Nothing Special   »   [go: up one dir, main page]

JP2017072171A - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
JP2017072171A
JP2017072171A JP2015198413A JP2015198413A JP2017072171A JP 2017072171 A JP2017072171 A JP 2017072171A JP 2015198413 A JP2015198413 A JP 2015198413A JP 2015198413 A JP2015198413 A JP 2015198413A JP 2017072171 A JP2017072171 A JP 2017072171A
Authority
JP
Japan
Prior art keywords
boom
pressure
variable throttle
control valve
oil chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015198413A
Other languages
Japanese (ja)
Inventor
頼人 清水
Yorito Shimizu
頼人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2015198413A priority Critical patent/JP2017072171A/en
Priority to PCT/JP2016/076165 priority patent/WO2017061220A1/en
Publication of JP2017072171A publication Critical patent/JP2017072171A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction machine capable of smoothly lifting a base body.SOLUTION: A lever device 35 for a boom is operated by an operator, and switches a direction control valve 31 for the boom. A variable throttle 43 is provided in the halfway of a center bypass pipe passage 27, and variably throttles a flow passage area of the center bypass pipe passage 27. A boom operation determination section 48 of a controller 47 determines on the basis of a bottom pressure output from a bottom pressure sensor 44 and a pilot pressure of boom lowering operation output from an operation pressure sensor 45 whether boom lowering operation is in free lowering operation due to free fall or in vehicle body lifting operation for lifting a vehicle body based on boom lowering operation. A variable throttle control section 49 of the controller 47 controls a variable throttle control valve 46 so as to throttle a flow passage area of the variable throttle 43 when the boom operation determination section 48 determines that the boom is in the vehicle body lifting operation.SELECTED DRAWING: Figure 5

Description

本発明は、例えば油圧ショベル等の建設機械に関する。   The present invention relates to a construction machine such as a hydraulic excavator.

一般に、建設機械の代表例である油圧ショベルは、自走可能な下部走行体と、該下部走行体上に旋回可能に設けられ該下部走行体と共に車体(基体)を構成する上部旋回体と、該上部旋回体の前部に回動可能に取付けられた作業装置(フロント)とを含んで構成されている。作業装置は、例えば、上部旋回体の前部に回動可能に取付けられたブームと、該ブームの先端側に回動可能に取付けられたアームと、該アームの先端側に回動可能に取付けられた作業具としてのバケットと、これらを駆動するブームシリンダ、アームシリンダ、バケットシリンダ(作業具シリンダ)とを含んで構成されている。これらブームシリンダ、アームシリンダ、バケットシリンダには、タンクと共に油圧源を構成する油圧ポンプから方向制御弁(コントロールバルブ)を介して圧油が供給される。   In general, a hydraulic excavator that is a representative example of a construction machine includes a lower traveling body that can be self-propelled, an upper revolving body that is turnably provided on the lower traveling body, and that forms a vehicle body (base body) together with the lower traveling body, And a work device (front) that is rotatably attached to the front portion of the upper swing body. The working device is, for example, a boom that is rotatably attached to the front part of the upper swing body, an arm that is rotatably attached to the tip side of the boom, and a pivotally attached to the tip side of the arm. And a boom cylinder, an arm cylinder, and a bucket cylinder (work tool cylinder) that drive these buckets. Pressure oil is supplied to these boom cylinder, arm cylinder, and bucket cylinder from a hydraulic pump that constitutes a hydraulic power source together with a tank via a direction control valve (control valve).

ここで、特許文献1による建設機械は、油圧ポンプをタンクに接続するセンタバイパス管路の途中でブーム用方向制御弁よりも下流側に、センタバイパス管路の流路面積を可変に絞る可変絞り(センタバイパス切換弁)が設けられている。この場合、例えば、ブームの下げ動作に基づいて車体を持ち上げる車体持上げ動作(ジャッキアップ動作)を行うときは、可変絞りの流路面積を小さくする(絞る)。即ち、可変絞りの開口面積を減少させることにより、センタバイパス管路の流量を減少させ、油圧ポンプからブームシリンダのロッド側油室に分流する圧油を増大させる。これにより、車体の持上げに必要なブーム下げ力(バケットを地面に押付ける力)を確保することができる。   Here, the construction machine according to Patent Document 1 is a variable throttle that variably restricts the flow path area of the center bypass pipe downstream of the directional control valve for the boom in the middle of the center bypass pipe connecting the hydraulic pump to the tank. (Center bypass switching valve) is provided. In this case, for example, when performing a vehicle body lifting operation (jacking operation) for lifting the vehicle body based on the boom lowering operation, the flow passage area of the variable throttle is reduced (squeezed). That is, by reducing the opening area of the variable throttle, the flow rate of the center bypass pipe is reduced, and the pressure oil that is diverted from the hydraulic pump to the rod side oil chamber of the boom cylinder is increased. Thereby, the boom lowering force (force for pressing the bucket against the ground) necessary for lifting the vehicle body can be ensured.

一方、水平引き等の作業装置(のバケット)が接地していない空中動作、より具体的には、ブームの下げ動作が空中での自由落下(自重落下)による自由下げ動作(ブーム下げ空中動作)のときは、可変絞りの流路面積を大きくする。即ち、可変絞りの開口面積を増大させることにより、センタバイパス管路の圧力損失(圧損)を低くし、センタバイパス管路の流量を増大させる。これにより、油圧ポンプからブームシリンダのロッド側油室に流入する圧油が減少し、ブームシリンダのボトム側油室からロッド側油室に通じる再生回路を圧油が流れ易くなる。この結果、ブーム下げ動作の再生効率が向上する。   On the other hand, an aerial operation in which the working device (the bucket) for horizontal pulling is not grounded, more specifically, a boom lowering operation is a free lowering operation (boom lowering aerial operation) by free fall (self-weight drop) in the air In this case, the flow area of the variable throttle is increased. That is, by increasing the opening area of the variable throttle, the pressure loss (pressure loss) of the center bypass pipe is lowered, and the flow rate of the center bypass pipe is increased. As a result, the pressure oil flowing from the hydraulic pump into the rod side oil chamber of the boom cylinder is reduced, and the pressure oil can easily flow through the regeneration circuit leading from the bottom side oil chamber of the boom cylinder to the rod side oil chamber. As a result, the reproduction efficiency of the boom lowering operation is improved.

センタバイパス管路の可変絞りは、ブームを動作させるためにオペレータによって操作されるブーム用操作装置のブーム下げ操作信号、具体的には、ブーム用操作装置からブーム用方向制御弁に供給されるブーム下げのパイロット圧油によって制御される。即ち、可変絞りには、ブーム用操作装置からブーム下げのパイロット圧油が供給される。可変絞りは、ブーム下げのパイロット圧が大きくなる程、流路面積が小さくなり、ブーム下げのパイロット圧が小さくなる程、流路面積が大きくなる。   The variable throttle of the center bypass pipe is a boom lowering operation signal of a boom operating device operated by an operator to operate the boom, specifically, a boom supplied from the boom operating device to the boom direction control valve. Controlled by lowered pilot pressure oil. That is, pilot pressure oil for lowering the boom is supplied from the boom operating device to the variable throttle. The variable throttle has a smaller flow passage area as the pilot pressure for lowering the boom becomes larger, and the flow passage area becomes larger as the pilot pressure for lowering the boom becomes smaller.

この場合に、ブーム用操作装置と可変絞りとの間には、ブームシリンダのボトム側油室の圧力(ボトム圧)によって切換わるメータイン切換弁(ジャッキアップ切換弁)が設けられている。メータイン切換弁は、ブーム用操作装置のブーム下げのパイロット圧油が可変絞りに供給されることを阻止する閉位置(遮断位置)と、ブーム下げのパイロット圧油が可変絞りに供給される開位置(連通位置)とを有している。   In this case, a meter-in switching valve (jack-up switching valve) that switches according to the pressure (bottom pressure) in the bottom oil chamber of the boom cylinder is provided between the boom operating device and the variable throttle. The meter-in switching valve has a closed position (blocking position) for preventing the boom lowering pilot pressure oil from being supplied to the variable throttle, and an open position for supplying the boom lowering pilot pressure oil to the variable throttle. (Communication position).

例えば、ブームの下げ動作が空中での自由下げ動作のときは、ブームシリンダのボトム側油室の圧力が高くなる。このとき、ボトム側油室の圧力が、メータイン切換弁の設定圧以上のときは、メータイン切換弁は遮断位置となる。この場合は、可変絞りにブーム下げのパイロット圧油が供給されず、可変絞の流路面積が大きくなり、センタバイパス管路の流量が増大する。これにより、再生回路を通じてブームシリンダのボトム側油室からロッド側油室に圧油が流れ、ブームシリンダの圧油の再生効率が向上する。   For example, when the boom lowering operation is a free lowering operation in the air, the pressure in the bottom side oil chamber of the boom cylinder increases. At this time, when the pressure in the bottom side oil chamber is equal to or higher than the set pressure of the meter-in switching valve, the meter-in switching valve is in the cutoff position. In this case, the pilot pressure oil for lowering the boom is not supplied to the variable throttle, the flow passage area of the variable throttle is increased, and the flow rate of the center bypass pipe is increased. Thereby, pressure oil flows from the bottom side oil chamber of the boom cylinder to the rod side oil chamber through the regeneration circuit, and the regeneration efficiency of the boom cylinder pressure oil is improved.

さらに、ブームの下げ動作が続き、自由下げ動作から作業装置(のバケット)が接地すると、ブームシリンダのボトム側油室の圧力が低くなる。このとき、ボトム側油室の圧力がメータイン切換弁の設定圧よりも低くなると、メータイン切換弁は連通位置となり、可変絞りにブーム下げのパイロット圧油が供給される。この場合は、ブーム下げのパイロット圧が大きくなる程、可変絞りの流路面積が小さくなり、センタバイパス管路の流量が減少する。これにより、油圧ポンプからブームシリンダのロッド側油室に流入する圧油が増大し、車体の持上げに必要なブーム下げ力を確保することができる。   Further, when the boom lowering operation continues and the working device (bucket) comes to ground from the free lowering operation, the pressure in the bottom side oil chamber of the boom cylinder decreases. At this time, when the pressure in the bottom side oil chamber becomes lower than the set pressure of the meter-in switching valve, the meter-in switching valve becomes a communication position, and the pilot pressure oil for lowering the boom is supplied to the variable throttle. In this case, as the pilot pressure for lowering the boom increases, the flow area of the variable throttle becomes smaller, and the flow rate of the center bypass pipe decreases. As a result, the pressure oil flowing from the hydraulic pump into the rod side oil chamber of the boom cylinder increases, and the boom lowering force necessary for lifting the vehicle body can be secured.

特開2006−292068号公報JP 2006-292068 A

特許文献1に記載された構成は、メータイン切換弁のスプールの切換え、および、可変絞りの制御(流路面積の調整)に、油圧信号をそのまま用いている。即ち、メータイン切換弁は、ブームシリンダのボトム側油室の圧油によって直接切換えられる。可変絞りは、ブーム用操作装置からのパイロット圧油によって直接制御される。このような構成の場合、車体の持上げ動作の開始時に、持上げ速度が変動(ハンチング)するおそれがある。   The configuration described in Patent Document 1 uses the hydraulic signal as it is for the switching of the spool of the meter-in switching valve and the control of the variable throttle (adjustment of the flow path area). That is, the meter-in switching valve is directly switched by the pressure oil in the bottom oil chamber of the boom cylinder. The variable throttle is directly controlled by pilot pressure oil from the boom operating device. In such a configuration, the lifting speed may fluctuate (hunting) at the start of the lifting operation of the vehicle body.

即ち、ブームの下げ動作中に、自由下げ動作から作業装置(のバケット)が接地すると、ブームシリンダのボトム側油室の圧力が低下し、メータイン切換弁が連通位置に切換わる。このとき、切換わりの衝撃(ショック)に伴って、メータイン切換弁のスプールが振動(ハンチング)するおそれがある。そして、メータイン切換弁のスプールが振動すると、この振動に伴って、可変絞りに供給されるブーム用操作装置からのブーム下げのパイロット圧油が脈動し、可変絞りの流路面積が変動する可能性がある。この結果、車体の持上げ動作の開始時に、持上げ速度が変動し、車体の円滑な持上げ動作が妨げられる可能性がある。   That is, when the working device (the bucket) comes into contact with the ground during the boom lowering operation, the pressure in the bottom oil chamber of the boom cylinder decreases, and the meter-in switching valve is switched to the communication position. At this time, the spool of the meter-in switching valve may vibrate (hunting) with a switching shock. When the spool of the meter-in switching valve vibrates, the vibration of the boom lowering pilot pressure oil supplied from the operating device for the boom supplied to the variable throttle pulsates, and the flow passage area of the variable throttle may change. There is. As a result, at the start of the lifting operation of the vehicle body, the lifting speed may fluctuate, and the smooth lifting operation of the vehicle body may be hindered.

本発明の目的は、車体(基体)の持上げ動作を円滑に行うことができる建設機械を提供することにある。   An object of the present invention is to provide a construction machine that can smoothly lift a vehicle body (base).

本発明による建設機械は、基体と、前記基体に回動可能に取付けられたブームと、前記基体と前記ブームとの間に取付けられたブームシリンダと、前記基体に搭載されタンクと共に油圧源を構成し前記ブームシリンダに圧油を供給する油圧ポンプと、前記油圧ポンプを前記タンクに接続するセンタバイパス管路の途中に設けられ、前記油圧ポンプから前記ブームシリンダに供給する圧油を切換え制御するブーム用方向制御弁と、前記ブームを上げ動作または下げ動作するために、前記ブーム用方向制御弁を切換える操作を行うブーム用操作装置とを備えてなる。   A construction machine according to the present invention constitutes a hydraulic pressure source together with a base, a boom rotatably attached to the base, a boom cylinder attached between the base and the boom, and a tank mounted on the base. A hydraulic pump that supplies pressure oil to the boom cylinder, and a boom that is provided in the middle of a center bypass pipe that connects the hydraulic pump to the tank, and that controls the switching of pressure oil supplied from the hydraulic pump to the boom cylinder And a boom operation device that performs an operation of switching the boom direction control valve in order to raise or lower the boom.

上述した課題を解決するために、本発明が採用する構成の特徴は、前記センタバイパス管路の途中に設けられ前記ブーム用方向制御弁より下流側で流路面積を可変に絞る可変絞りと、前記ブームシリンダのボトム側油室の圧油の圧力を検出する圧力検出器と、前記ブーム用操作装置のブーム下げ操作を検出する操作検出器と、前記圧力検出器から出力される前記圧力の検出信号と前記操作検出器から出力される前記ブーム下げ操作の検出信号とに基づいて、前記可変絞りによる前記流路面積の可変動作を制御する制御装置とを備え、前記制御装置は、前記ブームが下げ動作を行っているときに、前記圧力の検出信号と前記ブーム下げ操作の検出信号とに基づいて、前記ブームの下げ動作が自由落下による自由下げ動作中であるか、前記ブームの下げ動作に基づいて前記基体を持ち上げる基体持上げ動作中であるかを判定するブーム動作判定部と、前記ブーム動作判定部により前記ブームが基体持上げ動作中と判定したときには、前記油圧ポンプから前記ブームシリンダのロッド側油室に供給する圧油が増大するように前記可変絞りによる前記流路面積を小さく絞る制御を行う可変絞り制御部を備える構成としたことにある。   In order to solve the above-described problem, the configuration adopted by the present invention is characterized in that a variable throttle that is provided in the middle of the center bypass pipe and that squeezes the flow passage area variably on the downstream side of the boom direction control valve; A pressure detector for detecting pressure of pressure oil in a bottom oil chamber of the boom cylinder, an operation detector for detecting a boom lowering operation of the boom operation device, and detection of the pressure output from the pressure detector; And a control device that controls a variable operation of the flow passage area by the variable throttle based on a signal and a detection signal of the boom lowering operation output from the operation detector. Based on the pressure detection signal and the boom lowering operation detection signal during the lowering operation, whether the boom lowering operation is in the free lowering operation due to free fall or the boom A boom operation determining unit for determining whether a base lifting operation for lifting the base based on a lowering operation; and when the boom operation determining unit determines that the boom is in the base lifting operation, the hydraulic pump to the boom cylinder The variable throttle control unit is configured to perform control to reduce the flow passage area by the variable throttle so that the pressure oil supplied to the rod side oil chamber increases.

本発明によれば、基体(車体)の持上げ動作を円滑に行うことができる。   According to the present invention, the lifting operation of the base body (vehicle body) can be performed smoothly.

実施形態による油圧ショベルを示す正面図。The front view which shows the hydraulic excavator by embodiment. 車体持上げ動作中の油圧ショベルを示す正面図。The front view which shows the hydraulic shovel during a vehicle body lifting operation | movement. ブームシリンダを駆動させる回路構成を示す油圧回路図。The hydraulic circuit diagram which shows the circuit structure which drives a boom cylinder. 図3中のブーム用方向制御弁を切換えた自由下げ動作中に対応する油圧回路図。FIG. 4 is a hydraulic circuit diagram corresponding to a freely lowering operation in which the boom direction control valve in FIG. 3 is switched. 図3中のブーム用方向制御弁を切換えた車体持上げ動作中に対応する油圧回路図。FIG. 4 is a hydraulic circuit diagram corresponding to the vehicle body lifting operation with the boom direction control valve in FIG. 3 switched. 図3ないし図5中のブーム動作判定部で行われる処理を示す流れ図。The flowchart which shows the process performed in the boom operation | movement determination part in FIG. 図3ないし図5中の可変絞り制御部の構成を示すブロック図。FIG. 6 is a block diagram showing a configuration of a variable aperture control unit in FIGS. 3 to 5. 図3ないし図5中のポンプ容量指令部の構成を示すブロック図。The block diagram which shows the structure of the pump capacity | capacitance instruction | command part in FIG. 3 thru | or FIG.

以下、本発明の実施形態による建設機械について、油圧ショベルに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。   Hereinafter, a construction machine according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case where the construction machine is applied to a hydraulic excavator.

図1において、建設機械の代表例である油圧ショベル1は、土砂の掘削作業等に用いられる。実施形態の油圧ショベル1は、超大型のバックホウ式の油圧ショベルである。油圧ショベル1は、自走可能なクローラ式の下部走行体2と、該下部走行体2上に旋回可能に設けられ該下部走行体2と共に車体(基体)を構成する上部旋回体3と、該上部旋回体3の前,後方向の前側に回動可能(俯仰動可能)に取付けられた作業装置(フロント)11とを含んで構成されている。   In FIG. 1, a hydraulic excavator 1 which is a typical example of a construction machine is used for excavation work of earth and sand. The hydraulic excavator 1 according to the embodiment is an ultra-large backhoe hydraulic excavator. The hydraulic excavator 1 includes a self-propelled crawler-type lower traveling body 2, an upper revolving body 3 that is provided on the lower traveling body 2 so as to be able to swivel and constitutes a vehicle body (base body) together with the lower traveling body 2, A work device (front) 11 that is attached to the front side of the upper swing body 3 and the front side in the rear direction so as to be rotatable (can be raised and lowered) is configured.

ここで、上部旋回体3は、旋回油圧モータ、減速機構、旋回軸受等を含んで構成される旋回装置4を介して下部走行体2に取付けられ、旋回装置によって下部走行体2に対して旋回駆動する。上部旋回体3は、支持構造体をなし前,後方向の前側に作業装置11が取付けられた旋回フレーム5と、該旋回フレーム5の左前側に搭載され運転室を形成するキャブ6と、該キャブ6の後側に位置して旋回フレーム5に搭載されたエンジン22、油圧ポンプ23、パイロットポンプ25、ブーム用方向制御弁31(いずれも図3ないし図5参照)等を収容する建屋カバー7と、旋回フレーム5の後部に取付けられ作業装置11との重量バランスをとるカウンタウエイト8とを含んで構成されている。   Here, the upper swing body 3 is attached to the lower traveling body 2 via a swing device 4 including a swing hydraulic motor, a speed reduction mechanism, a swing bearing, and the like, and is swung with respect to the lower traveling body 2 by the swing device. To drive. The upper swing body 3 includes a swing frame 5 on which a working device 11 is attached on the front side in the front and rear directions, and a cab 6 that is mounted on the left front side of the swing frame 5 and forms a driver's cab. A building cover 7 that is located on the rear side of the cab 6 and that houses the engine 22, the hydraulic pump 23, the pilot pump 25, the boom direction control valve 31 (see FIGS. 3 to 5) and the like mounted on the revolving frame 5. And a counterweight 8 that is attached to the rear portion of the revolving frame 5 and balances the weight with the work device 11.

ここで、キャブ6の内部には、オペレータが着座する運転席(図示せず)が設けられている。運転席の前側には、オペレータによって操作される左,右の走行用レバー・ペダル装置(図示せず)が設けられている。左,右の走行用レバー・ペダル装置は、下部走行体2の走行を行うために操作されるものである。一方、運転席の左,右方向の両側には、オペレータによって操作される操作装置としての左,右の作業用レバー装置が設けられている。左,右の作業用レバー装置は、上部旋回体3の旋回と作業装置11の回動(俯仰動)を行うために操作されるものである。   Here, a driver's seat (not shown) on which an operator is seated is provided inside the cab 6. On the front side of the driver's seat, left and right traveling lever / pedal devices (not shown) operated by an operator are provided. The left and right traveling lever / pedal devices are operated to travel the lower traveling body 2. On the other hand, on both the left and right sides of the driver's seat, left and right working lever devices are provided as operating devices operated by an operator. The left and right working lever devices are operated to turn the upper swing body 3 and rotate the working device 11 (upward / downward movement).

なお、後述の図3ないし図5は、左,右の作業用レバー装置として、ブーム用レバー装置35を示している。ブーム用レバー装置35は、作業装置11のブーム12を上げ動作または下げ動作する(ブームシリンダ16を伸長または縮小する)ために、ブーム用方向制御弁31を切換える操作を行うものである。具体的には、ブーム用レバー装置35のレバー操作は、例えば、右作業用レバー装置の前,後方向のレバー操作に対応する。   3 to 5 described later show a boom lever device 35 as the left and right working lever devices. The boom lever device 35 performs an operation of switching the boom direction control valve 31 in order to raise or lower the boom 12 of the work device 11 (extend or reduce the boom cylinder 16). Specifically, the lever operation of the boom lever device 35 corresponds to, for example, the front and rear lever operations of the right working lever device.

一方、図1および図2に示すように、作業装置11は、上部旋回体3を構成する旋回フレーム5の前部に回動可能(俯仰動可能)に取付けられた(連結された)ブーム12と、該ブーム12の先端側に回動可能(俯仰動可能)に取付けられたアーム13と、該アーム13の先端側に回動可能に取付けられた作業具としてのバケット14と、アーム13の先端とバケット14との間に取付けられたバケットリンク15とを含んで構成されている。   On the other hand, as shown in FIGS. 1 and 2, the work device 11 is pivotably attached (connected) to the front portion of the revolving frame 5 constituting the upper revolving structure 3 (connected). An arm 13 rotatably attached to the distal end side of the boom 12, a bucket 14 as a working tool rotatably attached to the distal end side of the arm 13, A bucket link 15 attached between the tip and the bucket 14 is included.

旋回フレーム5とブーム12との間には、ブームシリンダ16が取付けられている。ブーム12とアーム13との間には、アームシリンダ17が取付けられている、アーム13とバケットリンク15との間には、バケットシリンダ18が設けられている。ブームシリンダ16は、旋回フレーム5に対してブーム12を回動(俯仰動)するもので、アームシリンダ17は、ブーム12に対してアーム13を回動(俯仰動)するもので、バケットシリンダ18は、アーム13に対してバケット14を回動するものである。   A boom cylinder 16 is attached between the revolving frame 5 and the boom 12. An arm cylinder 17 is attached between the boom 12 and the arm 13, and a bucket cylinder 18 is provided between the arm 13 and the bucket link 15. The boom cylinder 16 rotates the boom 12 with respect to the revolving frame 5, and the arm cylinder 17 rotates the arm 13 with respect to the boom 12. Is for rotating the bucket 14 with respect to the arm 13.

それぞれが油圧シリンダであるブームシリンダ16、アームシリンダ17、および、バケットシリンダ18は、後述の油圧ポンプ23からの圧油に基づいて伸長,縮小することにより、作業装置11の姿勢を変化させるものである。即ち、土砂等の掘削作業時には、左,右の作業用レバー装置のレバー操作に基づいて、ブームシリンダ16、アームシリンダ17、および、バケットシリンダ18を伸長,縮小させ、ブーム12およびアーム13を回動(俯仰動)させつつ、バケット14を回動させる。これにより、バケット14の先端側で土砂等を掘削することができる。   The boom cylinder 16, the arm cylinder 17, and the bucket cylinder 18, each of which is a hydraulic cylinder, change the posture of the work device 11 by expanding and contracting based on pressure oil from a hydraulic pump 23 described later. is there. That is, during excavation work such as earth and sand, the boom cylinder 16, the arm cylinder 17 and the bucket cylinder 18 are expanded and contracted based on the lever operation of the left and right working lever devices, and the boom 12 and the arm 13 are rotated. The bucket 14 is rotated while moving (up and down). Thereby, earth and sand etc. can be excavated by the front end side of the bucket 14.

ここで、図3ないし図5に示すように、ブームシリンダ16は、チューブ16Aと、該チューブ16A内に摺動可能に挿嵌され、チューブ16A内をボトム側油室16Cとロッド側油室16Dとに画成するピストン16Bと、基端側がピストン16Bに固着され、先端側がチューブ16A外に突出したロッド16Eとにより構成されている。   Here, as shown in FIGS. 3 to 5, the boom cylinder 16 is slidably inserted into the tube 16A and the tube 16A, and the bottom side oil chamber 16C and the rod side oil chamber 16D are inserted into the tube 16A. And a rod 16E whose proximal end is fixed to the piston 16B and whose distal end protrudes outside the tube 16A.

次に、ブームシリンダ16を駆動するための油圧回路21について、図3ないし図5を参照しつつ説明する。   Next, the hydraulic circuit 21 for driving the boom cylinder 16 will be described with reference to FIGS.

油圧回路21は、ブームシリンダ16を駆動するためのものである。油圧回路21は、ブームシリンダ16に加え、エンジン22、油圧ポンプ23、タンク24、パイロットポンプ25、ブーム用方向制御弁31、ブーム用レバー装置35、可変絞り43、可変絞り制御弁46、コントローラ47等を含んで構成されている。   The hydraulic circuit 21 is for driving the boom cylinder 16. In addition to the boom cylinder 16, the hydraulic circuit 21 includes an engine 22, a hydraulic pump 23, a tank 24, a pilot pump 25, a boom direction control valve 31, a boom lever device 35, a variable throttle 43, a variable throttle control valve 46, and a controller 47. Etc. are configured.

エンジン22は、キャブ6とカウンタウエイト8との間に位置して旋回フレーム5上に設けられている。エンジン22は、例えばディーゼルエンジンにより構成され、油圧ポンプ23、パイロットポンプ25等を回転駆動するための原動機(回転源)となるものである。なお、油圧ショベル1をハイブリッド式の油圧ショベルとして構成した場合には、油圧ポンプ23等に加えてアシスト発電モータも、エンジン22により回転駆動される。   The engine 22 is provided on the turning frame 5 between the cab 6 and the counterweight 8. The engine 22 is constituted by a diesel engine, for example, and serves as a prime mover (rotation source) for rotationally driving the hydraulic pump 23, the pilot pump 25, and the like. When the hydraulic excavator 1 is configured as a hybrid hydraulic excavator, the assist power generation motor is also rotationally driven by the engine 22 in addition to the hydraulic pump 23 and the like.

油圧ポンプ23は、上部旋回体3の旋回フレーム5に搭載され、エンジン22によって回転駆動される。油圧ポンプ23は、作動油を貯溜するタンク24と共にメインの油圧源を構成する。一方、パイロットポンプ25も、エンジン22によって回転駆動される。パイロットポンプ25は、タンク24と共にパイロット油圧源を構成する。油圧ポンプ23は、吐出管路(デリベリ管路)26に圧油を吐出する。吐出管路26は、ブーム用方向制御弁31よりも上流側で、センタバイパス管路27と分岐管路28とに分岐する。パイロットポンプ25は、パイロット管路29にパイロット圧油を吐出する。パイロット管路29は、ブーム用レバー装置35よりも上流側で、可変絞り制御弁46側にパイロット圧油を供給するための絞り用パイロット管路30と分岐する。   The hydraulic pump 23 is mounted on the swing frame 5 of the upper swing body 3 and is rotationally driven by the engine 22. The hydraulic pump 23 constitutes a main hydraulic source together with a tank 24 that stores hydraulic oil. On the other hand, the pilot pump 25 is also rotationally driven by the engine 22. The pilot pump 25 constitutes a pilot hydraulic pressure source together with the tank 24. The hydraulic pump 23 discharges the pressure oil to the discharge pipe (delivery pipe) 26. The discharge line 26 branches into a center bypass line 27 and a branch line 28 on the upstream side of the boom direction control valve 31. The pilot pump 25 discharges pilot pressure oil to the pilot pipe line 29. The pilot line 29 branches upstream of the boom lever device 35 and the throttle pilot line 30 for supplying pilot pressure oil to the variable throttle control valve 46 side.

ここで、油圧ポンプ23は、作業装置11のブームシリンダ16、アームシリンダ17、バケットシリンダ18、下部走行体2の走行油圧モータ、旋回装置4の旋回油圧モータに圧油を供給する。即ち、油圧ポンプ23は、エンジン22によって駆動されることによりタンク24から作動油(油)を吸入し、吸入した作動油を圧油としてコントロールバルブに向けて供給(吐出)する。なお、図3ないし図5は、コントロールバルブを構成する複数の方向制御弁のうち、ブームシリンダ16に対する圧油の供給と排出を制御するブーム用方向制御弁31のみを示している。   Here, the hydraulic pump 23 supplies pressure oil to the boom cylinder 16, the arm cylinder 17, the bucket cylinder 18, the traveling hydraulic motor of the lower traveling body 2, and the swing hydraulic motor of the swing device 4. That is, the hydraulic pump 23 is driven by the engine 22 to suck hydraulic oil (oil) from the tank 24 and supply (discharge) the sucked hydraulic oil as pressure oil to the control valve. 3 to 5 show only the boom direction control valve 31 that controls the supply and discharge of the pressure oil to the boom cylinder 16 among the plurality of direction control valves constituting the control valve.

油圧ポンプ23は、例えば、斜板式、ラジアルピストン式または斜軸式の可変容量型油圧ポンプとして構成されている。即ち、油圧ポンプ23は、押しのけ容積を可変に調整する容量制御部を備えている。具体的には、油圧ポンプ23は、斜板または斜軸等からなる容量可変部23Aと、該容量可変部23Aを駆動(傾転駆動)する容量可変機構(傾転アクチュエータ)23Bとを有している。容量可変機構23Bは、コントローラ47の指令に基づいて容量可変部23Aを駆動(傾転駆動)する。これにより、容量可変部23A(の傾転角)が変化し、油圧ポンプ23のポンプ容量(押しのけ容積)を増減することができる(圧油の吐出流量を傾転角に応じて増減させることができる)。一方、パイロットポンプ25は、固定容量型油圧ポンプとして構成されている。   The hydraulic pump 23 is configured as, for example, a swash plate type, radial piston type or oblique axis type variable displacement hydraulic pump. That is, the hydraulic pump 23 includes a capacity control unit that variably adjusts the displacement volume. Specifically, the hydraulic pump 23 includes a variable capacity portion 23A made of a swash plate or a slanted shaft, and a variable capacity mechanism (tilt actuator) 23B that drives (tilts and drives) the variable capacity portion 23A. ing. The capacity variable mechanism 23 </ b> B drives the capacity variable section 23 </ b> A (tilt drive) based on a command from the controller 47. As a result, the capacity variable portion 23A (tilt angle) changes and the pump capacity (displacement volume) of the hydraulic pump 23 can be increased or decreased (the discharge flow rate of the hydraulic oil can be increased or decreased according to the tilt angle. it can). On the other hand, the pilot pump 25 is configured as a fixed displacement hydraulic pump.

ブーム用方向制御弁31は、油圧ポンプ23とブームシリンダ16との間に設けられている。換言すれば、ブーム用方向制御弁31は、油圧ポンプ23の吐出管路26をタンク24に接続するセンタバイパス管路27の途中に設けられている。ブーム用方向制御弁31は、油圧ポンプ23からブームシリンダ16に供給する圧油を切換え制御する。即ち、ブーム用方向制御弁31は、ブームシリンダ16に対する圧油の供給と排出を制御する。   The boom direction control valve 31 is provided between the hydraulic pump 23 and the boom cylinder 16. In other words, the boom direction control valve 31 is provided in the middle of the center bypass conduit 27 that connects the discharge conduit 26 of the hydraulic pump 23 to the tank 24. The boom direction control valve 31 switches and controls the pressure oil supplied from the hydraulic pump 23 to the boom cylinder 16. That is, the boom direction control valve 31 controls the supply and discharge of pressure oil to the boom cylinder 16.

ブーム用方向制御弁31は、図示しない各種の方向制御弁と共に、コントロールバルブ(制御弁群)を構成するものである。即ち、ブーム用方向制御弁31は、アームシリンダ17に対する圧油の供給と排出を制御するアーム用方向制御弁、バケットシリンダ18に対する圧油の供給と排出を制御するバケット用方向制御弁、走行油圧モータに対する圧油の供給と排出を制御する走行用方向制御弁、旋回油圧モータに対する圧油の供給と排出を制御する旋回用方向制御弁(いずれも図示せず)等と共に、コントロールバルブを構成している。   The boom direction control valve 31 constitutes a control valve (control valve group) together with various direction control valves (not shown). That is, the boom direction control valve 31 is an arm direction control valve that controls supply and discharge of pressure oil to the arm cylinder 17, a bucket direction control valve that controls supply and discharge of pressure oil to the bucket cylinder 18, and traveling hydraulic pressure. A directional control valve for driving that controls the supply and discharge of pressure oil to the motor, and a directional control valve for rotation that controls the supply and discharge of pressure oil to the swing hydraulic motor (both not shown) constitute a control valve. ing.

ブーム用方向制御弁31は、例えば6ポート3位置の油圧パイロット式方向制御弁により構成されている。ブーム用方向制御弁31は、吐出管路26を介して油圧ポンプ23と接続され、センタバイパス管路27および戻り管路32を介してタンク24と接続されている。さらに、ブーム用方向制御弁31は、ボトム側管路33を介してブームシリンダ16のボトム側油室16Cと接続され、ロッド側管路34を介してブームシリンダ16のロッド側油室16Dと接続されている。   The boom direction control valve 31 is constituted by, for example, a 6-port, 3-position hydraulic pilot type direction control valve. The boom direction control valve 31 is connected to the hydraulic pump 23 via the discharge line 26, and is connected to the tank 24 via the center bypass line 27 and the return line 32. Further, the boom direction control valve 31 is connected to the bottom side oil chamber 16C of the boom cylinder 16 via the bottom side conduit 33, and connected to the rod side oil chamber 16D of the boom cylinder 16 via the rod side conduit 34. Has been.

ブーム用方向制御弁31は、ブーム用レバー装置35により操作(切換え操作)される。このために、ブーム用方向制御弁31の両端側には、一対の油圧パイロット部31A,31Bが設けられている。油圧パイロット部31A,31Bには、ブーム用レバー装置35の操作に基づくパイロット圧(切換信号)が供給される。   The boom direction control valve 31 is operated (switching operation) by the boom lever device 35. For this purpose, a pair of hydraulic pilot portions 31 </ b> A and 31 </ b> B are provided at both ends of the boom direction control valve 31. Pilot pressure (switching signal) based on the operation of the boom lever device 35 is supplied to the hydraulic pilot portions 31A and 31B.

なお、図3ないし図5では、ブーム用方向制御弁31とブーム用レバー装置35以外の方向制御弁およびこれを操作する操作装置(例えば、アーム用方向制御弁とこれを操作するアーム用レバー装置、走行用方向制御弁とこれを操作する走行用レバー・ペダル装置等)を省略して示している。これは、図面の複雑化を避けるためであり、実際には、油圧ショベル1は、ブーム用方向制御弁31とブーム用レバー装置35以外の方向制御弁およびこれを操作する操作装置も備えている。   3 to 5, a direction control valve other than the boom direction control valve 31 and the boom lever device 35 and an operating device for operating the same (for example, an arm direction control valve and an arm lever device for operating the same). The travel direction control valve and the travel lever / pedal device for operating the travel direction control valve are omitted. This is to avoid complication of the drawings. Actually, the excavator 1 also includes a direction control valve other than the boom direction control valve 31 and the boom lever device 35 and an operation device for operating the direction control valve. .

ブーム用操作装置としてのブーム用レバー装置35は、ブーム12を上げ動作または下げ動作するために(即ち、ブームシリンダ16を伸長または縮小するために)、オペレータによって操作される。ブーム用レバー装置35は、減圧弁型パイロット弁からなるパイロット操作弁として構成され、オペレータによって操作される操作レバー35Aを有している。オペレータが操作レバー35Aを手動で傾転操作(レバー操作)すると、その操作量に比例したパイロット圧(切換油圧信号)が、ブーム用レバー装置35からブーム用方向制御弁31の油圧パイロット部31A,31Bに供給される。これにより、ブーム用レバー装置35は、ブーム用方向制御弁31を切換える操作を行う。   The boom lever device 35 as the boom operation device is operated by an operator to raise or lower the boom 12 (that is, to extend or reduce the boom cylinder 16). The boom lever device 35 is configured as a pilot operation valve composed of a pressure reducing valve type pilot valve, and has an operation lever 35A operated by an operator. When the operator manually tilts the lever 35A (lever operation), a pilot pressure (switching hydraulic pressure signal) proportional to the operation amount is supplied from the boom lever device 35 to the hydraulic pilot portion 31A of the boom direction control valve 31. To 31B. Thereby, the boom lever device 35 performs an operation of switching the boom direction control valve 31.

図3に示すように、操作レバー35Aが中立位置のときは、ブーム用レバー装置35から油圧パイロット部31A,31Bにパイロット圧が供給されない。このため、ブーム用方向制御弁31は中立位置(A)となる。この場合は、油圧ポンプ23から吐出した圧油は、センタバイパス管路27を介してタンク24に排出される。このとき、ボトム側管路33およびロッド側管路34は、油圧ポンプ23およびタンク24に対する接続が遮断された状態となるため、ブームシリンダ16は動かない(伸長しない、縮小しない)。   As shown in FIG. 3, when the operation lever 35A is in the neutral position, the pilot pressure is not supplied from the boom lever device 35 to the hydraulic pilot portions 31A and 31B. For this reason, the boom direction control valve 31 is in the neutral position (A). In this case, the pressure oil discharged from the hydraulic pump 23 is discharged to the tank 24 through the center bypass conduit 27. At this time, since the bottom side pipe line 33 and the rod side pipe line 34 are disconnected from the hydraulic pump 23 and the tank 24, the boom cylinder 16 does not move (does not expand or contract).

一方、操作レバー35Aがブーム12を上げる側(ブームシリンダ16を伸長させる側)に傾転操作されると、その操作量に比例したパイロット圧油がブーム用レバー装置35から上げ側パイロット管路36を通じて上げ側の油圧パイロット部31Aに供給される。これにより、ブーム用方向制御弁31は、図3の中立位置(A)から上げ位置となる切換位置(B)に切換えられる。   On the other hand, when the operation lever 35A is tilted to the side where the boom 12 is raised (the side where the boom cylinder 16 is extended), the pilot pressure oil proportional to the amount of operation is raised from the boom lever device 35 to the raising side pilot pipeline 36. To the hydraulic pilot portion 31A on the raising side. Thereby, the direction control valve 31 for booms is switched from the neutral position (A) of FIG. 3 to the switching position (B) that is the raised position.

この場合は、図示は省略するが、分岐管路28がボトム側管路33と接続され、ロッド側管路34が戻り管路32と接続される。これにより、油圧ポンプ23から吐出される圧油が、吐出管路26、分岐管路28、ボトム側管路33を介してブームシリンダ16のボトム側油室16Cに供給され、ロッド側油室16Dの圧油が、ロッド側管路34、戻り管路32を介してタンク24に戻り油として排出される。この結果、ブームシリンダ16が伸長する(ロッド16Eのチューブ16Aからの突出量が大きくなる)。   In this case, although not shown, the branch conduit 28 is connected to the bottom conduit 33 and the rod conduit 34 is connected to the return conduit 32. Thereby, the pressure oil discharged from the hydraulic pump 23 is supplied to the bottom side oil chamber 16C of the boom cylinder 16 via the discharge pipe 26, the branch pipe 28, and the bottom side pipe 33, and the rod side oil chamber 16D. Is returned to the tank 24 via the rod side pipe 34 and the return pipe 32 and discharged as return oil. As a result, the boom cylinder 16 extends (the amount of protrusion of the rod 16E from the tube 16A increases).

これに対し、図4および図5に示すように、操作レバー35Aがブーム12を下げる側(ブームシリンダ16を縮小させる側)に傾転操作されると、その操作量に比例したパイロット圧油がブーム用レバー装置35から下げ側パイロット管路37を通じて下げ側の油圧パイロット部31Bに供給される。これにより、ブーム用方向制御弁31は、図3の中立位置(A)から下げ位置となる切換位置(C)に切換えられる。   On the other hand, as shown in FIGS. 4 and 5, when the operation lever 35A is tilted to the side of lowering the boom 12 (side of reducing the boom cylinder 16), pilot pressure oil proportional to the amount of operation is generated. The boom lever device 35 is supplied to the lower hydraulic pilot section 31B through the lower pilot line 37. Thereby, the direction control valve 31 for booms is switched from the neutral position (A) of FIG. 3 to the switching position (C) that is the lowered position.

この場合は、分岐管路28がロッド側管路34と接続され、ボトム側管路33が戻り管路32と接続される。ここで、ブーム用方向制御弁31の切換位置(C)には、ブームシリンダ16のボトム側油室16Cとロッド側油室16Dとの間に位置してボトム側油室16Cの圧油をロッド側油室16Dへ導く再生回路38が設けられている。即ち、ブーム用方向制御弁31の切換位置(C)には、ボトム側管路33と戻り管路32とを接続する戻り路39と、分岐管路28とロッド側管路34とを接続する供給路40とが設けられている。再生回路38は、戻り路39と供給路40との間で、これら戻り路39と供給路40とを接続する油路として構成されている。再生回路38には、戻り路39側から供給路40側への圧油の流れを許容(開弁)し、供給路40側から戻り路39側への圧油の流れを阻止(閉弁)する逆止弁41が設けられている。さらに、戻り路39の途中で再生回路38との分岐よりも下流側には、絞り42が設けられている。   In this case, the branch line 28 is connected to the rod side line 34, and the bottom side line 33 is connected to the return line 32. Here, at the switching position (C) of the boom direction control valve 31, the pressure oil in the bottom side oil chamber 16C is located between the bottom side oil chamber 16C of the boom cylinder 16 and the rod side oil chamber 16D. A regeneration circuit 38 that leads to the side oil chamber 16D is provided. That is, the return path 39 that connects the bottom side pipe line 33 and the return pipe line 32, the branch pipe line 28, and the rod side pipe line 34 are connected to the switching position (C) of the boom direction control valve 31. A supply path 40 is provided. The regeneration circuit 38 is configured as an oil path connecting the return path 39 and the supply path 40 between the return path 39 and the supply path 40. The regeneration circuit 38 permits (opens) the flow of pressure oil from the return path 39 side to the supply path 40 side, and blocks (closes) the flow of pressure oil from the supply path 40 side to the return path 39 side. A check valve 41 is provided. Further, a throttle 42 is provided in the middle of the return path 39 downstream of the branch with the regeneration circuit 38.

従って、ブーム用方向制御弁31が切換位置(C)のときは、油圧ポンプ23から吐出した圧油は、センタバイパス管路27と分岐管路28とに分流する。そして、分岐管路28に分流した圧油、および/または、ボトム側油室16Cから再生回路38側に流れた圧油が、ロッド側管路34を介してブームシリンダ16のロッド側油室16Dに供給される。一方、ボトム側油室16Cの圧油のうち再生回路38側に流れずに絞り42を通過した圧油が、戻り管路32を介してタンク24に戻り油として排出される。この結果、ブームシリンダ16が縮小する(ロッド16Eのチューブ16Aからの突出量が小さくなる)。   Therefore, when the boom direction control valve 31 is in the switching position (C), the pressure oil discharged from the hydraulic pump 23 is divided into the center bypass pipe 27 and the branch pipe 28. Then, the pressure oil branched to the branch pipe 28 and / or the pressure oil that has flowed from the bottom side oil chamber 16C to the regeneration circuit 38 side via the rod side pipe 34 is connected to the rod side oil chamber 16D of the boom cylinder 16. To be supplied. On the other hand, of the pressure oil in the bottom side oil chamber 16 </ b> C, the pressure oil that has passed through the throttle 42 without flowing to the regeneration circuit 38 side is discharged as return oil to the tank 24 via the return line 32. As a result, the boom cylinder 16 is reduced (the amount of protrusion of the rod 16E from the tube 16A is reduced).

可変絞り43は、センタバイパス管路27の途中でブーム用方向制御弁31より下流側に設けられている。可変絞り43は、ブーム用方向制御弁31より下流側でセンタバイパス管路27の流路面積を可変に絞るものである。可変絞り43は、可変絞り制御弁46から供給されるパイロット圧油(絞りパイロット圧油)によって制御される。可変絞り43は、可変絞り制御弁46のパイロット圧(絞りパイロット圧)が大きくなる程、流路面積(可変絞り43の開口面積)が小さくなり、パイロット圧が小さくなる程、流路面積が大きくなる。可変絞り制御弁46のパイロット圧は、コントローラ47によって可変に制御される。   The variable throttle 43 is provided downstream of the boom direction control valve 31 in the middle of the center bypass conduit 27. The variable restrictor 43 variably restricts the flow passage area of the center bypass conduit 27 on the downstream side of the boom direction control valve 31. The variable throttle 43 is controlled by pilot pressure oil (throttle pilot pressure oil) supplied from the variable throttle control valve 46. The variable throttle 43 has a smaller flow path area (opening area of the variable throttle 43) as the pilot pressure (throttle pilot pressure) of the variable throttle control valve 46 increases, and the flow path area increases as the pilot pressure decreases. Become. The pilot pressure of the variable throttle control valve 46 is variably controlled by the controller 47.

例えば、図1に示すように、ブーム12の下げ動作が空中での下げ動作のとき、より具体的には、ブーム12が空中での自由落下(自重落下)による自由下げ動作(ブーム下げ空中動作)のときは、コントローラ47からの指令に基づいて、可変絞り制御弁46のパイロット圧油が小さくなる(最小となる)。これにより、可変絞り43の流路面積が大きくなり(最大となり)、センタバイパス管路27の流量が増大する。この結果、油圧ポンプ23からブームシリンダ16のロッド側油室16Dに流入する圧油が減少し、再生回路38を圧油が流れ易くなる。即ち、再生回路38によりブームシリンダ16のボトム側油室16Cの圧油がロッド側油室16Dに補給され、ブーム下げ動作の再生効率が向上する。   For example, as shown in FIG. 1, when the lowering operation of the boom 12 is a lowering operation in the air, more specifically, the free lowering operation (the lowering operation of the boom 12) due to the free fall (self-weight dropping) of the boom 12 in the air. ), The pilot pressure oil of the variable throttle control valve 46 is reduced (minimized) based on a command from the controller 47. As a result, the flow area of the variable throttle 43 is increased (maximum), and the flow rate of the center bypass pipe 27 is increased. As a result, the pressure oil flowing from the hydraulic pump 23 into the rod side oil chamber 16D of the boom cylinder 16 is reduced, and the pressure oil easily flows through the regeneration circuit 38. That is, the regeneration circuit 38 supplies the pressure oil in the bottom side oil chamber 16C of the boom cylinder 16 to the rod side oil chamber 16D, thereby improving the regeneration efficiency of the boom lowering operation.

一方、図2に示すように、ブーム12の下げ動作に基づいて車体(下部走行体2および上部旋回体3)を持ち上げる車体持上げ動作(ジャッキアップ動作)を行うときは、コントローラ47からの指令に基づいて、可変絞り制御弁46のパイロット圧油が大きくなる。これにより、可変絞り43の流路面積が小さくなって最後は遮断され、センタバイパス管路27の流量が零となるまで減少する。この結果、油圧ポンプ23から分岐管路28を介してブームシリンダ16のロッド側油室16Dに分流する圧油が増大し、車体の持上げに必要なブーム下げ力(バケット14を地面に押付ける力)を確保することができる。このとき、ボトム側油室16C内の圧油は、ボトム側管路33、戻り路39および戻り管路32を介してタンク24に戻る。   On the other hand, as shown in FIG. 2, when performing a vehicle body lifting operation (jack-up operation) for lifting the vehicle body (the lower traveling body 2 and the upper swing body 3) based on the lowering operation of the boom 12, a command from the controller 47 is used. Based on this, the pilot pressure oil of the variable throttle control valve 46 increases. As a result, the flow passage area of the variable throttle 43 becomes smaller and is shut off at the end, and decreases until the flow rate of the center bypass conduit 27 becomes zero. As a result, the pressure oil diverted from the hydraulic pump 23 to the rod side oil chamber 16D of the boom cylinder 16 via the branch pipe 28 increases, and the boom lowering force (the force for pressing the bucket 14 against the ground) necessary for lifting the vehicle body is increased. ) Can be secured. At this time, the pressure oil in the bottom side oil chamber 16 </ b> C returns to the tank 24 via the bottom side pipe line 33, the return path 39 and the return pipe line 32.

ところで、前述したように、特許文献1に記載の従来技術は、メータイン切換弁のスプールの切換え、および、可変絞りの制御(流路面積の調整)に、油圧信号をそのまま用いている。このような構成は、車体の持上げ動作の開始時に、持上げ速度が変動(ハンチング)するおそれがある。   By the way, as described above, the prior art described in Patent Document 1 uses the hydraulic signal as it is for switching the spool of the meter-in switching valve and controlling the variable throttle (adjusting the flow path area). Such a configuration may cause the lifting speed to fluctuate (hunting) at the start of the lifting operation of the vehicle body.

一方、例えば、ブームシリンダ16のボトム側油室16Cの圧油の圧力を検出し、この検出された圧力に基づいて、可変絞り43を制御する構成とすることが考えられる。即ち、自由下げ動作中であるか車体持上げ動作中であるかは、ブーム12を含む作業装置11(のバケット14)の接地によってブームシリンダ16のボトム側油室16Cの圧力が低下することに基づいて判定することができる。そこで、例えば、ボトム側油室16Cの圧力が予め設定した閾値よりも小さいときは、車体持上げ動作中と判定することができる。しかし、ボトム側油室16Cの圧力は、自由下げ動作から車体持上げ動作に移るときに、変動する可能性がある。   On the other hand, for example, the pressure of the pressure oil in the bottom side oil chamber 16C of the boom cylinder 16 may be detected, and the variable throttle 43 may be controlled based on the detected pressure. That is, whether the free lowering operation or the vehicle body lifting operation is being performed is based on the fact that the pressure in the bottom side oil chamber 16C of the boom cylinder 16 decreases due to the grounding of the working device 11 (the bucket 14) including the boom 12. Can be determined. Therefore, for example, when the pressure in the bottom side oil chamber 16C is smaller than a preset threshold value, it can be determined that the vehicle body is being lifted. However, the pressure in the bottom side oil chamber 16C may fluctuate when shifting from the free lowering operation to the vehicle body lifting operation.

即ち、自由下げ動作のときに、ブームシリンダ16のボトム側油室16Cから流出した圧油は、ロッド側油室16Dに流れる再生回路38と、絞り42を通過してタンク24に流れる戻り管路32とに分流する。この場合に、絞り42によって管路圧損が上昇することにより、車体持上げ動作の開始時に、ボトム側油室16Cの圧力が瞬間的に上昇することがある。このため、ボトム側油室16Cの圧力のみで判定を行う(ボトム側油室16Cの圧力と閾値との比較のみで判定を行う)と、誤判定するおそれがある。   That is, the pressure oil that has flowed out of the bottom side oil chamber 16C of the boom cylinder 16 during the free lowering operation passes through the regeneration circuit 38 that flows into the rod side oil chamber 16D and the return line that passes through the throttle 42 and flows into the tank 24. Divide into 32. In this case, the pressure loss at the bottom side oil chamber 16C may rise momentarily at the start of the vehicle body lifting operation due to an increase in the pipeline pressure loss caused by the throttle 42. For this reason, if the determination is made only with the pressure in the bottom side oil chamber 16C (the determination is made only by comparing the pressure in the bottom side oil chamber 16C with the threshold value), there is a risk of erroneous determination.

例えば、閾値が低く設定されていると、車体持上げ動作の開始時にボトム側油室16Cの圧力が上昇することにより、車体持上げ動作中にも拘わらず、自由下げ動作中と誤判定する可能性がある。一方、閾値が高く設定されていると、車体持上げ動作が終了し、ブーム12を含む作業装置11(のバケット14)が地面から離れたときに、ボトム側油室16Cの圧力が閾値を超えない可能性がある。この場合、車体持上げ動作が終了しているにも拘らず、車体持上げ動作中と誤判定する可能性がある。   For example, if the threshold value is set low, the pressure in the bottom side oil chamber 16C rises at the start of the vehicle body lifting operation, so that it may be erroneously determined that the free lowering operation is being performed despite the vehicle body lifting operation. is there. On the other hand, when the threshold value is set high, the pressure in the bottom side oil chamber 16C does not exceed the threshold value when the vehicle body lifting operation is finished and the working device 11 (the bucket 14) including the boom 12 is separated from the ground. there is a possibility. In this case, there is a possibility of erroneous determination that the vehicle body lifting operation is being performed even though the vehicle body lifting operation has been completed.

これに対し、実施形態では、ボトム側油室16Cの圧力の検出に加えて、ブーム用レバー装置35のブーム下げ操作も検出し、検出された圧力とブーム下げ操作に基づいて、可変絞り43による流量制御と油圧ポンプ23による吐出量制御とを行う構成としている。そこで、次に、可変絞り43による流量制御と油圧ポンプ23による吐出量制御を行うための構成について説明する。   On the other hand, in the embodiment, in addition to the detection of the pressure in the bottom side oil chamber 16C, the boom lowering operation of the boom lever device 35 is also detected, and based on the detected pressure and the boom lowering operation, the variable throttle 43 is used. The flow rate control and the discharge amount control by the hydraulic pump 23 are performed. Then, next, the structure for performing the flow control by the variable throttle 43 and the discharge amount control by the hydraulic pump 23 will be described.

圧力検出器としてのボトム圧センサ44は、ブームシリンダ16のボトム側油室16Cの圧油の圧力を検出するものである。ボトム圧センサ44は、例えば、ボトム側油室16Cまたはボトム側管路33の圧力(油圧)を検出する圧力センサとして構成されている。ボトム圧センサ44は、信号線を介してコントローラ47と接続され、検出したボトム側油室16Cの圧力(ボトム圧)に対応する検出信号(ボトム圧信号)をコントローラ47に出力する。   The bottom pressure sensor 44 as a pressure detector detects the pressure of the pressure oil in the bottom side oil chamber 16C of the boom cylinder 16. The bottom pressure sensor 44 is configured, for example, as a pressure sensor that detects the pressure (hydraulic pressure) of the bottom side oil chamber 16C or the bottom side conduit 33. The bottom pressure sensor 44 is connected to the controller 47 via a signal line, and outputs a detection signal (bottom pressure signal) corresponding to the detected pressure (bottom pressure) in the bottom side oil chamber 16C to the controller 47.

操作検出器としての操作圧センサ45は、ブーム用レバー装置35のブーム下げ操作(下げ操作量)を検出するものである。操作圧センサ45は、例えば、下げ側パイロット管路37に設けられている。操作圧センサ45は、下げ側パイロット管路37の油圧、即ち、ブーム下げのパイロット圧を検出する圧力センサとして構成されている。操作圧センサ45は、信号線を介してコントローラ47と接続され、ブーム下げ操作量に対応するブーム下げのパイロット圧を検出する。操作圧センサ45は、ブーム下げのパイロット圧に対応する検出信号(ブーム下げ操作圧信号)をコントローラ47に出力する。   The operation pressure sensor 45 as an operation detector detects a boom lowering operation (lowering operation amount) of the boom lever device 35. For example, the operation pressure sensor 45 is provided in the lowered pilot line 37. The operation pressure sensor 45 is configured as a pressure sensor that detects the hydraulic pressure of the lower pilot line 37, that is, the pilot pressure for lowering the boom. The operation pressure sensor 45 is connected to the controller 47 via a signal line, and detects the boom lowering pilot pressure corresponding to the boom lowering operation amount. The operation pressure sensor 45 outputs a detection signal (boom lowering operation pressure signal) corresponding to the pilot pressure for lowering the boom to the controller 47.

可変絞り制御弁46は、コントローラ47から出力される指令電流に基づいて、可変絞り43による流路面積を可変に調整するものである。可変絞り制御弁46は、例えば、電磁比例弁により構成することができる。可変絞り制御弁46は、コントローラ47と接続され、該コントローラ47からの指令(電流値)に基づいて、可変絞り43に対するパイロット圧を電流値に応じた圧力となるように可変に調整する。例えば、コントローラ47からの指令電流が大きい程、可変絞り43に対するパイロット圧が大きくなり、可変絞り43の流路面積が小さくなり、タンク24への戻り油量を零まで抑える構成とすることができる。   The variable throttle control valve 46 variably adjusts the flow path area of the variable throttle 43 based on the command current output from the controller 47. The variable throttle control valve 46 can be constituted by, for example, an electromagnetic proportional valve. The variable throttle control valve 46 is connected to the controller 47 and variably adjusts the pilot pressure for the variable throttle 43 to a pressure corresponding to the current value based on a command (current value) from the controller 47. For example, as the command current from the controller 47 increases, the pilot pressure for the variable throttle 43 increases, the flow passage area of the variable throttle 43 decreases, and the amount of oil returned to the tank 24 can be suppressed to zero. .

制御装置としてのコントローラ47は、可変絞り制御弁46を介して可変絞り43による流路面積の可変動作を制御する。また、コントローラ47は、油圧ポンプ23の容量制御部(容量可変部23A、容量可変機構23B)を制御し、油圧ポンプ23の押しのけ容積(即ち、圧油の吐出量である容量)を可変に調整する。コントローラ47は、例えばマイクロコンピュータ等を含んで構成され、その入力側は、ボトム圧センサ44および操作圧センサ45と接続されている。コントローラ47の出力側は、可変絞り制御弁46および油圧ポンプ23の容量可変機構23Bに接続されている。   The controller 47 as a control device controls the variable operation of the flow passage area by the variable throttle 43 via the variable throttle control valve 46. Further, the controller 47 controls the displacement control unit (the displacement variable unit 23A and the displacement variable mechanism 23B) of the hydraulic pump 23, and variably adjusts the displacement of the hydraulic pump 23 (that is, the displacement that is the discharge amount of the pressure oil). To do. The controller 47 includes, for example, a microcomputer and the input side thereof is connected to the bottom pressure sensor 44 and the operation pressure sensor 45. The output side of the controller 47 is connected to the variable throttle control valve 46 and the variable capacity mechanism 23 </ b> B of the hydraulic pump 23.

コントローラ47は、ボトム圧センサ44から出力されるボトム圧(ボトム側油室16Cの圧油の圧力)の検出信号と操作圧センサ45から出力されるブーム下げ操作のパイロット圧(ブーム下げのパイロット圧油の圧力)の検出信号とに基づいて、可変絞り43および油圧ポンプ23を制御する。このために、コントローラ47は、ブーム動作判定部48と、可変絞り制御部49と、ポンプ容量指令部50とを備えている。   The controller 47 detects a bottom pressure (pressure oil pressure in the bottom side oil chamber 16C) output from the bottom pressure sensor 44 and a boom lowering pilot pressure (boom lowering pilot pressure) output from the operation pressure sensor 45. The variable throttle 43 and the hydraulic pump 23 are controlled based on the detection signal of the oil pressure. For this purpose, the controller 47 includes a boom operation determination unit 48, a variable throttle control unit 49, and a pump capacity command unit 50.

ブーム動作判定部48には、ボトム圧センサ44からのボトム圧の検出信号と操作圧センサ45からのパイロット圧の検出信号とが入力される。ブーム動作判定部48は、ブーム12が下げ動作を行っているときに、ボトム側油室16Cのボトム圧とブーム用レバー装置35の(ブーム下げ)パイロット圧とに基づいて、ブーム12の下げ動作が自由落下による自由下げ動作中であるか、ブーム12の下げ動作に基づいて車体を持ち上げる車体持上げ動作中(即ち、車体持上げ動作が開始されてから終了されるまでの間)であるかを判定する。ブーム動作判定部48は、判定結果を、可変絞り制御部49およびポンプ容量指令部50に出力する。   The boom operation determination unit 48 receives a bottom pressure detection signal from the bottom pressure sensor 44 and a pilot pressure detection signal from the operation pressure sensor 45. The boom operation determination unit 48 operates to lower the boom 12 based on the bottom pressure in the bottom oil chamber 16C and the (boom lowering) pilot pressure in the boom lever device 35 when the boom 12 is performing the lowering operation. Is in a free lowering operation due to a free fall or a vehicle body lifting operation for lifting the vehicle body based on the lowering operation of the boom 12 (that is, from the start to the end of the vehicle body lifting operation) To do. The boom operation determination unit 48 outputs the determination result to the variable throttle control unit 49 and the pump displacement command unit 50.

ここで、コントローラ47(ブーム動作判定部48)のメモリには、図6に示すブーム下げ動作判定用の処理プログラムが記憶されている。ブーム動作判定部48は、図6の処理により、ブーム12の下げ動作が自由下げ動作中であるか車体持上げ動作中であるかを判定する。図6の判定処理は、例えば、コントローラ47に通電している間、所定の制御周期で繰り返し実行される。なお、図6では、流れ図のステップを「S」で示しており、例えば「S1」は、ステップ1に対応するものである。   Here, in the memory of the controller 47 (boom operation determining unit 48), a processing program for determining the boom lowering operation shown in FIG. 6 is stored. The boom operation determination unit 48 determines whether the lowering operation of the boom 12 is a free lowering operation or a vehicle body lifting operation by the processing of FIG. The determination process of FIG. 6 is repeatedly executed at a predetermined control period while the controller 47 is energized, for example. In FIG. 6, steps in the flowchart are indicated by “S”. For example, “S1” corresponds to step 1.

エンジン22の始動等により図6の処理動作がスタートすると、S1では、車体持上げフラグがONであるか否かを判定する。S1で、「NO」、即ち、車体持上げフラグがOFFであると判定されると、S2に進む。S2では、ブーム用レバー装置35の操作レバー35Aがブーム12を下げ動作させる側に操作されているか否かを判定する。この判定は、操作圧センサ45から出力されるブーム下げ操作のパイロット圧により判定する。例えば、操作圧センサ45で検出されるパイロット圧が予め設定した閾値(例えば、0.7MPa)よりも大きくなると、ブーム下げ操作ありと判定する。閾値は、ブーム下げの操作がされていることを適切に判定できる値となるように、実験、シミュレーション、計算等により予め求めておく。   When the processing operation of FIG. 6 is started by starting the engine 22 or the like, in S1, it is determined whether or not the vehicle body lifting flag is ON. If it is determined in S1 that “NO”, that is, the vehicle body lifting flag is OFF, the process proceeds to S2. In S <b> 2, it is determined whether or not the operation lever 35 </ b> A of the boom lever device 35 is operated to the side that lowers the boom 12. This determination is made based on the pilot pressure for the boom lowering operation output from the operation pressure sensor 45. For example, when the pilot pressure detected by the operation pressure sensor 45 becomes larger than a preset threshold (for example, 0.7 MPa), it is determined that there is a boom lowering operation. The threshold value is obtained in advance by experiments, simulations, calculations, or the like so that it can be appropriately determined that the boom lowering operation is performed.

S2で「NO」、即ち、ブーム下げ操作なしと判定された場合は、S3に進み、車体持上げフラグおよび自由下げフラグをOFFにしてリターンする(リターンを介してスタートに戻り、S1以降の処理を繰り返す)。この場合は、ブーム動作判定部48は、ブーム12の下げ動作中でない(車体持上げ動作中でなく、自由下げ動作中でない)と判定し、その旨を可変絞り制御部49およびポンプ容量指令部50に出力する。   If “NO” in S2, that is, if it is determined that there is no boom lowering operation, the process proceeds to S3, the vehicle body lifting flag and the free lowering flag are turned OFF, and the process returns (returns to the start via the return, and the processes after S1 are performed) repeat). In this case, the boom operation determining unit 48 determines that the boom 12 is not being lowered (the vehicle is not being lifted and is not being freely lowered), and the variable throttle control unit 49 and the pump displacement command unit 50 are notified accordingly. Output to.

一方、S2で「YES」、即ち、ブーム下げ操作ありと判定された場合は、S4に進む。S4では、ボトム圧センサ44により検出されるブームシリンダ16のボトム側油室16Cのボトム圧が予め設定した車体持上げ判定閾値(例えば、3MPa、好ましくは1MPa)以下であるか否かを判定する。車体持上げ判定閾値は、例えば、作業装置11のバケット14が接地したときのボトム圧に対応する値として設定することができる。車体持上げ判定閾値は、バケット14が接地したことを適切に判定できる値となるように、実験、シミュレーション、計算等により予め求めておく。   On the other hand, if “YES” in S2, that is, if it is determined that there is a boom lowering operation, the process proceeds to S4. In S4, it is determined whether or not the bottom pressure of the bottom side oil chamber 16C of the boom cylinder 16 detected by the bottom pressure sensor 44 is equal to or less than a preset vehicle body lifting determination threshold (for example, 3 MPa, preferably 1 MPa). The vehicle body lifting determination threshold value can be set as a value corresponding to the bottom pressure when the bucket 14 of the work device 11 is grounded, for example. The vehicle body lifting determination threshold value is obtained in advance by experiment, simulation, calculation, or the like so as to be a value that can appropriately determine that the bucket 14 is grounded.

S4で「NO」、即ち、ボトム圧が車体持上げ判定閾値よりも大きい(例えば、3MPaを超えている)と判定された場合は、S5に進む。S5では、車体持上げフラグをOFFにすると共に自由下げフラグをONにしてリターンする。この場合、即ち、自由下げフラグがONになると、ブーム動作判定部48は、ブーム12が自由下げ動作中であると判定し、その旨を可変絞り制御部49およびポンプ容量指令部50に出力する。   If “NO” in S4, that is, if it is determined that the bottom pressure is larger than the vehicle body lifting determination threshold (for example, exceeds 3 MPa), the process proceeds to S5. In S5, the vehicle body lifting flag is turned off and the free lowering flag is turned on, and the process returns. In this case, that is, when the free lowering flag is turned ON, the boom operation determination unit 48 determines that the boom 12 is in the free lowering operation, and outputs that effect to the variable throttle control unit 49 and the pump displacement command unit 50. .

一方、S4で「YES」、即ち、ボトム圧が車体持上げ判定閾値以下(例えば、3MPa以下)であると判定された場合は、S6に進む。S6では、車体持上げフラグをONにすると共に自由下げフラグをOFFにしてリターンする。この場合、即ち、車体持上げフラグがONになると、ブーム動作判定部48は、ブーム12が車体持上げ動作中であると判定し、その旨を可変絞り制御部49およびポンプ容量指令部50に出力する。   On the other hand, if “YES” in S4, that is, if it is determined that the bottom pressure is equal to or less than the vehicle body lifting determination threshold (for example, 3 MPa or less), the process proceeds to S6. In S6, the vehicle body lifting flag is turned on, the free lowering flag is turned off, and the process returns. In this case, that is, when the vehicle body lifting flag is turned ON, the boom operation determination unit 48 determines that the boom 12 is in the vehicle body lifting operation, and outputs that effect to the variable throttle control unit 49 and the pump displacement command unit 50. .

また、S1で「YES」、即ち、車体持上げフラグがONであると判定されると、S7に進む。S7では、ブーム用レバー装置35が下げ操作されているか否か、即ち、ブーム下げ操作が継続中か否かを判定する。S7で「YES」、即ち、ブーム下げ操作あり(継続中)と判定された場合は、リターンする。即ち、車体持上げフラグがONの状態を維持し、S1以降の処理を繰り返す。この場合は、ブーム動作判定部48は、ブーム12が車体持上げ動作中であると判定し、その旨を可変絞り制御部49およびポンプ容量指令部50に出力する。これにより、ボトム圧が車体持上げ判定閾値以下となった後に、ボトム圧が変動(上昇)しても、オペレータによる下げ操作が終了するまでは、車体持上げ動作中であるとの判定を維持できる。この結果、バケット14が接地したとき(車体持上げ動作の開始のとき)のボトム圧の変化が、可変絞り43の制御に影響を与えることを抑制でき、安定した車体の持上げを行うことができる。一方、S7で「NO」、即ち、ブーム下げ操作なし(継続終了)と判定された場合は、番号1を介して、S3に進み、車体持上げフラグおよび自由下げフラグをOFFにしてリターンする。   If “YES” in S1, that is, if it is determined that the vehicle body lifting flag is ON, the process proceeds to S7. In S7, it is determined whether or not the boom lever device 35 is operated to be lowered, that is, whether or not the boom lowering operation is being continued. If “YES” in S7, that is, if it is determined that there is a boom lowering operation (continuing), the process returns. In other words, the vehicle body lifting flag is kept ON, and the processes after S1 are repeated. In this case, the boom operation determination unit 48 determines that the boom 12 is in the vehicle body lifting operation, and outputs that effect to the variable throttle control unit 49 and the pump displacement command unit 50. Thereby, even if the bottom pressure fluctuates (increases) after the bottom pressure becomes equal to or less than the vehicle body lifting determination threshold, it is possible to maintain the determination that the vehicle body is being lifted until the lowering operation by the operator is completed. As a result, it is possible to suppress the change in the bottom pressure when the bucket 14 is grounded (when the vehicle body lifting operation is started) from affecting the control of the variable throttle 43, and the vehicle body can be lifted stably. On the other hand, if “NO” in S7, that is, if it is determined that there is no boom lowering operation (continuation end), the process proceeds to S3 via number 1, and the vehicle body lifting flag and the free lowering flag are turned OFF and the process returns.

コントローラ47の可変絞り制御部49には、ブーム動作判定部48の判定結果(即ち、車体持上げフラグのON,OFF)の信号と、操作圧センサ45からのパイロット圧の検出信号とが入力される。可変絞り制御部49は、ブーム動作判定部48によりブーム12が車体持上げ動作を開始し、現在継続中(車体持上げフラグON)であると判定したときには、油圧ポンプ23からブームシリンダ16のロッド側油室16Dに供給する圧油が増大するように可変絞り43による流路面積(開口面積)を小さく絞る制御を行う。具体的には、可変絞り制御部49は、ブーム動作判定部48によりブーム12が車体持上げ動作を開始し、現在も継続中であると判定したときは、可変絞り43の流路面積を絞るように可変絞り制御弁46を制御する。   The variable throttle control unit 49 of the controller 47 receives the determination result of the boom operation determination unit 48 (that is, the vehicle body lifting flag ON / OFF) and the pilot pressure detection signal from the operation pressure sensor 45. . When the boom operation determination unit 48 determines that the boom 12 starts the vehicle body lifting operation and the variable throttle control unit 49 is currently continuing (vehicle body lifting flag ON), the variable throttle control unit 49 receives the rod side oil of the boom cylinder 16 from the hydraulic pump 23. Control is performed to reduce the flow passage area (opening area) by the variable throttle 43 so that the pressure oil supplied to the chamber 16D increases. Specifically, when the boom operation determination unit 48 determines that the boom 12 starts the vehicle body lifting operation and is still continuing, the variable throttle control unit 49 throttles the flow area of the variable throttle 43. Then, the variable throttle control valve 46 is controlled.

図7に示すように、可変絞り制御部49は、車体持上げ動作時特性部49Aと、自由下げ動作時特性部49Bと、指令選択部49Cとを備えている。車体持上げ動作時特性部49Aには、操作圧センサ45からのパイロット圧(ブーム下げ操作量)が入力される。車体持上げ動作時特性部49Aは、ブロック内に特性線49A1として示す車体持上げ時特性に基づいて、そのときのパイロット圧(操作量)に対応する絞り指令値(電流値)を算出し、その算出された絞り指令値を指令選択部49Cに出力する。車体持上げ時特性(特性線49A1)は、車体持上げ時におけるパイロット圧と可変絞り制御弁46に対する指令電流値との関係(特性)であり、例えば、パイロット圧(操作量)の増大に対して指令電流値も増大する関係(例えば比例関係)とすることができる。   As shown in FIG. 7, the variable aperture control unit 49 includes a vehicle body lifting operation characteristic unit 49A, a free lowering operation characteristic unit 49B, and a command selection unit 49C. The pilot pressure (boom lowering operation amount) from the operation pressure sensor 45 is input to the vehicle body lifting operation characteristic portion 49A. The vehicle lifting operation characteristic unit 49A calculates a throttle command value (current value) corresponding to the pilot pressure (operation amount) at that time based on the vehicle lifting characteristic indicated by the characteristic line 49A1 in the block, and the calculation The aperture command value thus output is output to the command selector 49C. The vehicle body lifting characteristic (characteristic line 49A1) is the relationship (characteristic) between the pilot pressure when the vehicle body is lifted and the command current value for the variable throttle control valve 46. For example, the command for increasing the pilot pressure (operation amount) The current value can also be increased (for example, a proportional relationship).

一方、自由下げ動作時特性部49Bには、車体持上げ動作時特性部49Aと同様に、操作圧センサ45からのパイロット圧(ブーム下げ操作量)が入力される。自由下げ動作時特性部49Bは、ブロック内に特性線49B1として示す自由下げ時特性に基づいて、そのときの操作圧センサ45からのパイロット圧(操作量)に対応する絞り指令値(電流値)を算出し、その算出された絞り指令値を指令選択部49Cに出力する。自由下げ時特性(特性線49B1)は、自由下げ時におけるパイロット圧と可変絞り制御弁46に対する指令電流値との関係(特性)であり、例えば、パイロット圧(操作量)に拘わらず指令電流値が一定(例えば、0mA、指令値0、最小値)の関係とすることができる。   On the other hand, the pilot pressure (boom lowering operation amount) from the operation pressure sensor 45 is input to the free lowering operation characteristic unit 49B, as in the vehicle body lifting operation characteristic unit 49A. The free lowering operation characteristic unit 49B is based on the free lowering characteristic indicated by the characteristic line 49B1 in the block, and the throttle command value (current value) corresponding to the pilot pressure (operation amount) from the operation pressure sensor 45 at that time. And the calculated aperture command value is output to the command selector 49C. The characteristic at the time of free reduction (characteristic line 49B1) is the relationship (characteristic) between the pilot pressure at the time of free reduction and the command current value for the variable throttle control valve 46. For example, the command current value regardless of the pilot pressure (operation amount). Is constant (for example, 0 mA, command value 0, minimum value).

指令選択部49Cには、車体持上げ動作時特性部49Aからの絞り指令値と、自由下げ動作時特性部49Bからの絞り指令値と、ブーム動作判定部48の判定結果が入力される。指令選択部49Cは、ブーム動作判定部48の判定結果が車体持上げ動作中のときは、車体持上げ動作時特性部49Aからの絞り指令値を可変絞り制御弁46に出力する。これにより、車体持上げ動作中は、パイロット圧(操作量)が大きい程、可変絞り制御弁46に対する指令電流値が大きくなり、可変絞り43の流路面積が小さくなり、タンク24への戻り油量を零として遮断する。この結果、油圧ポンプ23から分岐管路28を通じてブームシリンダ16のロッド側油室16Dに分流する圧油が増大し、車体の持上げに必要なブーム下げ力(バケット14を地面に押付ける力)を確保することができる。   The command selection unit 49C receives the throttle command value from the vehicle body lifting operation characteristic unit 49A, the throttle command value from the free lowering operation characteristic unit 49B, and the determination result of the boom operation determination unit 48. The command selection unit 49C outputs the throttle command value from the vehicle lifting operation characteristic unit 49A to the variable throttle control valve 46 when the determination result of the boom operation determination unit 48 is during the vehicle lifting operation. Thus, during the vehicle body lifting operation, the larger the pilot pressure (operation amount), the larger the command current value for the variable throttle control valve 46, the smaller the flow passage area of the variable throttle 43, and the amount of oil returned to the tank 24. Is cut off as zero. As a result, the pressure oil diverted from the hydraulic pump 23 through the branch pipe 28 to the rod side oil chamber 16D of the boom cylinder 16 increases, and the boom lowering force (force to press the bucket 14 against the ground) necessary for lifting the vehicle body is increased. Can be secured.

一方、指令選択部49Cは、ブーム動作判定部48の判定結果が自由下げ動作中のときは、自由下げ動作時特性部49Bからの絞り指令値を可変絞り制御弁46に出力する。これにより、自由下げ動作中は、パイロット圧(操作量)に拘わらず、可変絞り制御弁46に対する指令電流値は一定(例えば、0mA、指令値0、最小値)となり、可変絞り43の流路面積が大きく(最大に)なる。この結果、再生回路38を圧油が流れ易くなり、ブーム下げ動作の再生効率が向上する。   On the other hand, when the determination result of the boom operation determination unit 48 is during the free lowering operation, the command selection unit 49C outputs the aperture command value from the free lowering operation time characteristic unit 49B to the variable throttle control valve 46. Thereby, during the free lowering operation, the command current value for the variable throttle control valve 46 is constant (for example, 0 mA, command value 0, minimum value) regardless of the pilot pressure (operation amount), and the flow path of the variable throttle 43 The area becomes large (maximum). As a result, the pressure oil easily flows through the regeneration circuit 38, and the regeneration efficiency of the boom lowering operation is improved.

コントローラ47のポンプ容量指令部50には、ブーム動作判定部48の判定結果の信号と、操作圧センサ45からのパイロット圧の検出信号とが入力される。ポンプ容量指令部50は、油圧ポンプ23の容量制御部(容量可変部23A、容量可変機構23B)を制御することにより、油圧ポンプ23の押しのけ容積(即ち、吐出容量)を可変に調整する。具体的には、ポンプ容量指令部50は、ブーム動作判定部48によりブーム12が車体持上げ動作中(車体持上げフラグON)と判定されたときに、操作圧センサ45により検出されるパイロット圧(ブーム下げ操作量)が大きい程、油圧ポンプ23の押しのけ容積を増大させ、圧油の吐出量を増大させる。   The pump displacement command unit 50 of the controller 47 receives the determination result signal from the boom operation determination unit 48 and the pilot pressure detection signal from the operation pressure sensor 45. The pump displacement command unit 50 variably adjusts the displacement volume (that is, the discharge capacity) of the hydraulic pump 23 by controlling the displacement control unit (the displacement variable unit 23A and the displacement variable mechanism 23B) of the hydraulic pump 23. Specifically, the pump displacement command unit 50 detects the pilot pressure (boom detected by the operation pressure sensor 45 when the boom operation determination unit 48 determines that the boom 12 is in the vehicle lifting operation (vehicle lifting flag ON). The larger the lowering operation amount), the larger the displacement volume of the hydraulic pump 23, and the more the pressure oil discharge amount is increased.

図8に示すように、ポンプ容量指令部50は、車体持上げ動作時特性部50Aと、自由下げ動作時特性部50Bと、指令選択部50Cと、指令変換部50Dとを備えている。車体持上げ動作時特性部50Aには、操作圧センサ45からのパイロット圧(ブーム下げ操作量)が入力される。車体持上げ動作時特性部50Aは、ブロック内に特性線50A1として示す車体持上げ時特性に基づいて、そのときのパイロット圧(操作量)に対応する目標押しのけ容積(傾転量)を算出し、その算出された目標押しのけ容積を指令選択部50Cに出力する。車体持上げ時特性(特性線50A1)は、車体持上げ時におけるパイロット圧と油圧ポンプ23の目標押しのけ容積との関係(特性)であり、例えば、パイロット圧が所定値を超えるとパイロット圧(操作量)の増大に対して目標押しのけ容積も増大する関係(例えば比例関係)とすることができる。   As shown in FIG. 8, the pump displacement command unit 50 includes a vehicle body lifting operation characteristic unit 50A, a free lowering operation characteristic unit 50B, a command selection unit 50C, and a command conversion unit 50D. The pilot pressure (boom lowering operation amount) from the operation pressure sensor 45 is input to the body lifting operation characteristic unit 50A. The vehicle lifting operation characteristic unit 50A calculates a target displacement (inclination amount) corresponding to the pilot pressure (operation amount) at that time based on the vehicle lifting characteristic indicated by the characteristic line 50A1 in the block, The calculated target displacement is output to the command selector 50C. The vehicle body lifting characteristic (characteristic line 50A1) is a relationship (characteristic) between the pilot pressure when the vehicle body is lifted and the target displacement of the hydraulic pump 23. For example, when the pilot pressure exceeds a predetermined value, the pilot pressure (operation amount) It is possible to make a relationship (for example, a proportional relationship) in which the target displacement volume increases with respect to the increase of.

一方、自由下げ動作時特性部50Bには、操作圧センサ45からのパイロット圧(ブーム下げ操作量)が入力される。自由下げ動作時特性部50Bは、ブロック内に特性線50B1として示す自由下げ時特性に基づいて、そのときのパイロット圧(操作量)に対応する目標押しのけ容積を算出し、その算出された目標押しのけ容積を指令選択部50Cに出力する。自由下げ時特性(特性線50B1)は、自由下げ時におけるパイロット圧と油圧ポンプ23の目標押しのけ容積との関係(特性)であり、例えば、パイロット圧に拘わらず目標押しのけ容積が一定(最小目標値、最小傾転値)の関係とすることができる。   On the other hand, the pilot pressure (boom lowering operation amount) from the operation pressure sensor 45 is input to the free lowering operation characteristic unit 50B. Based on the free lowering characteristic indicated by the characteristic line 50B1 in the block, the free lowering operation characteristic unit 50B calculates a target displacement corresponding to the pilot pressure (operation amount) at that time, and calculates the calculated target displacement. The volume is output to the command selection unit 50C. The characteristic at the time of free lowering (characteristic line 50B1) is the relationship (characteristic) between the pilot pressure and the target displacement of the hydraulic pump 23 at the time of free lowering. For example, the target displacement is constant regardless of the pilot pressure (minimum target value). , Minimum tilt value).

指令選択部50Cには、車体持上げ動作時特性部50Aからの目標押しのけ容積と、自由下げ動作時特性部50Bからの目標押しのけ容積と、ブーム動作判定部48の判定結果が入力される。指令選択部50Cは、ブーム動作判定部48の判定結果が車体持上げ動作中のときは、車体持上げ動作時特性部50Aからの目標押しのけ容積を指令変換部50Dに出力する。一方、指令選択部50Cは、ブーム動作判定部48の判定結果が自由下げ動作中のときは、自由下げ動作時特性部50Bからの目標押しのけ容積を指令変換部50Dに出力する。   The command selection unit 50C receives the target displacement from the body lifting operation characteristic unit 50A, the target displacement from the free lowering operation characteristic unit 50B, and the determination result of the boom operation determination unit 48. When the determination result of the boom operation determination unit 48 is during the vehicle body lifting operation, the command selection unit 50C outputs the target displacement volume from the vehicle body lifting operation time characteristic unit 50A to the command conversion unit 50D. On the other hand, when the determination result of the boom operation determination unit 48 is during the free lowering operation, the command selection unit 50C outputs the target displacement volume from the free lowering operation time characteristic unit 50B to the command conversion unit 50D.

指令変換部50Dには、指令選択部50Cから目標押しのけ容積が入力される。指令変換部50Dは、ブロック内に特性線50D1として示す指令特性に基づいて、そのときの目標押しのけ容積に対応する指令(指令電流値)を算出し、その算出された指令(指令電流値)を油圧ポンプ23の容量可変機構23Bに出力する。指令特性(特性線50D1)は、目標押しのけ容積と容量可変機構23Bに対する指令電流値との関係(特性)であり、例えば、目標押しのけ容積が所定値を超えると、目標押しのけ容積の増大に対して指令電流値も増大する関係(例えば比例関係)とすることができる。   The target displacement volume is input to the command conversion unit 50D from the command selection unit 50C. The command conversion unit 50D calculates a command (command current value) corresponding to the target displacement at that time based on the command characteristics indicated by the characteristic line 50D1 in the block, and the calculated command (command current value). Output to the variable capacity mechanism 23B of the hydraulic pump 23. The command characteristic (characteristic line 50D1) is the relationship (characteristic) between the target displacement volume and the command current value for the variable capacity mechanism 23B. For example, if the target displacement volume exceeds a predetermined value, the increase in the target displacement volume The command current value can also be increased (for example, proportional).

これにより、車体持上げ動作中は、操作圧センサ45で検出したパイロット圧(操作量)が大きい程、容量可変機構23Bに対する指令電流値が大きくなり、油圧ポンプ23の押しのけ容積が増大し、圧油の吐出量を増大させる。この結果、ブーム下げ力(バケット14を地面に押付ける力)が速く増大し、車体持上げ速度を速くすることができる。   As a result, during the vehicle body lifting operation, the larger the pilot pressure (operation amount) detected by the operation pressure sensor 45, the larger the command current value for the displacement variable mechanism 23B, and the displacement volume of the hydraulic pump 23 increases. Increase the discharge amount. As a result, the boom lowering force (force for pressing the bucket 14 against the ground) increases rapidly, and the vehicle body lifting speed can be increased.

実施形態による油圧ショベル1は上述の如き構成を有するもので、次に、その動作について説明する。   The hydraulic excavator 1 according to the embodiment has the above-described configuration, and the operation thereof will be described next.

まず、オペレータは、キャブ6に搭乗し、左,右の走行用レバー・ペダル装置を操作することにより、下部走行体2を前進または後退させることができる。一方、キャブ6内のオペレータは、左,右の作業用レバー装置を操作することにより、作業装置11を回動(俯仰動)させて土砂の掘削作業等を行うことができる。例えば、オペレータがブーム用レバー装置35の操作レバー35Aを操作(傾転操作)することにより、ブーム12を回動(上げ動作、下げ動作)させることができる。   First, an operator can board the cab 6 and operate the left and right traveling lever / pedal devices to move the lower traveling body 2 forward or backward. On the other hand, the operator in the cab 6 can perform the excavation work of earth and sand by operating the left and right working lever devices to turn the working device 11 (up and down). For example, when the operator operates (tilts) the operation lever 35A of the boom lever device 35, the boom 12 can be rotated (raised and lowered).

ここで、操作レバー35Aが中立位置からブーム12を下げる側(ブームシリンダ16を縮小させる側)に傾転操作されると、その操作量に応じて、ブーム用方向制御弁31は、図3に示す中立位置(A)から図4および図5に示す切換位置(C)に切換わる。このとき、コントローラ47のブーム動作判定部48では、図6の判定処理により、ボトム圧とパイロット圧(ブーム下げ操作量)とに基づいて、ブーム12の下げ動作が自由下げ動作中であるか車体を持ち上げる車体持上げ動作中であるかを判定する。   Here, when the operation lever 35A is tilted from the neutral position to the side of lowering the boom 12 (the side of reducing the boom cylinder 16), the boom direction control valve 31 is shown in FIG. The position is switched from the neutral position (A) shown to the switching position (C) shown in FIGS. At this time, the boom operation determination unit 48 of the controller 47 determines whether the lowering operation of the boom 12 is in the free lowering operation based on the bottom pressure and the pilot pressure (boom lowering operation amount) according to the determination processing of FIG. It is determined whether the vehicle is being lifted.

そして、コントローラ47の可変絞り制御部49は、ブーム動作判定部48によりブーム12が車体持上げ動作中と判定されたときは、可変絞り43の流路面積を絞るように可変絞り制御弁46を制御する。また、コントローラ47のポンプ容量指令部50は、ブーム動作判定部48によりブーム12が車体持上げ動作中と判定されたときは、パイロット圧(ブーム下げ操作量)が大きい程、油圧ポンプ23の押しのけ容積(圧油の吐出量)を増大させる。これにより、車体持上げ動作中は、車体の持上げに必要なブーム下げ力を確保することができる。   The variable throttle control unit 49 of the controller 47 controls the variable throttle control valve 46 so that the flow passage area of the variable throttle 43 is throttled when the boom operation determination unit 48 determines that the boom 12 is in the vehicle body lifting operation. To do. When the boom operation determination unit 48 determines that the boom 12 is in the body lifting operation, the pump capacity command unit 50 of the controller 47 increases the displacement of the hydraulic pump 23 as the pilot pressure (boom lowering operation amount) increases. (Pressure oil discharge amount) is increased. Thereby, the boom lowering force necessary for lifting the vehicle body can be ensured during the vehicle body lifting operation.

一方、コントローラ47の可変絞り制御部49は、ブーム動作判定部48によりブーム12の下げ動作が自由下げ動作中と判定されたときは、可変絞り43の流路面積を大きく(最大に)する。これにより、ブームシリンダ16のボトム側油室16Cからロッド側油室16Dに再生回路38を通じて圧油が流れ易くなり、ブーム下げ動作の再生効率を向上できる。   On the other hand, the variable throttle control unit 49 of the controller 47 increases (maximizes) the flow path area of the variable throttle 43 when the boom operation determination unit 48 determines that the lowering operation of the boom 12 is in the free lowering operation. Thereby, the pressure oil can easily flow from the bottom side oil chamber 16C of the boom cylinder 16 to the rod side oil chamber 16D through the regeneration circuit 38, and the regeneration efficiency of the boom lowering operation can be improved.

かくして、実施形態によれば、車体の持上げ動作を円滑に行うことができる。   Thus, according to the embodiment, the lifting operation of the vehicle body can be performed smoothly.

(1).即ち、実施形態によれば、コントローラ47のブーム動作判定部48は、ブームシリンダ16のボトム側油室16Cの圧力の検出信号(ボトム圧信号)とブーム用レバー装置35のブーム下げ操作の検出信号(ブーム下げ操作圧信号)とに基づいて、ブームの下げ動作が自由下げ動作中であるか車体持上げ動作中であるかを判定する。このため、自由下げ動作中であるか車体持上げ動作中であるかの判定の精度を、例えばボトム側油室16Cの圧力のみで判定する構成と比較して向上することができる。即ち、車体持上げ動作の開始時に、例えばボトム側油室16Cの圧力が一時的に変動(上昇)しても、ブーム下げ操作の検出信号に基づいて、車体持上げ動作中である旨の判定を維持することができる。これにより、誤判定を抑制することができる。   (1). That is, according to the embodiment, the boom operation determination unit 48 of the controller 47 detects the pressure detection signal (bottom pressure signal) of the bottom side oil chamber 16C of the boom cylinder 16 and the detection signal of the boom lowering operation of the boom lever device 35. Based on (the boom lowering operation pressure signal), it is determined whether the boom lowering operation is a free lowering operation or a vehicle body lifting operation. For this reason, it is possible to improve the accuracy of the determination as to whether the free lowering operation or the vehicle body lifting operation is being performed, for example, compared with the configuration in which only the pressure in the bottom side oil chamber 16C is used. That is, at the start of the vehicle body lifting operation, for example, even if the pressure in the bottom oil chamber 16C fluctuates (rises) temporarily, the determination that the vehicle body lifting operation is in progress is maintained based on the detection signal of the boom lowering operation. can do. Thereby, erroneous determination can be suppressed.

さらに、コントローラ47の可変絞り制御部49は、ブーム動作判定部48の判定結果に基づいて可変絞り43の制御を行う。即ち、可変絞り制御部49は、ブーム動作判定部48によりブームが車体持上げ動作中と判定したときに、可変絞り43による流路面積を小さく絞る制御を行う。このため、必要なときに、可変絞り43の流路面積を小さくすることができ、安定した車体持上げ動作を行うことができる。換言すれば、例えば、油圧信号をそのまま用いる特許文献1のような構成(ブームシリンダのボトム側油室の圧油によって直接切換えられるメータイン切換弁、および、ブーム用操作装置からのパイロット圧油によって直接切換えられる可変絞りを備えた構成)と比較して、車体の持上げ速度が変動(ハンチング)することを抑制できる。これにより、車体の持上げ動作を円滑に行うことができる。   Further, the variable aperture control unit 49 of the controller 47 controls the variable aperture 43 based on the determination result of the boom operation determination unit 48. That is, when the boom operation determining unit 48 determines that the boom is in the vehicle body lifting operation, the variable throttle control unit 49 performs control to reduce the flow path area by the variable throttle 43. For this reason, when necessary, the flow passage area of the variable throttle 43 can be reduced, and a stable vehicle body lifting operation can be performed. In other words, for example, a configuration as in Patent Document 1 using the hydraulic signal as it is (directly switched by a meter-in switching valve that is directly switched by the pressure oil in the bottom side oil chamber of the boom cylinder and the pilot pressure oil from the boom operating device). As compared with a configuration including a variable aperture that can be switched, it is possible to suppress fluctuation (hunting) of the lifting speed of the vehicle body. Thereby, the lifting operation of the vehicle body can be performed smoothly.

(2).実施形態によれば、ブームシリンダ16のボトム側油室16Cとロッド側油室16Dとの間には、ボトム側油室16Cの圧油をロッド側油室16Dへ導く再生回路38を設けている。そして、ブーム12が自由下げ動作中のときは、再生回路38によりボトム側油室16Cの圧油をロッド側油室16Dに補給する構成としている。このため、ブーム12が自由下げ動作中のときに、再生回路38を通じてボトム側油室16Cからロッド側油室16Dに圧油を安定して補給することができ、ブームシリンダ16の圧油の再生効率を向上できる。   (2). According to the embodiment, the regeneration circuit 38 that guides the pressure oil in the bottom side oil chamber 16C to the rod side oil chamber 16D is provided between the bottom side oil chamber 16C and the rod side oil chamber 16D of the boom cylinder 16. . When the boom 12 is being freely lowered, the regeneration circuit 38 supplies the pressure oil in the bottom side oil chamber 16C to the rod side oil chamber 16D. For this reason, when the boom 12 is being freely lowered, the pressure oil can be stably supplied from the bottom side oil chamber 16C to the rod side oil chamber 16D through the regeneration circuit 38, and the pressure oil in the boom cylinder 16 is regenerated. Efficiency can be improved.

(3).実施形態によれば、可変絞り43による流路面積を可変に調整する可変絞り制御弁46を備えている。そして、コントローラ47の可変絞り制御部49は、ブーム動作判定部48によりブーム12が車体持上げ動作中と判定したときは、可変絞り43の流路面積を絞るように可変絞り制御弁46を制御する構成としている。このため、可変絞り制御部49は、可変絞り制御弁46を介して可変絞り43の流路面積の調整(拡縮)を安定して行うことができる。この場合に、可変絞り制御部49は、ブーム用レバー装置35のブーム下げ操作の検出信号に応じて、可変絞り制御弁46、延いては、可変絞り43を制御することで、ブーム12の動作に応じた最適な流量の圧油を、ブームシリンダ16のロッド側油室16Dに供給(送出)することができる。   (3). According to the embodiment, the variable throttle control valve 46 that variably adjusts the flow path area of the variable throttle 43 is provided. When the boom operation determination unit 48 determines that the boom 12 is in the vehicle body lifting operation, the variable throttle control unit 49 of the controller 47 controls the variable throttle control valve 46 so as to throttle the flow passage area of the variable throttle 43. It is configured. For this reason, the variable throttle control unit 49 can stably adjust (expand / reduce) the flow passage area of the variable throttle 43 via the variable throttle control valve 46. In this case, the variable throttle control section 49 controls the operation of the boom 12 by controlling the variable throttle control valve 46 and, in turn, the variable throttle 43 in accordance with the detection signal of the boom lowering operation of the boom lever device 35. It is possible to supply (send out) pressure oil having an optimum flow rate according to the pressure to the rod side oil chamber 16D of the boom cylinder 16.

しかも、可変絞り制御弁46は、電力で切換わる制御弁(電磁弁)、より具体的には、電磁比例弁により構成することができる。即ち、可変絞り制御部49から出力された電気信号(指令電流)を、可変絞り制御弁46で油圧信号(パイロット圧)に変換し、その変換された油圧信号を可変絞り43に入力する構成とすることができる。この場合は、例えば、可変絞り43の特性(流路面積の制御特性)の変更を、構成部品を変更することなくソフトウエアの変更(例えば、可変絞り制御部49の制御プログラムの変更、制御パラメータである特性49A1,49B1の変更)のみで行うことができる。即ち、油圧信号をそのまま用いる構成の場合は、油圧信号の制御特性が油圧部品により一意に決まり、その特性を変更するときは、油圧部品の変更が必要となる。これに対し、実施形態では、油圧部品の変更を伴わずに特性を変更することができ、汎用性、設計の自由度を向上することができる。即ち、交換部品費用、交換作業費用の面でも有利となる。   Moreover, the variable throttle control valve 46 can be constituted by a control valve (electromagnetic valve) that is switched by electric power, more specifically, an electromagnetic proportional valve. That is, the electric signal (command current) output from the variable throttle control unit 49 is converted into a hydraulic signal (pilot pressure) by the variable throttle control valve 46, and the converted hydraulic signal is input to the variable throttle 43. can do. In this case, for example, the change of the characteristic of the variable throttle 43 (control characteristic of the flow path area) is changed without changing the components (for example, the change of the control program of the variable throttle control unit 49, the control parameter) This is only possible by changing the characteristics 49A1 and 49B1. That is, in the case of a configuration in which the hydraulic signal is used as it is, the control characteristic of the hydraulic signal is uniquely determined by the hydraulic component, and when changing the characteristic, the hydraulic component needs to be changed. On the other hand, in the embodiment, the characteristics can be changed without changing the hydraulic parts, and the versatility and the design freedom can be improved. That is, it is advantageous in terms of replacement part costs and replacement work costs.

(4).実施形態によれば、油圧ポンプ23は、押しのけ容積を可変に調整する容量制御部(容量可変部23A、容量可変機構23B)を備えた可変容量型油圧ポンプとしている。一方、コントローラ47は、油圧ポンプ23の容量制御部(容量可変部23A、容量可変機構23B)を制御するポンプ容量指令部50を備えている。そして、ポンプ容量指令部50は、ブーム動作判定部48によりブームが車体持上げ動作中であると判定されたときに、ブーム下げ操作の操作量が大きい程、押しのけ容積を増大させる構成としている。このため、ブーム12が車体持上げ動作中であるときは、可変絞り43の流路面積を絞ることに加えて、油圧ポンプ23の押しのけ容積を増大させることができる。   (4). According to the embodiment, the hydraulic pump 23 is a variable displacement hydraulic pump including a displacement control unit (a displacement variable unit 23A and a displacement variable mechanism 23B) that variably adjusts the displacement volume. On the other hand, the controller 47 includes a pump capacity command section 50 that controls a capacity control section (capacity variable section 23A, capacity variable mechanism 23B) of the hydraulic pump 23. The pump capacity command unit 50 is configured to increase the displacement volume as the operation amount of the boom lowering operation is larger when the boom operation determining unit 48 determines that the boom is in the body lifting operation. For this reason, when the boom 12 is being lifted, the displacement of the hydraulic pump 23 can be increased in addition to reducing the flow passage area of the variable throttle 43.

即ち、ブーム下げ操作の操作量が大きい程、油圧ポンプ23の押しのけ容積を増大させることで、ブームシリンダ16のロッド側油室16Dへの圧油を増大させることができる。これにより、ブーム下げ力(換言すれば、バケット14を地面に押付ける力)が速く増大し、車体持上げ速度を速くすることができる。この結果、操作性、作業性を向上することができる。さらに、油圧ポンプ23の特性(押しのけ容積の制御特性)の変更は、構成部品を変更することなくソフトウエアの変更(例えば、ポンプ容量指令部50の制御プログラムの変更、制御パラメータである特性50A1,50B1,50D1の変更)のみで行うことができる。このため、この面からも、汎用性、設計の自由度を向上することができる。   That is, the larger the operation amount of the boom lowering operation, the larger the displacement volume of the hydraulic pump 23, thereby increasing the pressure oil to the rod side oil chamber 16D of the boom cylinder 16. As a result, the boom lowering force (in other words, the force pressing the bucket 14 against the ground) increases rapidly, and the vehicle body lifting speed can be increased. As a result, operability and workability can be improved. Further, the change of the characteristic of the hydraulic pump 23 (the control characteristic of the displacement volume) can be made by changing the software without changing the components (for example, changing the control program of the pump capacity command unit 50, the characteristic 50A1, which is a control parameter). 50B1 and 50D1 can be changed only. For this reason, also from this aspect, versatility and design freedom can be improved.

なお、実施形態では、再生回路38をブーム用方向制御弁31に一体的に設ける構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、再生回路をブーム用方向制御弁と別体に設ける構成としてもよい。   In the embodiment, the case where the regeneration circuit 38 is provided integrally with the boom direction control valve 31 has been described as an example. However, the present invention is not limited to this. For example, the regeneration circuit may be provided separately from the boom direction control valve.

実施形態では、ブーム動作判定部48は、車体持上げフラグと自由下げフラグとの2つのフラグを用いる構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、車体持上げフラグのみを用いる構成(車体持上げフラグがONのときは車体持上げ動作中としOFFのときは自由下げ動作中とする構成)としてもよい。   In the embodiment, the boom operation determination unit 48 has been described by taking as an example a case in which two flags, a vehicle body lifting flag and a free lowering flag, are used. However, the present invention is not limited to this. For example, a configuration in which only the vehicle body lifting flag is used (a vehicle body lifting operation when the vehicle body lifting flag is ON and a free lowering operation when it is OFF) may be used.

実施形態では、ブーム用方向制御弁31の油圧パイロット部31A,31Bにブーム用レバー装置35の操作に基づくパイロット圧が供給される構成とし、かつ、下げ操作のパイロット圧を検出する操作圧センサ45によりブーム用レバー装置35の下げ操作量を検出する構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、ブーム用レバー装置の操作レバーの操作量を直接検出するレバーセンサ(変位センサ)により操作検出器を構成することもできる。また、ブーム用レバー装置を、例えば、電気式のブーム用操作装置とすることもできる。即ち、操作検出器は、ブーム用操作装置の操作量を検出できるものであれば、各種のセンサを用いることができる。また、ブーム用操作装置も、ブーム用方向制御弁の切換え操作を行うことができれば、各種の操作装置を用いることができる。   In the embodiment, the pilot pressure based on the operation of the boom lever device 35 is supplied to the hydraulic pilot portions 31A and 31B of the boom direction control valve 31, and the operation pressure sensor 45 detects the pilot pressure of the lowering operation. Thus, the case where the amount of operation for lowering the boom lever device 35 is detected has been described as an example. However, the present invention is not limited to this. For example, the operation detector can be configured by a lever sensor (displacement sensor) that directly detects the operation amount of the operation lever of the boom lever device. Further, the boom lever device may be an electric boom operating device, for example. That is, as the operation detector, various sensors can be used as long as they can detect the operation amount of the boom operation device. Also, various operation devices can be used as the boom operation device as long as the boom direction control valve can be switched.

より詳しく説明すると、操作検出器は、ブーム用操作装置の操作量を検出できるものであればよく、ブーム用操作装置の構成やブーム用方向制御弁の構成に応じて、各種のセンサ、スイッチ等の検出器を用いることができる。また、検出器を用いなくても、例えば、ブーム用操作装置からその操作量に応じた信号がコントローラに入出力される構成の場合は、コントローラによりその信号から操作量を算出(検出)する構成とすることもできる。換言すれば、コントローラが操作検出器を兼ねた構成とすることもできる。   More specifically, the operation detector only needs to be able to detect the operation amount of the boom operation device, and various sensors, switches, etc., depending on the configuration of the boom operation device and the boom direction control valve. Can be used. Further, for example, when a signal corresponding to the operation amount is input / output from / to the controller from the boom operation device without using the detector, the controller calculates (detects) the operation amount from the signal. It can also be. In other words, the controller can also serve as an operation detector.

実施形態では、原動機としてのエンジン22により油圧ポンプ23を駆動する構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、電動モータ(電動機)により油圧ポンプを駆動する構成としてもよい。   In the embodiment, the case where the hydraulic pump 23 is driven by the engine 22 as a prime mover has been described as an example. However, the present invention is not limited to this, and for example, the hydraulic pump may be driven by an electric motor (electric motor).

実施形態では、建設機械として、超大型の油圧ショベル1を例に挙げて説明したが、これに限らず、各種サイズ(大型、中型、小型)の油圧ショベルに適用してもよい。また、クローラ式の油圧ショベル1を例に挙げて説明したが、これに限らず、例えば、ホイール式の油圧ショベルに適用してもよい。また、作業具としてバケット14を取付けた場合を例に挙げて説明したが、例えば、把持具等のバケット以外の作業具(アタッチメント)を取付ける構成としてもよい。さらに、バックホウ式の油圧ショベル1を例に挙げて説明したが、例えば、ローディング式の油圧ショベルに適用してもよい。即ち、本発明は、実施形態の油圧ショベル1に限らず、各種の建設機械に広く適用することができる。   In the embodiment, the super large hydraulic excavator 1 is described as an example of the construction machine. However, the present invention is not limited to this, and the construction machine may be applied to hydraulic excavators of various sizes (large, medium, and small). In addition, the crawler excavator 1 has been described as an example, but the present invention is not limited thereto, and may be applied to, for example, a wheel excavator. Moreover, although the case where the bucket 14 was attached as a working tool was described as an example, for example, a configuration in which a working tool (attachment) other than the bucket such as a gripping tool may be attached. Furthermore, although the backhoe type hydraulic excavator 1 has been described as an example, it may be applied to, for example, a loading type hydraulic excavator. That is, the present invention is not limited to the hydraulic excavator 1 of the embodiment, and can be widely applied to various construction machines.

1 油圧ショベル(建設機械)
2 下部走行体(基体)
3 上部旋回体(基体)
12 ブーム
16 ブームシリンダ
16C ボトム側油室
16D ロッド側油室
23 油圧ポンプ(油圧源)
23A 容量可変部(容量制御部)
23B 容量可変機構(容量制御部)
24 タンク(油圧源)
27 センタバイパス管路
31 ブーム用方向制御弁
35 ブーム用レバー装置(ブーム用操作装置)
38 再生回路
43 可変絞り
44 ボトム圧センサ(圧力検出器)
45 操作圧センサ(操作検出器)
46 可変絞り制御弁
47 コントローラ
48 ブーム動作判定部
49 可変絞り制御部
50 ポンプ容量指令部
1 Excavator (construction machine)
2 Lower traveling body (base)
3 Upper swing body (base)
12 Boom 16 Boom Cylinder 16C Bottom Oil Chamber 16D Rod Oil Chamber 23 Hydraulic Pump (Hydraulic Source)
23A Capacity variable section (capacity control section)
23B variable capacity mechanism (capacity controller)
24 tanks (hydraulic power source)
27 Center Bypass Pipeline 31 Boom Direction Control Valve 35 Boom Lever Device (Boom Operation Device)
38 Regenerative circuit 43 Variable throttle 44 Bottom pressure sensor (pressure detector)
45 Operation pressure sensor (operation detector)
46 Variable throttle control valve 47 Controller 48 Boom operation determination unit 49 Variable throttle control unit 50 Pump capacity command unit

Claims (4)

基体と、
前記基体に回動可能に取付けられたブームと、
前記基体と前記ブームとの間に取付けられたブームシリンダと、
前記基体に搭載されタンクと共に油圧源を構成し前記ブームシリンダに圧油を供給する油圧ポンプと、
前記油圧ポンプを前記タンクに接続するセンタバイパス管路の途中に設けられ、前記油圧ポンプから前記ブームシリンダに供給する圧油を切換え制御するブーム用方向制御弁と、
前記ブームを上げ動作または下げ動作するために、前記ブーム用方向制御弁を切換える操作を行うブーム用操作装置とを備えてなる建設機械において、
前記センタバイパス管路の途中に設けられ前記ブーム用方向制御弁より下流側で流路面積を可変に絞る可変絞りと、
前記ブームシリンダのボトム側油室の圧油の圧力を検出する圧力検出器と、
前記ブーム用操作装置のブーム下げ操作を検出する操作検出器と、
前記圧力検出器から出力される前記圧力の検出信号と前記操作検出器から出力される前記ブーム下げ操作の検出信号とに基づいて、前記可変絞りによる前記流路面積の可変動作を制御する制御装置とを備え、
前記制御装置は、前記ブームが下げ動作を行っているときに、前記圧力の検出信号と前記ブーム下げ操作の検出信号とに基づいて、前記ブームの下げ動作が自由落下による自由下げ動作中であるか、前記ブームの下げ動作に基づいて前記基体を持ち上げる基体持上げ動作中であるかを判定するブーム動作判定部と、
前記ブーム動作判定部により前記ブームが基体持上げ動作中と判定したときには、前記油圧ポンプから前記ブームシリンダのロッド側油室に供給する圧油が増大するように前記可変絞りによる前記流路面積を小さく絞る制御を行う可変絞り制御部を備える構成としたことを特徴とする建設機械。
A substrate;
A boom pivotably attached to the substrate;
A boom cylinder attached between the base body and the boom;
A hydraulic pump which is mounted on the base body and constitutes a hydraulic source together with a tank and supplies pressure oil to the boom cylinder;
A boom direction control valve that is provided in the middle of a center bypass pipe that connects the hydraulic pump to the tank, and that controls the switching of pressure oil supplied from the hydraulic pump to the boom cylinder;
In a construction machine comprising a boom operation device that performs an operation of switching the boom direction control valve to raise or lower the boom.
A variable throttle that is provided in the middle of the center bypass pipe and variably throttles the flow path area downstream from the boom direction control valve;
A pressure detector for detecting the pressure of pressure oil in the bottom oil chamber of the boom cylinder;
An operation detector for detecting a boom lowering operation of the boom operating device;
A control device for controlling a variable operation of the flow passage area by the variable throttle based on a detection signal of the pressure output from the pressure detector and a detection signal of the boom lowering operation output from the operation detector. And
In the control device, when the boom is performing a lowering operation, the lowering operation of the boom is in a free lowering operation due to a free fall based on the detection signal of the pressure and the detection signal of the boom lowering operation. Or a boom operation determination unit that determines whether the base is being lifted based on the boom lowering operation,
When the boom operation determining unit determines that the boom is in the base lifting operation, the flow passage area by the variable throttle is reduced so that the pressure oil supplied from the hydraulic pump to the rod side oil chamber of the boom cylinder increases. A construction machine characterized by comprising a variable aperture control section for controlling the aperture.
前記ブームシリンダのボトム側油室とロッド側油室との間には、前記ボトム側油室の圧油を前記ロッド側油室へ導く再生回路を設け、
前記ブームが自由下げ動作中のときは、前記再生回路により前記ボトム側油室の圧油を前記ロッド側油室に補給する構成としてなる請求項1に記載の建設機械。
Between the bottom side oil chamber and the rod side oil chamber of the boom cylinder, a regeneration circuit is provided for guiding the pressure oil in the bottom side oil chamber to the rod side oil chamber,
The construction machine according to claim 1, wherein when the boom is in a free lowering operation, the regeneration circuit replenishes the rod side oil chamber with the pressure oil in the bottom side oil chamber.
前記可変絞りによる前記流路面積を可変に調整する可変絞り制御弁を備え、
前記制御装置の前記可変絞り制御部は、前記ブーム動作判定部により前記ブームが前記基体持上げ動作中と判定したときは、前記可変絞りの流路面積を絞るように前記可変絞り制御弁を制御する構成としてなる請求項1または2に記載の建設機械。
A variable throttle control valve for variably adjusting the flow path area by the variable throttle;
The variable throttle control unit of the control device controls the variable throttle control valve so as to throttle the flow passage area of the variable throttle when the boom operation determining unit determines that the boom is in the base lifting operation. The construction machine according to claim 1 or 2, wherein the construction machine is configured.
前記油圧ポンプは、押しのけ容積を可変に調整する容量制御部を備えた可変容量型油圧ポンプであり、
前記制御装置は、前記油圧ポンプの前記容量制御部を制御するポンプ容量指令部を備え、
前記制御装置の前記ポンプ容量指令部は、前記ブーム動作判定部により前記ブームが前記基体持上げ動作中と判定されたときに、前記操作検出器により検出される前記ブーム下げ操作の操作量が大きい程、前記押しのけ容積を増大させる構成としてなる請求項1,2または3に記載の建設機械。
The hydraulic pump is a variable displacement hydraulic pump including a displacement control unit that variably adjusts the displacement volume.
The control device includes a pump capacity command unit that controls the capacity control unit of the hydraulic pump,
The pump displacement command unit of the control device has a larger operation amount of the boom lowering operation detected by the operation detector when the boom operation determining unit determines that the boom is in the base lifting operation. The construction machine according to claim 1, 2 or 3, wherein the displacement volume is increased.
JP2015198413A 2015-10-06 2015-10-06 Construction machine Pending JP2017072171A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015198413A JP2017072171A (en) 2015-10-06 2015-10-06 Construction machine
PCT/JP2016/076165 WO2017061220A1 (en) 2015-10-06 2016-09-06 Construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198413A JP2017072171A (en) 2015-10-06 2015-10-06 Construction machine

Publications (1)

Publication Number Publication Date
JP2017072171A true JP2017072171A (en) 2017-04-13

Family

ID=58487500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198413A Pending JP2017072171A (en) 2015-10-06 2015-10-06 Construction machine

Country Status (2)

Country Link
JP (1) JP2017072171A (en)
WO (1) WO2017061220A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183980A (en) * 2018-04-11 2019-10-24 株式会社加藤製作所 Hydraulic circuit of construction machine
JP2020094643A (en) * 2018-12-13 2020-06-18 キャタピラー エス エー アール エル Hydraulic pressure control circuit of construction machine
JP2020526713A (en) * 2017-07-14 2020-08-31 ノルトハイドローリック アクティエボラーグ Dynamic open center hydraulic system control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738782B2 (en) * 2017-09-14 2020-08-12 日立建機株式会社 Drive for construction machinery
JP7305968B2 (en) 2019-01-28 2023-07-11 コベルコ建機株式会社 Driving device for hydraulic cylinders in working machines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292068A (en) * 2005-04-11 2006-10-26 Hitachi Constr Mach Co Ltd Hydraulic working machine
JP2011127727A (en) * 2009-12-21 2011-06-30 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic circuit of construction machine
EP2918854B1 (en) * 2012-11-07 2018-06-27 Hitachi Construction Machinery Co., Ltd. Hydraulic drive device for construction machinery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526713A (en) * 2017-07-14 2020-08-31 ノルトハイドローリック アクティエボラーグ Dynamic open center hydraulic system control
JP2019183980A (en) * 2018-04-11 2019-10-24 株式会社加藤製作所 Hydraulic circuit of construction machine
JP2020094643A (en) * 2018-12-13 2020-06-18 キャタピラー エス エー アール エル Hydraulic pressure control circuit of construction machine
CN113302403A (en) * 2018-12-13 2021-08-24 卡特彼勒Sarl Hydraulic control circuit for a work machine
JP7208701B2 (en) 2018-12-13 2023-01-19 キャタピラー エス エー アール エル Hydraulic control circuit for construction machinery
US11566640B2 (en) 2018-12-13 2023-01-31 Caterpillar Sarl Hydraulic control circuit for a construction machine
CN113302403B (en) * 2018-12-13 2024-10-01 卡特彼勒Sarl Hydraulic control circuit for engineering machine

Also Published As

Publication number Publication date
WO2017061220A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5388787B2 (en) Hydraulic system of work machine
JP6474718B2 (en) Hydraulic control equipment for construction machinery
JP6666209B2 (en) Work machine
JP6328548B2 (en) Work machine
WO2017061220A1 (en) Construction machinery
KR20140034214A (en) Hydraulic drive device for working machine
KR101755424B1 (en) Hydraulic drive device for hydraulic excavator
JP6298716B2 (en) Work machine
JP6580618B2 (en) Construction machinery
JP5797061B2 (en) Excavator
JP6860519B2 (en) Construction machinery
JPWO2017131189A1 (en) Excavator
JP7382792B2 (en) Regeneration device, hydraulic drive system equipped with the same, and control device thereof
JP2020051194A (en) Work vehicle
JP2012225084A (en) Construction machine
JP4446851B2 (en) Hydraulic drive device for work machine
JP2010242306A (en) Hydraulic control device for construction machinery
JP7001572B2 (en) Construction machinery
JP7338292B2 (en) Hydraulic controller for construction machinery
JP2003090302A (en) Hydraulic control circuit of construction machine
JP2004092247A (en) Hydraulic drive system for construction machine
JPWO2015178316A1 (en) Excavator and control method thereof
JP2020122270A (en) Construction machine
JP3634601B2 (en) Hydraulic pump control device for swivel construction machine
WO2023127436A1 (en) Hydraulic system for work machine, and method for controlling hydraulic system for work machine