Nothing Special   »   [go: up one dir, main page]

JP2017058384A - Container for electrical measurement, device for electrical measurement, and electrical measurement method - Google Patents

Container for electrical measurement, device for electrical measurement, and electrical measurement method Download PDF

Info

Publication number
JP2017058384A
JP2017058384A JP2017000489A JP2017000489A JP2017058384A JP 2017058384 A JP2017058384 A JP 2017058384A JP 2017000489 A JP2017000489 A JP 2017000489A JP 2017000489 A JP2017000489 A JP 2017000489A JP 2017058384 A JP2017058384 A JP 2017058384A
Authority
JP
Japan
Prior art keywords
biological sample
electrical
electrical measurement
unit
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017000489A
Other languages
Japanese (ja)
Other versions
JP2017058384A5 (en
JP6414234B2 (en
Inventor
洋一 勝本
Yoichi Katsumoto
洋一 勝本
マルクオレル ブルン
Marc-Aurele Brun
マルクオレル ブルン
義人 林
Yoshito Hayashi
義人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2017000489A priority Critical patent/JP6414234B2/en
Publication of JP2017058384A publication Critical patent/JP2017058384A/en
Publication of JP2017058384A5 publication Critical patent/JP2017058384A5/ja
Application granted granted Critical
Publication of JP6414234B2 publication Critical patent/JP6414234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a container for electrical measurement equipped with a structure for measuring the electrical characteristic of a biological sample in liquid form with high accuracy and easily industrially producible.SOLUTION: Provided is a container for the electrical measurement of a blood sample comprising at least a biological sample holding unit for accommodating a blood sample containing a settleable component and an electric conduction unit secured to the biological sample holding unit, the biological sample holding unit and the electric conduction unit being integrally formed while a portion of the electric conduction unit is buried in the biological sample holding unit, the electric conduction unit being provided with at least an electrode unit that comes in contact with the blood sample at measurement time and a connection unit for electrically connecting to an external circuit, and the electrode unit being disposed in a direction that does not interest the settlement direction of the settleable component at right angles.SELECTED DRAWING: Figure 8

Description

本技術は、液体状の生体試料の電気的特性測定のための電気的測定用容器に関する。より詳しくは、液体状の生体試料の電気特性を高精度に測定するための構造を備え、かつ、工業的生産が容易な電気的測定用容器、並びに該電気的測定用容器を用いた電気的測定用装置および電気的測定方法に関する。   The present technology relates to an electrical measurement container for measuring electrical characteristics of a liquid biological sample. More specifically, an electrical measurement container that has a structure for measuring the electrical characteristics of a liquid biological sample with high accuracy and that is easily industrially produced, and an electrical device that uses the electrical measurement container The present invention relates to a measurement apparatus and an electrical measurement method.

液体状の生体試料の電気的特性を測定し、その測定結果から試料の物性を判定したり、試料に含まれる細胞等の種類を判別したりすることが行われている(例えば、特許文献1参照)。測定される電気的特性としては、複素誘電率やその周波数分散(誘電スペクトル)が挙げられる。複素誘電率やその周波数分散は、一般に、溶液に対して電圧を印加するための電極を備えた溶液保持器等を用いて電極間の複素キャパシタンスないし複素インピーダンスを測定することで算出される。   Measuring the electrical characteristics of a liquid biological sample and determining the physical properties of the sample from the measurement results or determining the type of cells or the like contained in the sample (for example, Patent Document 1) reference). The measured electrical characteristics include complex dielectric constant and its frequency dispersion (dielectric spectrum). The complex permittivity and its frequency dispersion are generally calculated by measuring the complex capacitance or complex impedance between the electrodes using a solution holder or the like having an electrode for applying a voltage to the solution.

また、例えば、特許文献2には、血液の誘電率から血液凝固に関する情報を取得する技術が開示されており、「一対の電極と、上記一対の電極に対して交番電圧を所定の時間間隔で印加する印加手段と、上記一対の電極間に配される血液の誘電率を測定する測定手段と、血液に働いている抗凝固剤作用が解かれた以後から上記時間間隔で測定される血液の誘電率を用いて、血液凝固系の働きの程度を解析する解析手段と、を有する血液凝固系解析装置」が記載されている。   Further, for example, Patent Document 2 discloses a technique for acquiring information related to blood coagulation from the dielectric constant of blood. “A pair of electrodes and an alternating voltage with respect to the pair of electrodes at predetermined time intervals”. Applying means for applying, measuring means for measuring the dielectric constant of blood disposed between the pair of electrodes, and blood measured at the time interval after the anticoagulant action acting on the blood is released A blood coagulation system analyzer having analysis means for analyzing the degree of action of the blood coagulation system using a dielectric constant is described.

液体状の生体試料の電気的特性を測定する際に、生体試料を収容されるための容器としては、例えば、特許文献3に、絶縁性材料を筒状体に形成してなり、両端の開口から内空にそれぞれ挿入される電極の表面と、内空表面と、で構成される領域に液体試料を保持可能であり、前記領域には、対向する2つの電極の間に位置して、内空が狭窄された狭窄部が設けられた液体試料の電気的特性測定のためのサンプルカートリッジが開示されている。   When measuring the electrical characteristics of a liquid biological sample, as a container for accommodating the biological sample, for example, in Patent Document 3, an insulating material is formed into a cylindrical body, and openings at both ends are formed. The liquid sample can be held in a region formed by the surface of the electrode inserted into the inner space from the inner space and the inner surface, and the region is located between the two electrodes facing each other. A sample cartridge for measuring electrical characteristics of a liquid sample provided with a constricted portion in which the sky is constricted is disclosed.

ところで、液体状の生体試料の電気的特性を測定するためには、測定用電極を液体状の生体試料に接触させる必要がある。従来は、測定用電極が接着固定された容器に、液体状の生体試料を収容した状態で測定が行われていた。しかし、この方法では、例えば、生体試料として血液の電気特性を測定する場合、用いる接着剤の種類によっては、血液の凝固活性が促進されてしまい、目的の測定に影響を及ぼす場合があるといった問題があった。   By the way, in order to measure the electrical characteristics of a liquid biological sample, it is necessary to bring the measurement electrode into contact with the liquid biological sample. Conventionally, measurement is performed in a state where a liquid biological sample is contained in a container to which a measurement electrode is bonded and fixed. However, in this method, for example, when measuring the electrical characteristics of blood as a biological sample, depending on the type of adhesive used, blood coagulation activity is promoted, which may affect the target measurement. was there.

また、仮に低凝固性の接着剤を用いた場合であっても、容器を製造するための製造工程が増えることから、生産性に劣るという問題もあった。   Further, even if a low-solidifying adhesive is used, there is a problem that productivity is inferior because the number of manufacturing steps for manufacturing the container increases.

一方、接着剤を用いない方法としては、例えば、生体試料を収容するための容器に、外部から電極を挿入した状態で、電気特性を測定する方法が行われている。しかし、この方法では、電極の液体試料中への挿入量の違いにより、測定誤差が生じるという問題があった。   On the other hand, as a method not using an adhesive, for example, a method of measuring electrical characteristics in a state where an electrode is inserted from the outside into a container for accommodating a biological sample is performed. However, this method has a problem that a measurement error occurs due to a difference in the amount of the electrode inserted into the liquid sample.

また、外部装置の構成が増えることから、装置の大型化や製造工程の煩雑化の問題や、装置の高価格化等の問題が生じていた。   Further, since the number of external devices increases, problems such as an increase in the size of the device, a complicated manufacturing process, and an increase in the price of the device have occurred.

特開2009−042141号公報JP 2009-042141 A 特開2010−181400号公報JP 2010-181400 A 特開2012−052906号公報JP 2012-052906 A

前述のように、電極が予め接着固定された容器を用いて液体試料の電気的測定を行うと、接着剤による生体物質への影響や低生産性が問題となっていた。一方、外部電極を用いた測定では、測定誤差の問題や装置の大型化、製造工程の煩雑化、装置の高価格化が問題となっていた。   As described above, when an electrical measurement of a liquid sample is performed using a container in which electrodes are bonded and fixed in advance, the influence of the adhesive on the biological material and low productivity are problematic. On the other hand, in measurement using an external electrode, there are problems of measurement error, an increase in size of the apparatus, a complicated manufacturing process, and an increase in the price of the apparatus.

そこで、本技術では、液体状の生体試料の電気特性を高精度に測定するための構造を備え、かつ、工業的生産が容易な電気的測定用容器を提供することを主目的とする。   Therefore, the main object of the present technology is to provide an electrical measurement container that has a structure for measuring the electrical characteristics of a liquid biological sample with high accuracy and that is easily industrially produced.

本願発明者らは、前記課題を解決するために、液体状の生体試料を電気的に測定する際に用いる容器の構造について鋭意研究を行った結果、粘着剤を用いないことに着目し、容器の成形方法を工夫することで、本技術を完成するに至った。   In order to solve the above-mentioned problems, the inventors of the present application have conducted intensive research on the structure of a container used for electrically measuring a liquid biological sample. This technique was completed by devising the molding method.

即ち、本技術では、まず、沈降性成分を含有する血液試料を収容するための生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、
を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形され、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、
前記電極部は、前記生体試料保持部において、前記沈降性成分の沈降方向と直交しない方向に配置された血液試料の電気的測定用容器を提供する。
本技術に係る電気的測定用容器は、電気伝導部の一部を生体試料保持部に埋入した状態で、電気伝導部と生体試料保持部を一体成形するため、粘着剤を用いずに、電気伝導部を生体試料保持部に固定することができる。
前記生体試料保持部は、樹脂で形成することができる。
前記電気伝導部における前記電極部は、測定の目的に応じて自由に配置することができるが、例えば、前記電極部を一対以上備えることも可能である。この場合、前記一対の電極部は、略平行に配置することができる。
また、前記電極部を、前記電気的測定用容器の内壁の一部を構成するように配置することもできる。この場合、前記内壁において、前記生体試料保持部と前記電極部との接続部を平滑に構成することができる。
更に、前記電極部を、測定時に底部となる部分から所定距離上側に位置するように配置することも可能である。また、前記電極部を、測定時に頂部となる部分から所定距離下側に位置するように配置することも可能である。
本技術に係る電気的測定用容器において、前記電気伝導部の少なくとも一部は、前記一体成型時に前記電気伝導部を前記生体試料保持部の所定箇所に配置させるための保持部として機能させることができる。
本技術に係る電気的測定用容器を、沈降性成分を含有する生体試料の電気的測定に用いる場合、前記電極部を、測定時に底部となる部分からの沈降性成分の累積堆積分率が体積分率以上となる位置より上側に位置するように配置することができる。
また、本技術に係る電気的測定用容器を、沈降性成分を含有する血液試料の電気的測定に用いる場合、測定に最低限必要な時間を経た時における血清層の下限よりも、電極部の上限が下方に位置するように配置することができる。
本技術に係る電気的測定用容器において、前記電気伝導部の前記生体試料保持部に埋入された部分には、曲折部を備えることができる。
本技術に係る電気的測定用容器には、蓋部を備えることもできる。
前記生体試料保持部は、円筒体、断面が多角の多角筒体、円錐体、断面が多角の多角錐体、或いはこれらを1種または2種以上組み合わせた形態に設計することができる。
本技術に係る電気的測定用容器に用いる前記樹脂の種類は特に限定されないが、例えば、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂を用いることができる。
また、本技術に係る電気的測定用容器において、前記電気伝導部に用いる電気伝導性を有する材料は特に限定されないが、例えば、チタンを含む電気伝導性素材を用いることができる。
本技術に係る電気的測定用容器は、あらゆる電気的測定に用いることができるが、例えば、前記生体試料の誘電率や前記生体試料のインピーダンスを測定するために用いることができる。
より具体的な一例を挙げると、血液成分を含む生体試料を用いる場合、血沈状況や血液凝固状況を測定するために、本技術に係る電気的測定用容器を用いることができる。
That is, in the present technology, first, a biological sample holding unit for storing a blood sample containing a sedimentary component,
An electric conduction part fixed to the biological sample holding part;
Comprising at least
In a state where a part of the electric conduction part is embedded in the biological sample holding part, the biological sample holding part and the electric conduction part are integrally formed,
The electrical conduction unit includes at least an electrode unit that comes into contact with the blood sample during measurement, and a connection unit for electrically connecting to an external circuit,
The electrode section provides a container for electrical measurement of a blood sample arranged in a direction not orthogonal to the sedimentation direction of the sedimentation component in the biological sample holding section.
In the electrical measurement container according to the present technology, in order to integrally form the electrical conduction part and the biological sample holding part in a state where a part of the electrical conduction part is embedded in the biological sample holding part, without using an adhesive, The electric conduction part can be fixed to the biological sample holding part.
The biological sample holding part can be formed of resin.
Although the electrode part in the electric conduction part can be freely arranged according to the purpose of measurement, for example, a pair or more of the electrode parts can be provided. In this case, the pair of electrode portions can be arranged substantially in parallel.
Moreover, the said electrode part can also be arrange | positioned so that a part of inner wall of the said container for electrical measurement may be comprised. In this case, the connection portion between the biological sample holding portion and the electrode portion can be configured smoothly on the inner wall.
Furthermore, it is also possible to arrange the electrode portion so as to be located a predetermined distance above the portion that becomes the bottom during measurement. Moreover, it is also possible to arrange | position so that the said electrode part may be located in the predetermined distance lower side from the part used as the top at the time of a measurement.
In the electrical measurement container according to the present technology, at least a part of the electrical conduction unit may function as a holding unit for arranging the electrical conduction unit at a predetermined position of the biological sample holding unit during the integral molding. it can.
When the electrical measurement container according to the present technology is used for electrical measurement of a biological sample containing a sedimentation component, the cumulative deposition fraction of the sedimentation component from the portion that becomes the bottom during measurement of the electrode portion is a volume. It can arrange | position so that it may be located above the position used as a fraction or more.
In addition, when the electrical measurement container according to the present technology is used for electrical measurement of a blood sample containing a sedimentary component, the electrode portion is more than the lower limit of the serum layer when the minimum time required for measurement has passed. It can arrange | position so that an upper limit may be located below.
In the electrical measurement container according to the present technology, a portion embedded in the biological sample holding portion of the electrical conduction portion may include a bent portion.
The electrical measurement container according to the present technology may include a lid.
The biological sample holding unit can be designed in a form of a cylinder, a polygonal cylinder having a polygonal cross section, a cone, a polygonal cone having a polygonal cross section, or a combination of these.
The type of the resin used for the electrical measurement container according to the present technology is not particularly limited, and for example, one or more resins selected from polypropylene, polystyrene, acrylic, and polysulfone can be used.
Moreover, in the electrical measurement container according to the present technology, the material having electrical conductivity used for the electrical conduction unit is not particularly limited, and for example, an electrically conductive material including titanium can be used.
The electrical measurement container according to the present technology can be used for any electrical measurement. For example, the electrical measurement container can be used to measure the dielectric constant of the biological sample and the impedance of the biological sample.
As a more specific example, when a biological sample containing a blood component is used, the electrical measurement container according to the present technology can be used to measure the blood sedimentation state and the blood coagulation state.

本技術に係る電気的測定用容器は、電気的測定装置の一部として好適に用いることができる。
具体的には、沈降性成分を含有する血液試料を収容するための生体試料保持部と、
測定時において少なくとも一部が前記生体試料と接触する電気伝導部と、
該電気伝導部に電圧を印加する印加部と、
前記生体試料の電気的特性を測定する測定部と、
を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形され、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、
前記電極部は、前記生体試料保持部において、前記沈降性成分の沈降方向と直交しない方向に配置された血液試料の電気的測定装置を提供する。
The electrical measurement container according to the present technology can be suitably used as a part of an electrical measurement device.
Specifically, a biological sample holding unit for containing a blood sample containing a sedimenting component,
An electrically conductive portion at least partially in contact with the biological sample during measurement;
An application unit for applying a voltage to the electrical conduction unit;
A measurement unit for measuring electrical characteristics of the biological sample;
Comprising at least
In a state where a part of the electric conduction part is embedded in the biological sample holding part, the biological sample holding part and the electric conduction part are integrally formed,
The electrical conduction unit includes at least an electrode unit that comes into contact with the blood sample during measurement, and a connection unit for electrically connecting to an external circuit,
The electrode unit provides an electrical measurement device for a blood sample arranged in a direction not orthogonal to the sedimentation direction of the sedimentation component in the biological sample holding unit.

また、本技術に係る電気的測定用容器は、血液試料の電気的測定方法に好適に用いることができる。   Moreover, the electrical measurement container according to the present technology can be suitably used for an electrical measurement method of a blood sample.

本技術に係る電気的測定用容器は、接着剤を用いずに電気伝導部を生体試料保持部に固定されている。そのため、接着剤の影響を受けることなく、液体状の生体試料の電気特性を高精度に測定することができる。また、本技術に係る電気的測定用容器は、製造が容易であるため、安価かつ大量に生産することが可能である。   In the electrical measurement container according to the present technology, the electrical conduction part is fixed to the biological sample holding part without using an adhesive. Therefore, the electrical characteristics of the liquid biological sample can be measured with high accuracy without being affected by the adhesive. Moreover, since the electrical measurement container according to the present technology is easy to manufacture, it can be produced at low cost and in large quantities.

本技術に係る電気的測定用容器1の第1実施形態を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically 1st Embodiment of the container 1 for electrical measurement which concerns on this technique. Aは本技術に係る電気的測定用容器1の第2実施形態を模式的に示す断面模式図であり、Bは、AのL−L’矢視断面図である。A is a schematic cross-sectional view schematically showing a second embodiment of the electrical measurement container 1 according to the present technology, and B is a cross-sectional view taken along line L-L ′ of A. FIG. 本技術に係る電気的測定用容器1の第3実施形態を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically 3rd Embodiment of the container 1 for electrical measurement which concerns on this technique. Aは本技術に係る電気的測定用容器1の第4実施形態を模式的に示す断面模式図であり、Bは、AのL−L’矢視断面図である。A is a schematic cross-sectional view schematically showing a fourth embodiment of the electrical measurement container 1 according to the present technology, and B is a cross-sectional view taken along line L-L ′ of A. FIG. 沈降性成分を含有する生体試料Sを用いる場合に、経時的な沈降性成分の沈降の様子と、電極部3の位置との関係を模式的に示す断面模式図である。FIG. 3 is a schematic cross-sectional view schematically showing the relationship between the state of sedimentation of a sedimentary component over time and the position of an electrode unit 3 when a biological sample S containing the sedimentary component is used. 図5に対応した電極部3の位置と、誘電率を測定した場合の測定値との関係の一例を示す図面代用グラフである。6 is a drawing-substituting graph showing an example of the relationship between the position of the electrode unit 3 corresponding to FIG. 5 and the measured value when the dielectric constant is measured. 本技術に係る電気的測定用容器1の第5実施形態を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically 5th Embodiment of the container 1 for electrical measurement which concerns on this technique. 本技術に係る電気的測定用容器1の第6実施形態を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically 6th Embodiment of the container 1 for electrical measurement which concerns on this technique. 本技術に係る電気的測定装置10の第1実施形態を模式的に示す模式図である。It is a mimetic diagram showing typically a 1st embodiment of electrical measuring device 10 concerning this art.

以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
1.電気的測定用容器1
(1)生体試料保持部2
(2)電気伝導部3
(a)電極部31
<第1実施形態>
<第2実施形態>
<第3実施形態>
<第4実施形態>
(b)接続部32
(c)保持部33
<第5実施形態>
(d)曲折部34
<第6実施形態>
(3)生体試料S
(4)その他
2.電気的測定装置10
(1)印加部4
(2)測定部5
(3)解析部6
3.電気的測定方法
Hereinafter, preferred embodiments for carrying out the present technology will be described with reference to the drawings. In addition, embodiment described below shows an example of typical embodiment of this technique, and, thereby, the scope of this technique is not interpreted narrowly. The description will be given in the following order.
1. Electrical measuring container 1
(1) Biological sample holder 2
(2) Electrical conduction part 3
(A) Electrode portion 31
<First Embodiment>
Second Embodiment
<Third Embodiment>
<Fourth embodiment>
(B) Connection part 32
(C) Holding part 33
<Fifth Embodiment>
(D) Bent part 34
<Sixth Embodiment>
(3) Biological sample S
(4) Others 2. Electrical measuring device 10
(1) Application unit 4
(2) Measuring unit 5
(3) Analysis unit 6
3. Electrical measurement method

1.電気的測定用容器1
図1は、本技術に係る電気的測定用容器1の第1実施形態を模式的に示す断面模式図である。本技術に係る電気的測定用容器1は、液体状の生体試料の電気的特性を測定する際に、該生体試料を保持するために用いる容器である。本技術に係る電気的測定用容器1は、大別して、生体試料保持部2と、電気的測定用容器伝導部3と、を少なくとも備える。以下、各部について詳細に説明する。なお、各図面において、説明上、生体試料Sを図示しているが、生体試料Sは、本技術に係る電気的測定用容器1には包含されない。
1. Electrical measuring container 1
FIG. 1 is a schematic cross-sectional view schematically showing a first embodiment of an electrical measurement container 1 according to the present technology. The electrical measurement container 1 according to the present technology is a container used for holding a biological sample when measuring electrical characteristics of the liquid biological sample. The electrical measurement container 1 according to the present technology broadly includes at least a biological sample holding unit 2 and an electrical measurement container conducting unit 3. Hereinafter, each part will be described in detail. In each drawing, for convenience of explanation, the biological sample S is illustrated, but the biological sample S is not included in the electrical measurement container 1 according to the present technology.

(1)生体試料保持部2
生体試料保持部2は、測定対象の液体状生体試料が保持される部位である。本技術に係る電気的測定用容器1では、この生体試料保持部2が樹脂からなること特徴とする。
(1) Biological sample holder 2
The biological sample holder 2 is a part where a liquid biological sample to be measured is held. In the electrical measurement container 1 according to the present technology, the biological sample holder 2 is made of resin.

本技術に係る電気的測定用容器1において、生体試料保持部2に用いる樹脂の種類は特に限定されず、液体状の生体試料の保持に適用可能な樹脂を、1種または2種以上自由に選択して用いることができる。例えば、ポリプロピレン、ポリメチルメタクリレート、ポリスチレン、アクリル、ポリサルホン、ポリテトラフルオロエチレンなどの疎水性かつ絶縁性のポリマーやコポリマー、ブレンドポリマーなどが挙げられる。本技術では、この中でも特に、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂で生体試料保持部2を形成することが好ましい。これらの樹脂は、血液に対して低凝固活性であるという性質を有するため、例えば、血液を含有する生体試料の測定にも好適に用いることができる。   In the electrical measurement container 1 according to the present technology, the type of resin used for the biological sample holding unit 2 is not particularly limited, and one or more resins that can be used for holding a liquid biological sample can be freely selected. It can be selected and used. For example, hydrophobic and insulating polymers and copolymers such as polypropylene, polymethyl methacrylate, polystyrene, acrylic, polysulfone, polytetrafluoroethylene, and blend polymers may be used. In the present technology, it is particularly preferable to form the biological sample holding unit 2 with at least one resin selected from polypropylene, polystyrene, acrylic, and polysulfone. Since these resins have a property of low coagulation activity with respect to blood, they can be suitably used for measurement of biological samples containing blood, for example.

本技術に係る電気的測定用容器1において、生体試料保持部2の具体的な形態も特に限定されず、液体状の生体試料Sを保持可能であれば、円筒体、断面が多角(三角、四角或いはそれ以上)の多角筒体、円錐体、断面が多角(三角、四角或いはそれ以上)の多角錐体、或いはこれらを1種または2種以上組み合わせた形態など、生体試料Sの種類や測定方法、用いる測定装置などに応じて自由に設計することができる。   In the electrical measurement container 1 according to the present technology, the specific form of the biological sample holding unit 2 is not particularly limited. If the liquid biological sample S can be held, the cylindrical body and the cross section are polygonal (triangular, The type and measurement of the biological sample S, such as a polygonal cylinder with a square or more), a cone, a polygonal cone with a polygonal cross section (triangle, square or more), or a combination of one or more of these. It can be designed freely according to the method and the measuring device used.

液体状の生体試料Sは、生体試料保持部2に保持された状態で、各種電気的特性の測定が行われる。そのため、生体試料保持部2は、生体試料Sを保持した状態で密封可能な構成であることが好ましい。ただし、液体状の生体試料Sの各種電気的特性を測定するのに要する時間停滞可能であって、測定に影響がなければ、気密な構成でなくてもよいものとする。   The liquid biological sample S is measured in various electrical characteristics while being held in the biological sample holding unit 2. Therefore, it is preferable that the biological sample holding unit 2 has a configuration that can be sealed while holding the biological sample S. However, it is possible that the time required for measuring various electrical characteristics of the liquid biological sample S can be stagnated and does not affect the measurement.

生体試料保持部2への液体状生体試料Sの具体的な導入および密閉方法は特に限定されず、生体試料保持部2の形態に応じて自由な方法で導入することができる。例えば、図示しないが、生体試料保持部2に蓋部を設け、ピペットなどを用いて生体試料Sを導入した後に蓋部を閉じて密閉する方法や、生体試料保持部の外表面から注射針を穿入し、液体状の生体試料Sを注入した後、注射針の貫通部分を、グリスなどで塞ぐことで、密閉する方法などが挙げられる。   The specific introduction and sealing method of the liquid biological sample S to the biological sample holding unit 2 is not particularly limited, and can be introduced by a free method according to the form of the biological sample holding unit 2. For example, although not shown, a lid is provided on the biological sample holder 2 and the biological sample S is introduced using a pipette or the like, and then the lid is closed and sealed, or an injection needle is inserted from the outer surface of the biological sample holder. For example, after penetrating and injecting the liquid biological sample S, the penetrating portion of the injection needle is sealed with grease or the like, and the like is sealed.

(2)電気伝導部3
本技術に係る電気的測定用容器1において、電気伝導部3は、予め、生体試料保持部2に固定されていることを特徴とする。特に、本技術では、電気伝導部3の一部が生体試料保持部2に埋入された状態で、生体試料保持部2と電気伝導部3とが一体成形されていることが特徴である。即ち、生体試料保持部2と電気伝導部3との固定には、接着剤などの固定材料は用いない。
(2) Electrical conduction part 3
In the electrical measurement container 1 according to the present technology, the electrical conducting unit 3 is fixed to the biological sample holding unit 2 in advance. In particular, the present technology is characterized in that the biological sample holding unit 2 and the electric conducting unit 3 are integrally formed in a state where a part of the electric conducting unit 3 is embedded in the biological sample holding unit 2. That is, a fixing material such as an adhesive is not used for fixing the biological sample holding unit 2 and the electric conduction unit 3.

接着剤を用いて固定する場合、用いる接着剤の種類によっては、生体試料Sの性質に影響を及ぼす場合がある。例えば、生体試料Sとして血液の電気特性を測定する場合、用いる接着剤の種類によっては、血液の凝固活性が促進されてしまい、目的の測定に影響を及ぼす場合がある。しかし、本技術に係る電気的測定用容器1は、生体試料保持部2と電気伝導部3との固定に接着剤を用いないため、接着剤による生体試料Sへの影響を排除することができる。その結果、生体試料Sの電気特性を高精度に測定することが可能となる。   When fixing using an adhesive, depending on the type of adhesive used, the properties of the biological sample S may be affected. For example, when measuring the electrical characteristics of blood as the biological sample S, depending on the type of adhesive used, blood coagulation activity is promoted, which may affect the target measurement. However, since the electrical measurement container 1 according to the present technology does not use an adhesive for fixing the biological sample holding unit 2 and the electrical conductive unit 3, the influence of the adhesive on the biological sample S can be eliminated. . As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

また、仮に生体試料Sへの影響が少ない接着剤を用いた場合であっても、容器を製造する際に接着剤による接着工程が増えることから、生産性に劣るという問題もあった。しかし、本技術に係る電気的測定用容器1の製造工程では、生体試料保持部2と電気伝導部3とが一体成形するため、生体試料保持部2の成形工程に加えて接着工程を別に設ける必要がない。その結果、電気的測定用容器1の製造が容易となり、安価かつ大量に電気的測定用容器1を生産することが可能となる。   Further, even when an adhesive that has little influence on the biological sample S is used, there is a problem that productivity is inferior because an adhesive bonding step increases when the container is manufactured. However, in the manufacturing process of the electrical measurement container 1 according to the present technology, the biological sample holding part 2 and the electric conduction part 3 are integrally formed. Therefore, in addition to the forming process of the biological sample holding part 2, a bonding process is provided separately. There is no need. As a result, the electrical measurement container 1 can be easily manufactured, and the electrical measurement container 1 can be produced in a large amount at a low cost.

一方、接着剤を用いない方法としては、例えば、生体試料を収容するための容器に、外部から電極を挿入した状態で、電気的特性を測定する方法がある。この方法では、電極の液体試料中への挿入量の違いにより、測定誤差が生じるという問題があった。しかし、本技術に係る電気的測定用容器1では、生体試料保持部2に予め電気伝導体3が固定されている。そのため、後述するように、この電気伝導体3を電極として用いることで、電極の液体試料中への挿入量の違いによる測定誤差をなくすことができる。その結果、生体試料Sの電気特性を高精度に測定することが可能である。   On the other hand, as a method not using an adhesive, for example, there is a method of measuring electrical characteristics in a state where an electrode is inserted from the outside into a container for accommodating a biological sample. This method has a problem that a measurement error occurs due to a difference in the amount of the electrode inserted into the liquid sample. However, in the electrical measurement container 1 according to the present technology, the electrical conductor 3 is fixed to the biological sample holder 2 in advance. Therefore, as will be described later, by using the electric conductor 3 as an electrode, measurement errors due to the difference in the amount of the electrode inserted into the liquid sample can be eliminated. As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

また、生体試料保持部2に予め電気伝導体3が固定されていることで、装置側に電極と容器との相対的位置決め機構などを設置する必要がなく、装置の構成を簡易化することができる。その結果、装置の小型化や製造工程の簡易化、装置の低価格化などの実現にも貢献することができる。   Further, since the electrical conductor 3 is fixed in advance to the biological sample holder 2, it is not necessary to install a relative positioning mechanism between the electrode and the container on the device side, and the configuration of the device can be simplified. it can. As a result, it is possible to contribute to realization of downsizing of the apparatus, simplification of the manufacturing process, and reduction of the price of the apparatus.

更に、電気的測定用容器1の部品点数を減らすことができるため、使用者の利便性を向上させることも可能である。   Furthermore, since the number of parts of the electrical measurement container 1 can be reduced, it is possible to improve convenience for the user.

生体試料保持部2と電気伝導部3とを一体成形するための具体的な方法は特に限定されず、電気伝導部3の一部が生体試料保持部2に埋入された状態で、生体試料保持部2と電気伝導部3とを接着剤を用いずに固定することができれば、自由な方法を用いることができる。例えば、生体試料保持部2を形成する樹脂が溶融状態から固化する際に、電気伝導部3を所定位置に配置することで、生体試料保持部2と電気伝導部3とを一体成形することができる。より具体的な方法としては、例えば、金型内に電気伝導部3を挿入し、その周りに樹脂を注入して電気伝導部3と樹脂とを一体化する、所謂、インサート成形により、生体試料保持部2と電気伝導部3とを一体成形することも可能である。   A specific method for integrally forming the biological sample holding unit 2 and the electric conduction unit 3 is not particularly limited, and the biological sample is partially embedded in the biological sample holding unit 2. If the holding part 2 and the electric conduction part 3 can be fixed without using an adhesive, a free method can be used. For example, when the resin forming the biological sample holding part 2 is solidified from a molten state, the biological sample holding part 2 and the electric conductive part 3 can be integrally formed by arranging the electric conduction part 3 at a predetermined position. it can. As a more specific method, for example, the biological sample is inserted by so-called insert molding, in which the electric conduction part 3 is inserted into a mold and a resin is injected around the mold to integrate the electric conduction part 3 and the resin. It is also possible to integrally form the holding part 2 and the electric conduction part 3.

このように、本技術に係る電気的測定用容器1は、生体試料保持部2の成形を行う際に、同時に電気伝導部3を固定するため、製造工程の簡易化を図ることができる。その結果、安価かつ大量に電気的測定用容器1を生産することが可能となる。   Thus, since the electrical measurement container 1 according to the present technology fixes the electrical conduction unit 3 at the same time when the biological sample holding unit 2 is formed, the manufacturing process can be simplified. As a result, it is possible to produce the electrical measurement container 1 at low cost and in large quantities.

電気伝導部3は、電気伝導性の材料からなる。本技術に係る電気的測定用容器1において、電気伝導部3に用いる電気伝導性材料の種類は特に限定されず、液体状の生体試料Sの電気的測定に適用可能な材料を、1種または2種以上自由に選択して用いることができる。例えば、チタン、アルミニウム、ステンレス、白金、金、銅、黒鉛などが挙げられる。本技術では、この中でも特に、チタンを含む電気伝導性素材で電気伝導部3を形成することが好ましい。チタンは、血液に対して低凝固活性であるという性質を有するため、例えば、血液を含有する生体試料の測定にも好適に用いることができる。   The electrically conductive portion 3 is made of an electrically conductive material. In the electrical measurement container 1 according to the present technology, the type of the electrical conductive material used for the electrical conduction unit 3 is not particularly limited, and one or more materials applicable to electrical measurement of the liquid biological sample S can be used. Two or more kinds can be freely selected and used. For example, titanium, aluminum, stainless steel, platinum, gold, copper, graphite and the like can be mentioned. In the present technology, it is particularly preferable to form the electrically conductive portion 3 using an electrically conductive material including titanium. Titanium has a property of low coagulation activity with respect to blood, and therefore can be suitably used for, for example, measurement of a biological sample containing blood.

電気伝導部3は、電極部31と、接続部32と、を備えることができる。また、必要に応じて、保持部33と、曲折部34と、を更に備えることもできる。以下、各部について、詳細に説明する。   The electrical conduction unit 3 can include an electrode unit 31 and a connection unit 32. Moreover, the holding | maintenance part 33 and the bending part 34 can further be provided as needed. Hereinafter, each part will be described in detail.

(a)電極部31
電極部31は、測定時に生体試料Sと接触し、生体試料Sに必要な電圧を印加するために用いられる。本技術に係る電気的測定用容器1において、電極部31の数は、目的の電気的測定の方法などに応じて、自由に設計することができる。例えば、生体試料Sの誘電率やインピーダンスを測定する場合には、一対以上の電極部31を設けることができる。
(A) Electrode portion 31
The electrode unit 31 is used to contact the biological sample S at the time of measurement and apply a necessary voltage to the biological sample S. In the electrical measurement container 1 according to the present technology, the number of the electrode portions 31 can be freely designed according to a target electrical measurement method or the like. For example, when measuring the dielectric constant and impedance of the biological sample S, a pair of electrode portions 31 can be provided.

また、電極部31の配置や形態なども特に限定されず、生体試料Sに必要な電圧を印加することができれば、目的の電気的測定の方法などに応じて、自由に設計することができる。以下、電極部31の配置の例について、詳細に説明する。   Further, the arrangement and form of the electrode unit 31 are not particularly limited, and can be freely designed according to the intended electrical measurement method and the like as long as a necessary voltage can be applied to the biological sample S. Hereinafter, the example of arrangement | positioning of the electrode part 31 is demonstrated in detail.

<第1実施形態>
図1に示す第1実施形態は、一対の電極部31を、生体試料保持部2の内壁に沿うように配置した例である。より具体的には、電気伝導部3の一部が生体試料保持部2の側壁に埋入された状態で、生体試料保持部2の内部に電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。電極部31は、生体試料保持部2の側壁の中央付近に配置されている。
<First Embodiment>
The first embodiment shown in FIG. 1 is an example in which a pair of electrode portions 31 are arranged along the inner wall of the biological sample holding portion 2. More specifically, the electrode unit 31 is placed inside the biological sample holding unit 2 and the outside of the biological sample holding unit 2 in a state where a part of the electric conduction unit 3 is embedded in the side wall of the biological sample holding unit 2. This is an example in which connecting portions 32 to be described later are arranged. The electrode unit 31 is disposed near the center of the side wall of the biological sample holding unit 2.

<第2実施形態>
図2Aは、本技術に係る電気的測定用容器1の第2実施形態を模式的に示す断面模式図であり、図2Bは、図2AのL−L’矢視断面図である。第2実施形態は、一対の電気伝導部3を、生体試料保持部2の底壁部から突き出た状態で配置した例である。より具体的には、電気伝導部3の一部が生体試料保持部2の底壁部に埋入された状態で、生体試料保持部2の内部に電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。
Second Embodiment
2A is a schematic cross-sectional view schematically showing a second embodiment of the electrical measurement container 1 according to the present technology, and FIG. 2B is a cross-sectional view taken along line LL ′ of FIG. 2A. The second embodiment is an example in which a pair of electric conduction parts 3 are arranged in a state of protruding from the bottom wall part of the biological sample holding part 2. More specifically, in a state where a part of the electric conduction part 3 is embedded in the bottom wall part of the biological sample holding part 2, the electrode part 31 is placed inside the biological sample holding part 2, and This is an example in which a connection part 32 to be described later is arranged outside.

本実施形態において、電極部31の形態は特に限定されず、生体試料保持部2の形状や目的の電気的測定方法に応じて自由に設計することができる。本発明では特に、測定効率を向上させるためにも、平面的に液体試料に接することが好ましい。具体的な形態としては、図2Bに示すように、電極部31の液体試料と接触する部分を幅広に形成することで、液体試料に対し平面的に接することが可能である。   In this embodiment, the form of the electrode part 31 is not specifically limited, It can design freely according to the shape of the biological sample holding | maintenance part 2, and the target electrical measurement method. In the present invention, it is particularly preferable to contact the liquid sample in a planar manner in order to improve the measurement efficiency. As a specific form, as shown in FIG. 2B, it is possible to make a plane contact with the liquid sample by forming a wide portion of the electrode portion 31 that contacts the liquid sample.

<第3実施形態>
図3は、本技術に係る電気的測定用容器1の第3実施形態を模式的に示す断面模式図である。第3実施形態は、一対の電極部31を、電気的測定用容器1の内壁の一部を構成するように、配置した例である。より具体的には、各電極部31の一部が生体試料保持部2の側壁に埋入された状態で、電気的測定用容器1の内壁の一部として電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。
<Third Embodiment>
FIG. 3 is a schematic cross-sectional view schematically showing a third embodiment of the electrical measurement container 1 according to the present technology. 3rd Embodiment is an example which has arrange | positioned a pair of electrode part 31 so that a part of inner wall of the container 1 for electrical measurement may be comprised. More specifically, in a state where a part of each electrode part 31 is embedded in the side wall of the biological sample holding part 2, the electrode part 31 is used as a part of the inner wall of the electrical measurement container 1. 2 is an example in which a connection portion 32 to be described later is disposed outside.

このように、電極部31が電気的測定用容器1の内壁の一部を構成するように配置する場合、図3の第3実施形態に示すように、生体試料保持部2と電極部31との接続部が平滑になるように一体成形することが好ましい。液体状の生体試料Sの場合、容器内に段差などがあると、気泡などがその部分に留まってしまい、測定値に影響を及ぼす場合がある。しかし、生体試料保持部2と電極部31との境界に段差などが生じないように設計することで、気泡などの留まりを防止し、その結果、生体試料Sの電気特性をより高精度に測定することが可能となる。   Thus, when arrange | positioning so that the electrode part 31 may comprise a part of inner wall of the container 1 for electrical measurement, as shown in 3rd Embodiment of FIG. 3, the biological sample holding | maintenance part 2, the electrode part 31, and It is preferable to integrally mold so that the connecting portions of the two portions are smooth. In the case of the liquid biological sample S, if there is a step or the like in the container, bubbles or the like may remain in that portion and affect the measurement value. However, it is designed so that no step or the like occurs at the boundary between the biological sample holding unit 2 and the electrode unit 31 to prevent bubbles and the like, and as a result, the electrical characteristics of the biological sample S can be measured with higher accuracy. It becomes possible to do.

なお、一対以上の電極部31を備える場合、生体試料Sの電気的特性を測定する上では、各電極部31を平行に配置することが好ましい。ただし、例えば、インサート成形などを行う場合の離型性などを考慮して、数度の傾きを持たせた状態で、各電極部31を配置することも可能である。   In addition, when providing one or more electrode parts 31, when measuring the electrical property of the biological sample S, it is preferable to arrange | position each electrode part 31 in parallel. However, for example, in consideration of releasability when performing insert molding or the like, it is possible to arrange each electrode portion 31 in a state having an inclination of several degrees.

<第4実施形態>
図4Aは、本技術に係る電気的測定用容器1の第4実施形態を模式的に示す断面模式図であり、図4Bは、図4AのL−L’矢視断面図である。第4実施形態は、一対の電気伝導部3を、生体試料保持部2の上壁部から突き出た状態で配置した例である。より具体的には、電気伝導部3の一部が生体試料保持部2の上壁部に埋入された状態で、生体試料保持部2の内部に電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。生体試料保持部2の上壁部から電気伝導部3を突き出すことで、例えば、前述した第2実施例のように底壁部から電気伝導部3を突き出す実施形態に比べて、試料の液漏れをより確実に防止することができる。
<Fourth embodiment>
4A is a schematic cross-sectional view schematically showing a fourth embodiment of the electrical measurement container 1 according to the present technology, and FIG. 4B is a cross-sectional view taken along line LL ′ of FIG. 4A. The fourth embodiment is an example in which a pair of electric conduction parts 3 are arranged in a state of protruding from the upper wall part of the biological sample holding part 2. More specifically, in a state where a part of the electric conduction unit 3 is embedded in the upper wall portion of the biological sample holding unit 2, the electrode unit 31 is placed inside the biological sample holding unit 2, and the biological sample holding unit 2 This is an example in which a connection part 32 to be described later is arranged outside. By projecting the electric conduction part 3 from the upper wall part of the biological sample holding part 2, for example, compared to the embodiment in which the electric conduction part 3 is projected from the bottom wall part as in the second embodiment described above, the liquid leakage of the sample Can be prevented more reliably.

本実施形態において、電極部31の形態は特に限定されず、生体試料保持部2の形状や目的の電気的測定方法に応じて自由に設計することができる。例えば、前述した第2実施形態と同様に、電極部31の液体試料と接触する部分を幅広に形成することで(図4B参照)、液体試料に対し平面的に接するように設計すれば、測定効率を向上させることが可能である。   In this embodiment, the form of the electrode part 31 is not specifically limited, It can design freely according to the shape of the biological sample holding | maintenance part 2, and the target electrical measurement method. For example, as in the second embodiment described above, if the electrode portion 31 is designed to be wide in contact with the liquid sample (see FIG. 4B) and designed to be in contact with the liquid sample in a plane, measurement is possible. Efficiency can be improved.

第1、第3、第4実施形態に係る電気的測定用容器1は、電極部3を測定時に底部となる部分から所定距離上側に位置するように配置することも特徴とする。例えば、後述するように、生体試料Sとして沈降性成分を含有する生体試料を用いる場合、電極部3が測定時に底部となる部分から所定距離上側に位置することで、経時的な沈降性成分の沈降による影響を抑えることができる。その結果、生体試料Sの電気特性をより高精度に測定することが可能となる。   The electrical measurement container 1 according to the first, third, and fourth embodiments is also characterized in that the electrode unit 3 is disposed so as to be positioned a predetermined distance above a portion that becomes a bottom during measurement. For example, as will be described later, when a biological sample containing a sedimentation component is used as the biological sample S, the electrode portion 3 is positioned a predetermined distance above the bottom portion at the time of measurement. The influence by sedimentation can be suppressed. As a result, the electrical characteristics of the biological sample S can be measured with higher accuracy.

沈降性成分を含有する生体試料Sを用いる場合の電極部3の好適な位置決めについて、図5および図6を参照しながら説明する。図5は、沈降性成分を含有する生体試料Sを用いる場合に、経時的な沈降性成分の沈降の様子と、電極部3の位置との関係を模式的に示す断面模式図である。図6は、図5に対応した電極部3の位置と、誘電率を測定した場合の測定値との関係の一例を示す図面代用グラフである。   The preferred positioning of the electrode unit 3 when using the biological sample S containing a sedimentation component will be described with reference to FIGS. FIG. 5 is a schematic cross-sectional view schematically illustrating the relationship between the state of sedimentation of the sedimentable component over time and the position of the electrode unit 3 when the biological sample S containing the sedimentable component is used. FIG. 6 is a drawing substitute graph showing an example of the relationship between the position of the electrode unit 3 corresponding to FIG. 5 and the measured value when the dielectric constant is measured.

例えば、図5Bに示すように、電極部3を、測定時に底部となる部分から所定距離上側に位置するように配置した場合、図6Bに示すように、測定から一定の間は、一定の誘電率を示す。これは、図5Bに示すように、経時的に沈降性成分の沈降が進行した場合でも、一定時間までは、一対の電極部3で挟まれた領域の沈降性成分の濃度にほとんど変化がないからである。   For example, as shown in FIG. 5B, when the electrode unit 3 is arranged so as to be located a predetermined distance above the bottom part at the time of measurement, as shown in FIG. Indicates the rate. This is because, as shown in FIG. 5B, even when the sedimentation of the sedimentary component proceeds with time, there is almost no change in the concentration of the sedimentary component in the region sandwiched between the pair of electrode portions 3 until a certain time. Because.

一方、図5Aに示すように、電極部3を高い位置に配置した場合、図6Aに示すように、測定開始からすぐに、誘電率が上昇する。これは、図5Aに示すように、沈降性成分の沈降の進行により、測定開始からすぐに、一対の電極部3で挟まれた領域の沈降性成分の濃度が低下していくためである。   On the other hand, when the electrode unit 3 is arranged at a high position as shown in FIG. 5A, the dielectric constant increases immediately after the start of measurement as shown in FIG. 6A. This is because, as shown in FIG. 5A, the concentration of the sedimentary component in the region sandwiched between the pair of electrode parts 3 decreases immediately after the start of measurement as the sedimentation component settles.

また、図5Cに示すように、電極部3を低い位置に配置した場合、図6Cに示すように、測定開始からすぐに、誘電率が下降する。これは、図5Cに示すように、沈降性成分の沈降の進行により、測定開始からすぐに、一対の電極部3で挟まれた領域の沈降性成分の濃度が上昇していくためである。   As shown in FIG. 5C, when the electrode unit 3 is arranged at a low position, the dielectric constant decreases immediately after the start of measurement, as shown in FIG. 6C. This is because, as shown in FIG. 5C, the concentration of the sedimentary component in the region sandwiched between the pair of electrode portions 3 increases immediately after the start of measurement due to the progress of sedimentation of the sedimentary component.

このように、図5Bに示すように、電極部3を、測定時に底部となる部分から所定距離上側に位置するように配置することで、生体試料S中で沈降性成分の沈降が進行した場合であっても、途中までは、測定値に影響を与えることなく正確な測定が可能である(図6B参照)。より具体的な位置としては、電極部3を、測定時に底部となる部分からの沈降性成分の累積堆積分率が体積分率以上となる位置より上側に位置するように配置することが好ましい。このような位置に配置することで、より長い時間、正確な測定が可能となる。   In this way, as shown in FIG. 5B, when the sedimentation of the sedimentary component proceeds in the biological sample S by disposing the electrode unit 3 so as to be positioned a predetermined distance above the bottom part at the time of measurement. Even so, accurate measurement is possible without affecting the measurement value (see FIG. 6B). As a more specific position, it is preferable to arrange the electrode part 3 so as to be positioned above the position where the cumulative deposition fraction of the sedimentary component from the bottom part at the time of measurement is equal to or higher than the volume fraction. By disposing at such a position, accurate measurement can be performed for a longer time.

なお、図6の図面代用グラフの誘電率の相対変化は、あくまでも一例を示すものであり、測定対象の生体試料Sの種類などによっても、その変化はそれぞれ異なる。   Note that the relative change in the dielectric constant in the drawing substitute graph of FIG. 6 is merely an example, and the change varies depending on the type of the biological sample S to be measured.

沈降性成分を含有する生体試料Sの一例として、全血を測定対象とする場合について説明する。健常成人の場合、全血は、体積割合40%程度の赤血球を含む。赤血球は、静置条件下で沈降し、最終的には容器下部に沈殿する。一方、上層部には主に血清が集合する。沈降プロセスが進行中は、大まかに、下方から赤血球沈殿層、全血層、血清層の3層が存在することになる。   As an example of the biological sample S containing a sedimentation component, a case where whole blood is a measurement target will be described. In the case of a healthy adult, whole blood contains red blood cells with a volume ratio of about 40%. Red blood cells settle under static conditions, and finally settle at the bottom of the container. On the other hand, serum mainly collects in the upper layer. While the sedimentation process is in progress, there are roughly three layers from the bottom: the red blood cell sedimentation layer, the whole blood layer, and the serum layer.

全血を測定対象とする場合、全血の測定をできる限り長時間行えるように、電極部3を配置することが望ましい。具体的には、電極部3から発せられ対象試料を貫く電気力線の大部分が、容器中に順次生じる赤血球沈殿層と血清層とを避け、継続して全血層を通過するように配置するのが望ましい。これを満たすより具体的な配置としては、下方からの累積体積分率が赤血球体積分率以上となる位置より電極部3の下限が上方に位置するように、電極部3を配置することが好ましい。また、測定に最低限必要な時間を経た時における血清層の下限よりも、電極部3の上限が下方に位置するように、電極部3を配置することが好ましい。   When whole blood is to be measured, it is desirable to arrange the electrode unit 3 so that the whole blood can be measured as long as possible. Specifically, most of the lines of electric force emitted from the electrode unit 3 and penetrating the target sample are arranged so as to continuously pass through the whole blood layer while avoiding the erythrocyte sedimentation layer and the serum layer that are sequentially generated in the container. It is desirable to do. As a more specific arrangement satisfying this, it is preferable to arrange the electrode part 3 so that the lower limit of the electrode part 3 is located above the position where the cumulative volume fraction from below becomes equal to or higher than the erythrocyte volume fraction. . Moreover, it is preferable to arrange | position the electrode part 3 so that the upper limit of the electrode part 3 may be located below rather than the minimum of the serum layer when the time required for a measurement passes minimum.

(b)接続部32
接続部32は、外部回路と電気的に接続する部位である。接続部32の具体的な形態は特に限定されず、外部回路と電気的に接続することが可能であれば、自由な形態に設計することができる。
(B) Connection part 32
The connection part 32 is a part electrically connected to an external circuit. The specific form of the connection part 32 is not specifically limited, If it can electrically connect with an external circuit, it can design to a free form.

(c)保持部33
<第5実施形態>
図7は、本技術に係る電気的測定用容器1の第5実施形態を模式的に示す断面模式図である。第5実施形態は、一対の電極部31の容器外側部分に、樹脂を備えない構成である。このような構成にすることで、例えば、生体試料保持部2の成形時に、電気伝導部3を、例えば、マグネットMなどを用いて位置決め固定することで、電気伝導部3(特に電極部31)を電気的測定用容器1の所望の位置に位置決めすることができる(図7B参照)。
(C) Holding part 33
<Fifth Embodiment>
FIG. 7 is a schematic cross-sectional view schematically showing a fifth embodiment of the electrical measurement container 1 according to the present technology. In the fifth embodiment, resin is not provided in the container outer portion of the pair of electrode portions 31. With such a configuration, for example, when the biological sample holding unit 2 is molded, the electric conduction unit 3 is positioned and fixed using, for example, a magnet M, so that the electric conduction unit 3 (particularly, the electrode unit 31). Can be positioned at a desired position of the electrical measurement container 1 (see FIG. 7B).

なお、容器外部からの固定手段としては、図7Bに示すマグネットMに限らず、容器外部から電気伝導部3を固定することができる手段であれば、あらゆる手段を用いることができる。   The fixing means from the outside of the container is not limited to the magnet M shown in FIG. 7B, and any means can be used as long as it can fix the electric conduction portion 3 from the outside of the container.

このように、電気伝導部3の少なくとも一部を、一体成形時に電気伝導部3を生体試料保持部2の所定箇所に配置させるための保持部33として機能させることで、電気伝導部3が所望の位置に位置決めされた電気的測定用容器1を容易に製造することが可能である。   In this way, at least a part of the electric conduction part 3 functions as the holding part 33 for arranging the electric conduction part 3 at a predetermined position of the biological sample holding part 2 at the time of integral molding, so that the electric conduction part 3 is desired. It is possible to easily manufacture the electrical measurement container 1 positioned at the position.

また、生体試料保持部2の成形時に、電気伝導部3が保持されることで、一体成形時に電気伝導部3が変形することも防止可能である。   Further, since the electric conduction part 3 is held at the time of molding the biological sample holding part 2, it is possible to prevent the electric conduction part 3 from being deformed at the time of integral molding.

なお、図7に示す第5実施形態では、電極部31が同時に保持部33としても機能する構成であるが、本技術ではこれに限定されない。例えば、接続部32が同時に保持部33を機能するように設計することも自由である。   In the fifth embodiment shown in FIG. 7, the electrode unit 31 functions as the holding unit 33 at the same time, but the present technology is not limited to this. For example, it is also free to design the connecting portion 32 so that the holding portion 33 functions simultaneously.

(d)曲折部34
<第6実施形態>
図8は、本技術に係る電気的測定用容器1の第6実施形態を模式的に示す断面模式図である。第6実施形態は、電気伝導部3の生体試料保持部2に埋入された部分に、曲折部34を備えることを特徴とする。
(D) Bent part 34
<Sixth Embodiment>
FIG. 8 is a schematic cross-sectional view schematically illustrating a sixth embodiment of the electrical measurement container 1 according to the present technology. The sixth embodiment is characterized in that a bent portion 34 is provided in a portion embedded in the biological sample holding portion 2 of the electric conduction portion 3.

本技術に係る電気的測定用容器1は、生体試料保持部2と電気伝導部3とが接着剤などを用いずに一体成形されたことを特徴とするため、生体試料保持部2と電気伝導部3との境界から、液体状の生体試料Sが漏れ出すことは非常に稀である。しかし、樹脂と電気伝導性素材とのひずみの違いなどによって、温度などの保管条件や測定条件によっては、生体試料保持部2と電気伝導部3との境界から、液体状の生体試料Sが漏れ出す可能性は否定できない。そこで、図8に示す第6実施形態のように、電気伝導部3の生体試料保持部2に埋入された部分に、曲折部34を備えることで、例えば、曲折部34を備えない第5実施形態(図7参照)などに比べ、生体試料保持部2と電気伝導部3との境界からの生体試料Sの漏れ出しを、防止することが可能である。   Since the electrical measurement container 1 according to the present technology is characterized in that the biological sample holding part 2 and the electric conduction part 3 are integrally formed without using an adhesive or the like, the biological sample holding part 2 and the electric conduction part It is very rare that the liquid biological sample S leaks from the boundary with the part 3. However, due to the difference in strain between the resin and the electrically conductive material, the liquid biological sample S leaks from the boundary between the biological sample holding unit 2 and the electrical conductive unit 3 depending on storage conditions such as temperature and measurement conditions. The possibility of putting out cannot be denied. Therefore, as in the sixth embodiment shown in FIG. 8, by providing the bent portion 34 in the portion embedded in the biological sample holding portion 2 of the electric conduction portion 3, for example, the fifth portion that does not include the bent portion 34. Compared to the embodiment (see FIG. 7) and the like, it is possible to prevent leakage of the biological sample S from the boundary between the biological sample holding unit 2 and the electric conduction unit 3.

また、電気伝導部3の生体試料保持部2に埋入された部分に、曲折部34を備えることで、生体試料保持部2と電気伝導部3との固定がより強固になるため、より頑丈な電気的測定用容器1とすることができる。   Further, since the bent portion 34 is provided in the portion embedded in the biological sample holding portion 2 of the electric conduction portion 3, the fixation between the biological sample holding portion 2 and the electric conduction portion 3 becomes stronger, so that it is more robust. The electrical measurement container 1 can be obtained.

(3)生体試料S
本技術で測定対象とすることが可能な生体試料Sは、液体状であれば特に限定されず、自由に選択することができる。例えば、沈降性成分を含有する生体試料Sなどが挙げられる。より具体的には、全血、血漿、またはこれらの希釈液および/または薬剤添加物などの血液成分を含有する生体試料Sなどを挙げることができる。
(3) Biological sample S
The biological sample S that can be measured by the present technology is not particularly limited as long as it is liquid, and can be freely selected. For example, the biological sample S containing a sedimentation component is mentioned. More specifically, examples include a biological sample S containing blood components such as whole blood, plasma, or a diluted solution and / or drug additive thereof.

(4)その他
本技術に係る電気的測定用容器1には、予め、所定の薬剤を入れておくことも可能である。例えば、血液成分を含有する生体試料Sを測定対象とする場合などは、抗凝固剤、凝固開始剤などを予め電気的測定用容器1の生体試料保持部2に入れておくことができる。
(4) Others It is also possible to put a predetermined medicine in the electrical measurement container 1 according to the present technology in advance. For example, when a biological sample S containing a blood component is to be measured, an anticoagulant, a coagulation initiator, or the like can be placed in advance in the biological sample holder 2 of the electrical measurement container 1.

本技術に係る電気的測定用容器1は、前述の通り、安価かつ大量に生産することが可能である。この特徴を利用して、例えば、本技術に係る電気的測定用容器1を使い捨てのカートリッジとすることも可能である。本技術に係る電気的測定用容器1を使い捨てのカートリッジとすることで、容器の洗浄などの手間を省くことができ、測定の効率化を図ることができる。また、容器内に残った別の生体試料Sによる測定誤差などの発生を防止でき、生体試料Sの電気特性をより高精度に測定することが可能となる。   As described above, the electrical measurement container 1 according to the present technology can be produced at low cost and in large quantities. Using this feature, for example, the electrical measurement container 1 according to the present technology can be a disposable cartridge. By using the electrical measurement container 1 according to the present technology as a disposable cartridge, it is possible to save troubles such as cleaning of the container and to improve the efficiency of measurement. In addition, it is possible to prevent a measurement error due to another biological sample S remaining in the container and to measure the electrical characteristics of the biological sample S with higher accuracy.

2.電気的測定装置10
図9は、本技術に係る電気的測定装置10の第1実施形態を模式的に示す模式図である。本実施形態では、前述した第6実施形態に係る電気的測定用容器1を用いている。本技術に係る電気的測定装置10は、大別して、前述した電気的測定用容器1と、印加部4と、測定部5と、を少なくとも備える。また、必要に応じて、解析部6を更に備えることもできる。以下、各部について詳細に説明する。なお、電気的測定用容器1は、前述と同様であるため、ここでは説明を割愛する。
2. Electrical measuring device 10
FIG. 9 is a schematic diagram schematically illustrating the first embodiment of the electrical measurement apparatus 10 according to the present technology. In the present embodiment, the electrical measurement container 1 according to the sixth embodiment described above is used. The electrical measurement device 10 according to the present technology is roughly provided with at least the electrical measurement container 1, the application unit 4, and the measurement unit 5 described above. Moreover, the analysis part 6 can also be further provided as needed. Hereinafter, each part will be described in detail. Note that the electrical measurement container 1 is the same as described above, and a description thereof is omitted here.

(1)印加部4
印加部4は、本技術に係る電気的測定用容器1の電気伝導部3に電圧を印加する。印加部4は、測定を開始すべき命令を受けた時点または電気的測定装置10の電源が投入された時点を開始時点として、電気的測定用容器1の電気伝導部3に電圧を印加する。より具体的には、印加部4は、設定される測定間隔ごとに、電気伝導部3に対して、所定の周波数の交流電圧を印加する。なお、印加部4が印加する電圧は、測定する電気特性に応じて直流電圧とすることも可能である。
(1) Application unit 4
The application unit 4 applies a voltage to the electrical conduction unit 3 of the electrical measurement container 1 according to the present technology. The application unit 4 applies a voltage to the electrical conduction unit 3 of the electrical measurement container 1 with the time when an instruction to start the measurement is received or the time when the power of the electrical measurement device 10 is turned on as the start time. More specifically, the application unit 4 applies an alternating voltage of a predetermined frequency to the electrical conduction unit 3 at every set measurement interval. Note that the voltage applied by the application unit 4 can be a DC voltage according to the electrical characteristics to be measured.

(2)測定部5
測定部5では、本技術に係る電気的測定用容器1に保持された液体状の生体試料Sの電気的特性を測定する。具体的には、測定を開始すべき命令を受けた時点または電気的測定装置10の電源が投入された時点を開始時点として、複素誘電率(以下、単に「誘電率」とも称する)やその周波数分散などの電気特性を測定する。より具体的には、例えば、誘電率が測定される場合、測定部5は、電気的測定用容器1の電極部31間における電流またはインピーダンスを所定周期で測定し、当該測定値から誘電率を導出する。この誘電率の導出には、電流またはインピーダンスと誘電率との関係を示す既知の関数や関係式を用いることができる。
(2) Measuring unit 5
The measurement unit 5 measures the electrical characteristics of the liquid biological sample S held in the electrical measurement container 1 according to the present technology. Specifically, the complex dielectric constant (hereinafter, also simply referred to as “dielectric constant”) and its frequency are defined as the start time when a command to start measurement is received or when the power of the electrical measurement device 10 is turned on. Measure electrical properties such as dispersion. More specifically, for example, when the dielectric constant is measured, the measurement unit 5 measures the current or impedance between the electrode units 31 of the electrical measurement container 1 at a predetermined period, and calculates the dielectric constant from the measured value. To derive. In order to derive the dielectric constant, a known function or relational expression indicating the relationship between current or impedance and dielectric constant can be used.

(3)解析部6
解析部6では、測定部5から導出された生体試料Sの電気的特性データを受けて、生体試料Sの物性の判定などを行う。本技術に係る電気的測定装置10において、解析部6は必須ではなく、例えば、前記測定部5で測定された電気的特性データから、外部のコンピュータなどを用いて解析を行うことも可能である。
(3) Analysis unit 6
The analysis unit 6 receives the electrical characteristic data of the biological sample S derived from the measurement unit 5 and determines physical properties of the biological sample S. In the electrical measurement device 10 according to the present technology, the analysis unit 6 is not essential. For example, the electrical property data measured by the measurement unit 5 can be used to perform analysis using an external computer or the like. .

具体的には、解析部6には、測定部5から導出された生体試料Sの電気的特性データが測定間隔ごとに与えられ、解析部6は、測定部5から与えられる電気的特性データを受けて、液体試料の物性判定等を開始する。解析部6は、液体試料の物性判定などの結果および/または誘電率データを通知する。この通知は、例えば、グラフ化してモニタに表示あるいは所定の媒体に印刷することにより行うことができる。   Specifically, the electrical property data of the biological sample S derived from the measurement unit 5 is given to the analysis unit 6 at every measurement interval, and the analysis unit 6 receives the electrical property data given from the measurement unit 5. In response, the physical property determination of the liquid sample is started. The analysis unit 6 notifies the result of determining physical properties of the liquid sample and / or dielectric constant data. This notification can be performed, for example, by graphing and displaying on a monitor or printing on a predetermined medium.

3.電気的測定方法
本技術に係る電気的測定用容器1は、液体状の生体試料Sの電気的特性の測定に好適に用いることができる。本技術に係る電気的測定方法で測定可能な電気的特性は特に限定されず、測定対象となる生体試料Sの種類や、解析すべき物性などに応じて、自由に測定することができる。例えば、誘電率やインピーダンスなどを測定することができる。
3. Electrical Measurement Method The electrical measurement container 1 according to the present technology can be suitably used for measuring electrical characteristics of a liquid biological sample S. The electrical characteristics that can be measured by the electrical measurement method according to the present technology are not particularly limited, and can be freely measured according to the type of biological sample S to be measured, physical properties to be analyzed, and the like. For example, dielectric constant, impedance, etc. can be measured.

本技術に係る電気的測定方法を用いれば、例えば、測定対象を血液とした場合、誘電率やインピーダンスの測定値から、血液凝固状況や血沈状況を解析することができる。より具体的には、例えば、解析期間内に受け取った複数の誘電率および/またはインピーダンスの測定値からそれぞれの特徴を示すパラメータを抽出し、このパラメータと、血液凝固能の亢進や血沈プロセス進行の基準を定める基準値との比較に基づき、血液凝固状況や血沈状況を解析することができる。   If the electrical measurement method according to the present technology is used, for example, when the measurement target is blood, the blood coagulation state and the blood sedimentation state can be analyzed from measured values of dielectric constant and impedance. More specifically, for example, a parameter indicating each characteristic is extracted from a plurality of measured values of dielectric constant and / or impedance received during the analysis period, and this parameter and the increase in blood coagulation ability and the progress of the blood precipitation process are extracted. Based on a comparison with a reference value that defines a reference, it is possible to analyze a blood coagulation state and a blood precipitation state.

なお、本技術は、以下のような構成も取ることができる。
(1)液体状の生体試料を収容するための樹脂からなる生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形された液体状の生体試料の電気的測定用容器。
(2)前記電気伝導部は、前記生体試料保持部にインサート成型されることにより一体化された(1)記載の電気的測定用容器。
(3)前記電気伝導部は、
測定時に前記生体試料と接触する電極部と、
外部回路と電気的に接続するための接続部と、
を少なくとも備える(1)または(2)に記載の電気的測定用容器。
(4)前記電極部が一対以上備えられた(3)記載の電気的測定用容器。
(5)前記電極部は、前記電気的測定用容器の内壁の一部を構成する(3)または(4)に記載の電気的測定用容器。
(6)前記内壁において、前記生体試料保持部と前記電極部との接続部が平滑である(5)記載の電気的測定用容器。
(7)前記電極部は、測定時に底部となる部分から所定距離上側に位置する(3)から(6)のいずれか一項に記載の電気的測定用容器。
(8)前記電気伝導部の少なくとも一部は、前記一体成型時に前記電気伝導部を前記生体試料保持部の所定箇所に配置させるための保持部として機能する(1)から(7)のいずれか一項に記載の電気的測定用容器。
(9)前記生体試料は、沈降性成分を含有する(1)から(8)のいずれか一項に記載の電気的測定用容器。
(10)前記生体試料は、血液成分を含有する(1)から(9)のいずれか一項に記載の電気的測定用容器。
(11)前記生体試料は、沈降性成分を含有し、
前記電極部は、測定時に底部となる部分からの前記沈降性成分の累積堆積分率が累積堆積分率が前記沈降性成分の体積分率以上となる位置より上側に位置する(9)記載の電気的測定用容器。
(12)前記電気伝導部の前記生体保持部に埋入された部分に、曲折部を備える(1)から(11)のいずれか一項に記載の電気的測定用容器。
(13)前記樹脂は、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂である(1)から(12)のいずれか一項に記載の電気的測定用容器。
(14)前記電気伝導部は、チタンを含む電気伝導性素材からなる(1)から(13)のいずれか一項に記載の電気的測定用容器。
(15)前記生体試料の誘電率を測定するために用いられる(1)から(14)のいずれか一項に記載の電気的測定用容器。
(16)前記生体試料のインピーダンスを測定するために用いられる(1)から(15)のいずれか一項に記載の電気的測定用容器。
(17)血沈状況を測定するために用いられる(10)記載の電気的測定用容器。
(18)血液凝固状況を測定するために用いられる(10)または(17)に記載の電気的測定用容器。
(19)液体状の生体試料を収容するための樹脂からなる生体試料保持部と、
測定時において少なくとも一部が前記生体試料と接触する電気伝導部と、
該電気伝導部に電圧を印加する印加部と、
前記生体試料を電気的に測定する測定部と、
を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形された液体状の生体試料の電気的測定装置。
(20)液体状の生体試料を収容するための樹脂からなる生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形された液体状の生体試料の電気的測定用容器を用いて、前記生体試料を電気的に測定する液体状の生体試料の電気的測定方法。
In addition, this technique can also take the following structures.
(1) a biological sample holding unit made of a resin for containing a liquid biological sample;
An electrical conduction part fixed to the biological sample holding part,
A container for electrical measurement of a liquid biological sample in which the biological sample holding part and the electric conduction part are integrally molded in a state where a part of the electric conduction part is embedded in the biological sample holding part.
(2) The electrical measurement container according to (1), wherein the electrical conduction unit is integrated by insert molding into the biological sample holding unit.
(3) The electric conduction part is
An electrode part that contacts the biological sample at the time of measurement;
A connection for electrically connecting to an external circuit;
The container for electrical measurement according to (1) or (2).
(4) The electrical measurement container according to (3), wherein a pair of the electrode portions are provided.
(5) The electrical measurement container according to (3) or (4), wherein the electrode portion constitutes a part of an inner wall of the electrical measurement container.
(6) The electrical measurement container according to (5), wherein a connection part between the biological sample holding part and the electrode part is smooth on the inner wall.
(7) The electrical measurement container according to any one of (3) to (6), wherein the electrode unit is positioned a predetermined distance above a portion that becomes a bottom during measurement.
(8) Any one of (1) to (7), wherein at least a part of the electric conduction portion functions as a holding portion for arranging the electric conduction portion at a predetermined position of the biological sample holding portion during the integral molding. The electrical measurement container according to one item.
(9) The electrical measurement container according to any one of (1) to (8), wherein the biological sample contains a sedimentary component.
(10) The electrical measurement container according to any one of (1) to (9), wherein the biological sample contains a blood component.
(11) The biological sample contains a sedimenting component,
The electrode part is located above a position where a cumulative deposition fraction of the sedimentary component from a bottom portion at the time of measurement is higher than a position where the cumulative deposition fraction is equal to or higher than a volume fraction of the sedimentary component. Electrical measurement container.
(12) The electrical measurement container according to any one of (1) to (11), wherein a bent portion is provided in a portion embedded in the living body holding portion of the electric conduction portion.
(13) The electrical measurement container according to any one of (1) to (12), wherein the resin is at least one resin selected from polypropylene, polystyrene, acrylic, and polysulfone.
(14) The electrical measurement container according to any one of (1) to (13), wherein the electrical conductive portion is made of an electrical conductive material containing titanium.
(15) The electrical measurement container according to any one of (1) to (14), which is used to measure a dielectric constant of the biological sample.
(16) The electrical measurement container according to any one of (1) to (15), which is used for measuring impedance of the biological sample.
(17) The electrical measurement container according to (10), which is used for measuring a blood sedimentation state.
(18) The electrical measurement container according to (10) or (17), which is used for measuring a blood coagulation state.
(19) a biological sample holder made of resin for containing a liquid biological sample;
An electrically conductive portion at least partially in contact with the biological sample during measurement;
An application unit for applying a voltage to the electrical conduction unit;
A measurement unit for electrically measuring the biological sample;
Comprising at least
An electrical measurement apparatus for a liquid biological sample in which the biological sample holding part and the electric conduction part are integrally formed in a state where a part of the electric conduction part is embedded in the biological sample holding part.
(20) a biological sample holding unit made of a resin for containing a liquid biological sample;
An electrical conduction part fixed to the biological sample holding part,
Using a liquid biological sample electrical measurement container in which the biological sample holding part and the electric conduction part are integrally molded in a state where a part of the electrical conduction part is embedded in the biological sample holding part. A method for electrical measurement of a liquid biological sample, wherein the biological sample is electrically measured.

本技術に係る電気的測定用容器1は、生体試料保持部2と電気伝導部3との固定に接着剤を用いないため、接着剤による生体試料Sへの影響を排除することができる。その結果、生体試料Sの電気特性を高精度に測定することが可能である。   Since the electrical measurement container 1 according to the present technology does not use an adhesive for fixing the biological sample holding unit 2 and the electrical conductive unit 3, the influence of the adhesive on the biological sample S can be eliminated. As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

また、本技術に係る電気的測定用容器1の製造工程では、生体試料保持部2と電気伝導部3とが一体成形するため、生体試料保持部2の成形工程に加えて接着工程を別に設ける必要がない。その結果、電気的測定用容器1の製造が容易となり、安価かつ大量に電気的測定用容器1を生産することが可能となる。   In addition, in the manufacturing process of the electrical measurement container 1 according to the present technology, the biological sample holding unit 2 and the electric conduction unit 3 are integrally formed, and therefore, in addition to the forming process of the biological sample holding unit 2, a bonding process is provided separately There is no need. As a result, the electrical measurement container 1 can be easily manufactured, and the electrical measurement container 1 can be produced in a large amount at a low cost.

更に、本技術に係る電気的測定用容器1では、生体試料保持部2に予め電気伝導体3が固定されている。そのため、この電気伝導体3を電極として用いることで、電極の液体試料中への挿入量の違いによる測定誤差をなくすことができる。その結果、生体試料Sの電気特性を高精度に測定することが可能である。   Furthermore, in the electrical measurement container 1 according to the present technology, the electrical conductor 3 is fixed to the biological sample holder 2 in advance. Therefore, by using this electric conductor 3 as an electrode, it is possible to eliminate a measurement error due to a difference in the amount of the electrode inserted into the liquid sample. As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

加えて、生体試料保持部2に予め電気伝導体3が固定されていることで、装置の構成を簡易化することができ、装置の小型化や製造工程の簡易化、装置の低価格化などの実現にも貢献することができる。   In addition, since the electrical conductor 3 is fixed to the biological sample holder 2 in advance, the configuration of the apparatus can be simplified, the apparatus can be downsized, the manufacturing process can be simplified, the price of the apparatus can be reduced, etc. Can also contribute to the realization of

1:電気的測定用容器
2:生体試料保持部
3:電気伝導部
31:電極部
32:接続部
33:保持部
34:曲折部
S:生体試料
10:電気的測定装置
4:印加部
5:測定部
6:解析部
M:マグネット
1: Electrical measurement container 2: Biological sample holding unit 3: Electrical conduction unit 31: Electrode unit 32: Connection unit 33: Holding unit 34: Bending unit S: Biological sample 10: Electrical measurement device 4: Application unit 5: Measuring unit 6: Analysis unit M: Magnet

Claims (22)

沈降性成分を含有する血液試料を収容するための生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、
を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形され、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、
前記電極部は、前記生体試料保持部において、前記沈降性成分の沈降方向と直交しない方向に配置された血液試料の電気的測定用容器。
A biological sample holder for containing a blood sample containing a sedimenting component;
An electric conduction part fixed to the biological sample holding part;
Comprising at least
In a state where a part of the electric conduction part is embedded in the biological sample holding part, the biological sample holding part and the electric conduction part are integrally formed,
The electrical conduction unit includes at least an electrode unit that comes into contact with the blood sample during measurement, and a connection unit for electrically connecting to an external circuit,
The electrode part is an electrical measurement container for a blood sample arranged in a direction not orthogonal to the sedimentation direction of the sedimentation component in the biological sample holding part.
前記生体試料保持部は、樹脂からなる請求項1記載の電気的測定用容器。   The electrical measurement container according to claim 1, wherein the biological sample holder is made of resin. 前記電極部が一対以上備えられた請求項1または2に記載の電気的測定用容器。   The electrical measurement container according to claim 1, wherein a pair of the electrode portions are provided. 前記一対の電極部は、略平行に配置された請求項3記載の電気的測定用容器。   The electrical measurement container according to claim 3, wherein the pair of electrode portions are arranged substantially in parallel. 前記電極部は、前記電気的測定用容器の内壁の一部を構成する請求項1から4のいずれか記載の電気的測定用容器。   5. The electrical measurement container according to claim 1, wherein the electrode portion constitutes a part of an inner wall of the electrical measurement container. 前記内壁において、前記生体試料保持部と前記電極部との接続部が平滑である請求項5記載の電気的測定用容器。   The electrical measurement container according to claim 5, wherein a connection portion between the biological sample holding portion and the electrode portion is smooth on the inner wall. 前記電極部は、測定時に底部となる部分から所定距離上側に位置する請求項1から6のいずれか一項に記載の電気的測定用容器。   The said electrode part is an electrical measurement container as described in any one of Claim 1 to 6 located in predetermined distance upper side from the part used as a bottom part at the time of a measurement. 前記電極部は、測定時に頂部となる部分から所定距離下側に位置する請求項1から7のいずれか一項に記載の電気的測定用容器。   The said electrode part is a container for electrical measurement as described in any one of Claim 1 to 7 located in the predetermined distance lower side from the part used as a top part at the time of a measurement. 前記電気伝導部の少なくとも一部は、前記一体成形時に前記電気伝導部を前記生体試料保持部の所定箇所に配置させるための保持部として機能する請求項1から8のいずれか一項に記載の電気的測定用容器。   The at least one part of the said electric conduction part functions as a holding part for arrange | positioning the said electric conduction part in the predetermined location of the said biological sample holding part at the time of the said integral molding. Electrical measurement container. 前記電極部は、測定時に底部となる部分からの前記沈降性成分の累積堆積分率が体積分率以上となる位置より上側に位置する請求項1から9のいずれか一項に記載の電気的測定用容器。   10. The electrical device according to claim 1, wherein the electrode portion is located above a position where a cumulative deposition fraction of the sedimentary component from a portion that becomes a bottom portion during measurement is equal to or higher than a volume fraction. Measuring container. 測定に最低限必要な時間を経た時における血清層の下限よりも、電極部の上限が下方に位置する請求項1から10のいずれか一項に記載の電気的測定用容器。   The electrical measurement container according to any one of claims 1 to 10, wherein the upper limit of the electrode portion is located below the lower limit of the serum layer when a minimum time required for measurement has passed. 前記電気伝導部の前記生体保持部に埋入された部分に、曲折部を備える請求項1から11のいずれか一項に記載の電気的測定用容器。   The container for electrical measurement according to any one of claims 1 to 11, wherein a bent portion is provided in a portion embedded in the living body holding portion of the electric conduction portion. 蓋部を有する請求項1から12のいずれか一項に記載の電気的測定用容器。   The electrical measurement container according to any one of claims 1 to 12, further comprising a lid. 生体試料保持部は、円筒体、断面が多角の多角筒体、円錐体、断面が多角の多角錐体、或いはこれらを1種または2種以上組み合わせた形態である請求項1から13のいずれか一項に記載の電気的測定用容器。   The biological sample holder is a cylindrical body, a polygonal cylinder with a polygonal cross section, a cone, a polygonal cone with a polygonal cross section, or a combination of one or more of these. The electrical measurement container according to one item. 前記樹脂は、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂である請求項2から14のいずれか一項に記載の電気的測定用容器。   The container for electrical measurement according to any one of claims 2 to 14, wherein the resin is at least one resin selected from polypropylene, polystyrene, acrylic, and polysulfone. 前記電気伝導部は、チタンを含む電気伝導性素材からなる請求項1から15のいずれか一項に記載の電気的測定用容器。   The electrical measurement container according to any one of claims 1 to 15, wherein the electrical conductive portion is made of an electrical conductive material containing titanium. 前記生体試料の誘電率を測定するために用いられる請求項1から16のいずれか一項に記載の電気的測定用容器。   The container for electrical measurement according to any one of claims 1 to 16, which is used for measuring a dielectric constant of the biological sample. 前記生体試料のインピーダンスを測定するために用いられる請求項1から17のいずれか一項に記載の電気的測定用容器。   The electrical measurement container according to any one of claims 1 to 17, which is used for measuring impedance of the biological sample. 血沈状況を測定するために用いられる請求項1から18のいずれか一項に記載の電気的測定用容器。   The electrical measurement container according to any one of claims 1 to 18, which is used for measuring a blood sedimentation state. 血液凝固状況を測定するために用いられる請求項1から19のいずれか一項に記載の電気的測定用容器。   The electrical measurement container according to any one of claims 1 to 19, which is used for measuring a blood coagulation state. 沈降性成分を含有する血液試料を収容するための生体試料保持部と、
測定時において少なくとも一部が前記生体試料と接触する電気伝導部と、
該電気伝導部に電圧を印加する印加部と、
前記生体試料の電気的特性を測定する測定部と、
を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形され、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、
前記電極部は、前記生体試料保持部において、前記沈降性成分の沈降方向と直交しない方向に配置された血液試料の電気的測定装置。
A biological sample holder for containing a blood sample containing a sedimenting component;
An electrically conductive portion at least partially in contact with the biological sample during measurement;
An application unit for applying a voltage to the electrical conduction unit;
A measurement unit for measuring electrical characteristics of the biological sample;
Comprising at least
In a state where a part of the electric conduction part is embedded in the biological sample holding part, the biological sample holding part and the electric conduction part are integrally formed,
The electrical conduction unit includes at least an electrode unit that comes into contact with the blood sample during measurement, and a connection unit for electrically connecting to an external circuit,
The electrode unit is an electrical measurement apparatus for a blood sample arranged in a direction not orthogonal to the sedimentation direction of the sedimentation component in the biological sample holding unit.
沈降性成分を含有する血液試料を収容するための生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形され、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、
前記電極部は、前記生体試料保持部において、前記沈降性成分の沈降方向と直交しない方向に配置された血液試料の電気的測定用容器を用いて、前記生体試料の電気的特性を測定する液体状の生体試料の電気的測定方法。
A biological sample holder for containing a blood sample containing a sedimenting component;
An electrical conduction part fixed to the biological sample holding part,
In a state where a part of the electric conduction part is embedded in the biological sample holding part, the biological sample holding part and the electric conduction part are integrally formed,
The electrical conduction unit includes at least an electrode unit that comes into contact with the blood sample during measurement, and a connection unit for electrically connecting to an external circuit,
The electrode unit is a liquid that measures the electrical characteristics of the biological sample using a blood sample electrical measurement container disposed in a direction not orthogonal to the sedimentation direction of the sedimentation component in the biological sample holding unit. Method for electrical measurement of a solid biological sample.
JP2017000489A 2017-01-05 2017-01-05 Electrical measurement container, electrical measurement device, and electrical measurement method Active JP6414234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017000489A JP6414234B2 (en) 2017-01-05 2017-01-05 Electrical measurement container, electrical measurement device, and electrical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000489A JP6414234B2 (en) 2017-01-05 2017-01-05 Electrical measurement container, electrical measurement device, and electrical measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016155240A Division JP6070892B2 (en) 2016-08-08 2016-08-08 Electrical measurement container, electrical measurement device, and electrical measurement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018173691A Division JP6791220B2 (en) 2018-09-18 2018-09-18 Electrical measuring container, electrical measuring device and electrical measuring method

Publications (3)

Publication Number Publication Date
JP2017058384A true JP2017058384A (en) 2017-03-23
JP2017058384A5 JP2017058384A5 (en) 2017-06-15
JP6414234B2 JP6414234B2 (en) 2018-10-31

Family

ID=58389890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000489A Active JP6414234B2 (en) 2017-01-05 2017-01-05 Electrical measurement container, electrical measurement device, and electrical measurement method

Country Status (1)

Country Link
JP (1) JP6414234B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840806A (en) * 1973-08-20 1974-10-08 G Stoner Instrument for measuring blood clotting times
JPS5550162A (en) * 1978-10-02 1980-04-11 Wellcome Found Method and device for testing agglutination of platelets
JPS5822946A (en) * 1981-08-03 1983-02-10 Olympus Optical Co Ltd Method and device for detecting boundary surface
JPS58171655A (en) * 1982-01-23 1983-10-08 ホルガ−・キ−ゼベツタ− Measuring device for hematocrit of blood
JPS6117942A (en) * 1984-06-14 1986-01-25 アーサー エイチ,フライリツヒ Platelet agglutination electrode device
JPH07311136A (en) * 1990-07-20 1995-11-28 Serbio Device for detecting change in viscosity of electrolyte based on depolarization effect
JP2004522146A (en) * 2000-12-19 2004-07-22 インバネス・メディカル・リミテッド Apparatus and method for measuring blood coagulation
JP2005077148A (en) * 2003-08-28 2005-03-24 Japan Clinical Laboratories Inc Blood examination method and device
JP2007003414A (en) * 2005-06-24 2007-01-11 Arkray Inc Cartridge for analyzer
US20070140902A1 (en) * 2003-12-16 2007-06-21 Andreas Calatzis Cartridge device for blood analysis
JP2007304116A (en) * 1998-03-19 2007-11-22 Orgenics Biosensors Ltd Kit for measuring clotting time of blood sample
JP2012518156A (en) * 2009-02-17 2012-08-09 メディメイト ホールディング ビー.ブイ. Apparatus for measuring the concentration of charged species in a sample

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840806A (en) * 1973-08-20 1974-10-08 G Stoner Instrument for measuring blood clotting times
JPS5550162A (en) * 1978-10-02 1980-04-11 Wellcome Found Method and device for testing agglutination of platelets
JPS5822946A (en) * 1981-08-03 1983-02-10 Olympus Optical Co Ltd Method and device for detecting boundary surface
JPS58171655A (en) * 1982-01-23 1983-10-08 ホルガ−・キ−ゼベツタ− Measuring device for hematocrit of blood
JPS6117942A (en) * 1984-06-14 1986-01-25 アーサー エイチ,フライリツヒ Platelet agglutination electrode device
JPH07311136A (en) * 1990-07-20 1995-11-28 Serbio Device for detecting change in viscosity of electrolyte based on depolarization effect
JP2007304116A (en) * 1998-03-19 2007-11-22 Orgenics Biosensors Ltd Kit for measuring clotting time of blood sample
JP2004522146A (en) * 2000-12-19 2004-07-22 インバネス・メディカル・リミテッド Apparatus and method for measuring blood coagulation
JP2005077148A (en) * 2003-08-28 2005-03-24 Japan Clinical Laboratories Inc Blood examination method and device
US20070140902A1 (en) * 2003-12-16 2007-06-21 Andreas Calatzis Cartridge device for blood analysis
JP2007003414A (en) * 2005-06-24 2007-01-11 Arkray Inc Cartridge for analyzer
JP2012518156A (en) * 2009-02-17 2012-08-09 メディメイト ホールディング ビー.ブイ. Apparatus for measuring the concentration of charged species in a sample

Also Published As

Publication number Publication date
JP6414234B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP2014115256A (en) Container for electrical measurement, apparatus for electrical measurement, and method for electrical measurement
JP5549484B2 (en) Sample cartridge and apparatus for measuring electrical properties of liquid samples
US11125709B2 (en) Cartridge, kit comprising cartridge, electric measuring apparatus, and electric measuring method
WO2016113984A1 (en) Cartridge for electrical measurement, electrical measurement device for biological sample, and electrical measurement method for biological sample
JP6421749B2 (en) Blood state analysis apparatus, blood state analysis system, blood state analysis method, and blood state analysis program for causing a computer to realize the method
JP2014115256A5 (en)
JP6070892B2 (en) Electrical measurement container, electrical measurement device, and electrical measurement method
JP6414234B2 (en) Electrical measurement container, electrical measurement device, and electrical measurement method
JP6791220B2 (en) Electrical measuring container, electrical measuring device and electrical measuring method
US20190250141A1 (en) Electrical measuring cartridge, as well as electrical measuring apparatus and electrical measuring method
WO2016013300A1 (en) Cartridge for electrical measurement, electrical measurement device for biosample, electrical measurement system for biosample and electrical measurement method for biosample
JP6816792B2 (en) Cartridge for electrical measurement, electrical measuring device and electrical measuring method
CN106574909B (en) Contact structure body and electrical measurement device for biological sample using the same
WO2017068778A1 (en) Electrochemical measurement device and electrochemical measurement system
JP6780733B2 (en) A contact structure and an electrical measuring device for a biological sample using the contact structure.
JP6876911B2 (en) Cartridge for electrical measurement, electrical measuring device and electrical measuring method
JP2017058384A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6414234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151