JP2017069108A - Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery - Google Patents
Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery Download PDFInfo
- Publication number
- JP2017069108A JP2017069108A JP2015195228A JP2015195228A JP2017069108A JP 2017069108 A JP2017069108 A JP 2017069108A JP 2015195228 A JP2015195228 A JP 2015195228A JP 2015195228 A JP2015195228 A JP 2015195228A JP 2017069108 A JP2017069108 A JP 2017069108A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- ion secondary
- electrode
- slurry composition
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 225
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 139
- 239000002002 slurry Substances 0.000 title claims abstract description 138
- 229920000642 polymer Polymers 0.000 claims abstract description 150
- 229920001661 Chitosan Polymers 0.000 claims abstract description 74
- 150000001875 compounds Chemical class 0.000 claims abstract description 58
- 239000007772 electrode material Substances 0.000 claims abstract description 23
- 239000000178 monomer Substances 0.000 claims description 117
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 24
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 22
- 239000003755 preservative agent Substances 0.000 claims description 18
- 230000002335 preservative effect Effects 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 239000004020 conductor Substances 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 47
- 238000000576 coating method Methods 0.000 description 41
- 239000011248 coating agent Substances 0.000 description 38
- 239000011267 electrode slurry Substances 0.000 description 30
- 239000007787 solid Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 238000002360 preparation method Methods 0.000 description 20
- 230000002378 acidificating effect Effects 0.000 description 19
- 238000001035 drying Methods 0.000 description 18
- 229920002554 vinyl polymer Polymers 0.000 description 18
- 150000001993 dienes Chemical class 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 125000001931 aliphatic group Chemical group 0.000 description 15
- 229920000058 polyacrylate Polymers 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000006116 polymerization reaction Methods 0.000 description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- -1 acryl Chemical group 0.000 description 12
- 229920002101 Chitin Polymers 0.000 description 11
- 239000008151 electrolyte solution Substances 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 10
- 230000006196 deacetylation Effects 0.000 description 10
- 238000003381 deacetylation reaction Methods 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000007774 positive electrode material Substances 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 7
- 125000003368 amide group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000001351 cycling effect Effects 0.000 description 7
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229940125904 compound 1 Drugs 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000002612 dispersion medium Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 6
- 239000010450 olivine Substances 0.000 description 6
- 229910052609 olivine Inorganic materials 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000002174 Styrene-butadiene Substances 0.000 description 5
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 230000002421 anti-septic effect Effects 0.000 description 5
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- 239000003115 supporting electrolyte Substances 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- QTKPMCIBUROOGY-UHFFFAOYSA-N 2,2,2-trifluoroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)F QTKPMCIBUROOGY-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- UDXXYUDJOHIIDZ-UHFFFAOYSA-N 2-phosphonooxyethyl prop-2-enoate Chemical compound OP(O)(=O)OCCOC(=O)C=C UDXXYUDJOHIIDZ-UHFFFAOYSA-N 0.000 description 3
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- GUUULVAMQJLDSY-UHFFFAOYSA-N 4,5-dihydro-1,2-thiazole Chemical class C1CC=NS1 GUUULVAMQJLDSY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical group CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical group CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 2
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- DDKMFQGAZVMXQV-UHFFFAOYSA-N (3-chloro-2-hydroxypropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CCl DDKMFQGAZVMXQV-UHFFFAOYSA-N 0.000 description 1
- MAIIXYUYRNFKPL-UPHRSURJSA-N (z)-4-(2-hydroxyethoxy)-4-oxobut-2-enoic acid Chemical compound OCCOC(=O)\C=C/C(O)=O MAIIXYUYRNFKPL-UPHRSURJSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- IEVADDDOVGMCSI-UHFFFAOYSA-N 2-hydroxybutyl 2-methylprop-2-enoate Chemical compound CCC(O)COC(=O)C(C)=C IEVADDDOVGMCSI-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- ULYIFEQRRINMJQ-UHFFFAOYSA-N 3-methylbutyl 2-methylprop-2-enoate Chemical compound CC(C)CCOC(=O)C(C)=C ULYIFEQRRINMJQ-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- GCTWZXLKCMVCKS-NSCUHMNNSA-N 4-o-(2-hydroxyethyl) 1-o-methyl (e)-but-2-enedioate Chemical compound COC(=O)\C=C\C(=O)OCCO GCTWZXLKCMVCKS-NSCUHMNNSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- 229910020632 Co Mn Inorganic materials 0.000 description 1
- 229910020680 Co—Ni—Mn Inorganic materials 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229910008163 Li1+x Mn2-x O4 Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910018058 Ni-Co-Al Inorganic materials 0.000 description 1
- 229910018102 Ni-Mn-Al Inorganic materials 0.000 description 1
- 229910018144 Ni—Co—Al Inorganic materials 0.000 description 1
- 229910018548 Ni—Mn—Al Inorganic materials 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- SMPWDQQFZPIOGD-UPHRSURJSA-N bis(2-hydroxyethyl) (z)-but-2-enedioate Chemical compound OCCOC(=O)\C=C/C(=O)OCCO SMPWDQQFZPIOGD-UPHRSURJSA-N 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000850 deacetylating effect Effects 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000005290 ethynyloxy group Chemical group C(#C)O* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- MDNFYIAABKQDML-UHFFFAOYSA-N heptyl 2-methylprop-2-enoate Chemical compound CCCCCCCOC(=O)C(C)=C MDNFYIAABKQDML-UHFFFAOYSA-N 0.000 description 1
- SCFQUKBBGYTJNC-UHFFFAOYSA-N heptyl prop-2-enoate Chemical compound CCCCCCCOC(=O)C=C SCFQUKBBGYTJNC-UHFFFAOYSA-N 0.000 description 1
- CNFQJGLKUZBUBD-TXHUMJEOSA-N hexa-1,5-diene;(3e)-hexa-1,3-diene;(4e)-hexa-1,4-diene Chemical class CC\C=C\C=C.C\C=C\CC=C.C=CCCC=C CNFQJGLKUZBUBD-TXHUMJEOSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012690 ionic polymerization Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- LKEDKQWWISEKSW-UHFFFAOYSA-N nonyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCOC(=O)C(C)=C LKEDKQWWISEKSW-UHFFFAOYSA-N 0.000 description 1
- MDYPDLBFDATSCF-UHFFFAOYSA-N nonyl prop-2-enoate Chemical compound CCCCCCCCCOC(=O)C=C MDYPDLBFDATSCF-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N pentadiene group Chemical class C=CC=CC PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- RAJUSMULYYBNSJ-UHFFFAOYSA-N prop-1-ene-1-sulfonic acid Chemical compound CC=CS(O)(=O)=O RAJUSMULYYBNSJ-UHFFFAOYSA-N 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- ATZHWSYYKQKSSY-UHFFFAOYSA-N tetradecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C(C)=C ATZHWSYYKQKSSY-UHFFFAOYSA-N 0.000 description 1
- XZHNPVKXBNDGJD-UHFFFAOYSA-N tetradecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C=C XZHNPVKXBNDGJD-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池に関するものである。 The present invention relates to a slurry composition for a lithium ion secondary battery electrode, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
リチウムイオン二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、リチウムイオン二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。 Lithium ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of lithium ion secondary batteries.
ここで、リチウムイオン二次電池用電極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層または負極合材層)とを備えている。そして、この電極合材層は、例えば、電極活物質と、結着材とを含むスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。 Here, the electrode for lithium ion secondary batteries is normally equipped with the electrical power collector and the electrode compound-material layer (positive electrode compound material layer or negative electrode compound material layer) formed on the electrical power collector. And this electrode compound-material layer is formed by apply | coating the slurry composition containing an electrode active material and a binder on a collector, and drying the apply | coated slurry composition, for example.
そこで、近年では、リチウムイオン二次電池の更なる性能の向上を達成すべく、電極合材層の形成に用いられるスラリー組成物の改良が試みられている。(例えば、特許文献1〜2参照)。 In recent years, therefore, attempts have been made to improve the slurry composition used for forming the electrode mixture layer in order to achieve further improvement in the performance of the lithium ion secondary battery. (For example, refer to Patent Documents 1 and 2).
特許文献1では、結着材として所定の構造を有するキトサン誘導体を含むスラリー組成物を用いることにより、正極合材層と集電体の間の密着性を向上させつつ接触抵抗を低減して、リチウムイオン二次電池の電池特性を向上させる技術が報告されている。
特許文献2では、結着材として平均置換度0.1以上のカルボキシアルキルキトサン又はその塩を用いることで、スラリー組成物の塗工性および電極合材層と集電体の間の密着性を向上させる技術が報告されている。また特許文献2によれば、結着性に優れる平均置換度0.1以上のカルボキシアルキルキトサン又はその塩で構成された結着材は、他の結着材との併用が不要であり、そのため取り扱い性を向上することができる。
In Patent Document 1, by using a slurry composition containing a chitosan derivative having a predetermined structure as a binder, the contact resistance is reduced while improving the adhesion between the positive electrode mixture layer and the current collector, Techniques for improving battery characteristics of lithium ion secondary batteries have been reported.
In Patent Document 2, by using carboxyalkyl chitosan having an average substitution degree of 0.1 or more or a salt thereof as a binder, the coating property of the slurry composition and the adhesion between the electrode mixture layer and the current collector are improved. Technology to improve has been reported. According to Patent Document 2, a binder composed of a carboxyalkyl chitosan having an average degree of substitution of 0.1 or more and a salt thereof having excellent binding properties does not need to be used in combination with other binders. The handleability can be improved.
しかしながら、上記従来の電極用スラリー組成物において、電極合材層と集電体を更に強固に密着させるべく、結着材として使用する所定のキトサン誘導体を増量すると、電極用スラリー組成物が過度に増粘してしまいその塗工性が損なわれ、結果としてサイクル特性などの電池特性が低下するという問題があった。すなわち、上記従来の技術には、電極用スラリー組成物の塗工性および電極のピール強度(電極合材層と集電体の間の密着性)の双方をバランスよく向上させるという点において、未だ改善の余地があった。 However, in the conventional electrode slurry composition, if the amount of the predetermined chitosan derivative used as the binder is increased in order to more firmly adhere the electrode mixture layer and the current collector, the electrode slurry composition is excessively increased. As a result, the coating property is impaired and the battery characteristics such as cycle characteristics are deteriorated. That is, the above conventional technique still has a good balance between improving the coating property of the electrode slurry composition and the peel strength of the electrode (adhesiveness between the electrode mixture layer and the current collector). There was room for improvement.
そこで、本発明は、良好な塗工性を有し、且つピール強度に優れるリチウムイオン二次電池用電極を形成可能なリチウムイオン二次電池電極用スラリー組成物を提供することを目的とする。
また、本発明は、ピール強度に優れるリチウムイオン二次電池用電極およびサイクル特性に優れるリチウムイオン二次電池を提供することを目的とする。
Then, an object of this invention is to provide the slurry composition for lithium ion secondary battery electrodes which can form the electrode for lithium ion secondary batteries which has favorable coating property and is excellent in peel strength.
Another object of the present invention is to provide a lithium ion secondary battery electrode having excellent peel strength and a lithium ion secondary battery having excellent cycle characteristics.
本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、水溶性キトサン化合物、粒子状重合体、および電極活物質を含むスラリー組成物が、集電体上への塗工性に優れ、そして当該スラリー組成物を用いればピール強度に優れる電極が得られることを見出し、本発明を完成させた。 The present inventor has intensively studied for the purpose of solving the above problems. Then, the present inventor found that a slurry composition containing a water-soluble chitosan compound, a particulate polymer, and an electrode active material is excellent in coating properties on a current collector, and peel strength can be obtained by using the slurry composition. The present invention was completed by finding that an electrode excellent in resistance was obtained.
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池電極用スラリー組成物は、水溶性キトサン化合物、粒子状重合体、および電極活物質を含むことを特徴とする。このように、水溶性キトサン化合物と粒子状重合体を併用したスラリー組成物は、塗工性が良好であり、そして当該スラリー組成物を用いれば、優れたピール強度を有する電極が得られる。 That is, the object of the present invention is to advantageously solve the above problems, and the slurry composition for lithium ion secondary battery electrodes of the present invention comprises a water-soluble chitosan compound, a particulate polymer, and an electrode active material. It is characterized by containing a substance. Thus, the slurry composition using both the water-soluble chitosan compound and the particulate polymer has good coatability, and an electrode having excellent peel strength can be obtained by using the slurry composition.
ここで、本発明のリチウムイオン二次電池電極用スラリー組成物において、前記粒子状重合体が、酸性基含有単量体単位を0.1質量%以上10質量%以下含むことが好ましい。粒子状重合体が酸性基含有単量体単位を上述の割合で含めば、スラリー組成物の塗工性を更に高めつつ、電極のピール強度を一層向上させることができる。また、粒子状重合体の製造安定性および保存安定性を確保することができる。
なお、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位(繰り返し単位)が含まれている」ことを意味する。
Here, in the slurry composition for a lithium ion secondary battery electrode of the present invention, it is preferable that the particulate polymer contains an acid group-containing monomer unit in an amount of 0.1% by mass to 10% by mass. If the particulate polymer contains the acidic group-containing monomer unit in the above-described proportion, the peel strength of the electrode can be further improved while further improving the coating property of the slurry composition. In addition, the production stability and storage stability of the particulate polymer can be ensured.
In the present invention, “comprising a monomer unit” means “a monomer-derived structural unit (repeating unit) is contained in a polymer obtained using the monomer”. To do.
また、本発明のリチウムイオン二次電池電極用スラリー組成物において、前記粒子状重合体が、(メタ)アクリル酸エステル単量体単位を20質量%以上90質量%以下含むことが好ましい。粒子状重合体が(メタ)アクリル酸エステル単量体単位を上述の割合で含めば、電極のピール強度を更に高めつつ、電極に機械的強度および柔軟性を十分に付与することができる。
なお、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
In the slurry composition for a lithium ion secondary battery electrode of the present invention, the particulate polymer preferably contains 20% by mass or more and 90% by mass or less of a (meth) acrylic acid ester monomer unit. If the particulate polymer contains (meth) acrylic acid ester monomer units in the above-described proportion, the mechanical strength and flexibility can be sufficiently imparted to the electrode while further increasing the peel strength of the electrode.
In the present invention, “(meth) acryl” means acryl and / or methacryl.
そして、本発明のリチウムイオン二次電池電極用スラリー組成物において、前記粒子状重合体が、(メタ)アクリロニトリル単量体単位を3質量%以上40質量%以下含むことが好ましい。粒子状重合体が(メタ)アクリロニトリル単量体単位を上述の割合で含めば、電極のピール強度を確保しつつ、電極に機械的強度および柔軟性を十分に付与することができる。
なお、本発明において「(メタ)アクリロ」とは、アクリロおよび/またはメタクリロを意味する。
And in the slurry composition for lithium ion secondary battery electrodes of the present invention, it is preferable that the particulate polymer contains 3% by mass or more and 40% by mass or less of (meth) acrylonitrile monomer units. If the particulate polymer contains (meth) acrylonitrile monomer units in the above-mentioned proportion, the mechanical strength and flexibility can be sufficiently imparted to the electrode while ensuring the peel strength of the electrode.
In the present invention, “(meth) acrylo” means acrylo and / or methacrylo.
加えて、本発明のリチウムイオン二次電池電極用スラリー組成物において、前記粒子状重合体が、フッ素含有(メタ)アクリル酸エステル単量体単位を0.1質量%以上10質量%以下含むことが好ましい。粒子状重合体がフッ素含有(メタ)アクリル酸エステル単量体単位を上述の割合で含めば、粒子状重合体の重合安定性および貯蔵安定性が向上する。加えて、電極のピール強度を更に向上させつつ、充放電による粒子状重合体の劣化が抑制され、二次電池に優れたサイクル特性を発揮させることができる。 In addition, in the slurry composition for a lithium ion secondary battery electrode of the present invention, the particulate polymer contains 0.1% by mass or more and 10% by mass or less of a fluorine-containing (meth) acrylic acid ester monomer unit. Is preferred. If the particulate polymer contains the fluorine-containing (meth) acrylic acid ester monomer unit in the above-described ratio, the polymerization stability and storage stability of the particulate polymer are improved. In addition, while further improving the peel strength of the electrode, deterioration of the particulate polymer due to charge / discharge is suppressed, and excellent cycle characteristics can be exhibited in the secondary battery.
ここで、本発明のリチウムイオン二次電池電極用スラリー組成物は、更に防腐剤を含むことが好ましい。スラリー組成物が防腐剤を含有すれば、水溶性キトサン化合物の腐敗を抑制して、スラリー組成物の過度な粘度低下および白濁を抑制することができる。 Here, the slurry composition for a lithium ion secondary battery electrode of the present invention preferably further contains a preservative. If the slurry composition contains a preservative, the decay of the water-soluble chitosan compound can be suppressed, and an excessive decrease in viscosity and cloudiness of the slurry composition can be suppressed.
そして、本発明のリチウムイオン二次電池電極用スラリー組成物は、更に導電材を含むことが好ましい。スラリー組成物が導電材を含有すれば、スラリー組成物を用いて調製される電極合材層中で良好な導電パスが形成され、特にスラリー組成物を正極用として用いた際に、リチウムイオン二次電池のレート特性などの電池特性を向上させることができる。 And it is preferable that the slurry composition for lithium ion secondary battery electrodes of this invention contains a electrically conductive material further. If the slurry composition contains a conductive material, a good conductive path is formed in the electrode mixture layer prepared using the slurry composition, and in particular, when the slurry composition is used for a positive electrode, lithium ion Battery characteristics such as the rate characteristic of the secondary battery can be improved.
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池用電極は、上述したリチウムイオン二次電池電極用スラリー組成物の何れかを用いて形成した電極合材層を有することを特徴とする。このように、上述したリチウムイオン二次電池電極用スラリー組成物を用いれば、ピール強度に優れるリチウムイオン二次電池用電極を得ることができる。 Moreover, this invention aims at solving the said subject advantageously, The electrode for lithium ion secondary batteries of this invention is either of the slurry composition for lithium ion secondary battery electrodes mentioned above. It has the electrode compound-material layer formed using, It is characterized by the above-mentioned. Thus, if the slurry composition for lithium ion secondary battery electrodes mentioned above is used, the electrode for lithium ion secondary batteries excellent in peel strength can be obtained.
更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池は、正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方が、上述したリチウムイオン二次電池用電極であることを特徴とする。このように、上述したリチウムイオン二次電池用電極を用いれば、サイクル特性等の電池特性を十分に向上させることができる。 Furthermore, the present invention aims to advantageously solve the above-mentioned problems, and the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and at least one of the positive electrode and the negative electrode Is the electrode for a lithium ion secondary battery described above. As described above, when the above-described electrode for a lithium ion secondary battery is used, battery characteristics such as cycle characteristics can be sufficiently improved.
本発明によれば、良好な塗工性を有し、且つピール強度に優れるリチウムイオン二次電池用電極を形成可能なリチウムイオン二次電池電極用スラリー組成物を提供することができる。
また、本発明によれば、ピール強度に優れるリチウムイオン二次電池用電極およびサイクル特性に優れるリチウムイオン二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, it can provide the slurry composition for lithium ion secondary battery electrodes which can form the electrode for lithium ion secondary batteries which has favorable coating property and is excellent in peel strength.
Moreover, according to this invention, the lithium ion secondary battery which is excellent in the electrode for lithium ion secondary batteries excellent in peel strength, and cycling characteristics can be provided.
以下、本発明の実施形態について詳細に説明する。
ここで、本発明のリチウムイオン二次電池電極用スラリー組成物は、本発明のリチウムイオン二次電池の電極を形成する際に用いることができる。そして、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用電極を用いたことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the slurry composition for a lithium ion secondary battery electrode of the present invention can be used when forming the electrode of the lithium ion secondary battery of the present invention. And the lithium ion secondary battery of this invention used the electrode for lithium ion secondary batteries of this invention, It is characterized by the above-mentioned.
(リチウムイオン二次電池電極用スラリー組成物)
本発明のリチウムイオン二次電池電極用スラリー組成物は、水溶性キトサン化合物と、粒子状重合体と、電極活物質と、水などの分散媒とを含み、任意に、防腐剤、導電材、そしてリチウムイオン二次電池の電極に配合され得るその他の成分を更に含有する。
(Slurry composition for lithium ion secondary battery electrode)
The slurry composition for a lithium ion secondary battery electrode of the present invention comprises a water-soluble chitosan compound, a particulate polymer, an electrode active material, and a dispersion medium such as water, and optionally, a preservative, a conductive material, It further contains other components that can be blended in the electrode of the lithium ion secondary battery.
そして、本発明のスラリー組成物は、水溶性キトサン化合物と粒子状重合体を含有しているので、良好な塗工性を有している。すなわち、本発明のスラリー組成物は、固形分濃度を高めた場合であっても過度な増粘が生じ難く、スラリー組成物調製時のエアー巻き込みによる、電極合材層表面や電極合材層と集電体との界面でのホール発生、および、塗りムラ等の欠陥を抑制することができる。加えて、本発明スラリー組成物は固形分濃度を十分に高めることができるため、集電体上への塗布後、効率よく乾燥を行うことができる。また、本発明のスラリー組成物を乾燥して得られる電極は、ピール強度に優れる。
なお、水溶性キトサン化合物と粒子状重合体を併用することでスラリー組成物の塗工性および電極のピール強度をバランスよく向上できる理由は定かではないが、以下の理由によるものと推察される。すなわち、水溶性キトサン化合物と粒子状重合体がスラリー組成物中において相互作用することで、水溶性キトサン化合物同士の相互作用が抑制されることとなり、水溶性キトサン化合物による過度な粘度上昇が抑えられる。よって、スラリー組成物は、固形分濃度が高い場合であっても、適度な粘性を保持することができるため、塗工性を確保できると考えられる。また、本発明のスラリー組成物によれば、その良好な塗工性のため均質な電極合材層が形成可能である点に加え、水溶性キトサン化合物と粒子状重合体を併用することで、これらの結着材としての特性がそれぞれ良好に発現されて、電極合材層と集電体を強固に密着させることが可能となると考えられる。
And since the slurry composition of this invention contains a water-soluble chitosan compound and a particulate polymer, it has favorable coating property. That is, the slurry composition of the present invention is less prone to excessive thickening even when the solid content concentration is increased, and the surface of the electrode mixture layer and the electrode mixture layer by air entrainment at the time of slurry composition preparation Generation of holes at the interface with the current collector and defects such as uneven coating can be suppressed. In addition, since the slurry composition of the present invention can sufficiently increase the solid content concentration, it can be efficiently dried after coating on the current collector. Moreover, the electrode obtained by drying the slurry composition of this invention is excellent in peel strength.
The reason why the coating property of the slurry composition and the peel strength of the electrode can be improved in a well-balanced manner by using the water-soluble chitosan compound and the particulate polymer is not clear, but is presumed to be due to the following reason. That is, when the water-soluble chitosan compound and the particulate polymer interact in the slurry composition, the interaction between the water-soluble chitosan compounds is suppressed, and an excessive increase in viscosity due to the water-soluble chitosan compound is suppressed. . Therefore, since the slurry composition can maintain an appropriate viscosity even when the solid content concentration is high, it is considered that the coating property can be secured. Moreover, according to the slurry composition of the present invention, in addition to the point that a homogeneous electrode mixture layer can be formed due to its good coatability, by using a water-soluble chitosan compound and a particulate polymer in combination, It is considered that these properties as a binder are expressed well, and the electrode mixture layer and the current collector can be firmly adhered to each other.
<水溶性キトサン化合物>
水溶性キトサン化合物は、本発明のスラリー組成物中において、水などの分散媒に溶解することで粘度調整剤として機能しつつ、スラリー組成物を使用して集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持する結着材としても機能しうる成分である。
<Water-soluble chitosan compound>
In the slurry composition of the present invention, the water-soluble chitosan compound functions as a viscosity modifier by dissolving in a dispersion medium such as water, while using the slurry composition to form an electrode mixture layer on the current collector. In the electrode manufactured by forming, it is a component that can also function as a binder for holding the component contained in the electrode mixture layer so as not to be detached from the electrode mixture layer.
ここで、キトサン化合物としては、キチンを脱アセチル化することにより得られるキトサン、およびその誘導体(キトサン誘導体)が挙げられる。またキトサン化合物はナトリウム塩などの塩の形態となっていてもよい。ここでキトサン誘導体としては、例えば、キトサン中に複数存在するヒドロキシル基および/またはアミノ基の水素原子の少なくとも一部が他の構造に置換されたものが挙げられる。このようなキトサン誘導体としては、例えば、特開2009−277660号公報、特開2015−5474号公報、特開2013−229110号公報に記載のものが挙げられる。
これらのキトサン化合物の中でも、本願においては水溶性のキトサン化合物を使用することが必要である。キトサン化合物が「水溶性」であるとは、キトサン化合物および水を含む評価用試料を250メッシュのスクリーンを通過させた際の、添加したキトサン化合物の質量(固形分相当)に対するスクリーンを通過せずにスクリーン上に残る残渣の質量(固形分相当)の割合(以下、「水溶性試験での残渣割合」という。)が50質量%以下となることをいう。ここで、上述した評価用試料は、イオン交換水100質量部当たりキトサン化合物1質量部(固形分相当)を添加し攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつ、pH5以上7以下(pH調整にはHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整したものである。なお、上記評価用試料が、静置した場合に二相に分離するエマルジョン状態であっても、上記定義を満たせば、そのキトサン化合物は水溶性であると規定する。
キトサン化合物が非水溶性であると、スラリー組成物の塗工性が損なわれ、また電極のピール強度およびリチウムイオン二次電池のサイクル特性が低下する。そして、上述した水溶性試験での残渣割合は、スラリー組成物の塗工性を更に向上させる観点から、40質量%以下であることが好ましい。
Here, chitosan compounds include chitosan obtained by deacetylating chitin and its derivatives (chitosan derivatives). The chitosan compound may be in the form of a salt such as a sodium salt. Here, examples of the chitosan derivative include those in which at least a part of the hydroxyl groups and / or amino group hydrogen atoms present in chitosan are substituted with other structures. Examples of such chitosan derivatives include those described in JP2009-277660A, JP2015-5474A, and JP2013-229110A.
Among these chitosan compounds, it is necessary to use a water-soluble chitosan compound in the present application. The chitosan compound being “water-soluble” means that the evaluation sample containing the chitosan compound and water does not pass through the screen with respect to the mass (corresponding to the solid content) of the added chitosan compound when passing through the 250-mesh screen. The ratio (hereinafter referred to as “residue ratio in the water solubility test”) of the residue remaining on the screen (corresponding to the solid content) is 50% by mass or less. Here, in the sample for evaluation described above, a mixture obtained by adding 1 part by mass (corresponding to a solid content) of a chitosan compound per 100 parts by mass of ion-exchanged water and stirring the mixture is within a temperature range of 20 ° C. or more and 70 ° C. or less. And it is adjusted to at least one of the conditions within the range of pH 5 to 7 (using HCl aqueous solution for pH adjustment). Even if the sample for evaluation is in an emulsion state that separates into two phases when left standing, the chitosan compound is defined as water-soluble if the above definition is satisfied.
When the chitosan compound is water-insoluble, the coating property of the slurry composition is impaired, and the peel strength of the electrode and the cycle characteristics of the lithium ion secondary battery are deteriorated. And it is preferable that the residue ratio in the water solubility test mentioned above is 40 mass% or less from a viewpoint of further improving the applicability | paintability of a slurry composition.
ここで、キトサンの原料であるキチンには、その結晶構造の相違によりα型(斜方晶系)、β型(単斜方系)、およびγ型(α型とβ型の混合物)が存在するが、本発明においては、α型キチン由来の水溶性キトサン化合物を用いることが好ましい。α型キチン由来の水溶性キトサン化合物を使用すれば、スラリー組成物の塗工性が更に高まり、得られる電極の欠陥および空隙を低減して、二次電池に一層優れたサイクル特性を発揮させることができる。 Here, chitin, the raw material of chitosan, has α-type (orthorhombic), β-type (monorhombic), and γ-type (mixture of α-type and β-type) due to the difference in crystal structure. However, in the present invention, it is preferable to use a water-soluble chitosan compound derived from α-type chitin. Use of water-soluble chitosan compound derived from α-type chitin will further improve the coating properties of the slurry composition, reduce defects and voids in the resulting electrode, and exhibit more excellent cycle characteristics for the secondary battery. Can do.
水溶性キトサン化合物の脱アセチル化度は、80%以上100%以下であることが好ましく、85%以上100%以下であることがより好ましい。水溶性キトサン化合物の脱アセチル化度が80%以上100%以下であれば、水溶性キトサン化合物と粒子状重合体の相互作用が高まることでスラリー組成物の塗工性を更に高め、電極のピール強度およびリチウムイオン二次電池のサイクル特性を一層向上させることができる。
なお、水溶性キトサン化合物の脱アセチル化度は、固体核磁気共鳴におけるプロトン強度比から求めることができる。
The degree of deacetylation of the water-soluble chitosan compound is preferably 80% or more and 100% or less, and more preferably 85% or more and 100% or less. If the degree of deacetylation of the water-soluble chitosan compound is 80% or more and 100% or less, the interaction between the water-soluble chitosan compound and the particulate polymer is enhanced, thereby further improving the coating property of the slurry composition and the electrode peel. The strength and cycle characteristics of the lithium ion secondary battery can be further improved.
The degree of deacetylation of the water-soluble chitosan compound can be determined from the proton intensity ratio in solid nuclear magnetic resonance.
そして、スラリー組成物中の水溶性キトサン化合物の配合量は、特に限定されないが、後述する電極活物質100質量部当たり、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.07質量部以上であることが更に好ましく、また、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、0.5質量部以下であることが更に好ましく、0.2質量部以下であることが特に好ましい。スラリー組成物が電極活物質100質量部当たり0.01質量部以上の水溶性キトサン化合物を含めば、電極のピール強度が更に高まり、リチウムイオン二次電池のサイクル特性が一層向上する。一方、スラリー組成物が電極活物質100質量部当たり10質量部以下の水溶性キトサン化合物を含めば、過度な粘度上昇等により取り扱いが困難となることもなく、得られる電極のピール強度およびリチウムイオン二次電池のサイクル特性を十分に確保することができる。 And the compounding quantity of the water-soluble chitosan compound in a slurry composition is although it does not specifically limit, It is preferable that it is 0.01 mass part or more per 100 mass parts of electrode active materials mentioned later, 0.05 mass part or more More preferably, it is 0.07 parts by mass or more, more preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and 0.5 parts by mass or less. More preferably, it is particularly preferably 0.2 parts by mass or less. If the slurry composition contains 0.01 part by mass or more of a water-soluble chitosan compound per 100 parts by mass of the electrode active material, the peel strength of the electrode is further increased, and the cycle characteristics of the lithium ion secondary battery are further improved. On the other hand, when the slurry composition contains 10 parts by mass or less of a water-soluble chitosan compound per 100 parts by mass of the electrode active material, the peel strength and lithium ion of the resulting electrode are not difficult due to excessive increase in viscosity and the like. Sufficient cycle characteristics of the secondary battery can be secured.
<粒子状重合体>
粒子状重合体は、本発明のスラリー組成物中において、上述したように水溶性キトサン化合物と相互作用しつつ、水溶性キトサン化合物同様、電極合材層中において結着材として機能しうる成分である。なお、粒子状重合体は、通常、非水溶性であり、水などの分散媒中に分散して存在する。なお、本発明において、重合体(キトサン化合物を除く)が「非水溶性」であるとは、温度25℃において、重合体0.5gを100gの水に溶解した際に、不溶分が80質量%以上となることをいう。
<Particulate polymer>
In the slurry composition of the present invention, the particulate polymer is a component capable of functioning as a binder in the electrode mixture layer in the same manner as the water-soluble chitosan compound while interacting with the water-soluble chitosan compound as described above. is there. The particulate polymer is usually water-insoluble and is present dispersed in a dispersion medium such as water. In the present invention, the polymer (excluding the chitosan compound) is “water-insoluble” when the temperature is 25 ° C. and 0.5 g of the polymer is dissolved in 100 g of water, the insoluble content is 80 mass. It means to become more than%.
ここで、粒子状重合体の組成は特に限定されず、スラリー組成物を用いて形成する電極の種類(正極又は負極)等に応じて適宜変更すればよい。しかし、スラリー組成物を何れの電極に用いる場合も、粒子状重合体は酸性基含有単量体単位を含むことが好ましい。酸性基含有単量体単位を含む粒子状重合体は、水溶性キトサン化合物と良好に相互作用し、スラリー組成物の塗工性を更に向上させつつ、電極のピール強度を一層高めることができるからである。以下、まずこの酸性基含有単量体単位について説明し、次いで、酸性基含有単量体単位以外の単量体単位について、スラリー組成物を正極用とした場合、負極用とした場合に分けて説明する。 Here, the composition of the particulate polymer is not particularly limited, and may be appropriately changed according to the type of electrode (positive electrode or negative electrode) formed using the slurry composition. However, even when the slurry composition is used for any electrode, the particulate polymer preferably contains an acidic group-containing monomer unit. The particulate polymer containing an acidic group-containing monomer unit interacts well with the water-soluble chitosan compound, and can further enhance the peel strength of the electrode while further improving the coating properties of the slurry composition. It is. Hereinafter, the acidic group-containing monomer unit will be described first, and then the monomer unit other than the acidic group-containing monomer unit is divided into a case where the slurry composition is used for the positive electrode and a case where the slurry composition is used for the negative electrode. explain.
[酸性基含有単量体単位]
酸性基含有単量体単位を形成しうる酸性基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、およびリン酸基を有する単量体が挙げられる。なお、本発明において酸性基を有する単量体は、酸性基以外の官能基(例えばアミド基やヒドロキシル基)を有している場合であっても、酸性基含有単量体に含まれるものとする。
[Acid group-containing monomer unit]
Examples of the acidic group-containing monomer that can form an acidic group-containing monomer unit include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, and a monomer having a phosphoric acid group. Can be mentioned. In the present invention, the monomer having an acidic group is included in the acidic group-containing monomer even if it has a functional group other than the acidic group (for example, an amide group or a hydroxyl group). To do.
カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
リン酸基を有する単量体としては、例えば、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropane sulfone. Acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like. In the present invention, “(meth) allyl” means allyl and / or methallyl.
Examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. Can be mentioned. In the present invention, “(meth) acryloyl” means acryloyl and / or methacryloyl.
これらの中でも、酸性基含有単量体としては、スラリー組成物の塗工性、電極のピール強度、およびリチウムイオン二次電池のサイクル特性を更に向上させる観点から、カルボン酸基を有する単量体が好ましく、アクリル酸、メタクリル酸、イタコン酸がより好ましく、イタコン酸が更に好ましい。また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。例えば、酸性基含有単量体として、カルボン酸を有する単量体およびスルホン酸基を有する単量体を併用することもできる。 Among these, the acidic group-containing monomer is a monomer having a carboxylic acid group from the viewpoint of further improving the coating property of the slurry composition, the peel strength of the electrode, and the cycle characteristics of the lithium ion secondary battery. Are preferred, acrylic acid, methacrylic acid and itaconic acid are more preferred, and itaconic acid is even more preferred. Moreover, an acid group containing monomer may be used individually by 1 type, and may be used in combination of 2 or more types. For example, as an acidic group-containing monomer, a monomer having a carboxylic acid and a monomer having a sulfonic acid group can be used in combination.
そして、粒子状重合体中の酸性基含有単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.5質量%以上であることが更に好ましく、また、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。粒子状重合体中の酸性基含有単量体単位の含有割合を0.1質量%以上とすれば、スラリー組成物の塗工性、電極のピール強度、およびリチウムイオン二次電池のサイクル特性を更に向上させることができ、10質量%以下とすれば、粒子状重合体同士の凝集に因る過度な粘度上昇を抑制してスラリー組成物の塗工性を更に高めつつ、粒子状重合体の製造安定性および保存安定性を確保することができる。 And, the content ratio of the acidic group-containing monomer unit in the particulate polymer is preferably 0.1% by mass or more when the total repeating unit in the particulate polymer is 100% by mass, It is more preferably 0.5% by mass or more, further preferably 1.5% by mass or more, more preferably 10% by mass or less, and even more preferably 7% by mass or less. More preferably, it is at most mass%. If the content ratio of the acidic group-containing monomer unit in the particulate polymer is 0.1% by mass or more, the coating property of the slurry composition, the peel strength of the electrode, and the cycle characteristics of the lithium ion secondary battery If it is 10% by mass or less, an excessive increase in viscosity due to aggregation between the particulate polymers can be suppressed, and the coatability of the slurry composition can be further improved. Manufacturing stability and storage stability can be ensured.
[正極用途における粒子状重合体の好適組成]
正極用スラリー組成物中の粒子状重合体(正極用粒子状重合体)としては、(メタ)アクリル酸エステル単量体単位を含む粒子状重合体(アクリル系重合体)が好ましい。そして、正極用粒子状重合体としてのアクリル系重合体に含まれる単量体単位としては、酸性基含有単量体単量体単位、(メタ)アクリル酸エステル単量体単位に加え、(メタ)アクリロニトリル単量体単位、フッ素含有(メタ)アクリル酸エステル単量体単位などが挙げられる。なお、当該アクリル系重合体はこれら以外の単量体単位を含んでいてもよい。
[Preferable composition of particulate polymer for positive electrode use]
The particulate polymer (positive particulate polymer) in the positive electrode slurry composition is preferably a particulate polymer (acrylic polymer) containing a (meth) acrylic acid ester monomer unit. The monomer units contained in the acrylic polymer as the particulate polymer for the positive electrode include an acidic group-containing monomer monomer unit and a (meth) acrylate monomer unit, ) Acrylonitrile monomer unit, fluorine-containing (meth) acrylic acid ester monomer unit, and the like. The acrylic polymer may contain monomer units other than these.
―アクリル系重合体(正極用粒子状重合体)―
(メタ)アクリル酸エステル単量体単位を形成しうる(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、イソブチルアクリレート、n−ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、イソブチルメタクリレート、n−ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。これらの中でも、電極に十分な柔軟性を付与する観点から、n−ブチルアクリレート、2−エチルヘキシルアクリレートが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、本発明において、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として、(メタ)アクリル酸エステル単量体とは区別するものとする。
-Acrylic polymer (particulate polymer for positive electrode)-
Examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Alkyl acrylates such as isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate Relate, t-butyl methacrylate, isobutyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, stearyl methacrylate Methacrylic acid alkyl esters such as glycidyl methacrylate; and the like. Among these, n-butyl acrylate and 2-ethylhexyl acrylate are preferable from the viewpoint of imparting sufficient flexibility to the electrode. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types. In the present invention, among (meth) acrylate monomers, those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers. Shall.
そして、粒子状重合体中の(メタ)アクリル酸エステル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、また、90質量%以下であることが好ましく、85質量%以下であることがより好ましい。粒子状重合体中の(メタ)アクリル酸エステル単量体単位の含有割合を20質量%以上とすれば、電極に柔軟性を付与して電極の割れを抑制することができ、90質量%以下とすれば、電極の機械的強度およびピール強度を確保することができる。 The content ratio of the (meth) acrylic acid ester monomer unit in the particulate polymer is preferably 20% by mass or more when the total repeating unit in the particulate polymer is 100% by mass. , 40% by mass or more, more preferably 50% by mass or more, more preferably 90% by mass or less, and even more preferably 85% by mass or less. If the content ratio of the (meth) acrylic acid ester monomer unit in the particulate polymer is 20% by mass or more, the electrode can be given flexibility and cracking of the electrode can be suppressed, and 90% by mass or less. If so, the mechanical strength and peel strength of the electrode can be ensured.
(メタ)アクリロニトリル単量体単位を形成しうる(メタ)アクリロニトリル単量体としては、アクリロニトリルおよびメタクリロニトリルが挙げられる。これらの中でも、電極のピール強度を更に向上させつつ、その機械的強度を高める観点から、アクリロニトリルが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the (meth) acrylonitrile monomer that can form a (meth) acrylonitrile monomer unit include acrylonitrile and methacrylonitrile. Among these, acrylonitrile is preferable from the viewpoint of increasing the mechanical strength while further improving the peel strength of the electrode. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中の(メタ)アクリロニトリル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、また、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。粒子状重合体中の(メタ)アクリロニトリル単量体単位の含有割合を3質量%以上とすれば、電極のピール強度を更に向上させつつ、その機械的強度を高めることができ、40質量%以下とすれば、電極の柔軟性を確保して電極の割れを抑制することができる。 The content ratio of the (meth) acrylonitrile monomer unit in the particulate polymer is preferably 3% by mass or more when the total repeating unit in the particulate polymer is 100% by mass. The content is more preferably at least mass%, more preferably at most 40 mass%, and even more preferably at most 30 mass%. If the content ratio of the (meth) acrylonitrile monomer unit in the particulate polymer is 3% by mass or more, the mechanical strength can be increased while further improving the peel strength of the electrode, and 40% by mass or less. If so, the electrode flexibility can be secured and cracking of the electrode can be suppressed.
フッ素含有(メタ)アクリル酸エステル単量体単位を形成しうるフッ素含有(メタ)アクリル酸エステル単量体としては、(メタ)アクリル酸2,2,2−トリフルオロエチル、(メタ)アクリル酸β−(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3−テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4−ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H−パーフルオロ−1−ノニル、(メタ)アクリル酸1H,1H,11H−パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2、2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。これらの中でも、充放電による粒子状重合体の劣化を抑制し、リチウムイオン二次電池のサイクル特性を更に向上させる観点からは、メタクリル酸2,2,2−トリフルオロエチルが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Fluorine-containing (meth) acrylic acid ester monomers that can form fluorine-containing (meth) acrylic acid ester monomer units include (meth) acrylic acid 2,2,2-trifluoroethyl, (meth) acrylic acid β- (perfluorooctyl) ethyl, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,4,4,4-hexafluorobutyl (meth) acrylate, (meth) 1H, 1H, 9H-perfluoro-1-nonyl acrylate, 1H, 1H, 11H-perfluoroundecyl (meth) acrylate, perfluorooctyl (meth) acrylate, trifluoromethyl (meth) acrylate, ( Meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzoo Shi] 2-hydroxypropyl, etc. (meth) acrylic acid perfluoroalkyl ester. Among these, 2,2,2-trifluoroethyl methacrylate is preferable from the viewpoint of suppressing the deterioration of the particulate polymer due to charge and discharge and further improving the cycle characteristics of the lithium ion secondary battery. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中のフッ素含有(メタ)アクリル酸エステル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、また、10質量%以下であることが好ましい。粒子状重合体中のフッ素含有(メタ)アクリル酸エステル単量体単位の含有割合を上述の範囲内とすれば、粒子状重合体の重合安定性および貯蔵安定性が向上する。加えて、電極のピール強度を更に向上させつつ、充放電による粒子状重合体の劣化を十分に抑制し、リチウムイオン二次電池に一層優れたサイクル特性を発揮させることができる。 And the content rate of the fluorine-containing (meth) acrylic acid ester monomer unit in a particulate polymer is 0.1 mass% or more when the total repeating unit in a particulate polymer is 100 mass%. It is preferably 1% by mass or more, and more preferably 10% by mass or less. When the content ratio of the fluorine-containing (meth) acrylic acid ester monomer unit in the particulate polymer is within the above range, the polymerization stability and storage stability of the particulate polymer are improved. In addition, while further improving the peel strength of the electrode, it is possible to sufficiently suppress the deterioration of the particulate polymer due to charge / discharge, and to exhibit more excellent cycle characteristics in the lithium ion secondary battery.
[負極用途における粒子状重合体の好適組成]
負極用スラリー組成物中の粒子状重合体(負極用粒子状重合体)としては、アクリル系重合体、脂肪族共役ジエン単量体単位を含む重合体(共役ジエン系重合体)が好ましく、電極のピール強度を向上させる観点からはアクリル系重合体が好ましい。
[Preferred composition of particulate polymer in negative electrode application]
As the particulate polymer in the slurry composition for negative electrode (particulate polymer for negative electrode), an acrylic polymer and a polymer containing an aliphatic conjugated diene monomer unit (conjugated diene polymer) are preferable. From the viewpoint of improving the peel strength, an acrylic polymer is preferred.
―アクリル系重合体(負極用粒子状重合体)―
負極用粒子状重合体としてのアクリル系重合体に含まれる単量体単位としては、酸性基含有単量体単位、(メタ)アクリル酸エステル単量体単位に加え、(メタ)アクリロニトリル単量体単位、芳香族ビニル単量体単位、アミド基含有単量体単位などが挙げられる。なお、当該アクリル系重合体はこれら以外の単量体単位を含んでいてもよい。
-Acrylic polymer (particulate polymer for negative electrode)-
The monomer unit contained in the acrylic polymer as the particulate polymer for the negative electrode includes an acid group-containing monomer unit, a (meth) acrylic acid ester monomer unit, and a (meth) acrylonitrile monomer. Units, aromatic vinyl monomer units, amide group-containing monomer units, and the like. The acrylic polymer may contain monomer units other than these.
(メタ)アクリル酸エステル単量体単位を形成しうる(メタ)アクリル酸エステル単量体としては、「アクリル系重合体(正極用粒子状重合体)」で上述したものが挙げられる。これらの中でも、電極に十分な柔軟性を付与する観点から、2−エチルヘキシルアクリレート、ブチルアクリレートが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the (meth) acrylic acid ester monomer that can form a (meth) acrylic acid ester monomer unit include those described above in “Acrylic polymer (particulate polymer for positive electrode)”. Among these, 2-ethylhexyl acrylate and butyl acrylate are preferable from the viewpoint of imparting sufficient flexibility to the electrode. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中の(メタ)アクリル酸エステル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、また、90質量%以下であることが好ましく、85質量%以下であることがより好ましい。粒子状重合体中の(メタ)アクリル酸エステル単量体単位の含有割合を20質量%以上とすれば、電極に柔軟性を付与して電極の割れを抑制することができ、90質量%以下とすれば、電極の機械的強度およびピール強度を確保することができる。 The content ratio of the (meth) acrylic acid ester monomer unit in the particulate polymer is preferably 20% by mass or more when the total repeating unit in the particulate polymer is 100% by mass. , 40% by mass or more, more preferably 50% by mass or more, more preferably 90% by mass or less, and even more preferably 85% by mass or less. If the content ratio of the (meth) acrylic acid ester monomer unit in the particulate polymer is 20% by mass or more, the electrode can be given flexibility and cracking of the electrode can be suppressed, and 90% by mass or less. If so, the mechanical strength and peel strength of the electrode can be ensured.
(メタ)アクリロニトリル単量体単位を形成しうる(メタ)アクリロニトリル単量体としては、「アクリル系重合体(正極用粒子状重合体)」で上述したものが挙げられる。これらの中でも、電極のピール強度を更に向上させつつ、その機械的強度を高める観点から、アクリロニトリルが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the (meth) acrylonitrile monomer that can form a (meth) acrylonitrile monomer unit include those described above under “Acrylic polymer (particulate polymer for positive electrode)”. Among these, acrylonitrile is preferable from the viewpoint of increasing the mechanical strength while further improving the peel strength of the electrode. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中の(メタ)アクリロニトリル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、また、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。
粒子状重合体中の(メタ)アクリロニトリル単量体単位の含有割合を0.5質量%以上とすれば、電極のピール強度を更に向上させつつ、その機械的強度を高めることができ、20質量%以下とすれば、電極の柔軟性を確保して電極の割れを抑制することができる。
The content ratio of the (meth) acrylonitrile monomer unit in the particulate polymer is preferably 0.5% by mass or more when the total repeating unit in the particulate polymer is 100% by mass. The content is more preferably 1% by mass or more, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
If the content ratio of the (meth) acrylonitrile monomer unit in the particulate polymer is 0.5 mass% or more, the mechanical strength can be increased while further improving the peel strength of the electrode, and 20 mass. If it is made into% or less, the softness | flexibility of an electrode can be ensured and the crack of an electrode can be suppressed.
芳香族ビニル単量体単位を形成しうる芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。これらの中でも、電極の機械的強度を高める観点から、スチレンが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the aromatic vinyl monomer that can form an aromatic vinyl monomer unit include styrene, α-methylstyrene, vinyl toluene, and divinylbenzene. Among these, styrene is preferable from the viewpoint of increasing the mechanical strength of the electrode. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中の芳香族ビニル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、また、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。粒子状重合体中の芳香族ビニル単量体単位の含有割合を5質量%以上とすれば、電極に機械的強度を付与することができ、20質量%以下とすれば、電極の柔軟性を確保して電極の割れを抑制することができる。 The content of the aromatic vinyl monomer unit in the particulate polymer is preferably 5% by mass or more when the total repeating unit in the particulate polymer is 100% by mass, preferably 10% by mass. % Or more, more preferably 20% by mass or less, and even more preferably 15% by mass or less. If the content of the aromatic vinyl monomer unit in the particulate polymer is 5% by mass or more, mechanical strength can be imparted to the electrode, and if it is 20% by mass or less, the flexibility of the electrode is increased. It can be ensured and cracking of the electrode can be suppressed.
アミド基含有単量体単位を形成しうるアミド基含有単量体としては、アクリルアミド、メタクリルアミドが挙げられる。これらの中でも、電極のピール強度およびリチウムイオン二次電池のサイクル特性を更に向上させる観点から、アクリルアミドが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the amide group-containing monomer that can form an amide group-containing monomer unit include acrylamide and methacrylamide. Among these, acrylamide is preferable from the viewpoint of further improving the peel strength of the electrode and the cycle characteristics of the lithium ion secondary battery. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中のアミド基含有単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、また、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。粒子状重合体中のアミド基含有単量体単位の含有割合を上述の範囲内とすれば、電極のピール強度およびリチウムイオン二次電池のサイクル特性を更に向上させることができる。 The content ratio of the amide group-containing monomer unit in the particulate polymer is preferably 0.1% by mass or more when the total repeating unit in the particulate polymer is 100% by mass, The content is more preferably 1% by mass or more, more preferably 5% by mass or less, and even more preferably 3% by mass or less. If the content ratio of the amide group-containing monomer unit in the particulate polymer is within the above range, the peel strength of the electrode and the cycle characteristics of the lithium ion secondary battery can be further improved.
―共役ジエン系重合体(負極用粒子状重合体)―
共役ジエン系重合体は、上述のように脂肪族共役ジエン単量体単位を含む重合体である。なお、本発明において、脂肪族共役ジエン単量体単位には、水素添加により水素化されているものも含まれる。共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの脂肪族共役ジエン重合体;スチレン−ブタジエン系重合体(SBR)などの芳香族ビニル・脂肪族共役ジエン共重合体;アクリロニトリル−ブタジエン系重合体(NBR)などのシアン化ビニル−共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。これらの中でも、スチレン−ブタジエン系重合体(SBR)などの芳香族ビニル・脂肪族共役ジエン共重合体が好ましい。以下、芳香族ビニル・脂肪族共役ジエン共重合体を例に挙げて説明する。
-Conjugated diene polymer (particulate polymer for negative electrode)-
The conjugated diene polymer is a polymer containing an aliphatic conjugated diene monomer unit as described above. In the present invention, the aliphatic conjugated diene monomer unit includes those hydrogenated by hydrogenation. Specific examples of the conjugated diene polymer include aliphatic conjugated diene polymers such as polybutadiene and polyisoprene; aromatic vinyl / aliphatic conjugated diene copolymers such as styrene-butadiene polymer (SBR); acrylonitrile-butadiene. Examples thereof include vinyl cyanide-conjugated diene copolymers such as a base polymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like. Among these, aromatic vinyl / aliphatic conjugated diene copolymers such as styrene-butadiene-based polymers (SBR) are preferable. Hereinafter, an aromatic vinyl / aliphatic conjugated diene copolymer will be described as an example.
負極用粒子状重合体としての芳香族ビニル・脂肪族共役ジエン共重合体に含まれる単量体単位としては、酸性基含有単量体単位、芳香族ビニル単量体単位、脂肪族共役ジエン単量体単位に加え、ヒドロキシル基含有単量体単位が挙げられる。なお、当該芳香族ビニル・脂肪族共役ジエン共重合体はこれら以外の単量体単位を含んでいてもよい。 The monomer units contained in the aromatic vinyl / aliphatic conjugated diene copolymer as the particulate polymer for the negative electrode include acidic group-containing monomer units, aromatic vinyl monomer units, and aliphatic conjugated diene units. In addition to the monomer unit, a hydroxyl group-containing monomer unit may be mentioned. The aromatic vinyl / aliphatic conjugated diene copolymer may contain monomer units other than these.
―芳香族ビニル単量体単位―
芳香族ビニル単量体単位を形成しうる芳香族ビニル単量体としては、「アクリル系重合体(負極用粒子状重合体)」で上述したものが挙げられる。これらの中でも、電極の機械的強度を高める観点から、スチレンが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
―Aromatic vinyl monomer unit―
Examples of the aromatic vinyl monomer that can form an aromatic vinyl monomer unit include those described above in “Acrylic polymer (particulate polymer for negative electrode)”. Among these, styrene is preferable from the viewpoint of increasing the mechanical strength of the electrode. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中の芳香族ビニル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、また、85質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。粒子状重合体中の芳香族ビニル単量体単位の含有割合を40質量%以上とすれば、電極に機械的強度を付与することができ、85質量%以下とすれば、電極の柔軟性を確保して電極の割れを抑制することができる。 And the content ratio of the aromatic vinyl monomer unit in the particulate polymer is preferably 40% by mass or more when the total repeating unit in the particulate polymer is 100% by mass, and 50% by mass. % Or more, more preferably 60% by mass or more, further preferably 85% by mass or less, more preferably 80% by mass or less, and 70% by mass or less. Is more preferable. If the content of the aromatic vinyl monomer unit in the particulate polymer is 40% by mass or more, mechanical strength can be imparted to the electrode, and if it is 85% by mass or less, the flexibility of the electrode is improved. It can be ensured and cracking of the electrode can be suppressed.
―脂肪族共役ジエン単量体単位―
脂肪族共役ジエン単量体単位を形成しうる脂肪族共役ジエン単量体としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられる。これらの中でも、1,3−ブタジエンが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
-Aliphatic conjugated diene monomer unit-
Examples of the aliphatic conjugated diene monomer that can form an aliphatic conjugated diene monomer unit include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, Examples include 2-chloro-1,3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. Among these, 1,3-butadiene is preferable. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中の脂肪族共役ジエン単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、また、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。粒子状重合体中の脂肪族共役ジエン単量体単位の含有割合を10質量%以上とすれば、電極に柔軟性を付与することができ、55質量%以下とすれば、電極のピール強度およびリチウムイオン二次電池のサイクル特性を確保することができる。 The content ratio of the aliphatic conjugated diene monomer unit in the particulate polymer is preferably 10% by mass or more when the total repeating unit in the particulate polymer is 100% by mass, and 20 More preferably, it is more preferably 30% by mass or more, further preferably 55% by mass or less, more preferably 50% by mass or less, and 40% by mass or less. More preferably. If the content of the aliphatic conjugated diene monomer unit in the particulate polymer is 10% by mass or more, flexibility can be imparted to the electrode, and if it is 55% by mass or less, the peel strength of the electrode and The cycle characteristics of the lithium ion secondary battery can be ensured.
―ヒドロキシル基含有単量体単位―
ヒドロキシル基含有単量体単位を形成しうるヒドロキシル基含有単量体としては、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、2−ヒドロキシエチルメチルフマレートなどが挙げられる。これらの中でも、2−ヒドロキシエチルアクリレートが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
-Hydroxyl group-containing monomer unit-
Examples of the hydroxyl group-containing monomer that can form a hydroxyl group-containing monomer unit include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3- Examples include chloro-2-hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. It is done. Among these, 2-hydroxyethyl acrylate is preferable. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.
そして、粒子状重合体中のヒドロキシル基含有単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、また、3質量%以下であることが好ましく、2質量%以下であることがより好ましい。粒子状重合体中のヒドロキシル基含有単量体単位の含有割合を上述の範囲内とすれば、粒子状重合体の製造安定性および保存安定性を確保することができる。 The content ratio of the hydroxyl group-containing monomer unit in the particulate polymer is preferably 0.1% by mass or more when the total repeating unit in the particulate polymer is 100% by mass, It is more preferably 0.5% by mass or more, more preferably 3% by mass or less, and even more preferably 2% by mass or less. When the content ratio of the hydroxyl group-containing monomer unit in the particulate polymer is within the above range, the production stability and storage stability of the particulate polymer can be ensured.
[粒子状重合体の調製方法]
粒子状重合体は、例えば上述した単量体を含む単量体組成物を水系溶媒中で重合することにより製造することができる。また、必要に応じて既知の方法で水素添加してもよい。ここで、本発明において単量体組成物中の各単量体の含有割合は、粒子状重合体における単量体単位(繰り返し単位)の含有割合に準じて定めることができる。
[Preparation method of particulate polymer]
The particulate polymer can be produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent. Moreover, you may hydrogenate by a known method as needed. Here, in the present invention, the content ratio of each monomer in the monomer composition can be determined according to the content ratio of the monomer units (repeating units) in the particulate polymer.
水系溶媒は、粒子状重合体が粒子状態で分散可能なものであれば格別限定されず、水を単独で使用してもよいし、水と他の溶媒の混合溶媒を使用してもよい。
重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。
そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
なお、粒子状重合体の調製の際に、後述する防腐剤を重合系内に添加して防腐剤を含む粒子状重合体の水分散液を得てもよい。そして、当該水分散液をスラリー組成物の調製に用いることができる。
The aqueous solvent is not particularly limited as long as the particulate polymer can be dispersed in a particulate state, and water may be used alone or a mixed solvent of water and another solvent may be used.
The polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
And generally used emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used is also generally used.
In the preparation of the particulate polymer, an aqueous dispersion of the particulate polymer containing the preservative may be obtained by adding a preservative described later into the polymerization system. And the said aqueous dispersion can be used for preparation of a slurry composition.
[粒子状重合体の性状]
粒子状重合体のテトラヒドロフラン(THF)不溶分は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。THF不溶分は、電解液への不溶分量とほぼ比例すると推測される。このため、THF不溶分が80質量%以上であれば、粒子状重合体の電解液への溶出を抑制でき、サイクル特性などの電池特性を高めることができると考えられる。なお、THF不溶分は、特開第2013−051076号公報に記載の方法を用いて測定することができる。
[Properties of particulate polymer]
The tetrahydrofuran (THF) insoluble content of the particulate polymer is preferably 80% by mass or more, and more preferably 90% by mass or more. It is estimated that the THF-insoluble content is approximately proportional to the amount of insoluble content in the electrolyte solution. For this reason, if THF insoluble content is 80 mass% or more, it is thought that elution to the electrolyte solution of a particulate polymer can be suppressed and battery characteristics, such as cycling characteristics, can be improved. In addition, THF insoluble matter can be measured using the method as described in Unexamined-Japanese-Patent No. 2013-051076.
粒子状重合体のガラス転移温度は、好ましくは−40℃以上であり、好ましくは50℃以下、より好ましくは0℃以下である。粒子状重合体のガラス転移温度が上記範囲であることにより、電極合材層の柔軟性および接着性を高め、電極のピール強度を一層高めることができる。なお、重合体のガラス転移温度は、JIS K7121に従って測定することができる。 The glass transition temperature of the particulate polymer is preferably −40 ° C. or higher, preferably 50 ° C. or lower, more preferably 0 ° C. or lower. When the glass transition temperature of a particulate polymer is the said range, the softness | flexibility and adhesiveness of an electrode compound-material layer can be improved, and the peel strength of an electrode can be improved further. The glass transition temperature of the polymer can be measured according to JIS K7121.
また、粒子状重合体の体積平均粒子径は、50nm以上であることが好ましく、80nm以上であることがより好ましく、400nm以下であることが好ましく、250nm以下であることがより好ましい。粒子状重合体の体積平均粒子径が上述の範囲内であると、電極活物質の表面に粒子状重合体が十分に吸着することができるため、電極活物質の移動に伴って粒子状重合体も追随して移動することができる。その結果、電極活物質および粒子状重合体のうちの何れか一方による単独のマイグレーションが抑制され、サイクル特性などの電池特性を十分に確保することができる。なお、粒子状重合体の体積平均粒子径は、粒子状重合体を含む水分散液について、レーザー回折・散乱式粒度分布測定装置を用いて粒子状重合体の粒度分布(体積基準)を測定し、小径側から計算した累積体積が50%となる粒子径として求めることができる。 Further, the volume average particle diameter of the particulate polymer is preferably 50 nm or more, more preferably 80 nm or more, preferably 400 nm or less, and more preferably 250 nm or less. When the volume average particle diameter of the particulate polymer is within the above-mentioned range, the particulate polymer can be sufficiently adsorbed on the surface of the electrode active material, so that the particulate polymer accompanies the movement of the electrode active material. Can follow and move. As a result, single migration by any one of the electrode active material and the particulate polymer is suppressed, and battery characteristics such as cycle characteristics can be sufficiently ensured. The volume average particle size of the particulate polymer is determined by measuring the particle size distribution (volume basis) of the particulate polymer using a laser diffraction / scattering particle size distribution measuring device for the aqueous dispersion containing the particulate polymer. The particle diameter can be determined so that the cumulative volume calculated from the small diameter side is 50%.
[粒子状重合体の配合量]
そして、スラリー組成物中の粒子状重合体の配合量は、特に限定されないが、後述する電極活物質100質量部当たり、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、また、4質量部以下であることが好ましく、3質量部以下であることがより好ましい。スラリー組成物が電極活物質100質量部当たり0.5質量部以上の粒子状重合体を含めば、スラリー組成物の塗工性および電極のピール強度が更に高まり、リチウムイオン二次電池のサイクル特性が一層向上する。一方、スラリー組成物が電極活物質100質量部当たり4質量部以下の粒子状重合体を含めば、リチウムイオン二次電池のレート特性が過度に低下することもない。
[Blend polymer content]
And the compounding quantity of the particulate polymer in a slurry composition is although it does not specifically limit, It is preferable that it is 0.5 mass part or more per 100 mass parts of electrode active materials mentioned later, and it is 1 mass part or more. Is more preferably 4 parts by mass or less, and more preferably 3 parts by mass or less. If the slurry composition contains 0.5 parts by mass or more of the particulate polymer per 100 parts by mass of the electrode active material, the coating properties of the slurry composition and the peel strength of the electrode are further increased, and the cycle characteristics of the lithium ion secondary battery Is further improved. On the other hand, if the slurry composition contains 4 parts by mass or less of the particulate polymer per 100 parts by mass of the electrode active material, the rate characteristics of the lithium ion secondary battery will not be excessively lowered.
加えて、スラリー組成物中の粒子状重合体と水溶性キトサン化合物の配合量比は特に限定されないが、水溶性キトサン化合物の配合量を粒子状重合体の配合量で除して算出される値(水溶性キトサン/粒子状重合体比)が0.02以上であることが好ましく、0.03以上であることがより好ましく、また、5以下であることが好ましく、3以下であることがより好ましく、1以下であることが更に好ましく、0.1以下であることが特に好ましい。水溶性キトサン/粒子状重合体比が上述の範囲内であれば、水溶性キトサン化合物と粒子状重合体が良好に相互作用し、スラリー組成物の塗工性を更に向上させることができる。 In addition, the blending ratio of the particulate polymer and the water-soluble chitosan compound in the slurry composition is not particularly limited, but is a value calculated by dividing the blending amount of the water-soluble chitosan compound by the blending amount of the particulate polymer. The (water-soluble chitosan / particulate polymer ratio) is preferably 0.02 or more, more preferably 0.03 or more, and preferably 5 or less, more preferably 3 or less. Preferably, it is 1 or less, more preferably 0.1 or less. If the water-soluble chitosan / particulate polymer ratio is within the above-mentioned range, the water-soluble chitosan compound and the particulate polymer interact well, and the coating properties of the slurry composition can be further improved.
<電極活物質>
電極活物質は、リチウムイオン二次電池の電極(正極、負極)において電子の受け渡しをする物質である。
<Electrode active material>
The electrode active material is a substance that transfers electrons in the electrodes (positive electrode and negative electrode) of the lithium ion secondary battery.
[正極活物質]
正極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。具体的には、リチウムイオン二次電池用正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO2)、マンガン酸リチウム(LiMn2O4)、リチウム含有ニッケル酸化物(LiNiO2)、Co−Ni−Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O2)、Ni−Mn−Alのリチウム含有複合酸化物、Ni−Co−Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)、Li2MnO3−LiNiO2系固溶体、Li1+xMn2-xO4(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.5O4等の既知の正極活物質が挙げられる。これらの中でも、オリビン型リン酸鉄リチウム、マンガン酸リチウムが好ましく、オリビン型リン酸鉄リチウムがより好ましい。なお、正極活物質の配合量や粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
[Positive electrode active material]
As the positive electrode active material, a material that can occlude and release lithium is usually used. Specifically, the positive electrode active material for the lithium ion secondary battery is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide ( LiNiO 2), lithium-containing composite oxide of Co-Ni-Mn (Li ( Co Mn Ni) O 2), lithium-containing composite oxide of Ni-Mn-Al, lithium-containing composite oxide of Ni-Co-Al, In olivine type lithium iron phosphate (LiFePO 4 ), olivine type lithium manganese phosphate (LiMnPO 4 ), Li 2 MnO 3 —LiNiO 2 solid solution, Li 1 + x Mn 2−x O 4 (0 <X <2) Examples include known positive electrode active materials such as lithium-rich spinel compounds, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4. The Among these, olivine type lithium iron phosphate and lithium manganate are preferable, and olivine type lithium iron phosphate is more preferable. In addition, the compounding quantity and particle size of a positive electrode active material are not specifically limited, It can be made to be the same as that of the positive electrode active material used conventionally.
[負極活物質]
リチウムイオン二次電池の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。具体的には、リチウムイオン二次電池用負極活物質としては、特に限定されることなく、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボン、天然黒鉛、人造黒鉛などの炭素系負極活物質;ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などの非炭素系負極活物質などが挙げられる。そしてこれらの中でも、天然黒鉛、人造黒鉛が好ましい。なお、負極活物質の配合量や粒径は、特に限定されることなく、従来使用されている負極活物質と同様とすることができる。
[Negative electrode active material]
As the negative electrode active material of the lithium ion secondary battery, a material that can occlude and release lithium is usually used. Specifically, the negative electrode active material for the lithium ion secondary battery is not particularly limited, and includes coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, pyrolytic vapor-grown carbon fiber, and phenol resin. Carbon-based negative electrode active materials such as fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired bodies (PFA), hard carbon, natural graphite, artificial graphite; silicon (Si), alloys containing silicon Non-carbon-based negative electrode active materials such as a composite of Si-containing material and conductive carbon obtained by coating or combining SiO, SiOx, and Si-containing material with conductive carbon. Of these, natural graphite and artificial graphite are preferable. In addition, the compounding quantity and particle size of a negative electrode active material are not specifically limited, It can be made to be the same as that of the negative electrode active material used conventionally.
<防腐剤>
ここで、本発明のスラリー組成物は、防腐剤を含むことが好ましい。スラリー組成物が防腐剤を含むことで、水溶性キトサン化合物の腐敗を抑制して、スラリー組成物の過度な粘度低下および白濁を抑制することができる。具体的には、防腐剤としては、イソチアゾリン系化合物や2-ブロモ−2−ニトロ−1,3−プロパンジオール等既知の防腐剤が挙げられる。ここでイソチアゾリン系化合物としては、特に限定されることなく、特開2013−211246号公報、特開2005−097474号公報、および特開2013−206624号公報などに記載のものが挙げられる。なお、防腐剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<Preservative>
Here, the slurry composition of the present invention preferably contains a preservative. By including a preservative in the slurry composition, it is possible to suppress the decay of the water-soluble chitosan compound, and it is possible to suppress an excessive decrease in viscosity and white turbidity of the slurry composition. Specifically, examples of the preservative include known preservatives such as isothiazoline compounds and 2-bromo-2-nitro-1,3-propanediol. Here, the isothiazoline-based compound is not particularly limited, and examples thereof include those described in JP2013-211246A, JP2005-097474A, and JP2013-206624A. In addition, a preservative may be used individually by 1 type and may be used in combination of 2 or more types.
そして、スラリー組成物中の防腐剤の配合量は、特に限定されないが、電極活物質100質量部当たり、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.3質量部以上であることが更に好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、1質量部以下であることが更に好ましい。スラリー組成物が防腐剤を上述の範囲内の量で含めば、水溶性キトサン化合物の腐敗を十分に抑制して、スラリー組成物の過度な粘度低下および白濁を抑制することができる。 And the compounding quantity of the antiseptic | preservative in a slurry composition is although it does not specifically limit, It is preferable that it is 0.01 mass part or more per 100 mass parts of electrode active materials, and it is more preferable that it is 0.1 mass part or more. Preferably, it is 0.3 parts by mass or more, more preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 1 part by mass or less. If the slurry composition contains the preservative in an amount within the above range, the water-soluble chitosan compound can be sufficiently prevented from decaying and excessive viscosity reduction and cloudiness of the slurry composition can be suppressed.
<導電材>
また、本発明のスラリー組成物は、導電材を含むことが好ましい。導電材は、電極活物質同士の電気的接触を確保するためのものである。そして、導電材としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、グラファイト、炭素繊維、カーボンフレーク、炭素超短繊維(例えば、カーボンナノチューブや気相成長炭素繊維など)等の導電性炭素材料;各種金属のファイバー、箔などを用いることができる。中でも、導電材としては、カーボンブラックが好ましく、アセチレンブラックがより好ましい。これらは一種単独で、または、2種以上を組み合わせて用いることができる。
<Conductive material>
Moreover, it is preferable that the slurry composition of this invention contains a electrically conductive material. The conductive material is for ensuring electrical contact between the electrode active materials. As the conductive material, carbon black (for example, acetylene black, ketjen black (registered trademark), furnace black, etc.), graphite, carbon fiber, carbon flake, and ultra-short carbon fiber (for example, carbon nanotube or vapor grown carbon) Conductive carbon materials such as fibers); fibers and foils of various metals can be used. Among them, as the conductive material, carbon black is preferable, and acetylene black is more preferable. These can be used alone or in combination of two or more.
そして、スラリー組成物中の導電材の配合量は、特に限定されないが、電極活物質100質量部当たり、1質量部以上であることが好ましく、また、10質量部以下であることが好ましい。スラリー組成物が導電材を上述の範囲内の量で含めば、スラリー組成物を用いて調製される電極合材層中で良好な導電パスが形成され、特にスラリー組成物を正極用として用いた際に、リチウムイオン二次電池のレート特性などの電池特性を向上させることができる。 And the compounding quantity of the electrically conductive material in a slurry composition is although it does not specifically limit, It is preferable that it is 1 mass part or more per 100 mass parts of electrode active materials, and it is preferable that it is 10 mass parts or less. If the slurry composition includes the conductive material in an amount within the above range, a good conductive path is formed in the electrode mixture layer prepared using the slurry composition, and the slurry composition was used particularly for the positive electrode. In this case, battery characteristics such as rate characteristics of the lithium ion secondary battery can be improved.
<その他の成分>
本発明のスラリー組成物は、上記成分の他に、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Other ingredients>
In addition to the above components, the slurry composition of the present invention may contain components such as a reinforcing material, a leveling agent, a viscosity modifier, and an electrolytic solution additive. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
<スラリー組成物の調製>
本発明のスラリー組成物は、上記各成分を水などの分散媒中に溶解または分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と分散媒とを混合することにより、スラリー組成物を調製することができる。
<Preparation of slurry composition>
The slurry composition of the present invention can be prepared by dissolving or dispersing the above components in a dispersion medium such as water. Specifically, the above components and the dispersion medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, etc. Thus, a slurry composition can be prepared.
<スラリー組成物の性状>
上述のようにして得られるスラリー組成物の固形分濃度は、48質量%以上57質量%以下であることが好ましい。スラリー組成物の固形分濃度が上述の範囲内であれば、スラリー組成物から分散媒を除去して電極合材層を調製する際の乾燥効率を高めることができる。また、本発明のスラリー組成物は、上述したように、水溶性キトサン化合物と粒子状重合体を含んでいるため、上述のように固形分濃度が比較的高い場合であっても、優れた塗工性を発揮する。
<Properties of slurry composition>
The solid content concentration of the slurry composition obtained as described above is preferably 48% by mass or more and 57% by mass or less. When the solid content concentration of the slurry composition is within the above range, the drying efficiency when preparing the electrode mixture layer by removing the dispersion medium from the slurry composition can be increased. Moreover, since the slurry composition of the present invention contains a water-soluble chitosan compound and a particulate polymer as described above, an excellent coating can be obtained even when the solid content concentration is relatively high as described above. Demonstrate workability.
そして、スラリー組成物の粘度は、3600mPa・s以上5000mPa・s以下であることが好ましい。スラリー組成物の粘度が上述の範囲内であれば、塗工性が良好となり、スラリー組成物調製時のエアー巻き込みによるホールや、塗りムラを十分に抑制し、また均一な厚みを有する電極合材層を形成することができる。なお、リチウムイオン二次電池電極用スラリー組成物の「粘度」は、単一円筒形回転粘度計(B型粘度計)を用いて測定される粘度であり、具体的には本明細書の実施例に記載の方法を用いて測定することができる。 And it is preferable that the viscosity of a slurry composition is 3600 mPa * s or more and 5000 mPa * s or less. If the viscosity of the slurry composition is within the above-mentioned range, the coating properties will be good, holes due to air entrainment at the time of slurry composition preparation, coating unevenness will be sufficiently suppressed, and an electrode mixture having a uniform thickness A layer can be formed. The “viscosity” of the slurry composition for a lithium ion secondary battery electrode is a viscosity measured using a single cylindrical rotational viscometer (B-type viscometer). It can be measured using the method described in the examples.
(リチウムイオン二次電池用電極)
本発明のリチウムイオン二次電池用電極は、集電体と、集電体上に形成された電極合材層とを備える。そして、電極合材層は上記リチウムイオン二次電池電極用スラリー組成物を用いて形成されており、具体的には、上記スラリー組成物を乾燥することにより形成することができる。即ち、本発明のリチウムイオン二次電池用電極中の電極合材層は、上記リチウムイオン二次電池電極用スラリー組成物の乾燥物よりなり、通常、上記水溶性キトサン化合物と、上記粒子状重合体と、上記電極活物質とを含有し、任意に、上記防腐剤と、上記導電材と、上記その他の成分とを含有する。なお、上述した粒子状重合体が架橋性の単量体単位を含む場合には、粒子状重合体は、スラリー組成物の乾燥時、または、乾燥後に任意に実施される熱処理時に架橋されていてもよい(即ち、リチウムイオン二次電池用電極中の電極合材層は、上述した粒子状重合体の架橋物を含んでいてもよい)。なお、電極合材層中に含まれている各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。
そして、本発明のリチウムイオン二次電池用電極は、本発明のスラリー組成物を使用して製造されるため、ピール強度に優れる。そして当該電極を使用すれば、サイクル特性等の電池特性に優れるリチウムイオン二次電池が得られる。
(Electrode for lithium ion secondary battery)
The electrode for lithium ion secondary batteries of this invention is equipped with a collector and the electrode compound-material layer formed on the collector. And the electrode compound-material layer is formed using the said slurry composition for lithium ion secondary battery electrodes, and can be specifically formed by drying the said slurry composition. That is, the electrode mixture layer in the lithium ion secondary battery electrode of the present invention comprises a dried product of the lithium ion secondary battery electrode slurry composition, and usually contains the water-soluble chitosan compound and the particulate weight. It contains a coalescence and the electrode active material, and optionally contains the preservative, the conductive material, and the other components. When the particulate polymer described above contains a crosslinkable monomer unit, the particulate polymer is crosslinked during the drying of the slurry composition or during a heat treatment optionally performed after drying. (That is, the electrode mixture layer in the electrode for a lithium ion secondary battery may contain a crosslinked product of the particulate polymer described above). In addition, the suitable abundance ratio of each component contained in the electrode mixture layer is the same as the preferred abundance ratio of each component in the slurry composition.
And since the electrode for lithium ion secondary batteries of this invention is manufactured using the slurry composition of this invention, it is excellent in peel strength. And if the said electrode is used, the lithium ion secondary battery excellent in battery characteristics, such as cycling characteristics, will be obtained.
<リチウムイオン二次電池用電極の製造方法>
なお、本発明のリチウムイオン二次電池用電極は、例えば、上述したスラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを経て製造される。
<Method for producing electrode for lithium ion secondary battery>
The lithium ion secondary battery electrode of the present invention includes, for example, a step of applying the above-described slurry composition on the current collector (application step), and a drying of the slurry composition applied on the current collector. And a step of forming an electrode mixture layer on the current collector (drying step).
[塗布工程]
上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
[Coating process]
The method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Here, as the current collector to which the slurry composition is applied, an electrically conductive and electrochemically durable material is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used. In addition, the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
[乾燥工程]
集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備えるリチウムイオン二次電池用電極を得ることができる。
なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させることができる。
[Drying process]
A method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. For example, drying with warm air, hot air, low-humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like. A drying method is mentioned. Thus, by drying the slurry composition on the current collector, an electrode mixture layer is formed on the current collector, and a lithium ion secondary battery electrode including the current collector and the electrode mixture layer is obtained. be able to.
Note that after the drying step, the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. The adhesion between the electrode mixture layer and the current collector can be improved by the pressure treatment.
(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極および負極の少なくとも一方として本発明のリチウムイオン二次電池用電極を用いたものである。そして、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用電極を備えているので、サイクル特性等の電池特性に優れている。
(Lithium ion secondary battery)
The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and uses the electrode for a lithium ion secondary battery of the present invention as at least one of the positive electrode and the negative electrode. And since the lithium ion secondary battery of this invention is equipped with the electrode for lithium ion secondary batteries of this invention, it is excellent in battery characteristics, such as cycling characteristics.
<電極>
ここで、本発明のリチウムイオン二次電池に使用し得る、上述したリチウムイオン二次電池用電極以外の電極としては、特に限定されることなく、リチウムイオン二次電池の製造に用いられている既知の電極を用いることができる。具体的には、上述したリチウムイオン二次電池用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<Electrode>
Here, the electrode other than the above-described electrode for the lithium ion secondary battery that can be used for the lithium ion secondary battery of the present invention is not particularly limited and is used for the production of a lithium ion secondary battery. Known electrodes can be used. Specifically, as an electrode other than the above-described electrode for a lithium ion secondary battery, an electrode formed by forming an electrode mixture layer on a current collector using a known production method can be used.
<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte for the lithium ion secondary battery, for example, a lithium salt is used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Of these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。
なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5〜15質量%することが好ましく、2〜13質量%とすることがより好ましく、5〜10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加することができる。
The organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC) and ethyl methyl carbonate (EMC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide Etc. are preferably used. Moreover, you may use the liquid mixture of these solvents. Among these, carbonates are preferably used because they have a high dielectric constant and a wide stable potential region.
In addition, the density | concentration of the electrolyte in electrolyte solution can be adjusted suitably, for example, it is preferable to set it as 0.5-15 mass%, it is more preferable to set it as 2-13 mass%, and it shall be 5-10 mass%. Is more preferable. In addition, known additives such as fluoroethylene carbonate and ethyl methyl sulfone can be added to the electrolytic solution.
<セパレータ>
セパレータとしては、特に限定されることなく、例えば特開2012−204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<Separator>
As a separator, it is not specifically limited, For example, the thing of Unexamined-Japanese-Patent No. 2012-204303 can be used. Among these, the thickness of the separator as a whole can be reduced, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume. A microporous membrane made of a resin of the type (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable.
<リチウムイオン二次電池の製造方法>
本発明のリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method for producing lithium ion secondary battery>
In the lithium ion secondary battery of the present invention, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape as necessary, and placed in the battery container. It can manufacture by inject | pouring electrolyte solution into and sealing. In order to prevent an increase in pressure inside the lithium ion secondary battery, overcharge / discharge, etc., an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. . The shape of the lithium ion secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
そして、実施例および比較例において、スラリー組成物の粘度および塗工性、電極のピール強度、リチウムイオン二次電池のサイクル特性は、下記の方法で測定および評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the viscosity and coating property of the slurry composition, the peel strength of the electrode, and the cycle characteristics of the lithium ion secondary battery were measured and evaluated by the following methods.
<スラリー組成物の粘度>
JISZ8803:1991に準じて、B型粘度計(25℃、回転数=60rpm、スピンドル形状:4)により測定し、測定開始60秒後の値をスラリー組成物の粘度とした。
<スラリー組成物の塗工性>
作製したリチウムイオン二次電池用電極を切り出して、大きさ0.5m2の試験片を12枚準備した。そして、試験片の電極合材層を走査型電子顕微鏡(電極合材層と集電体の界面は倍率:5000〜10000倍、それ以外の箇所は倍率300〜5000倍)により観察し、スラリー組成物調製時のエアー巻き込みによる、電極合材層表面や電極合材層と集電体との界面におけるホール、塗りムラが存在する試験片の枚数をカウントし、以下の基準により評価した。エアー巻き込みによるホール、塗りムラが少ないほど、スラリー組成物が塗工性に優れることを示す。
A:12枚中全てにエアー巻き込みによるホール及び塗りムラがみられない。
B:12枚中1〜2枚にエアー巻き込みによるホール及び/又は塗りムラがみられる。
C:12枚中3〜4枚にエアー巻き込みによるホール及び/又は塗りムラがみられる。
D:12枚中5枚以上にエアー巻き込みによるホール及び/又は塗りムラがみられる。
<電極のピール強度>
作製したリチウムイオン二次電池用電極を長さ100mm、幅10mmの長方形に切り出して試験片とし、電極合材層を有する面を下にして電極合材層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている)。測定を3回行い、その平均値を求めてこれをピール強度とし、以下の基準により評価した。ピール強度の値が大きいほど、電極合材層と集電体の密着性に優れることを示す。
A:ピール強度が20N/m以上
B:ピール強度が15N/m以上20N/m未満
C:ピール強度が15N/m未満
<リチウムイオン二次電池のサイクル特性>
作製したリチウムイオン二次電池を25℃の環境下で24時間静置させた。その後、25℃の環境下で、0.5Cの低電流法にて4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、このリチウムイオン二次電池を、60℃の環境下で、前記と同様の充放電を200回繰り返し(200サイクル)、200サイクル後の容量C1を測定した。
サイクル特性(高温サイクル特性)は、ΔC=(C1/C0)×100(%)で示す容量維持率ΔCを算出し、以下の基準により評価した。この容量維持率ΔCの値が高いほど、サイクル特性に優れることを示す。
A:容量維持率ΔCが85%以上
B:容量維持率ΔCが80%以上85%未満
C:容量維持率ΔCが80%未満
<Viscosity of slurry composition>
According to JISZ8803: 1991, it was measured with a B-type viscometer (25 ° C., rotation speed = 60 rpm, spindle shape: 4), and the value 60 seconds after the start of measurement was taken as the viscosity of the slurry composition.
<Coating property of slurry composition>
The produced electrode for a lithium ion secondary battery was cut out, and 12 test pieces having a size of 0.5 m 2 were prepared. Then, the electrode mixture layer of the test piece is observed with a scanning electron microscope (the interface between the electrode mixture layer and the current collector is magnification: 5000 to 10000 times, and other portions are magnifications of 300 to 5000 times), and the slurry composition The number of test pieces having holes and uneven coating on the surface of the electrode mixture layer surface and the interface between the electrode mixture layer and the current collector due to air entrainment during the preparation of the product was counted and evaluated according to the following criteria. It shows that a slurry composition is excellent in coating property, so that there are few holes by air entrainment and coating unevenness.
A: Holes and coating unevenness due to air entrainment are not observed in all 12 sheets.
B: Holes and / or coating unevenness due to air entrainment are observed in 1 to 2 of 12 sheets.
C: Holes and / or coating unevenness due to air entrainment are observed on 3 to 4 of 12 sheets.
D: Holes due to air entrainment and / or uneven coating are observed on 5 or more of 12 sheets.
<Peel strength of electrode>
The produced electrode for a lithium ion secondary battery was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece, and a cellophane tape (specified in JIS Z1522) was formed on the surface of the electrode mixture layer with the surface having the electrode mixture layer facing down. The stress was measured when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled off (the cellophane tape was fixed to the test stand). The measurement was performed 3 times, the average value was calculated | required, this was made into peel strength, and the following references | standards evaluated. It shows that it is excellent in the adhesiveness of an electrode compound-material layer and an electrical power collector, so that the value of peel strength is large.
A: Peel strength is 20 N / m or more B: Peel strength is 15 N / m or more and less than 20 N / m C: Peel strength is less than 15 N / m <Cycle characteristics of lithium ion secondary battery>
The produced lithium ion secondary battery was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, under an environment of 25 ° C., charging and discharging operations were performed by charging to 4.2 V by a low current method of 0.5 C and discharging to 3.0 V, and an initial capacity C0 was measured. Furthermore, this lithium ion secondary battery was charged and discharged in the same manner as described above 200 times (200 cycles) in an environment of 60 ° C., and the capacity C1 after 200 cycles was measured.
For the cycle characteristics (high-temperature cycle characteristics), a capacity retention ratio ΔC represented by ΔC = (C1 / C0) × 100 (%) was calculated and evaluated according to the following criteria. It shows that it is excellent in cycling characteristics, so that the value of this capacity | capacitance maintenance factor (DELTA) C is high.
A: Capacity maintenance ratio ΔC is 85% or more B: Capacity maintenance ratio ΔC is 80% or more and less than 85% C: Capacity maintenance ratio ΔC is less than 80%
(実施例1)
<正極用粒子状重合体の調製>
攪拌機付き5MPa耐圧容器に、酸性基含有単量体としてのイタコン酸4部、(メタ)アクリル酸エステル単量体としての2−エチルヘキシルアクリレート74部、(メタ)アクリロニトリル単量体としてのアクリロニトリル20部、フッ素含有(メタ)アクリル酸エステル単量体としてのメタクリル酸2,2,2−トリフルオロエチル2部、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム1部、重合開始剤として過硫酸カリウム0.8部、およびイオン交換水150部を入れ、十分に攪拌した。その後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止した。次いで、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の正極用粒子状重合体(アクリル系重合体)を含む水分散液を得た。
<リチウムイオン二次電池正極用スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、正極活物質としてオリビン型リン酸鉄リチウム(LiFePO4)を100部、導電材としてアセチレンブラック(電気化学工業社製「HS−100」)を2部、水溶性キトサン化合物1(α型キチン由来、脱アセチル化度:85%、水溶性試験での残渣割合:10質量%)を0.1部入れ、10分間攪拌混合し、更にイオン交換水で固形分濃度83%に調整した後、25℃で60分間混合した。得られた混合物に、上記正極用粒子状重合体を含む水分散液(固形分濃度を40%に調整)を固形分相当で2部添加し、次いでイオン交換水で固形分濃度を53%に調整した。この正極用粒子状重合体を含む混合物に更に、防腐剤X(製品名:アクチサイド(登録商標)LA5008、当該防腐剤Xは、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、2−メチル−4−イソチアゾリン−3−オンおよび2−ブロモ−2−ニトロ−1,3−プロパンジオールを、3.7:1.3:8(質量比)でそれぞれを含有する。)を固形分相当で0.5添加して混合し、リチウムイオン二次電池正極用スラリー組成物(固形分濃度:53%、pH:5.0)を調製した。このスラリー組成物の粘度および塗工性を評価した。結果を表1に示す。
<リチウムイオン二次電池用正極の作製>
集電体として、厚さ20μmのアルミ箔を準備した。そして、得られたスラリー組成物を、コンマコーターでアルミ箔の片面に塗布し、乾燥させて、正極原反を得た。なお、この乾燥は、塗膜を備えるアルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送し、その後更に120℃のオーブン内にて2分間加熱処理することにより行った。得られた正極原反をロールプレスで圧延し、正極合材層の厚さが100μmのリチウムイオン二次電池用正極を得た。この正極のピール強度を評価した。結果を表1に示す。
<負極用粒子状重合体の調製>
攪拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体として1,3−ブタジエン33.5部、酸性基含有単量体としてイタコン酸3.5部、芳香族ビニル単量体としてスチレン62部、ヒドロキシル基含有単量体として2−ヒドロキシエチルアクリレート1部、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、重合開始剤として過硫酸カリウム0.5部、およびイオン交換水150部を入れ、十分に攪拌した。その後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却して反応を停止した。次いで、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の負極用粒子状重合体(共役ジエン系重合体)を含む水分散液を得た。
<リチウムイオン二次電池負極用スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛100部、増粘剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部、および、イオン交換水を混合して固形分濃度が65%となるように調整した後、25℃で60分間混合した。次いで、固形分濃度が60%となるようにイオン交換水で調整し、更に25℃で15分間混合した。その後、得られた混合液に、上記負極用粒子状重合体を含む水分散液を固形分相当で2部、およびイオン交換水を入れ、更に10分間混合した。これを減圧下で脱泡処理し、流動性の良い負極用スラリー組成物(固形分濃度:53%)を調製した。
<リチウムイオン二次電池用負極の作製>
集電体として、厚さ20μmの銅箔を準備した。そして、得られたスラリー組成物を、コンマコーターで銅箔の片面に塗布し、乾燥させて、負極原反を得た。なお、この乾燥は、塗膜を備える銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送し、その後更に120℃のオーブン内にて2分間加熱処理することにより行った。得られた負極原反をロールプレスで圧延し、負極合材層の厚さが80μmのリチウムイオン二次電池用負極を得た。
<リチウムイオン二次電池用セパレータの準備>
単層のポリプロピレン製セパレータ(セルガード社製「CELGARD(登録商標)2500」)を、5cm×5cmの正方形に切り抜いた。
<リチウムイオン二次電池の製造>
電池の外装として、アルミニウム包材外装を用意した。上記で得られた正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極合材層の上に、上記で得られた正方形のセパレータを配置した。さらに、上記で得られた負極を、4.2cm×4.2cmの正方形に切り出し、これをセパレータ上に、負極合材層側の表面がセパレータに向かい合うように配置した。更に、電解液(溶媒:EC/DEC/ビニレンカーボネート(25℃における体積比)=40.0/58.5/1.5、電解質:濃度1MのLiPF6、比誘電率(25℃):36.5、粘度(25℃):1.2mPa・s))を空気が残らないように注入した。その後、アルミニウム包材外装の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、リチウムイオン二次電池を得た。得られたリチウムイオン二次電池を用いてサイクル特性の評価を行った。結果を表1に示す。
Example 1
<Preparation of particulate polymer for positive electrode>
In a 5 MPa pressure vessel with a stirrer, 4 parts of itaconic acid as an acidic group-containing monomer, 74 parts of 2-ethylhexyl acrylate as a (meth) acrylic acid ester monomer, 20 parts of acrylonitrile as a (meth) acrylonitrile monomer 2 parts of 2,2,2-trifluoroethyl methacrylate as the fluorine-containing (meth) acrylic acid ester monomer, 1 part of sodium dodecylbenzenesulfonate as the surfactant, and 0.8 parts of potassium persulfate as the polymerization initiator And 150 parts of ion-exchanged water were added and sufficiently stirred. Then, it heated to 50 degreeC and superposition | polymerization was started. When the polymerization conversion reached 96%, the reaction was stopped by cooling. Subsequently, after removing the unreacted monomer by heating under reduced pressure, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired positive electrode particulate polymer (acrylic polymer).
<Preparation of slurry composition for positive electrode of lithium ion secondary battery>
In a planetary mixer with a disper, 100 parts of olivine type lithium iron phosphate (LiFePO 4 ) as a positive electrode active material, 2 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, water-soluble chitosan 0.1 part of compound 1 (derived from α-type chitin, degree of deacetylation: 85%, residual ratio in water solubility test: 10% by mass) is added and mixed with stirring for 10 minutes, and solid content concentration is 83 with ion-exchanged water. % And then mixed at 25 ° C. for 60 minutes. To the obtained mixture, 2 parts of an aqueous dispersion containing the positive electrode particulate polymer (solid content concentration adjusted to 40%) was added in an amount corresponding to the solid content, and then the solid content concentration was adjusted to 53% with ion-exchanged water. It was adjusted. In addition to the mixture containing the positive electrode particulate polymer, an antiseptic X (product name: Activide (registered trademark) LA5008, the antiseptic X is 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one and 2-bromo-2-nitro-1,3-propanediol, each containing 3.7: 1.3: 8 (mass ratio). 0.5 equivalent amount was added and mixed to prepare a slurry composition for a positive electrode of a lithium ion secondary battery (solid content concentration: 53%, pH: 5.0). The slurry composition was evaluated for viscosity and coatability. The results are shown in Table 1.
<Preparation of positive electrode for lithium ion secondary battery>
An aluminum foil with a thickness of 20 μm was prepared as a current collector. And the obtained slurry composition was apply | coated to the single side | surface of aluminum foil with the comma coater, it was made to dry, and the positive electrode original fabric was obtained. In this drying, the aluminum foil provided with the coating film is transported in an oven at 60 ° C. for 2 minutes at a speed of 0.5 m / min, and then further heated in an oven at 120 ° C. for 2 minutes. went. The obtained positive electrode fabric was rolled by a roll press to obtain a positive electrode for a lithium ion secondary battery having a positive electrode mixture layer thickness of 100 μm. The peel strength of this positive electrode was evaluated. The results are shown in Table 1.
<Preparation of particulate polymer for negative electrode>
In a 5 MPa pressure vessel equipped with a stirrer, 33.5 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 3.5 parts of itaconic acid as an acidic group-containing monomer, 62 parts of styrene as an aromatic vinyl monomer, 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, 0.4 part of sodium dodecylbenzenesulfonate as a surfactant, 0.5 part of potassium persulfate as a polymerization initiator, and 150 parts of ion-exchanged water, Stir well. Then, it heated to 50 degreeC and superposition | polymerization was started. The reaction was stopped by cooling when the polymerization conversion reached 96%. Subsequently, after removing the unreacted monomer by heating under reduced pressure, it was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired negative electrode particulate polymer (conjugated diene polymer).
<Preparation of slurry composition for negative electrode of lithium ion secondary battery>
In a planetary mixer with a disper, 100 parts of artificial graphite as a negative electrode active material, 1 part of a 2% aqueous solution of carboxymethyl cellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) as a thickener, and an ion Exchange water was mixed to adjust the solid concentration to 65%, and then mixed at 25 ° C. for 60 minutes. Subsequently, it adjusted with ion-exchange water so that solid content concentration might be 60%, and also mixed for 15 minutes at 25 degreeC. Thereafter, 2 parts of an aqueous dispersion containing the above particulate polymer for negative electrode and ion-exchanged water were added to the obtained mixed liquid, and further mixed for 10 minutes. This was defoamed under reduced pressure to prepare a negative electrode slurry composition (solid content concentration: 53%) having good fluidity.
<Preparation of negative electrode for lithium ion secondary battery>
A copper foil having a thickness of 20 μm was prepared as a current collector. And the obtained slurry composition was apply | coated to the single side | surface of copper foil with the comma coater, it was made to dry, and the negative electrode original fabric was obtained. In this drying, the copper foil provided with the coating film is conveyed in an oven at 60 ° C. at a rate of 0.5 m / min for 2 minutes, and then further heated in an oven at 120 ° C. for 2 minutes. went. The obtained negative electrode original fabric was rolled with a roll press to obtain a negative electrode for a lithium ion secondary battery having a negative electrode mixture layer thickness of 80 μm.
<Preparation of separator for lithium ion secondary battery>
A single-layer polypropylene separator (“CELGARD (registered trademark) 2500” manufactured by Celgard) was cut into a 5 cm × 5 cm square.
<Manufacture of lithium ion secondary batteries>
An aluminum packaging exterior was prepared as the battery exterior. The positive electrode obtained above was cut into a 4 cm × 4 cm square and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior. The square separator obtained above was disposed on the positive electrode mixture layer of the positive electrode. Furthermore, the negative electrode obtained above was cut into a square of 4.2 cm × 4.2 cm, and this was arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator. Furthermore, electrolyte (solvent: EC / DEC / vinylene carbonate (volume ratio at 25 ° C.) = 40.0 / 58.5 / 1.5, electrolyte: LiPF 6 at a concentration of 1 M, relative dielectric constant (25 ° C.): 36 0.5, viscosity (25 ° C.): 1.2 mPa · s) was injected so that no air remained. Thereafter, in order to seal the opening of the aluminum packaging material exterior, heat sealing was performed at 150 ° C. to close the aluminum packaging material exterior, and a lithium ion secondary battery was obtained. The cycle characteristics were evaluated using the obtained lithium ion secondary battery. The results are shown in Table 1.
(実施例2〜3、13)
正極用粒子状重合体の調製時に、使用する単量体の種類および割合を表1のように変更した以外は、実施例1と同様にして、正極用スラリー組成物、負極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製し、実施例1と同様にして評価を行った。結果を表1に示す。
(Examples 2-3, 13)
Except having changed the kind and ratio of the monomer to be used as shown in Table 1 at the time of preparing the particulate polymer for the positive electrode, in the same manner as in Example 1, the positive electrode slurry composition, the negative electrode slurry composition, A positive electrode, a negative electrode, and a lithium ion secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例4〜6、11)
正極用スラリー組成物の調製時に、水溶性キトサン化合物1に替えてそれぞれ以下の水溶性キトサン化合物2〜5を使用した以外は、実施例1と同様にして、正極用スラリー組成物、負極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製し、実施例1と同様にして評価を行った。結果を表1に示す。
水溶性キトサン化合物2(β型キチン由来、脱アセチル化度:85%、水溶性試験での残渣割合:10質量%)
水溶性キトサン化合物3(γ型キチン由来、脱アセチル化度:80%、水溶性試験での残渣割合: 10質量%)
水溶性キトサン化合物4(α型キチン由来、脱アセチル化度:92%、水溶性試験での残渣割合:4質量%)
水溶性キトサン化合物5(α型キチン由来、脱アセチル化度:75%、水溶性試験での残渣割合:40質量%)
(Examples 4-6, 11)
In the same manner as in Example 1, except that the following water-soluble chitosan compounds 2 to 5 were used in place of the water-soluble chitosan compound 1 when preparing the positive electrode slurry composition, the positive electrode slurry composition and the negative electrode slurry were used. A composition, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
Water-soluble chitosan compound 2 (derived from β-type chitin, degree of deacetylation: 85%, residue ratio in water-soluble test: 10% by mass)
Water-soluble chitosan compound 3 (derived from γ-type chitin, degree of deacetylation: 80%, residue ratio in water-soluble test: 10% by mass)
Water-soluble chitosan compound 4 (derived from α-type chitin, degree of deacetylation: 92%, residue ratio in water-soluble test: 4% by mass)
Water-soluble chitosan compound 5 (derived from α-type chitin, degree of deacetylation: 75%, residue ratio in water-soluble test: 40% by mass)
(実施例7〜10)
正極用スラリー組成物の調製時に、水溶性キトサン化合物4の配合量を表1のように変更した以外は、実施例6と同様にして、正極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製し、実施例1と同様にして評価を行った。結果を表1に示す。
(Examples 7 to 10)
The positive electrode slurry composition, the positive electrode, the negative electrode, and the lithium ion secondary were prepared in the same manner as in Example 6 except that the amount of the water-soluble chitosan compound 4 was changed as shown in Table 1 when preparing the positive electrode slurry composition. A battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例12)
負極用スラリー組成物の調製時に、固形分相当で1部のカルボキシメチルセルロースナトリウム塩に替えて、水溶性キトサン化合物1を0.1部および防腐剤Xを0.5部添加した以外は、実施例1と同様にして、正極用スラリー組成物、負極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製し、実施例1と同様にして評価を行った。結果を表1に示す。(すなわち、粘度および塗工性の評価に用いた正極用スラリー組成物、並びにピール強度の評価に用いた正極は、何れも実施例1と同様にして作製したものである。)
(Example 12)
Example except that 0.1 part of water-soluble chitosan compound 1 and 0.5 part of preservative X were added in place of 1 part of carboxymethylcellulose sodium salt corresponding to the solid content during preparation of the slurry composition for negative electrode In the same manner as in Example 1, a positive electrode slurry composition, a negative electrode slurry composition, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. (That is, the positive electrode slurry composition used for evaluation of viscosity and coatability and the positive electrode used for evaluation of peel strength were both produced in the same manner as in Example 1.)
(実施例14)
正極用スラリー組成物の調製の際に、0.1部の水溶性キトサン化合物1および0.5部の防腐剤Xを添加せず、カルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部を添加した以外は、実施例1と同様にして、正極用スラリー組成物および正極を作製した。
また、負極用スラリー組成物の調製の際に、固形分相当で1部のカルボキシメチルセルロースナトリウム塩に替えて、水溶性キトサン化合物1を0.1部および防腐剤Xを0.5部添加した以外は、実施例1と同様にして、負極用スラリー組成物および負極を作製した。得られた負極用スラリー組成物の粘度および塗工性、並びに負極のピール強度を評価した。結果を表1に示す。
そして、上記正極および負極を使用した以外は、実施例1と同様にして、リチウムイオン二次電池を作製し、サイクル特性の評価を行った。結果を表1に示す。
(Example 14)
In the preparation of the positive electrode slurry composition, 0.1 part of the water-soluble chitosan compound 1 and 0.5 part of the preservative X were not added, but carboxymethylcellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) 2 A positive electrode slurry composition and a positive electrode were produced in the same manner as in Example 1 except that 1 part of a% aqueous solution was added corresponding to the solid content.
In addition, in preparing the negative electrode slurry composition, 0.1 part of water-soluble chitosan compound 1 and 0.5 part of preservative X were added instead of 1 part of carboxymethylcellulose sodium salt corresponding to the solid content. Produced a slurry composition for a negative electrode and a negative electrode in the same manner as in Example 1. The viscosity and coatability of the obtained negative electrode slurry composition and the peel strength of the negative electrode were evaluated. The results are shown in Table 1.
And the lithium ion secondary battery was produced similarly to Example 1 except having used the said positive electrode and negative electrode, and the cycling characteristics were evaluated. The results are shown in Table 1.
(実施例15)
以下のようにして得られた負極用粒子状重合体を使用した以外は、実施例14と同様にして、負極用スラリー組成物、正極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製した。そして、負極用スラリー組成物の粘度および塗工性、負極のピール強度、並びにリチウムイオン二次電池のサイクル特性の評価を行った。結果を表1に示す。
<負極用粒子状重合体の調製>
攪拌機付き5MPa耐圧容器に、酸性基含有単量体としてイタコン酸3部、(メタ)アクリル酸エステル単量体として2−エチルヘキシルアクリレート31部、メチルメタクリレート23部、およびブチルアクリレート25部、(メタ)アクリロニトリル単量体としてアクリロニトリル3部、芳香族ビニル単量体としてスチレン13部、アミド基含有単量体としてアクリルアミド2部、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、重合開始剤として過硫酸カリウム0.5部、並びにイオン交換水150部を入れ、十分に攪拌した。その後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却して反応を停止した。次いで、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の負極用粒子状重合体(アクリル系重合体)を含む水分散液を得た。
(Example 15)
A negative electrode slurry composition, a positive electrode slurry composition, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared in the same manner as in Example 14 except that the negative electrode particulate polymer obtained as described below was used. Produced. Then, the viscosity and coatability of the negative electrode slurry composition, the peel strength of the negative electrode, and the cycle characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 1.
<Preparation of particulate polymer for negative electrode>
In a 5 MPa pressure vessel with a stirrer, 3 parts of itaconic acid as an acidic group-containing monomer, 31 parts of 2-ethylhexyl acrylate, 23 parts of methyl methacrylate and 25 parts of butyl acrylate as a (meth) acrylic acid ester monomer, (meth) 3 parts of acrylonitrile as the acrylonitrile monomer, 13 parts of styrene as the aromatic vinyl monomer, 2 parts of acrylamide as the amide group-containing monomer, 0.4 part of sodium dodecylbenzenesulfonate as the surfactant, and excess as the polymerization initiator 0.5 parts of potassium sulfate and 150 parts of ion exchange water were added and stirred sufficiently. Then, it heated to 50 degreeC and superposition | polymerization was started. The reaction was stopped by cooling when the polymerization conversion reached 96%. Next, after removing the unreacted monomer by heating under reduced pressure, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired negative electrode particulate polymer (acrylic polymer).
(比較例1)
以下のようにして、正極用スラリー組成物、正極を調製した。それ以外は実施例1と同様にして、負極用スラリー組成物、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<リチウムイオン二次電池正極用スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、正極活物質としてオリビン型リン酸鉄リチウム(LiFePO4)を100部、導電材としてアセチレンブラック(電気化学工業社製「HS−100」)を2部入れ、10分間攪拌混合し、更にイオン交換水で固形分濃度83%に調整した後、25℃で60分間混合した。得られた混合物に、実施例1で得られた正極用粒子状重合体を含む水分散液(固形分濃度を40%に調整)を固形分相当で2部添加し、次いでイオン交換水で固形分濃度を53%に調整した。この正極用粒子状重合体を含む混合物に更に、防腐剤X(製品名:アクチサイド(登録商標)LA5008、当該防腐剤Xは、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、2−メチル−4−イソチアゾリン−3−オンおよび2−ブロモ−2−ニトロ−1,3−プロパンジオールを、3.7:1.3:8(質量比)でそれぞれを含有する。)を固形分相当で0.5添加して混合して、水系組成物(固形分濃度:53%、pH:5.0)を調製した。この水系組成物中に、正極活物質と同質量のN-メチル-2-ピロリドン(NMP)を加え、減圧下60℃で水分を共沸除去した。次いで、非水溶性キトサン化合物6(α型キチン由来、脱アセチル化度:70%、水溶性試験での残渣割合:60質量%)を0.1部入れ、固形分濃度が53%となるようにNMPを添加して、溶剤系の正極用スラリー組成物を調製した。このスラリー組成物中では、アクリル系重合体はNMPに溶解しており粒子状を呈していなかった(すなわち、本比較例1の正極用スラリー組成物は、「粒子状」重合体を含んでいない)。
<リチウムイオン二次電池用正極の作製>
上述した溶剤系の正極用スラリー組成物を使用した以外は、実施例1と同様にして、正極合材層の厚さが100μmのリチウムイオン二次電池用正極を得た。
(Comparative Example 1)
A positive electrode slurry composition and a positive electrode were prepared as follows. Other than that was carried out similarly to Example 1, and produced the slurry composition for negative electrodes, the negative electrode, and the lithium ion secondary battery. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
<Preparation of slurry composition for positive electrode of lithium ion secondary battery>
Place 100 parts of olivine type lithium iron phosphate (LiFePO 4 ) as a positive electrode active material and 2 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material in a planetary mixer with a disper for 10 minutes. The mixture was stirred and mixed, and further adjusted to a solid content concentration of 83% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. To the obtained mixture, 2 parts of an aqueous dispersion containing the positive electrode particulate polymer obtained in Example 1 (solid content concentration adjusted to 40%) was added in an amount corresponding to the solid content, and then solidified with ion-exchanged water. The partial concentration was adjusted to 53%. In addition to the mixture containing the positive electrode particulate polymer, an antiseptic X (product name: Activide (registered trademark) LA5008, the antiseptic X is 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one and 2-bromo-2-nitro-1,3-propanediol, each containing 3.7: 1.3: 8 (mass ratio). An aqueous composition (solid content concentration: 53%, pH: 5.0) was prepared by adding 0.5 in an amount corresponding to the minute and mixing. To this aqueous composition, N-methyl-2-pyrrolidone (NMP) having the same mass as the positive electrode active material was added, and water was removed azeotropically at 60 ° C. under reduced pressure. Next, 0.1 part of water-insoluble chitosan compound 6 (derived from α-type chitin, degree of deacetylation: 70%, residue ratio in water solubility test: 60% by mass) is added so that the solid content concentration becomes 53%. NMP was added to to prepare a solvent-based positive electrode slurry composition. In this slurry composition, the acrylic polymer was dissolved in NMP and was not in the form of particles (that is, the positive electrode slurry composition of Comparative Example 1 did not contain a “particulate” polymer). ).
<Preparation of positive electrode for lithium ion secondary battery>
A positive electrode for a lithium ion secondary battery having a positive electrode mixture layer thickness of 100 μm was obtained in the same manner as in Example 1 except that the solvent-based positive electrode slurry composition described above was used.
(比較例2)
正極用スラリー組成物の調製時に、水溶性キトサン化合物1に替えて、非水溶性キトサン化合物6(α型キチン由来、脱アセチル化度:70%、水溶性試験での残渣割合:60質量%)を使用した以外は、実施例1と同様にして、正極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製し、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 2)
When preparing the slurry composition for the positive electrode, in place of the water-soluble chitosan compound 1, the water-insoluble chitosan compound 6 (derived from α-type chitin, degree of deacetylation: 70%, residue ratio in water solubility test: 60% by mass) A positive electrode slurry composition, a positive electrode, a negative electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(比較例3)
正極用スラリー組成物の調製時に粒子状重合体を添加しない以外は、実施例1と同様にして、正極用スラリー組成物、正極、負極およびリチウムイオン二次電池を作製し、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 3)
A positive electrode slurry composition, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that the particulate polymer was not added during the preparation of the positive electrode slurry composition. And evaluated. The results are shown in Table 1.
なお、以下に示す表1中、
「LFP」はオリビン型リン酸鉄リチウム(LiFePO4)を示し、
「GR」は人造黒鉛を示し、
「IA」はイタコン酸を示し、
「AN」はアクリロニトリルを示し、
「2EHA」は2−エチルヘキシルアクリレートを示し、
「MMA」はメチルメタクリレートを示し、
「BA」はブチルアクリレートを示し、
「TFEM」はメタクリル酸2,2,2−トリフルオロエチルを示し、
「BD」は1,3−ブタジエンを示し、
「ST」はスチレンを示し、
「HEA」はヒドロキシエチルアクリレートを示し、
「AAm」はアクリルアミドを示し、
「AcB」はアセチレンブラックを示し、
「CMC−Na」はカルボキシメチルセルロースナトリウム塩を示す。
In Table 1 shown below,
“LFP” indicates olivine-type lithium iron phosphate (LiFePO 4 ),
“GR” indicates artificial graphite,
“IA” indicates itaconic acid,
“AN” stands for acrylonitrile,
“2EHA” refers to 2-ethylhexyl acrylate,
“MMA” indicates methyl methacrylate,
“BA” represents butyl acrylate,
“TFEM” refers to 2,2,2-trifluoroethyl methacrylate,
“BD” indicates 1,3-butadiene,
“ST” indicates styrene,
“HEA” represents hydroxyethyl acrylate,
“AAm” indicates acrylamide,
“AcB” indicates acetylene black,
“CMC-Na” represents carboxymethylcellulose sodium salt.
表1より、水溶性キトサン化合物、粒子状重合体、および電極活物質を含むリチウムイオン二次電池電極用スラリー組成物を使用した実施例1〜15では、スラリー組成物の塗工性を確保しつつ、ピール強度に優れる電極およびサイクル特性に優れるリチウムイオン二次電池が得られることが分かる。
また、表1より、結着材として非粒子状の重合体を含み且つ非水溶性キトサン化合物を含むスラリー組成物、非水溶性のキトサン化合物を含むスラリー組成物、および粒子状重合体を含まないスラリー組成物をそれぞれ使用した比較例1〜3では、スラリー組成物の塗工性が確保できず、また電極のピール強度およびリチウムイオン二次電池のサイクル特性が低下してしまうことが分かる。
From Table 1, in Examples 1-15 using the slurry composition for lithium ion secondary battery electrodes containing a water-soluble chitosan compound, a particulate polymer, and an electrode active material, the applicability of the slurry composition was ensured. However, it can be seen that an electrode having excellent peel strength and a lithium ion secondary battery having excellent cycle characteristics can be obtained.
Further, from Table 1, a slurry composition containing a non-particulate polymer as a binder and containing a water-insoluble chitosan compound, a slurry composition containing a water-insoluble chitosan compound, and no particulate polymer. In Comparative Examples 1 to 3 each using the slurry composition, it is understood that the coating property of the slurry composition cannot be secured, and the peel strength of the electrode and the cycle characteristics of the lithium ion secondary battery are deteriorated.
本発明によれば、良好な塗工性を有し、且つピール強度に優れるリチウムイオン二次電池用電極を形成可能なリチウムイオン二次電池電極用スラリー組成物を提供することができる。
また、本発明によれば、ピール強度に優れるリチウムイオン二次電池用電極およびサイクル特性に優れるリチウムイオン二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, it can provide the slurry composition for lithium ion secondary battery electrodes which can form the electrode for lithium ion secondary batteries which has favorable coating property and is excellent in peel strength.
Moreover, according to this invention, the lithium ion secondary battery which is excellent in the electrode for lithium ion secondary batteries excellent in peel strength, and cycling characteristics can be provided.
Claims (9)
前記正極および負極の少なくとも一方が、請求項8に記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。 A positive electrode, a negative electrode, an electrolyte and a separator;
The lithium ion secondary battery whose at least one of the said positive electrode and a negative electrode is an electrode for lithium ion secondary batteries of Claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015195228A JP6645101B2 (en) | 2015-09-30 | 2015-09-30 | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015195228A JP6645101B2 (en) | 2015-09-30 | 2015-09-30 | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017069108A true JP2017069108A (en) | 2017-04-06 |
JP6645101B2 JP6645101B2 (en) | 2020-02-12 |
Family
ID=58495142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015195228A Active JP6645101B2 (en) | 2015-09-30 | 2015-09-30 | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6645101B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021891A1 (en) | 2017-07-28 | 2019-01-31 | 日本ゼオン株式会社 | Electrochemical element electrode, electrochemical element, and manufacturing method for electrochemical element electrode |
CN112970135A (en) * | 2018-11-02 | 2021-06-15 | 沃尔特14解决方案公司 | Binder for battery electrodes |
CN113169302A (en) * | 2019-03-28 | 2021-07-23 | 日本瑞翁株式会社 | Conductive material paste for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2022176379A1 (en) * | 2021-02-18 | 2022-08-25 | パナソニックIpマネジメント株式会社 | Negative electrode slurry for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2022176380A1 (en) * | 2021-02-22 | 2022-08-25 | パナソニックIpマネジメント株式会社 | Negative electrode slurry for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2022145469A (en) * | 2021-03-19 | 2022-10-04 | 積水化学工業株式会社 | Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system |
WO2023145655A1 (en) | 2022-01-31 | 2023-08-03 | 日本ゼオン株式会社 | Composite particles for electrochemical element positive electrode, production method for same, positive electrode for electrochemical element, and electrochemical element |
WO2023189219A1 (en) | 2022-03-31 | 2023-10-05 | 日本ゼオン株式会社 | Wound electrode body and non-aqueous secondary battery |
CN117586726A (en) * | 2023-11-20 | 2024-02-23 | 浙江中科立德新材料有限公司 | Water-based binder, preparation method, battery pole piece and lithium ion battery material |
SE2251593A1 (en) * | 2022-12-29 | 2024-06-30 | Northvolt Ab | A binder composition for an electrode |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010146870A (en) * | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | Binder for secondary-battery electrode |
JP2010170852A (en) * | 2009-01-23 | 2010-08-05 | Jsr Corp | Composition for electrochemical device electrode binder, composition for electrochemical device electrode, electrochemical device electrode, and electrochemical device |
JP2010205722A (en) * | 2009-02-03 | 2010-09-16 | Nippon A&L Inc | Binder for nonaqueous electrolyte secondary battery electrode |
WO2011096463A1 (en) * | 2010-02-03 | 2011-08-11 | 日本ゼオン株式会社 | Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery |
WO2011122297A1 (en) * | 2010-03-29 | 2011-10-06 | 日本ゼオン株式会社 | Lithium-ion secondary battery |
WO2011145419A1 (en) * | 2010-05-19 | 2011-11-24 | 昭和電工株式会社 | Binder for lithium ion secondary battery electrode, slurry obtained using the binder for electrode, electrode obtained using the slurry, and lithium ion secondary battery using the electrode |
WO2014115802A1 (en) * | 2013-01-23 | 2014-07-31 | 昭和電工株式会社 | Method for producing binder for lithium secondary battery electrodes, and binder for lithium secondary battery electrodes |
JP2015005474A (en) * | 2013-06-24 | 2015-01-08 | 株式会社ダイセル | Binding agent, electrode material slurry, electrode, manufacturing method thereof, and secondary battery |
-
2015
- 2015-09-30 JP JP2015195228A patent/JP6645101B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010146870A (en) * | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | Binder for secondary-battery electrode |
JP2010170852A (en) * | 2009-01-23 | 2010-08-05 | Jsr Corp | Composition for electrochemical device electrode binder, composition for electrochemical device electrode, electrochemical device electrode, and electrochemical device |
JP2010205722A (en) * | 2009-02-03 | 2010-09-16 | Nippon A&L Inc | Binder for nonaqueous electrolyte secondary battery electrode |
WO2011096463A1 (en) * | 2010-02-03 | 2011-08-11 | 日本ゼオン株式会社 | Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery |
WO2011122297A1 (en) * | 2010-03-29 | 2011-10-06 | 日本ゼオン株式会社 | Lithium-ion secondary battery |
WO2011145419A1 (en) * | 2010-05-19 | 2011-11-24 | 昭和電工株式会社 | Binder for lithium ion secondary battery electrode, slurry obtained using the binder for electrode, electrode obtained using the slurry, and lithium ion secondary battery using the electrode |
WO2014115802A1 (en) * | 2013-01-23 | 2014-07-31 | 昭和電工株式会社 | Method for producing binder for lithium secondary battery electrodes, and binder for lithium secondary battery electrodes |
JP2015005474A (en) * | 2013-06-24 | 2015-01-08 | 株式会社ダイセル | Binding agent, electrode material slurry, electrode, manufacturing method thereof, and secondary battery |
Non-Patent Citations (1)
Title |
---|
桜井 謙資: "キチン・キトサンの構造", 繊維学会誌, vol. 46, no. 12, JPN6019048454, 1990, JP, pages 553 - 557, ISSN: 0004171879 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11387463B2 (en) | 2017-07-28 | 2022-07-12 | Zeon Corporation | Electrode for electrochemical device, electrochemical device, and method of producing electrode for electrochemical device |
WO2019021891A1 (en) | 2017-07-28 | 2019-01-31 | 日本ゼオン株式会社 | Electrochemical element electrode, electrochemical element, and manufacturing method for electrochemical element electrode |
CN112970135A (en) * | 2018-11-02 | 2021-06-15 | 沃尔特14解决方案公司 | Binder for battery electrodes |
JP2022506741A (en) * | 2018-11-02 | 2022-01-17 | ヴォルト14 ソリューションズ | Binder for battery electrodes |
JP7534294B2 (en) | 2018-11-02 | 2024-08-14 | ヴォルト14 ソリューションズ | Binders for battery electrodes |
CN113169302B (en) * | 2019-03-28 | 2024-07-30 | 日本瑞翁株式会社 | Conductive material paste for lithium ion secondary battery electrode, slurry composition, electrode, and lithium ion secondary battery |
CN113169302A (en) * | 2019-03-28 | 2021-07-23 | 日本瑞翁株式会社 | Conductive material paste for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2022176379A1 (en) * | 2021-02-18 | 2022-08-25 | パナソニックIpマネジメント株式会社 | Negative electrode slurry for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2022176380A1 (en) * | 2021-02-22 | 2022-08-25 | パナソニックIpマネジメント株式会社 | Negative electrode slurry for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP7212130B2 (en) | 2021-03-19 | 2023-01-24 | 積水化学工業株式会社 | Positive electrode for bendable non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same |
JP2022145469A (en) * | 2021-03-19 | 2022-10-04 | 積水化学工業株式会社 | Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system |
WO2023145655A1 (en) | 2022-01-31 | 2023-08-03 | 日本ゼオン株式会社 | Composite particles for electrochemical element positive electrode, production method for same, positive electrode for electrochemical element, and electrochemical element |
WO2023189219A1 (en) | 2022-03-31 | 2023-10-05 | 日本ゼオン株式会社 | Wound electrode body and non-aqueous secondary battery |
SE2251593A1 (en) * | 2022-12-29 | 2024-06-30 | Northvolt Ab | A binder composition for an electrode |
CN117586726A (en) * | 2023-11-20 | 2024-02-23 | 浙江中科立德新材料有限公司 | Water-based binder, preparation method, battery pole piece and lithium ion battery material |
Also Published As
Publication number | Publication date |
---|---|
JP6645101B2 (en) | 2020-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6645101B2 (en) | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
US10403896B2 (en) | Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device | |
JP6589857B2 (en) | Method for producing positive electrode for lithium ion secondary battery provided with electrolytic solution | |
JP6369473B2 (en) | Slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2017010093A1 (en) | Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery | |
WO2016067633A1 (en) | Paste composition for negative electrode for lithium-ion rechargeable battery, composite particles for negative electrode for lithium-ion rechargeable battery, slurry composition for negative electrode for lithium-ion rechargeable battery, negative electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery | |
JP7218729B2 (en) | Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode and method for producing the same, positive electrode for secondary battery, and secondary battery | |
WO2015186363A1 (en) | Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell | |
JP6398191B2 (en) | Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery | |
JP6760074B2 (en) | Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6809466B2 (en) | Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery | |
JP6413242B2 (en) | Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery | |
WO2014185072A1 (en) | Binder composition for positive electrodes of lithium ion secondary batteries, slurry composition for positive electrodes of lithium ion secondary batteries and production method therefor, production method for positive electrodes of lithium ion secondary batteries, and lithium ion secondary battery | |
JPWO2018235722A1 (en) | Binder composition for electrochemical device electrode, composition for electrochemical device electrode, electrode for electrochemical device, and electrochemical device | |
WO2015098116A1 (en) | Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery | |
WO2018123624A1 (en) | Slurry composition for nonaqueous secondary cell negative electrode and method for manufacturing same, negative electrode for nonaqueous secondary cell, and nonaqueous secondary cell | |
WO2019044452A1 (en) | Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery | |
WO2019208419A1 (en) | Binder composition for electricity storage devices, slurry composition for electricity storage device electrodes, electrode for electricity storage devices, and electricity storage device | |
WO2018168502A1 (en) | Binder composition for nonaqueous secondary battery electrode, conductive-material paste composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP6696534B2 (en) | Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery | |
JP2015153529A (en) | Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
WO2018003707A1 (en) | Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, nonaqueous secondary battery electrode, and nonaqueous secondary battery | |
JP6237306B2 (en) | Slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2016021391A (en) | Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device | |
WO2018003636A1 (en) | Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6645101 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |