of the wooden board may not be significantly improved. On the other hand, when the content of the latent heat storage material exceeds 0.33 g / cm 3 with respect to the above-described woody compact in the density range, the latent heat storage material may be eluted from the wooden board.

さらに好ましい態様としては、前記木質系材料に、木質片を用いる。この態様によれば、木質片から木質成形体が加圧成形されているので、木質成形体の空隙率は、その他の材料を集積してボード状に加圧成形されたものに比べて高く、木質成形体内に潜熱蓄熱材をより多く含浸させることができる。   In a more preferred embodiment, a wood piece is used for the wood material. According to this aspect, since the wooden molded body is pressure-molded from the wooden pieces, the porosity of the wooden molded body is higher than that obtained by pressure-molding in a board shape by accumulating other materials, A larger amount of latent heat storage material can be impregnated into the wood molded body.

本発明として、上述した課題を解決するための木質ボードをも開示する。本発明に係る木質ボードは、木質系材料を集積してボード状に加圧成形した木質成形体と、潜熱蓄熱材とを少なくとも備えた木質ボードであって、前記木質成形体の密度は、0.3〜0.5g/cmの範囲にあり、該木質成形体を構成する木質系材料の内部および木質系材料同士の間に、前記潜熱蓄熱材が0.20〜0.33g/cm含有していることを特徴とする。 As the present invention, a wood board for solving the above-described problems is also disclosed. The wooden board according to the present invention is a wooden board that includes at least a wooden molded body obtained by stacking wooden materials and press-molded into a board shape, and a latent heat storage material, and the density of the wooden molded body is 0 .3 to 0.5 g / cm 3 , and the latent heat storage material is 0.20 to 0.33 g / cm 3 in the wood-based material constituting the wood molded body and between the wood-based materials. It is characterized by containing.

本発明によれば、上述した範囲の木質成形体の密度の範囲において、上述した含有量の範囲の潜熱蓄熱材が、木質成形体を構成する木質系材料の内部および木質系材料同士の間の双方に含有しているので、木質ボードは、これまでのものよりも機械的強度および蓄熱性が高いものとなる。特に、このような範囲を満たした場合には、木質系材料の表面に潜熱蓄熱材が層状に覆われ、木質ボード内においてネットワーク状(網目状)に形成されることになる。この結果、木質成形体内には、ネットワーク状の蓄熱層が連続して形成されているので、潜熱蓄熱材の熱伝導性を高めるとともに、木質ボードの機械的強度をも高めることができる。   According to the present invention, in the range of the density of the wood molded body in the range described above, the latent heat storage material in the range of the content described above is between the interior of the wood based material constituting the wood molded body and between the wood based materials. Since it contains in both, a wooden board becomes a thing with higher mechanical strength and heat storage than before. In particular, when such a range is satisfied, the latent heat storage material is covered in layers on the surface of the wood-based material, and is formed in a network shape (mesh shape) in the wood board. As a result, since the network-like heat storage layer is continuously formed in the wooden molded body, the thermal conductivity of the latent heat storage material can be increased and the mechanical strength of the wooden board can also be increased.

ここで、木質成形体の密度が0.3g/cm未満の場合には、木質成形体が強度不足となる。一方、木質成形体の密度が0.5g/cmを超えた場合には、木質ボードの機械的強度を高めることは難しく、潜熱蓄熱材が溶出する(滲み出す)ことがある。 Here, when the density of the wooden molded body is less than 0.3 g / cm 3 , the wooden molded body has insufficient strength. On the other hand, when the density of the wooden molded body exceeds 0.5 g / cm 3 , it is difficult to increase the mechanical strength of the wooden board, and the latent heat storage material may be eluted (bleed out).

さらに、上述した密度範囲の木質成形体に対して、潜熱蓄熱材の含有量が0.2g/cm未満の場合、潜熱蓄熱材が木質成形体に十分に含有してないので、木質ボードの蓄熱性が十分なものとはいえず、さらには潜熱蓄熱材による木質ボードの機械的強度の大幅な向上を望めないことがある。一方、上述した密度範囲の木質成形体に対して、潜熱蓄熱材の含有量が0.33g/cmを越える場合には、木質ボードから潜熱蓄熱材が溶出するおそれもある。 Furthermore, when the content of the latent heat storage material is less than 0.2 g / cm 3 with respect to the above-described density range of the wooden molded body, the latent heat storage material is not sufficiently contained in the wooden molded body. It cannot be said that the heat storage property is sufficient, and further, it cannot be expected that the mechanical strength of the wooden board is greatly improved by the latent heat storage material. On the other hand, when the content of the latent heat storage material exceeds 0.33 g / cm 3 with respect to the above-described density-formed wood molded body, the latent heat storage material may be eluted from the wooden board.

さらに好ましい態様としては、前記木質系材料は、木質片からなる。この態様によれば、木質片から木質成形体が加圧成形されているので、木質成形体の空隙率は、その他の材料を集積してボード状に加圧成形されたものに比べて高く、木質成形体内に、潜熱蓄熱材をより多く含有させることができる。   In a more preferred embodiment, the wood-based material is made of a wood piece. According to this aspect, since the wooden molded body is pressure-molded from the wooden pieces, the porosity of the wooden molded body is higher than that obtained by pressure-molding in a board shape by accumulating other materials, More latent heat storage material can be contained in the wood molded body.

本発明によれば、潜熱蓄熱材を含浸させることにより木質ボードの強度を向上させるとともに、これまでのものに比べてより高い蓄熱性を期待することができる。   According to this invention, while impregnating a latent heat storage material, the intensity | strength of a wooden board can be improved, and higher heat storage property can be anticipated compared with the former thing.

本発明の実施形態に係る木質ボードの製造方法を説明する模式的概念図。The typical conceptual diagram explaining the manufacturing method of the wooden board which concerns on embodiment of this invention. 図1に示す製造方法で製造された木質ボードの模式的部分断面図。The typical fragmentary sectional view of the wooden board manufactured with the manufacturing method shown in FIG. 木質ボードの蓄熱量を測定する方法を説明するための図。The figure for demonstrating the method to measure the heat storage amount of a wooden board. 実施例1〜3および比較例2に係る木質ボードのボード密度と、パラフィンの含有量との関係を示した図。The figure which showed the relationship between the board density of the wooden board which concerns on Examples 1-3 and the comparative example 2, and content of paraffin. 実施例1〜3および比較例2に係る木質ボードのボード密度と、ボード曲げ強さ向上率との関係を示した図。The figure which showed the relationship between the board density of the wooden board which concerns on Examples 1-3 and the comparative example 2, and a board bending strength improvement rate. 実施例1〜3および比較例2に係る木質ボードのボード密度と、蓄熱量との関係を示した図。The figure which showed the relationship between the board density of the wooden board which concerns on Examples 1-3 and the comparative example 2, and heat storage amount.

以下、図面を参照して、本実施形態に基づき本発明を説明する。   Hereinafter, the present invention will be described based on the present embodiment with reference to the drawings.

図1は、本発明の実施形態に係る木質ボードの製造方法を説明する模式的概念図であり、図2は、図1に示す製造方法で製造された木質ボードの模式的部分断面図である。   FIG. 1 is a schematic conceptual diagram illustrating a method for manufacturing a wooden board according to an embodiment of the present invention, and FIG. 2 is a schematic partial cross-sectional view of the wooden board manufactured by the manufacturing method shown in FIG. .

本実施形態に係る木質ボード1を製造する際に、まず、図1に示すように、木質系材料を集積してボード状に加圧成形された木質成形体1aを準備する。木質成形体としては、パーティクルボード、MDF、インシュレーションボード、OSB等を挙げることができる。木質系材料としては、南洋材であるラワンや針葉樹のマツやスギ等から得られるチップ状の木質片または木質繊維などを挙げることができる。   When manufacturing the wooden board 1 according to the present embodiment, first, as shown in FIG. 1, a wooden molded body 1a is prepared which is obtained by accumulating wooden materials and press-molded into a board shape. Examples of the woody molded body include particle board, MDF, insulation board, OSB and the like. Examples of the wood-based material include chip-like pieces of wood or wood fibers obtained from Lauan, which is a South Sea material, and pine and cedar of conifers.

本実施形態では、より好ましい態様として、木質系材料に木質片を用い、木質成形体として木質片を集積させたパーティクルボードを準備する。木質系材料に木質片から得られるパーティクルボードは、木質繊維で成形したものに比べて、木質成形体の空隙率は高くなるため、後述するように、木質成形体内に潜熱蓄熱材をより多く含浸させることができる。   In the present embodiment, as a more preferable aspect, a particle board is prepared in which wood pieces are used as a wood-based material and the wood pieces are integrated as a wood molded body. Particle boards obtained from wood pieces in wood-based materials have a higher porosity in the wood molded body than those molded from wood fiber, so as will be described later, more latent heat storage material is impregnated in the wood molded body. Can be made.

木質成形体は、これらの木質系材料を必要に応じてイソシアネート接着剤、フェノールホルムアルデヒド系接着剤、尿素ホルムアルデヒド系接着剤、メラミンホルムアルデヒド系接着剤と混合し、集積してボード状に加圧成形することにより得られる。木質成形体を成形する際には、加圧加熱成形を行ってもよい。   In the wood molding, these wood materials are mixed with isocyanate adhesive, phenol formaldehyde adhesive, urea formaldehyde adhesive, and melamine formaldehyde adhesive as necessary, and then integrated and pressed into a board shape. Can be obtained. When molding a woody molded body, pressure heating molding may be performed.

ここで、木質成形体の密度は、0.3〜0.5g/cmの範囲にあり、ボード状に加圧成形する際の圧力条件、加熱条件等を調整することにより、このような密度範囲とすることができる。木質成形体1aの密度が0.3g/cm未満の場合、加圧成形により木質ボードを成形することが難しい場合がある。 Here, the density of the wooden molded body is in the range of 0.3 to 0.5 g / cm 3 , and such density can be adjusted by adjusting pressure conditions, heating conditions, and the like when pressure forming into a board shape. It can be a range. When the density of the wooden molded body 1a is less than 0.3 g / cm 3 , it may be difficult to mold the wooden board by pressure molding.

次に、このようにして得られたボード状の木質成形体1aに、溶融状態の潜熱蓄熱材5aを含浸させる(含浸工程)。潜熱蓄熱材5aは、加熱装置の設置されたバット9内において融点以上(通常は融点+20〜30℃程度)に加熱されており、溶融した状態となっている。このバット9内の潜熱蓄熱材5aに木質成形体1aを浸漬し、所定時間放置することにより、木質片の表面に潜熱蓄熱材5aからなる蓄熱層5が形成されるとともに、木質片の内部に潜熱蓄熱材が浸透するように、溶融状態の潜熱蓄熱材5aを木質ボード内に含浸させる。   Next, the board-shaped woody molded body 1a thus obtained is impregnated with the latent heat storage material 5a in a molten state (impregnation step). The latent heat storage material 5a is heated to a melting point or higher (usually about a melting point +20 to 30 ° C.) in the bat 9 in which a heating device is installed, and is in a molten state. The wood molded body 1a is immersed in the latent heat storage material 5a in the bat 9 and left for a predetermined time, whereby the heat storage layer 5 made of the latent heat storage material 5a is formed on the surface of the wood piece, and inside the wood piece. The wooden board is impregnated with the molten latent heat storage material 5a so that the latent heat storage material penetrates.

具体的には、本実施形態では、得られる木質ボード1に対して潜熱蓄熱材が0.20〜0.33g/cm含有するように、木質成形体1aを構成する木質系材料の内部および木質片3、3同士の間に潜熱蓄熱材5aを含浸させる。この結果、密度0.6〜0.7g/cmとなる木質ボード1を得ることができる。 Specifically, in the present embodiment, the interior of the wood-based material constituting the wood molded body 1a and the latent heat storage material 0.20 to 0.33 g / cm 3 with respect to the obtained wood board 1 and The latent heat storage material 5a is impregnated between the wood pieces 3, 3. As a result, the wooden board 1 having a density of 0.6 to 0.7 g / cm 3 can be obtained.

ここで、バット9内に含浸される潜熱蓄熱材は、日射光により付与される日射熱、または、室内の暖房による熱などで固体から液体に相変化する潜熱蓄熱材であり、好ましくは、住宅用蓄熱建材を考慮すると、潜熱蓄熱材の相変化温度(融点)は5℃〜60℃の範囲にあり、より好ましくは、20℃〜60℃の範囲にある。室内の壁用に用いる場合には、融点が20℃〜30℃の範囲にあることが望ましく、室内の床用に用いる場合には、30℃〜60℃の範囲にあることが望ましい。   Here, the latent heat storage material impregnated in the bat 9 is a latent heat storage material that changes in phase from solid to liquid due to solar heat applied by solar light or heat from indoor heating, and is preferably a house Considering the heat storage building material, the phase change temperature (melting point) of the latent heat storage material is in the range of 5 ° C to 60 ° C, more preferably in the range of 20 ° C to 60 ° C. When used for indoor walls, the melting point is preferably in the range of 20 ° C to 30 ° C, and when used for indoor floors, it is preferably in the range of 30 ° C to 60 ° C.

潜熱蓄熱材としては、n−ヘキサデカン、n−ヘプタデカン、n−オクタデカン、n−ナノデカン等及びこれらの混合物で構成されるn−パラフィンやパラフィンワックス等の脂肪族炭化水素、オクタン酸、カプリン酸、ラウリン酸、ミリスチン酸等及びこれらの混合物で構成される長鎖脂肪酸、または、上記脂肪酸のエステルやポリエチレングリコール等のポリエーテル化合物等を挙げることができる。たとえば28℃で融解するものであれば、n−オクタデカンを選択し、18℃で融解するものであれば、n−ヘキサデカン選択する。さらに、上述した融点の異なる潜熱蓄熱材を混合して用いてもよい。   As latent heat storage materials, n-hexadecane, n-heptadecane, n-octadecane, n-nanodecane, etc. and mixtures thereof, aliphatic hydrocarbons such as n-paraffin and paraffin wax, octanoic acid, capric acid, laurin Examples thereof include long-chain fatty acids composed of acids, myristic acid, and the like, and mixtures thereof, or polyether compounds such as esters of the above fatty acids and polyethylene glycol. For example, n-octadecane is selected if it melts at 28 ° C, and n-hexadecane is selected if it melts at 18 ° C. Furthermore, you may mix and use the latent heat storage material from which melting | fusing point mentioned above differs.

本実施形態では、バット9内の潜熱蓄熱材5aに木質成形体1aを浸漬させることにより、潜熱蓄熱材を木質成形体に含浸させたが、たとえば、木質成形体1aの表面に潜熱蓄熱材を流すまたは塗布することにより、潜熱蓄熱材を木質成形体1aに含浸させてもよい。   In the present embodiment, the wooden molded body 1a is immersed in the latent heat storage material 5a in the bat 9, thereby impregnating the wooden molded body with the latent heat storage material. The wooden molded body 1a may be impregnated with the latent heat storage material by flowing or applying.

そして、図1に示すように、潜熱蓄熱材5aが含浸された木質ボード1を立て、表面に付着した潜熱蓄熱材5aおよび内部に含浸された溶融した潜熱蓄熱材5aの一部の液きりを行い、その後、放冷などにより冷却して、潜熱蓄熱材5aを固化させる。   Then, as shown in FIG. 1, the wooden board 1 impregnated with the latent heat storage material 5 a is erected, and a part of the liquid of the latent heat storage material 5 a adhering to the surface and the molten latent heat storage material 5 a impregnated inside is placed. After that, the latent heat storage material 5a is solidified by cooling by cooling or the like.

本実施形態では、上述した密度範囲となる木質成形体1aに対して、潜熱蓄熱材5aを含浸させるので、木質ボードに対して単位重量あたりの潜熱蓄熱材5aの含有量をこれまでのものに比べて高めた木質ボードを得ることができる。なお、木質成形体1aの密度が0.5g/cmを超えた場合には、潜熱蓄熱材5aが十分に木質成形体1aに含浸され難いばかりでなく、含浸した潜熱蓄熱材が溶出する(滲み出す)ことがある。 In the present embodiment, since the latent heat storage material 5a is impregnated into the wood molded body 1a having the above-described density range, the content of the latent heat storage material 5a per unit weight in the wooden board is changed to the conventional one. Compared to this, you can get an improved wood board. When the density of the wooden molded body 1a exceeds 0.5 g / cm 3 , not only is the latent heat storage material 5a difficult to be sufficiently impregnated into the wooden molded body 1a, but also the impregnated latent heat storage material is eluted ( May ooze out).

そして、潜熱蓄熱材の含浸、潜熱蓄熱材の液きり、木質ボードの冷却の一連の工程を経て、木質ボード1には、潜熱蓄熱材が0.20〜0.33g/cm含有しているので、木質ボード1からの潜熱蓄熱材1aの溶出を抑えるとともに、木質ボードの蓄熱性を高めることができる。 Then, through a series of steps of impregnation of the latent heat storage material, draining of the latent heat storage material, and cooling of the wooden board, the wooden board 1 contains 0.20 to 0.33 g / cm 3 of the latent heat storage material. Therefore, elution of the latent heat storage material 1a from the wooden board 1 can be suppressed, and the heat storage performance of the wooden board can be improved.

具体的には、図2に示すように、得られた木質ボード1には、木質片3の表面に、潜熱蓄熱材からなる蓄熱層5が、木質ボード内の全体に(木質ボードの表面から裏面まで)ネットワーク状(網目状)に形成されるとともに、蓄熱層5が形成された木質片の内部には潜熱蓄熱材が浸透している。さらに、木質ボード1の内部には、空隙が形成されることになる。   Specifically, as shown in FIG. 2, the obtained wood board 1 has a heat storage layer 5 made of a latent heat storage material on the surface of the wood piece 3 on the whole of the wood board (from the surface of the wood board). The latent heat storage material penetrates into the wood piece where the heat storage layer 5 is formed and is formed in a network shape (to the back surface). Furthermore, a gap is formed inside the wooden board 1.

このような結果、木質片3の表面には、潜熱蓄熱材からなる蓄熱層5が連続して形成されているとともに、蓄熱層5が形成された木質片3の内部には潜熱蓄熱材が浸透しているので、これまでのものに比べてより多くの潜熱蓄熱材を木質ボード1に含有させることができる。   As a result, a heat storage layer 5 made of a latent heat storage material is continuously formed on the surface of the wood piece 3, and the latent heat storage material penetrates into the wood piece 3 where the heat storage layer 5 is formed. Therefore, the wooden board 1 can contain more latent heat storage materials than the conventional ones.

また、木質ボード1は、潜熱蓄熱材からなる蓄熱層5がボード表面から裏面まで、その内部においてネットワーク状に連続して形成されているので、木質ボード1の機械的強度も高めつつも、蓄熱層5から入熱された熱を潜熱蓄熱材を介して木質ボードの内部に迅速に伝えることができる。さらに、蓄熱層5が形成された木質片3の内部にも潜熱蓄熱材が浸透されているので、この浸透された潜熱蓄熱材により木質ボード1の表面からの入熱された熱を効率良く蓄熱することができる。   Moreover, since the heat storage layer 5 made of a latent heat storage material is continuously formed in a network from the front surface to the back surface of the wooden board 1, heat storage while increasing the mechanical strength of the wooden board 1. The heat input from the layer 5 can be quickly transmitted to the inside of the wooden board through the latent heat storage material. Further, since the latent heat storage material is infiltrated into the wood piece 3 where the heat storage layer 5 is formed, the heat input from the surface of the wood board 1 is efficiently stored by the permeated latent heat storage material. can do.

また、木質片3の表面には、連続して蓄熱層5が形成されているので、木質ボード1の吸湿性および吸水性を抑えることができ、さらには、接着剤のホルムアルデヒドの放散をも抑制することができる。   Moreover, since the heat storage layer 5 is continuously formed on the surface of the wood piece 3, it is possible to suppress the hygroscopicity and water absorption of the wood board 1, and further suppress the emission of formaldehyde as an adhesive. can do.

また、図2に示すように、木質ボード1の内部には、空隙8が形成されているので、蓄熱時において溶融した蓄熱材の滲み出しを抑制することができるとともに、木質ボード1の断熱効果を高めることもできる。   Moreover, as shown in FIG. 2, since the space | gap 8 is formed in the inside of the wooden board 1, while being able to suppress the seepage of the thermal storage material fuse | melted at the time of thermal storage, the heat insulation effect of the wooden board 1 can be suppressed. Can also be increased.

なお、上述した密度範囲の木質成形体1aに対して、潜熱蓄熱材の含有量が0.2g/cm未満の場合には、潜熱蓄熱材による蓄熱性を十分に期待することができないばかりでなく、潜熱蓄熱材による木質ボード1の機械的強度の向上が望めないこともある。一方、上述した密度範囲の木質成形体1aに対して、潜熱蓄熱材の含有量が0.33g/cmを越える場合には、木質ボード1から潜熱蓄熱材の溶出するおそれがある。 In addition, when the content of the latent heat storage material is less than 0.2 g / cm 3 with respect to the woody molded body 1a in the density range described above, it is not only possible to sufficiently expect the heat storage performance by the latent heat storage material. In some cases, the improvement of the mechanical strength of the wood board 1 by the latent heat storage material cannot be expected. On the other hand, when the content of the latent heat storage material exceeds 0.33 g / cm 3 with respect to the woody molded body 1a in the density range described above, the latent heat storage material may be eluted from the wooden board 1.

以下に本発明を実施例により説明する。   Hereinafter, the present invention will be described by way of examples.

<実施例1>
スギチップからなる木質片に、尿素メラミンホルムアルデヒド接着剤を10質量%添加して、プレス温度180℃、プレス時間6分、350mm×350mm×厚さ12mmのパーティクルボード(ボード状の木質成形体)を密度0.31g/cmとなるように加圧加熱成形した。得られたパーティクルボードを200mm×200mmにカットして、パラフィンワックス(日本精蝋(株)製PW−115:融点48℃、融解蓄熱量200kJ/kg)〔以下パラフィンという〕からなる潜熱蓄熱材を80℃まで加熱してバット内でこれを溶融し、融解した潜熱蓄熱材にカットしたパーティクルボードを5分間浸漬し、パーティクルボード内に潜熱蓄熱材を含浸させ、潜熱蓄熱材を液きり後放冷し、木質ボードを作製した。
<Example 1>
Add 10% by mass of urea melamine formaldehyde adhesive to a wood piece made of cedar chips, press temperature 180 ° C, press time 6 minutes, 350mm × 350mm × thickness 12mm particle board (board-like wood molding) density Pressurizing and heating was performed to obtain 0.31 g / cm 3 . The obtained particle board was cut into 200 mm × 200 mm, and a latent heat storage material composed of paraffin wax (PW-115 manufactured by Nippon Seiwa Co., Ltd .: melting point 48 ° C., melting heat storage amount 200 kJ / kg) [hereinafter referred to as paraffin] Heat to 80 ° C, melt in a bat, immerse the cut particle board in the molten latent heat storage material for 5 minutes, impregnate the latent heat storage material in the particle board, cool the latent heat storage material, and let it cool Then, a wooden board was produced.

<実施例2>
実施例1と同じように、木質ボードを作製した。実施例1と相違する点は、密度0.40g/cmとなるように、350mm×350mm×厚さ12mmのパーティクルボードを加圧加熱成形した点である。
<Example 2>
A wood board was produced in the same manner as in Example 1. The difference from Example 1 is that a particle board of 350 mm × 350 mm × thickness 12 mm was pressure-heat-molded so as to have a density of 0.40 g / cm 3 .

<実施例3>
実施例1と同じように、木質ボードを作製した。実施例1と相違する点は、密度0.49g/cmとなるように、350mm×350mm×厚さ12mmのパーティクルボードを加圧加熱成形した点である。
<Example 3>
A wood board was produced in the same manner as in Example 1. The difference from Example 1 is that a particle board of 350 mm × 350 mm × thickness 12 mm was press-heated and molded so that the density was 0.49 g / cm 3 .

<比較例1>
実施例1と同じように、木質ボードを作製しようとした。実施例1と相違するように、密度0.25g/cmとなるように、350mm×350mm×厚さ12mmのパーティクルボードを加圧加熱成形しようとしたが、成形時(解圧時)にパーティクルボードがパンクし成形不能となった。
<Comparative Example 1>
As in Example 1, an attempt was made to produce a wood board. Unlike Example 1, an attempt was made to pressure-heat mold a particle board of 350 mm × 350 mm × thickness 12 mm so that the density would be 0.25 g / cm 3. The board is punctured and cannot be molded.

<比較例2>
実施例1と同じように、木質ボードを作製した。実施例1と相違する点は、密度0.6g/cmとなるように、350mm×350mm×厚さ12mmのパーティクルボードを加圧加熱成形した点である。
<Comparative example 2>
A wood board was produced in the same manner as in Example 1. The difference from Example 1 is that a particle board of 350 mm × 350 mm × thickness 12 mm was pressure-heat-molded so as to have a density of 0.6 g / cm 3 .

[木質ボードの密度の測定]
実施例1〜3および比較例2の含浸前のパーティクルボードの重量と、含浸後の木質ボードの重量から、潜熱蓄熱材の含有量を算出し、含有量からパーティクルボードに対する含浸率を算出した。さらに、含浸後の木質ボードの体積と重量から木質ボードの密度を算出した。これらの結果を表1に示す。図4は、実施例1〜3および比較例1に係る木質ボードのボード密度と、パラフィンの含有量との関係を示した図である。
[Measurement of density of wood board]
The content of the latent heat storage material was calculated from the weight of the particle board before impregnation in Examples 1 to 3 and Comparative Example 2 and the weight of the wooden board after impregnation, and the impregnation rate for the particle board was calculated from the content. Furthermore, the density of the wooden board was calculated from the volume and weight of the wooden board after impregnation. These results are shown in Table 1. FIG. 4 is a diagram showing the relationship between the board density of the wooden boards according to Examples 1 to 3 and Comparative Example 1 and the paraffin content.

[木質ボードの曲げ強さの測定]
実施例1〜3および比較例2の潜熱蓄熱材を含浸する前後の木質ボードの曲げ強さをJIS A5908に準じて測定し、この結果からボード曲げ強さ向上率を算出した。この結果を表1に示す。図5は、実施例1〜3および比較例1に係る木質ボードのボード密度と、ボード曲げ強さ向上率との関係を示した図である。
[Measurement of bending strength of wood board]
The bending strength of the wood boards before and after impregnating the latent heat storage materials of Examples 1 to 3 and Comparative Example 2 was measured according to JIS A5908, and the board bending strength improvement rate was calculated from this result. The results are shown in Table 1. FIG. 5 is a diagram showing the relationship between the board density of the wooden boards according to Examples 1 to 3 and Comparative Example 1 and the board bending strength improvement rate.

[木質ボードの蓄熱量の測定]
実施例1〜3および比較例2の木質ボードの蓄熱量を測定した。具体的には、図3に示すように、各木質ボード1を加熱板1に載置し、木質ボードの側面を断熱材で囲い、側面からボード表面およびボード裏面に、熱流計14、16、熱電対15、17を配置した。加熱板を55℃(環境試験室温40℃)となるように加熱板を加熱し、加熱板から木質ボードに流入した熱量Q1から流出した熱量Q2を差し引いた熱量から算出した。この結果を表1に示す。図6は、実施例1〜3および比較例1に係る木質ボードのボード密度と、蓄熱量との関係を示した図である。
[Measurement of heat storage of wood board]
The heat storage amount of the wood boards of Examples 1 to 3 and Comparative Example 2 was measured. Specifically, as shown in FIG. 3, each wooden board 1 is placed on the heating plate 1, the side surface of the wooden board is surrounded by a heat insulating material, and the heat flow meters 14, 16, Thermocouples 15 and 17 were arranged. The heating plate was heated to 55 ° C. (environmental test room temperature: 40 ° C.) and calculated from the amount of heat obtained by subtracting the amount of heat Q2 flowing out from the amount of heat Q1 flowing into the wood board from the heating plate. The results are shown in Table 1. FIG. 6 is a diagram showing the relationship between the board density of the wooden boards according to Examples 1 to 3 and Comparative Example 1 and the heat storage amount.

[潜熱蓄熱材の溶出評価]
実施例1〜3および比較例2の木質ボードを100mm×100mmに切り出して、65%R.H.に1週間以上放置した後、60℃のドライヤーで3時間加熱後、指触によりパラフィンの表面への溶出状況を評価した。この結果を表1に示す。
[Elution evaluation of latent heat storage materials]
The wood boards of Examples 1 to 3 and Comparative Example 2 were cut into 100 mm × 100 mm, and 65% R.D. H. The sample was allowed to stand for 1 week or longer, then heated with a dryer at 60 ° C. for 3 hours, and the elution state of paraffin on the surface was evaluated by finger touch. The results are shown in Table 1.

◎:まったくべたつきを感じない
○:少しべたつきを感じる
×:相当べたつきを感じる
◎: Feels not sticky at all ○: Feels a little sticky ×: Feels sticky considerably

Figure 2017081177
Figure 2017081177

<結果1>
表1に示すように、実施例1〜3および比較例2に示すように、パーティクルボードの密度(ボード密度)が、0.31g/cm以上の場合には、パーティクルボードに潜熱蓄熱材を含浸することができる。
<Result 1>
As shown in Table 1, as shown in Examples 1 to 3 and Comparative Example 2, when the density of the particle board (board density) is 0.31 g / cm 3 or more, the latent heat storage material is applied to the particle board. Can be impregnated.

図4に示すように、ボード密度が増加するに従って、パラフィン含有量が減少し、これに伴い、図6に示すように木質ボードの蓄熱量も減少したと考えられる。   As shown in FIG. 4, as the board density increases, the paraffin content decreases. Accordingly, it is considered that the heat storage amount of the wooden board also decreases as shown in FIG.

また、図5に示すように、実施例1〜3に係る木質ボードのボード曲げ強さは、潜熱蓄熱材を含浸させることにより向上したが、比較例2の場合には、潜熱蓄熱材を含浸しても、木質ボードの曲げ強さはほとんど向上しなかった。これは、比較例2の場合には、潜熱蓄熱材がパーティクルボード内に十分含浸されていないからであると考えられる。一方、実施例1〜3の木質ボードの場合には、潜熱蓄熱材がパーティクルボード内に十分に含浸されており、木質片の表面にパラフィンが層状に連続して形成され、これが木質ボード内においてネットワーク状(網目状)に形成されることにより、木質ボードの機械的強度が高まったと考えられる。   Further, as shown in FIG. 5, the board bending strength of the wooden boards according to Examples 1 to 3 was improved by impregnating the latent heat storage material, but in the case of Comparative Example 2, the latent heat storage material was impregnated. Even so, the bending strength of the wooden board was hardly improved. This is considered to be because, in the case of Comparative Example 2, the latent heat storage material is not sufficiently impregnated in the particle board. On the other hand, in the case of the wooden boards of Examples 1 to 3, the latent heat storage material is sufficiently impregnated in the particle board, and the paraffin is continuously formed in a layered manner on the surface of the wooden piece. It is considered that the mechanical strength of the wooden board is increased by forming the network (network).

さらに、表1に示すように、実施例1〜3に係る木質ボードの溶出評価は良好であったが、比較例2に係る木質ボードの場合には、潜熱蓄熱材の溶出が見られた。これは、比較例2の場合には、実施例1〜3に比べてボード密度が高いため、潜熱蓄熱材をボード内に十分に保持することができなかったものと考えられる。   Furthermore, as shown in Table 1, although the elution evaluation of the wooden board which concerns on Examples 1-3 was favorable, in the case of the wooden board which concerns on the comparative example 2, the elution of the latent heat storage material was seen. In the case of Comparative Example 2, it is considered that the latent heat storage material could not be sufficiently held in the board because the board density was higher than those in Examples 1 to 3.

以上のことから、実施例1〜3に示すように、木質片を集積して加圧成形した木質成形体に潜熱蓄熱材を含浸する場合、密度が0.3〜0.5g/cmの範囲にある木質成形体であれば、上述した効果を期待することができることは明らかである。さらに、この密度範囲の木質ボードに潜熱蓄熱材が0.20〜0.33g/cm含有するように、木質成形体を構成する木質系材料の内部および木質系材料同士の間に潜熱蓄熱材を含浸させることがより好ましいといえる。 From the above, as shown in Examples 1 to 3, when the wood molded body obtained by accumulating and pressing the wood pieces is impregnated with the latent heat storage material, the density is 0.3 to 0.5 g / cm 3 . It is clear that the above-described effects can be expected if the wood molded body is in the range. Furthermore, the latent heat storage material is contained in the wood-based material constituting the wooden molded body and between the wood-based materials such that the latent heat storage material is contained in the wood board in this density range at 0.20 to 0.33 g / cm 3. It is more preferable to impregnate.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.

本実施形態の木質ボードに化粧材を設けてもよい。また、木質ボード自体に切削、穴あけ等の加工をさらに施してもよい。これにより、高い防音性を発揮することができる。さらに木質ボードを断熱材と組み合わせることにより、高い蓄熱性と断熱性の効果を期待することができる。   A decorative material may be provided on the wooden board of this embodiment. Further, the wood board itself may be further subjected to processing such as cutting and drilling. Thereby, high sound insulation can be exhibited. Furthermore, by combining the wooden board with the heat insulating material, high heat storage and heat insulating effects can be expected.

1a:木質成形体、1:木質ボード、3:木質片、5a:潜熱蓄熱材、5:蓄熱層、8:空隙、9:バット DESCRIPTION OF SYMBOLS 1a: Wood molded object, 1: Wood board, 3: Wood piece, 5a: Latent heat storage material, 5: Thermal storage layer, 8: Air gap, 9: Bat

Claims (2)

木質系材料を集積して加圧成形したボード状の木質成形体に、潜熱蓄熱材を含浸する工程を含み、
前記潜熱蓄熱材を含浸する工程において、前記ボード状の木質成形体の表面から裏面に亘って、前記木質成形体の内部の空隙を残しつつ、前記木質系材料の表面に連続した蓄熱層が形成されるように、前記潜熱蓄熱材を含浸することを特徴とする木質ボードの製造方法。
Including a step of impregnating a latent heat storage material into a board-like wood molded body obtained by compressing and molding wood-based materials;
In the step of impregnating the latent heat storage material, a continuous heat storage layer is formed on the surface of the wood-based material while leaving a void inside the wood-molded body from the surface to the back surface of the board-shaped wood material. As described above, a method for producing a wooden board, wherein the latent heat storage material is impregnated.
前記潜熱蓄熱材を含浸する工程において、溶融状態の前記潜熱蓄熱材に、前記木質成形体を浸漬後、前記木質成形体の表面とその内部に含浸された溶融状態の潜熱蓄熱材を、前記潜熱蓄熱材の自重により、前記木質成形体から液切することを特徴とする請求項1に記載の木質ボードの製造方法。   In the step of impregnating the latent heat storage material, after immersing the wooden molded body in the molten latent heat storage material, the latent heat storage material in the molten state impregnated on the surface of the wooden molded body and inside thereof is added to the latent heat storage material. The method for producing a wooden board according to claim 1, wherein the wooden molded body is drained by its own weight of the heat storage material.
JP2017021311A 2017-02-08 2017-02-08 Wood board manufacturing method Active JP6403817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021311A JP6403817B2 (en) 2017-02-08 2017-02-08 Wood board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021311A JP6403817B2 (en) 2017-02-08 2017-02-08 Wood board manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013009582A Division JP6091904B2 (en) 2013-01-22 2013-01-22 Wood board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017081177A true JP2017081177A (en) 2017-05-18
JP6403817B2 JP6403817B2 (en) 2018-10-10

Family

ID=58710407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021311A Active JP6403817B2 (en) 2017-02-08 2017-02-08 Wood board manufacturing method

Country Status (1)

Country Link
JP (1) JP6403817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795000A (en) * 2018-12-28 2019-05-24 南京林业大学 The preparation method of high thermal conductivity veneer graphene dipping improved wood

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552038A (en) * 1978-06-19 1980-01-09 Eidai Co Ltd Production of water-resistant particle board
JPS61293805A (en) * 1985-06-22 1986-12-24 Dantani Plywood Co Ltd Manufacture of water-resistant particle board
JPH06114809A (en) * 1992-09-30 1994-04-26 Yamaha Corp Manufacture of wooden board
JPH10299236A (en) * 1997-04-22 1998-11-10 Sumika Plus Tec Kk Heat-accumulation type heating panel
JP2002121832A (en) * 2000-08-09 2002-04-26 Sekisui Chem Co Ltd Building
JP2002337116A (en) * 2001-05-14 2002-11-27 Sumitomo Forestry Co Ltd Woody fiber plate and its manufacturing method
JP2004060350A (en) * 2002-07-31 2004-02-26 Mitsubishi Paper Mills Ltd Heat storage board
US6737155B1 (en) * 1999-12-08 2004-05-18 Ou Nian-Hua Paper overlaid wood board and method of making the same
JP2005028797A (en) * 2003-07-08 2005-02-03 Daiken Trade & Ind Co Ltd Formaldehyde adsorbent fiberboard, its production method, and tatami floor
JP2006137147A (en) * 2004-11-15 2006-06-01 Eidai Co Ltd Manufacturing method of wooden board
JP2006241826A (en) * 2005-03-03 2006-09-14 Arukon:Kk Building material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552038A (en) * 1978-06-19 1980-01-09 Eidai Co Ltd Production of water-resistant particle board
JPS61293805A (en) * 1985-06-22 1986-12-24 Dantani Plywood Co Ltd Manufacture of water-resistant particle board
JPH06114809A (en) * 1992-09-30 1994-04-26 Yamaha Corp Manufacture of wooden board
JPH10299236A (en) * 1997-04-22 1998-11-10 Sumika Plus Tec Kk Heat-accumulation type heating panel
US6737155B1 (en) * 1999-12-08 2004-05-18 Ou Nian-Hua Paper overlaid wood board and method of making the same
JP2002121832A (en) * 2000-08-09 2002-04-26 Sekisui Chem Co Ltd Building
JP2002337116A (en) * 2001-05-14 2002-11-27 Sumitomo Forestry Co Ltd Woody fiber plate and its manufacturing method
JP2004060350A (en) * 2002-07-31 2004-02-26 Mitsubishi Paper Mills Ltd Heat storage board
JP2005028797A (en) * 2003-07-08 2005-02-03 Daiken Trade & Ind Co Ltd Formaldehyde adsorbent fiberboard, its production method, and tatami floor
JP2006137147A (en) * 2004-11-15 2006-06-01 Eidai Co Ltd Manufacturing method of wooden board
JP2006241826A (en) * 2005-03-03 2006-09-14 Arukon:Kk Building material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795000A (en) * 2018-12-28 2019-05-24 南京林业大学 The preparation method of high thermal conductivity veneer graphene dipping improved wood

Also Published As

Publication number Publication date
JP6403817B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6223699B2 (en) Wood board and manufacturing method thereof
JP6091904B2 (en) Wood board and manufacturing method thereof
JP6670234B2 (en) Heat storage body in which latent heat storage material is impregnated in porous base material and method for producing the same
Chang et al. Fabrication and characterization of HDPE resins as adhesives in plywood
RU2524819C2 (en) Chip board and method of its making
JP6473205B2 (en) Wood board manufacturing method
CN104583507B (en) Core material for sandwich panel and preparation method thereof, the battenboard for including above-mentioned core material for sandwich panel
Temiz et al. Phase change material impregnated wood for passive thermal management of timber buildings
JP6403817B2 (en) Wood board manufacturing method
WO2009057414A1 (en) Wet friction material
CN113524802B (en) Low-thermal-conductivity phase-change energy-storage heat-preservation plate and preparation method and application thereof
JP6211770B2 (en) Wood board
Sekino Density dependence in the thermal conductivity of cellulose fiber mats and wood shavings mats: investigation of the apparent thermal conductivity of coarse pores
Nazari et al. Solid wood impregnated with a bio-based phase change material for low temperature energy storage in building application
Kairytė et al. Evaluation of self-thermally treated wood plastic composites from wood bark and rapeseed oil-based binder
JP6091950B2 (en) Wood board and manufacturing method thereof
Nazari et al. New hybrid bio-composite based on epoxidized linseed oil and wood particles hosting ethyl palmitate for energy storage in buildings
CN108406982A (en) The multi-functional composite artificial board of ground heating floor base material heat conduction and its manufacturing method
JP6366759B2 (en) Wood board and manufacturing method thereof
Öztürk et al. Microencapsulated phase change material/wood fiber-starch composite as novel bio-based energy storage material for buildings
Alkhazaleh Isopropyl palmitate integrated with plasterboard for low temperature latent heat thermal energy storage
Lu et al. Effects of physical parameters on the temperature and vapor-pressure behavior of bamboo scrimber during hot-pressing
Rodríguez et al. Use of phase change materials in wood and wood-based composites for thermal energy storage: a review
CN103572940A (en) Energy-saving and environmentally friendly composite floor and manufacturing method thereof
JP2003260705A (en) Heat accumulation type fiberboard and utilization method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150