JP2017055675A - Modified complex-type sugar chain hydrolyzing enzymes - Google Patents
Modified complex-type sugar chain hydrolyzing enzymes Download PDFInfo
- Publication number
- JP2017055675A JP2017055675A JP2015181066A JP2015181066A JP2017055675A JP 2017055675 A JP2017055675 A JP 2017055675A JP 2015181066 A JP2015181066 A JP 2015181066A JP 2015181066 A JP2015181066 A JP 2015181066A JP 2017055675 A JP2017055675 A JP 2017055675A
- Authority
- JP
- Japan
- Prior art keywords
- endo
- sugar chain
- variant
- amino acid
- residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、比活性の高い改変エンド-β-N-アセチルグルコサミニダーゼ及びその遺伝子に関する。 The present invention relates to a modified endo-β-N-acetylglucosaminidase having high specific activity and a gene thereof.
近年、バイオ医薬品の一つとして年々市場規模が増加している抗体医薬の分野で、抗体に薬物を結合させ殺傷する技術(Antibody-drug conjugate)が開発され、いくつかの薬物結合抗体医薬が上市されている。しかしADCは薬物を位置特異的に結合させる技術が確立していないため、薬剤と抗体の比率をコントロール出来ないことが大きな課題となっている。そして、その解決策として、抗体1分子に2箇所ある糖鎖付加部位に薬剤を導入することが検討され始めている(非特許文献1)。
エンド-β-N-アセチルグルコサミニダーゼ(ENGase)は、糖タンパク質のN-結合型糖鎖に作用して糖鎖を切り出す反応に加え、糖鎖を複合糖質などに転移する反応も触媒する酵素であり、従来から糖タンパク質の糖鎖構造の解析、複合糖質糖鎖の修飾、ネオグライコプロテイン(Neoglycoprotein)の調製、糖タンパク質の糖鎖部分の均一化等に広く用いられていたが、最近は、バイオ医薬品の製造における薬物により修飾された糖鎖の導入に対する期待が高まっている。
本発明者らは、以前、メタノール資化性酵母Ogataea minutaから、新規なENGase(Endo-Om)を単離した(特許文献1)。Endo-Omは、Mucor hiemalis由来のENGase(Endo-M)(非特許文献2)と同様、高マンノース型、混成型、複合型のいずれのN-型糖鎖に対しても加水分解活性及び転移活性を発揮することができ、かつ異なる基質特異性を有しており、しかもEndo-Mと比較して高い比活性を有している。そのため、バイオ医薬品の薬物結合糖鎖導入においても、製造コストの観点も含め、比活性の高いEndo-Omの期待が大きい。
ENGaseの産業利用のためには、基質特異性が異なる酵素やより比活性の強い酵素を提供することが望まれる。
そのために、ENGaseに対して変異を導入した改変体を製造することは試みられており、基質特異性を広げる例としては、Endo-MやEndo-Aに変異を導入することにより、糖鎖加水分解活性を抑制させ、糖鎖転移活性を向上させたという報告(非特許文献3〜5)や、Endo-Mにコアフコースが付加した糖鎖の切断能が付加できたという報告(非特許文献6)がある。
しかしながら、いずれもENGaseの比活性を向上させるものではなかった。一般に、酵素の比活性を向上させるためには、酵素の触媒メカニズムを詳細に解析し、関与するアミノ酸残基を同定し、さらに数多くの置換体の作製と評価が必要であるが、ENGaseに対しては計画的に比活性を向上させる検討の報告例はない。
In recent years, in the field of antibody drugs, the market size of which is increasing year by year as one of biopharmaceuticals, anti-body drug conjugate technology has been developed, and several drug-conjugated antibody drugs have been launched. Has been. However, ADC has not established a technique for binding a drug in a site-specific manner, and the ratio of drug to antibody cannot be controlled. As a solution, introduction of drugs into two glycosylation sites in one antibody molecule has begun to be studied (Non-patent Document 1).
Endo-β-N-acetylglucosaminidase (ENGase) is an enzyme that catalyzes the reaction of transducing sugar chains to complex carbohydrates in addition to the reaction of cleaving sugar chains by acting on N-linked sugar chains of glycoproteins. It has been widely used for the analysis of sugar chain structure of glycoprotein, modification of glycoconjugate sugar chain, preparation of Neoglycoprotein, homogenization of sugar chain part of glycoprotein, etc. There is an increasing expectation for the introduction of sugar chains modified by drugs in the production of biopharmaceuticals.
The present inventors previously isolated a novel ENGase (Endo-Om) from the methanol-assimilating yeast Ogataea minuta (Patent Document 1). Endo-Om, like ENGase (Endo-M) derived from Mucor hiemalis (Non-patent Document 2), has hydrolytic activity and transfer to any high-mannose, hybrid, or complex N-type sugar chain. It can exhibit activity, has a different substrate specificity, and has a higher specific activity than Endo-M. Therefore, in the introduction of drug-binding sugar chains of biopharmaceuticals, there is a great expectation for Endo-Om with high specific activity, including the manufacturing cost.
For industrial use of ENGase, it is desired to provide enzymes with different substrate specificities and enzymes with higher specific activity.
For this reason, attempts have been made to produce a variant in which a mutation has been introduced into ENGase. As an example of increasing the substrate specificity, glycosylation can be achieved by introducing a mutation into Endo-M or Endo-A. Reports that the degradation activity was suppressed and the transglycosylation activity was improved (Non-patent Documents 3 to 5), and that the ability to cleave a sugar chain in which core fucose was added to Endo-M could be added (Non-patent Document 6). )
However, none of them improved the specific activity of ENGase. In general, in order to improve the specific activity of an enzyme, it is necessary to analyze the catalytic mechanism of the enzyme in detail, identify the amino acid residues involved, and create and evaluate many substitutions. There are no reports of studies to improve specific activity systematically.
本発明は、比活性などの点で優れたENGase であるEndo-Omの比活性をさらに高めた改変ENGaseを提供することにある。 An object of the present invention is to provide a modified ENGase that further enhances the specific activity of Endo-Om, which is an ENGase excellent in terms of specific activity.
本発明者らは、本発明者らが以前開発したEndo-Om(特許文献1)の活性中心を構成するアミノ酸残基を構造モデリングにより推定し、そのアミノ酸残基のアミノ酸置換を行なうことを考えた。構造モデリングから基質特異性を変化させる例は多く知られているが、一般的には活性を向上させることは容易ではなく、むしろ変異により活性が低下する場合が多い。しかも、Endo-Omに対して構造モデリングを行ったところ(図1)、基質糖鎖と相互作用を示すとされる295位のトリプトファン(W)残基は、触媒残基としてGH85ファミリーに保存されている196位のグルタミン酸(E)残基や194位のアスパラギン(N)残基、231位のチロシン(Y)残基から距離的に離れている上、GH85 ENGaseファミリー内で保存性が低い残基であり、学術的に置換対象にされた例がなく、類縁酵素の研究からも295位のトリプトファン(W)残基が比活性に関与する残基とは類推できない。
したがって、本発明者らは、Endo-Omの295位のW(W295)のアミノ酸置換によって比活性が向上することは全く予測せずに、若干でも基質特異性が広くなる(切断されない糖鎖構造を切断できるようにする)可能性を期待して種々のアミノ酸置換を試したところ、予想外に比活性の高い変異型酵素を取得できた。
The present inventors considered that amino acid residues constituting the active center of Endo-Om (Patent Document 1) previously developed by the present inventors were estimated by structural modeling, and amino acid substitution of the amino acid residues was performed. It was. Many examples of changing the substrate specificity from structural modeling are known, but in general, it is not easy to improve the activity, but rather the activity is often reduced by mutation. Moreover, structural modeling of Endo-Om (Fig. 1) revealed that the tryptophan (W) residue at position 295, which is supposed to interact with the substrate sugar chain, is conserved as a catalytic residue in the GH85 family. In addition, the GH85 ENGase family has low conservative properties and is far away from the 196th glutamic acid (E), 194th asparagine (N), and 231th tyrosine (Y) residues. There are no examples that have been scientifically substituted, and from the study of related enzymes, the tryptophan (W) residue at position 295 cannot be inferred as a residue involved in specific activity.
Therefore, the present inventors have never predicted that specific activity will be improved by amino acid substitution at W (W295) at position 295 of Endo-Om, and the substrate specificity is slightly increased (glycan structure that is not cleaved). When various amino acid substitutions were tried in anticipation of the possibility, a mutant enzyme with an unexpectedly high specific activity could be obtained.
具体的には、以下の通りである。
構造モデリングにより特許文献1に開示された酵素(Endo-Om)の活性中心を構成するアミノ酸残基の推定を行い、そのアミノ酸置換を行うことにより、基質特異性や比活性に影響するアミノ酸の推定を行った。その結果、295番目のトリプトファン(W295)は基質となる糖鎖を保持するのに重要であることが予想された。また基質特異性との関連で、Endo-Omが切断できない糖鎖構造と立体障害をおこすことが示唆されたため、アミノ酸置換によって立体障害を抑制できれば基質特異性が広がることが期待された。そこでW295のアミノ酸置換を行なったところ、予想に反し、基質特異性に変化は見られなかったが、変異前の酵素と比較し、各種糖鎖及び糖タンパク質に対し強い活性を示すW295F改変体及び特定の糖鎖に対して強い活性を示すW295Y改変体を単離することができた。特に、W295F改変体における活性の向上はきわめて高いものであった。
また、実際に高マンノース型糖鎖を有するリボヌクレアーゼ(RNase)Bおよび複合型2分岐糖鎖を有するトランスフェリンに対する反応性を確認したところ、同様の傾向が確認できた。
以上の知見を得て、本発明を完成させた。
Specifically, it is as follows.
Amino acid residues constituting the active center of the enzyme (Endo-Om) disclosed in Patent Document 1 are estimated by structural modeling, and amino acid substitution is performed to estimate amino acids that affect substrate specificity and specific activity. Went. As a result, it was predicted that the 295th tryptophan (W295) was important for retaining the sugar chain as a substrate. In addition, in relation to substrate specificity, it was suggested that Endo-Om could cause steric hindrance with the sugar chain structure that cannot be cleaved. Therefore, if steric hindrance could be suppressed by amino acid substitution, substrate specificity would be expected to expand. Therefore, when W295 amino acid substitution was performed, contrary to expectation, the substrate specificity did not change, but compared with the enzyme before mutation, the W295F variant exhibiting strong activity against various sugar chains and glycoproteins and It was possible to isolate a W295Y variant exhibiting strong activity against a specific sugar chain. In particular, the improvement in activity in the W295F variant was extremely high.
Moreover, when the reactivity with respect to ribonuclease (RNase) B having a high mannose sugar chain and transferrin having a complex biantennary sugar chain was confirmed, the same tendency was confirmed.
Obtaining the above knowledge, the present invention has been completed.
すなわち、本発明は以下の通りである。
〔1〕 エンド-β-N-アセチルグルコサミニダーゼ(Endo-Om)のアミノ酸配列において、配列番号2の295位のトリプトファン(W)残基に相当するアミノ酸残基が、フェニルアラニン(F)残基又はチロシン(Y)残基に置換されたEndo-Om改変体(W295F、W295Y)であって、変異前のEndo-Omと同じ基質特異性を有し、かつ少なくとも複合型糖鎖への比活性が変異前のEndo-Omより向上しているEndo-Om改変体。
〔2〕 前記Endo-Om改変体の変異前のEndo-Omのアミノ酸配列が、配列番号2に示されるアミノ酸配列を有する、前記〔1〕に記載のEndo-Om改変体。
〔3〕 前記〔1〕又は〔2〕に記載のEndo-Om改変体をコードする核酸。
〔4〕 前記〔3〕に記載の核酸を含み、宿主細胞中で該核酸を発現することができる組換えベクター。
〔5〕 前記〔3〕に記載の核酸が導入され、Endo-Om改変体を発現する形質転換体。
〔6〕 変異前のEndo-Omと同じ基質特異性を有し、かつ少なくとも複合型糖鎖への比活性が変異前のEndo-Omより向上しているEndo-Om改変体の製造方法であって、エンド-β-N-アセチルグルコサミニダーゼ(Endo-Om)のアミノ酸配列において、配列番号2の295位のトリプトファン(W)残基に相当するアミノ酸残基を、フェニルアラニン(F)残基又はチロシン(Y)残基に変異させる置換を行うことを特徴とする、Endo-Om改変体の製造方法。
〔7〕 前記〔1〕又は〔2〕に記載のEndo-Om改変体を標的糖タンパク質に作用させる工程を含む、標的糖タンパク質からアスパラギン結合型糖鎖を切断する方法。
〔8〕 前記〔1〕又は〔2〕に記載のEndo-Om改変体を標的アクセプター分子に作用させる工程を含む、アスパラギン結合型糖鎖を標的アクセプター分子に対して転移する方法。
That is, the present invention is as follows.
[1] In the amino acid sequence of endo-β-N-acetylglucosaminidase (Endo-Om), the amino acid residue corresponding to the tryptophan (W) residue at position 295 of SEQ ID NO: 2 is a phenylalanine (F) residue or tyrosine (Y) Endo-Om variants (W295F, W295Y) substituted with residues, have the same substrate specificity as the pre-mutation Endo-Om, and at least have a specific activity to complex sugar chains Endo-Om variants that are better than the previous Endo-Om.
[2] The Endo-Om variant according to [1], wherein the amino acid sequence of Endo-Om before mutation of the Endo-Om variant has the amino acid sequence represented by SEQ ID NO: 2.
[3] A nucleic acid encoding the Endo-Om variant according to [1] or [2].
[4] A recombinant vector comprising the nucleic acid according to [3] above and capable of expressing the nucleic acid in a host cell.
[5] A transformant into which the nucleic acid according to [3] is introduced and expresses an Endo-Om variant.
[6] A method for producing an Endo-Om variant having the same substrate specificity as that of the pre-mutation Endo-Om and having at least a specific activity for complex sugar chains that is higher than that of the pre-mutation Endo-Om. In the amino acid sequence of endo-β-N-acetylglucosaminidase (Endo-Om), the amino acid residue corresponding to the tryptophan (W) residue at position 295 of SEQ ID NO: 2 is substituted with phenylalanine (F) residue or tyrosine ( Y) A method for producing a modified Endo-Om, comprising performing substitution to mutate a residue.
[7] A method for cleaving an asparagine-linked sugar chain from a target glycoprotein, comprising the step of causing the Endo-Om variant according to [1] or [2] to act on the target glycoprotein.
[8] A method for transferring an asparagine-linked sugar chain to a target acceptor molecule, comprising a step of causing the Endo-Om variant according to [1] or [2] to act on a target acceptor molecule.
本発明のEndo-Om W295F改変体は、もとのEndo-Omが反応する主要な糖鎖全てに対する比活性が2〜3倍という高い値を示し、特に高マンノース型糖鎖のM9A糖鎖に至っては3倍以上もの比活性の向上を呈した。複合型2分岐糖鎖(agalacto biantennary)に対する比活性も3倍近かった。Endo-Om W295Y改変体の場合は、もとのEndo-Omと比較してEndo-Omなどオリゴマンノース型糖鎖への比活性は0.6〜0.7倍程度まで低下したが、複合型2分岐糖鎖(agalacto biantennary)に対する活性は2.3倍以上という高活性を示した。
これらのEndo-Om改変酵素を用いることで、さらに従来よりも少ない量で糖鎖や糖タンパク質の加水分解が可能となり、製造コストの面で優位な酵素を提供できるようになる。
広範な基質特異性及び高い比活性を有するEndo-Omの基質特異性を変更することなく、比活性、特に複合型糖鎖に対する比活性を高めたEndo-Om改変体を提供できたことから、当該改変酵素自身を糖鎖解析用試薬、薬物結合糖鎖導入用試薬などとして用いるほか、糖鎖解析用、又は糖鎖導入用の標準糖ペプチド組成物や、バイオ医薬品などの糖鎖構造が均一化された組成物を製造するなどの用途が期待される。
The modified Endo-Om W295F of the present invention exhibits a high specific activity of 2 to 3 times with respect to all of the main sugar chains to which the original Endo-Om reacts, especially in the M9A sugar chain of the high mannose type sugar chain. The specific activity was improved by more than 3 times. The specific activity against complex type biantennary sugar chain (agalacto biantennary) was also close to 3 times. In the case of the modified Endo-Om W295Y, the specific activity of Oligomannose-type sugar chains such as Endo-Om decreased to about 0.6 to 0.7 times compared to the original Endo-Om, but the complex type bifurcated sugar chain The activity against (agalacto biantennary) was 2.3 times higher.
By using these Endo-Om modifying enzymes, it is possible to hydrolyze sugar chains and glycoproteins in a smaller amount than before, and it is possible to provide enzymes that are superior in terms of production costs.
Since it was possible to provide an Endo-Om variant with increased specific activity, particularly specific activity for complex sugar chains, without changing the substrate specificity of Endo-Om having a wide range of substrate specificity and high specific activity, In addition to using the modified enzyme itself as a reagent for sugar chain analysis, a reagent for introducing a sugar chain, or the like, a standard glycopeptide composition for sugar chain analysis or sugar chain introduction, or a sugar chain structure such as a biopharmaceutical is uniform. Applications such as the production of a modified composition are expected.
1.エンド-β-N-アセチルグルコサミニダーゼ(ENGase)
(1−1)エンド-β-N-アセチルグルコサミニダーゼの作用
エンド-β-N-アセチルグルコサミニダーゼは、N-型糖鎖の還元末端に存在するキトビオースの間を加水分解により切断する酵素であり、多くの酵素は、その切り出した糖鎖をアクセプターである糖質や複合糖質に転移する反応を効率よく触媒するトランスグリコシダーゼ活性を同時に有している。
これまでにArthrobacter由来のEndo-A、Streptococcus pneumoniae由来のEndo-D、Flavobacterium由来のEndo-F、Streptomyces plicatus由来のEndo-H、イネ由来のEndo-Os、Mucor hiemalis由来のEndo-M(非特許文献6)などが知られている。
したがって、エンド-β-N-アセチルグルコサミニダーゼは、糖タンパク質の糖鎖構造の解析と共に、複合糖質糖鎖の修飾、ネオグライコプロテイン(Neoglycoprotein)の調製、糖タンパク質の糖鎖部分の均一化等に有用な酵素群である。
1. Endo-β-N-acetylglucosaminidase (ENGase)
(1-1) Action of endo-β-N-acetylglucosaminidase Endo-β-N-acetylglucosaminidase is an enzyme that cleaves chitobiose present at the reducing end of N-type sugar chains by hydrolysis. These enzymes simultaneously have transglycosidase activity that efficiently catalyzes the reaction of transferring the excised sugar chain to the acceptor carbohydrate or complex carbohydrate.
So far, Endo-A from Arthrobacter, Endo-D from Streptococcus pneumoniae, Endo-F from Flavobacterium, Endo-H from Streptomyces plicatus, Endo-Os from rice, Endo-M from Mucor hiemalis (non-patented) Document 6) is known.
Therefore, endo-β-N-acetylglucosaminidase can be used to analyze glycoprotein sugar chain structure, modify glycoconjugate sugar chains, prepare neoglycoprotein, and homogenize the sugar chain part of glycoproteins. This is a useful group of enzymes.
(1−2)ENGaseが作用する主要な糖鎖の種類
生体の主要な生理活性を司る主要な糖タンパク質が有している主なN-結合型糖鎖は、基準となる3マンノース型オリゴ糖鎖(M3B)の非還元末端側に結合する糖鎖構造から、高マンノース型(オリゴマンノース型、マンナン型糖鎖)、混成型及び複合型に分類される(Essentials of Glycobiology Chapter 8 http://www.ncbi.nlm.nih.gov/books/NBK1908/参照)。
高マンノース型(オリゴマンノース型、マンナン型)糖鎖とは、マンノース数が3〜9、主として5〜9のマンノースのみが多数結合したタイプである。具体的には、M3B、M4A、M4B、M5A、M6A、M6B、M6C,M7A、M7B、M7C,M7D、M8A、M8B,M8C、M9A糖鎖が挙げられる。典型的な高マンノース型糖鎖としては、「M5A」と称される「Manα1-3[Manα1-3(Manα1-6)Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc-」、「M6B」と称される「Manα1-2Manα1-3[Manα1-3(Manα1-6)Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc-」、「M8A」と称される「Manα1-2Manα1-2Manα1-3[Manα1-3(Manα1-2Manα1-6)Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc-」、「M9A」と称される「Manα1-2Manα1-2Manα1-3[Manα1-2Manα1-3(Manα1-2Manα1-6)Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc-」がある。
混成型(ハイブリッド型)糖鎖は、オリゴマンノース鎖とN-アセチルグルコサミン、ガラクトース、シアル酸からなるオリゴ糖とを有する糖鎖である。典型的な混成型糖鎖としては、「hybrid-type」と称される「Galβ1-4GlcNAcβ1-2Manα1-3[Manα1-3(Manα1-6)Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc-」、及び「hybrid-type (bisecting GlcNAc)」と称される「GlcNAcβ1-2Manα1-3(GlcNAcβ1-4)[Manα1-3(Manα1-6)Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc-」がある。
複合型糖鎖は、N-アセチルグルコサミン、ガラクトース、シアル酸、フコースを含むN-結合型糖鎖を指し、さらに非還元末端側の分岐数に応じて二分岐型、三分岐型、四分岐型、バイセクティング型に分けられることもある。二分岐型複合型糖鎖としては、「sialyl biantennary」、「asialo biantennary」、「agalacto biantennary」、「agalacto biantennary (bisecting GlcNAc)」型糖鎖、あるいはそれらの一部糖鎖が欠損した構造が挙げられ、三分岐型複合型糖鎖としては、「sialyl (2,6)-branched triantennary」、「asialo (2,6)-branched triantennary」、「agalacto (2,6)-branched triantennary」、「sialyl (2,4)-branched triantennary」、「asialo (2,4)-branched triantennary」、「agalacto (2,4)-branched triantennary」型糖鎖、あるいはそれらの一部糖鎖が欠損した構造が挙げられる。四分岐複合型糖鎖としては、「sialyl tetraantennary」、「asialo tetraantennary」、「agalacto tetraantennary」型糖鎖、あるいはそれらの一部糖鎖が欠損した構造が挙げられる。これらの二分岐、三分岐、四分岐型糖鎖のβ1,4結合マンノースにβ1,4結合でGlcNAcが付加したものをバイセクティング型と称する。典型的な複合型糖鎖としては、
「sialobiantennary」または「sialyl biantennary」と称される「Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-6) Manβ1-4GlcNAcβ1-4GlcNAc-」、「asialo biantennary」と称される「Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc-」、及び「agalacto biantennary」と称される「GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc-」がある。
(1-2) Types of main sugar chains on which ENGase acts The main N-linked sugar chains of main glycoproteins that control the main biological activities of the body are the standard 3-mannose oligosaccharides From the sugar chain structure bound to the non-reducing end of the chain (M3B), it is classified into high mannose type (oligomannose type, mannan type sugar chain), hybrid type and complex type (Essentials of Glycobiology Chapter 8 http: // (See www.ncbi.nlm.nih.gov/books/NBK1908/).
A high mannose type (oligomannose type, mannan type) sugar chain is a type in which many mannoses having a mannose number of 3 to 9, mainly 5 to 9, are bonded. Specific examples include M3B, M4A, M4B, M5A, M6A, M6B, M6C, M7A, M7B, M7C, M7D, M8A, M8B, M8C, and M9A sugar chains. Typical high mannose-type sugar chains are referred to as “MαA” [M5A], “Manα1-3 [Manα1-3 (Manα1-6) Manα1-6] Manβ1-4GlcNAcβ1-4GlcNAc-”, “M6B”. `` Manα1-2Manα1-3 [Manα1-3 (Manα1-6) Manα1-6] Manβ1-4GlcNAcβ1-4GlcNAc- '', referred to as `` M8A '', `` Manα1-2Manα1-2Manα1-3 [Manα1-3 (Manα1-2Manα1 -6) Manα1-6] Manβ1-4GlcNAcβ1-4GlcNAc- ”, referred to as“ M9A ”,“ Manα1-2Manα1-2Manα1-3 [Manα1-2Manα1-3 (Manα1-2Manα1-6) Manα1-6] Manβ1-4GlcNAcβ1 -4GlcNAc- ".
A hybrid (hybrid type) sugar chain is a sugar chain having an oligomannose chain and an oligosaccharide composed of N-acetylglucosamine, galactose, and sialic acid. Typical hybrid sugar chains include “Galβ1-4GlcNAcβ1-2Manα1-3 [Manα1-3 (Manα1-6) Manα1-6] Manβ1-4GlcNAcβ1-4GlcNAc-” and “hybrid-type”, There is “GlcNAcβ1-2Manα1-3 (GlcNAcβ1-4) [Manα1-3 (Manα1-6) Manα1-6] Manβ1-4GlcNAcβ1-4GlcNAc-”, which is called “hybrid-type (bisecting GlcNAc)”.
Complex sugar chains refer to N-linked sugar chains including N-acetylglucosamine, galactose, sialic acid, and fucose, and are further branched, branched, and branched according to the number of branches on the non-reducing end. , Sometimes divided into bisecting types. Examples of biantennary complex type sugar chains include sialyl biantennary, asialo biantennary, agaracto biantennary, agaracto biantennary (bisecting GlcNAc) type sugar chains, or structures in which some of these sugar chains are missing. The three-branched complex sugar chains include `` sialyl (2,6) -branched triantennary '', `` asialo (2,6) -branched triantennary '', `` agalacto (2,6) -branched triantennary '', `` sialyl Examples include (2,4) -branched triantennary ”,“ asialo (2,4) -branched triantennary ”,“ agalacto (2,4) -branched triantennary ”type glycans, or structures lacking some of these glycans. It is done. Examples of the four-branching complex type sugar chain include “sialyl tetraantennary”, “asialo tetraantennary”, “agalacto tetraantennary” type sugar chains, or a structure in which some of these sugar chains are deleted. These bi-branched, tri-branched, and tetra-branched sugar chains in which GlcNAc is added by β1,4-bonded mannose are called bisecting types. As a typical complex type sugar chain,
`` Siaobiantennary '' or `` sialyl biantennary '' called `` Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-3 (Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-6) Manβ1-4GlcNAcβ1-4GlcNAc- '', `` asialo biantennary '' Galβ1-4GlcNAcβ1-2Manα1-3 (Galβ1-4GlcNAcβ1-2Manα1-6) Manβ1-4GlcNAcβ1-4GlcNAc- There is "4GlcNAc-".
一般に、各種ENGaseについて、比活性を評価する場合は通常M3B糖鎖にPA(ピリジルアミノ基)を結合したM3B-PAが用いられ、各分類分けされた糖鎖グループに対する反応性の有無又は活性の強さを評価する場合にはそれぞれの糖鎖グループの代表的な糖鎖にPAを結合させて用いる。高マンノース型糖鎖の場合は、M9A-PA、さらにはM7B-PA、M6B-PA、M5A-PAであり、混成型糖鎖は、hybrid-type-PA、さらにはhybrid-type (bisecting GlcNAc)、及び複合型糖鎖は、agalacto biantennary-PA、さらにはasialo (2,4)-branched triantennary-PAが用いられる。 In general, when evaluating the specific activity of various ENGases, M3B-PA, in which PA (pyridylamino group) is bonded to M3B sugar chain, is usually used. When evaluating the length, PA is bound to a typical sugar chain of each sugar chain group. In the case of a high mannose type sugar chain, it is M9A-PA, further M7B-PA, M6B-PA, M5A-PA, and the hybrid sugar chain is hybrid-type-PA, further hybrid-type (bisecting GlcNAc) As the complex type sugar chain, agalacto biantennary-PA and further asialo (2,4) -branched triantennary-PA are used.
各種ENGaseが遊離させることができる糖鎖の種類には偏りがあり、この3種類の糖鎖グループ全てに対する反応性が確認されているENGaseの種類は少ない。特に、複合型糖鎖を切断する活性を有すると報告されているのは、Endo-Om以外は、Endo-Mなど数種類しかない。複合型糖鎖の修飾に関しても、従来の知見からみて、トランスグリコシダーゼ活性の基質特異性は分解活性と同一であるから、複合型糖鎖をアクセプターに転移することができるのもこれらの酵素のみしかない。 There is a bias in the types of sugar chains that can be released by various ENGases, and there are few types of ENGases that have been confirmed to be reactive with all three types of sugar chains. In particular, there are only a few types such as Endo-M other than Endo-Om that are reported to have the activity of cleaving complex sugar chains. Regarding the modification of complex-type sugar chains, the substrate specificity of transglycosidase activity is the same as the degradation activity based on conventional knowledge, so only these enzymes can transfer complex-type sugar chains to acceptors. Absent.
(1−2)Ogataea minuta由来エンド-β-N-アセチルグルコサミニダーゼ(Endo-Om)について
Endo-Omは、本発明者らが、以前にメタノール資化性酵母Ogataea minuta IFO10746株から取得されたエンド-β-N-アセチルグルコサミニダーゼ(配列番号1,2)であり、主な酵素学的及び理化学的性質は以下の通りである。(特許文献1)
(1)作用;N-結合型糖タンパク質にエンド型に作用し、糖鎖を遊離する作用と共に、遊離した糖鎖をアクセプター化合物に転移させるトランスグリコシダーゼ活性を有している。
(2)基質特異性;高マンノース型、混成型と共に、2分岐複合型糖鎖のコア構造に存在するN,N'-ジアセチルキトビオース間を切断してオリゴ糖を生成し、アクセプター分子に転移させる。ここで、転移させることができるアクセプター分子としては、グルコースまたはGlcNAcなどの単糖又はその誘導体であるが、それらを有する糖ペプチドや糖タンパク質に対しても転移させることができる。
(3)比活性:Endo-Omは、Endo-Mの13倍という高い比活性およびEndo-Mの55倍という高いVmaxを有している。
(4)各糖鎖への反応性;高マンノース型糖鎖に対する加水分解活性が高く、さらに混成型糖鎖や2分岐の複合糖鎖を加水分解するが、分岐が4つ以上の複合糖鎖やコアフコース構造を持つ糖鎖は分解できない。三分岐型糖鎖については、agalacto (2,6)-branched triantennaryは分解できるが、agalacto (2,4)-branched triantennaryは分解できない。特にagalacto biantennary、M3B、M6B、M9A構造の糖鎖に対してはEndo-Mと比較して高い反応性を示す。
(1-2) Ogataea minuta-derived endo-β-N-acetylglucosaminidase (Endo-Om)
Endo-Om is an endo-β-N-acetylglucosaminidase (SEQ ID NO: 1, 2) previously obtained from the methanol-utilizing yeast Ogataea minuta strain IFO10746 by the present inventors. The physicochemical properties are as follows. (Patent Document 1)
(1) Action: It acts on an N-linked glycoprotein in an endo-type to release a sugar chain and has transglycosidase activity to transfer the released sugar chain to an acceptor compound.
(2) Substrate specificity; with high mannose type, mixed type, cleaves between N, N'-diacetylchitobiose existing in the core structure of biantennary complex type sugar chain to produce oligosaccharide, and acceptor molecule Transfer. Here, the acceptor molecule that can be transferred is a monosaccharide such as glucose or GlcNAc or a derivative thereof, but it can also be transferred to glycopeptides and glycoproteins having them.
(3) Specific activity: Endo-Om has a specific activity as high as 13 times that of Endo-M and a Vmax as high as 55 times that of Endo-M.
(4) Reactivity to each sugar chain; high hydrolysis activity for high mannose type sugar chains, and further hydrolyzes hybrid sugar chains and bifurcated complex sugar chains, but complex sugar chains with 4 or more branches Sugar chains with a core fucose structure cannot be decomposed. For tri-branched sugar chains, agalacto (2,6) -branched triantennary can be degraded, but agalacto (2,4) -branched triantennary cannot be degraded. In particular, agaracto biantennary, M3B, M6B, and M9A sugar chains are more reactive than Endo-M.
3. Endo-Om改変体
本発明のEndo-Omのアミノ酸変異体であるEndo-Om W295FおよびEndo-Om W295Yは、Endo-Omのアミノ酸配列295位のトリプトファン(W)残基を、フェニルアラニン(F)残基、又はチロシン(Y)残基に変異させた変異酵素であり、大腸菌宿主によって大量生産可能である。
Endo-Omの立体構造モデリング及び基質との結合予測結果からは、295位に位置するWは酵素の比活性には関係せず、専ら基質特異性を決定づけていると想定されたが、その予想は全くはずれ、W295Yのagalacto biantennaryに対する特異性が向上した以外には両者とも変異前のEndo-Omの基質特異性は全く変化させなかった(表1〜3)。
一方、それぞれの基質に対する活性は大きく異なり、Endo-Om W295Fは高マンノース型糖鎖のいずれに対しても、また2分岐複合型糖鎖に対しても活性が2〜3倍以上向上していたのに対し、W295Yでは、高マンノース型糖鎖に対する活性は変異前の酵素活性には及ばないが、二分岐複合型糖鎖に対してはもとのEndo-Omの2.34倍もの比活性を示した。
また、Endo-Omの295Wのアミノ酸変異体W295F及びW295Y以外の他のアミノ酸変異体(W295A,W295E,W295Q)の場合は、いずれも全く酵素活性を示さなかった。
以上のように、本発明において提供されたEndo-Om W295FおよびEndo-Om W295Y変異体は、広い基質特異性を有し、かつ比活性も高いEndo-Omに対して、その基質特異性を変化させずに特に複合型糖鎖に対する比活性を向上さていることから、Endo-Omと同様にバイオ医薬品などへの薬物結合糖鎖導入など幅広い用途が期待でき、しかも高い比活性を有する試薬を安価に提供できる優れた効果が期待できる。
3. Endo-Om variants Endo-Om W295F and Endo-Om W295Y, which are amino acid variants of the Endo-Om of the present invention, are obtained by replacing the tryptophan (W) residue at the amino acid sequence position 295 of Endo-Om with a phenylalanine (F) residue. Group or a mutated enzyme mutated to a tyrosine (Y) residue and can be mass-produced by an E. coli host.
From the three-dimensional structure modeling of Endo-Om and the predicted binding to the substrate, it was assumed that W located at position 295 is not related to the specific activity of the enzyme, but exclusively determines the substrate specificity. In both cases, the substrate specificity of Endo-Om before mutation was not changed at all except that the specificity of W295Y for agalacto biantennary was improved (Tables 1 to 3).
On the other hand, the activity for each substrate was greatly different, and Endo-Om W295F showed an improvement of 2 to 3 times or more for both high mannose type sugar chains and biantennary complex type sugar chains. In contrast, in W295Y, the activity against high mannose-type sugar chains does not reach the enzyme activity before mutation, but it shows 2.34 times the specific activity for biantennary complex-type sugar chains as compared to the original Endo-Om. It was.
In addition, none of the Endo-Om 295 W amino acid mutants W295F and W295Y other than the amino acid mutants (W295A, W295E, W295Q) showed any enzyme activity.
As described above, the Endo-Om W295F and Endo-Om W295Y mutants provided in the present invention change the substrate specificity of Endo-Om having a wide substrate specificity and high specific activity. In particular, the specific activity for complex-type glycans is improved, so that, as with Endo-Om, a wide range of applications such as introduction of drug-bound glycans into biopharmaceuticals can be expected, and a reagent with high specific activity is inexpensive. The excellent effect that can be provided is expected.
4.Endo-Om改変体の製造方法
本発明の改変体は、Endo-OmをコードするcDNA(例えば配列番号1)を鋳型として、295位のトリプトファン(W)をコードするコドンをフェニルアラニン(F)又はチロシン(Y)のコドンに置換するように設計したPCR用のプライマーを用いて行うことが一般的であるが、公知の点突然変異法を適用することも可能である。本発明の実施例では、特許文献1に記載の大腸菌用発現ベクターあるpOMEA1-6H3F-Endo-OmをテンプレートとしてPCRを行ない、増幅したDNA断片をNdeIおよびNotIで切断し、pET30a(Novagen社)のNdeI-NotI部位に挿入した。
得られたcDNA変異体を大腸菌、酵母、昆虫細胞、または動物細胞に、それぞれの宿主で増幅可能な発現ベクターを用いて導入および発現させることにより大量に得ることができる。
大量生産のためには、大腸菌又は酵母を宿主とすることが好ましく、本発明の実施例ではヒートショック法で誘導される大腸菌BL21 (DE3) pLysS(バイオダイナミクス研究所)を用いたがこれには限定されない。組換えベクターとしては、宿主に適した既知のベクターを用いる。大腸菌用の場合は、pDONR(商標)201、pBluescript、pUC18、pUC19、pBR322、pTAPlus、pDrive、pETBlue-1等の大腸菌プラスミドが汎用されるが、これに限定されない。
また、変異導入前のEndo-Omの産生微生物であるメタノール資化性酵母(Ogataea minuta IFO10746株)も大量生産用宿主として好ましい。適宜、既知の酵母用ベクターを用いて導入し、メタノール誘導を用いた培養法などを適用することにより、本発明の改変体を大量に取得することができる。例えば、(特許文献1)の記載に従ってO.minuta TK10-1-2株を宿主とする本発明の改変体の過剰発現株を製造できる。
組換えベクターを宿主細胞に導入する方法としては、塩化カルシウム法または塩化カルシウム/塩化ルビジウム法、エレクトロポレーション法、エレクトロインジェクション法、PEGなどの化学的な処理による方法、遺伝子銃などを用いる方法などが挙げられる。
本発明の改変体は、上記の如く調製された発現ベクターを含む形質転換細胞を既知の栄養培地、例えばLB培地(Difco)などで培養することによって生産できる。培養温度、培地のpHおよび培養時間などの培養条件は、本発明の改変体が大量に生産されるように適宜選択される。
本発明の改変体は、上記培養により得られる培養物より、超音波破砕、遠心分離、ろ過などの操作を利用して分離し、単離・精製工程に供する。
単離・精製の方法としては、通常のタンパク質の単離・精製方法を適用することができ、具体的には、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲルろ過や疎水性クロマトグラフィー、等電点クロマトグラフィーなど、及びそれらを組み合わせる方法を挙げることができる。
4). Method for Producing Endo-Om Variant The variant of the present invention uses a cDNA encoding Endo-Om (for example, SEQ ID NO: 1) as a template and a codon encoding tryptophan (W) at position 295 as phenylalanine (F) or tyrosine. Although it is generally performed using a PCR primer designed to substitute for the codon (Y), a known point mutation method can also be applied. In the examples of the present invention, PCR was performed using pOMEA1-6H3F-Endo-Om, which is an expression vector for Escherichia coli described in Patent Document 1, as a template, the amplified DNA fragment was cleaved with NdeI and NotI, and pET30a (Novagen) Inserted into the NdeI-NotI site.
The obtained cDNA mutant can be obtained in large quantities by introducing and expressing it in Escherichia coli, yeast, insect cells, or animal cells using expression vectors that can be amplified in the respective hosts.
For mass production, it is preferable to use Escherichia coli or yeast as a host. In the examples of the present invention, Escherichia coli BL21 (DE3) pLysS (Biodynamics Research Laboratories) induced by the heat shock method was used. It is not limited. As the recombinant vector, a known vector suitable for the host is used. For Escherichia coli, Escherichia coli plasmids such as pDONR (trademark) 201, pBluescript, pUC18, pUC19, pBR322, pTAPlus, pDrive, and pETBlue-1 are widely used, but are not limited thereto.
In addition, methanol-utilizing yeast (Ogataea minuta IFO10746 strain), which is an Endo-Om producing microorganism before mutation introduction, is also preferable as a host for mass production. By appropriately introducing a known yeast vector and applying a culture method using methanol induction, a large amount of the modified product of the present invention can be obtained. For example, an overexpression strain of the variant of the present invention using the O. minuta TK10-1-2 strain as a host can be produced according to the description in (Patent Document 1).
Methods for introducing the recombinant vector into the host cell include calcium chloride method or calcium chloride / rubidium chloride method, electroporation method, electroinjection method, method using chemical treatment such as PEG, method using gene gun, etc. Is mentioned.
The variant of the present invention can be produced by culturing transformed cells containing the expression vector prepared as described above in a known nutrient medium such as LB medium (Difco). The culture conditions such as the culture temperature, the pH of the medium and the culture time are appropriately selected so that the modified product of the present invention is produced in large quantities.
The modified product of the present invention is separated from the culture obtained by the above culture using operations such as ultrasonic disruption, centrifugation, and filtration, and is subjected to an isolation / purification process.
As a method of isolation / purification, a normal protein isolation / purification method can be applied. Specifically, affinity chromatography, ion exchange chromatography, gel filtration, hydrophobic chromatography, isoelectric point, etc. Examples thereof include chromatography, and a method of combining them.
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
本発明におけるその他の用語や概念は、当該分野において慣用的に使用される用語の意味に基づくものであり、本発明を実施するために使用する技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。また、各種の分析などは、使用した分析機器又は試薬、キットの取り扱い説明書、カタログなどに記載の方法を準用して行った。
なお、本明細書中に引用した技術文献及び特許公報中の記載内容は、本明細書の開示内容の一部と見なされる。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
Other terms and concepts in the present invention are based on the meanings of terms that are conventionally used in the field, and the techniques used to implement the present invention are not specifically limited to the techniques that clearly indicate the source. Can be easily and reliably carried out by those skilled in the art based on known documents and the like. In addition, various analyzes were performed by applying the methods described in the analytical instruments or reagents used, kit instruction manuals, catalogs, and the like.
In addition, the description content in the technical literature and patent gazette cited in this specification is regarded as a part of the disclosure content of this specification.
(実施例1)In silico解析によるEndo-Omの活性中心を構成するアミノ酸の推定
Endo-OmのN-末端領域(Pro74-Ile377)の立体構造モデリングはEndo-A(PDB ID: 3FHQ)およびEndo-D(PDB ID: 2W92)の構造をもとに、SWISS-MODEL (http://swissmodel.expasy.org) および DeepView (http://spdbv.vital-it.ch)を用いて行なった(図1A)。続いて、Endo-Aと基質との共結晶の結果を基に、N-型糖鎖(Man3GlcNAc2-Asn)と活性中心との結合予測(フィッティング)をピボットモデリング法により行なった(図1B)。その結果、計14残基のアミノ酸がEndo-Omの活性中心を構成し、基質と結合するアミノ酸残基であることが予想された。このうち、図1Bで右下方向に位置するAsn-194、Glu-196、Tyr-231はGH85 ENGaseファミリーによく保存されているアミノ酸であり、Endo-A、Endo-D、Endo-Mの解析から、N型糖鎖の還元末端の切断部位に存在するキトビオースを認識する残基であることが報告されている。したがって、Endo-Omの糖鎖切断活性に関わるアミノ酸残基もその作用点付近に存在すると考えられる。
一方、その切断作用点からみて反対側のしかも遠い位置に存在するW295は、切断活性には関係せず、専ら基質特異性を決定づけているアミノ酸残基である可能性が考えられる。
Endo-Omはα1,3-結合マンノースにGlcNAcがβ1,2結合した二分岐複合型糖鎖には活性を示すが、α1,3-結合マンノースにβ1,2結合およびβ1,4結合でGlcNAcが2分子結合した三分岐型糖鎖には反応性を示さないことが明らかになっている。糖鎖のフィッティングの結果から、Endo-Omの295番目のトリプトファン(W295)は、基質となるN-型糖鎖のα1,3-結合マンノース、およびそのマンノースにβ1,2結合するN-アセチルグルコサミン(GlcNAc)残基近傍に位置することが予想された。よって、Endo-Omの基質特異性はW295により規定されていると推定された。
そこで、本発明者らは、Endo-Omの複合糖鎖における基質特異性をさらに広げるために、Endo-Omが切断できない嵩高い三分岐型複合糖鎖でも切断作用点に近づけるように、立体障害となる可能性のあるトリプトファン(W)残基を、より立体障害の少ない官能基を有するアミノ酸残基に置換することを試みた。
(Example 1) Estimation of amino acids constituting the active center of Endo-Om by in silico analysis
The conformational modeling of the Endo-Om N-terminal region (Pro74-Ile377) is based on the structure of Endo-A (PDB ID: 3FHQ) and Endo-D (PDB ID: 2W92). SWISS-MODEL (http: //swissmodel.expasy.org) and DeepView (http://spdbv.vital-it.ch) (FIG. 1A). Subsequently, based on the result of co-crystallization of Endo-A and the substrate, prediction of the binding (fitting) between the N-type sugar chain (Man3GlcNAc2-Asn) and the active center was performed by the pivot modeling method (FIG. 1B). As a result, it was predicted that a total of 14 amino acids constitute the active center of Endo-Om and are amino acid residues that bind to the substrate. Of these, Asn-194, Glu-196, and Tyr-231 located in the lower right direction in FIG. 1B are amino acids that are well conserved in the GH85 ENGase family. Analysis of Endo-A, Endo-D, and Endo-M Thus, it is reported that the residue recognizes chitobiose present at the cleavage site at the reducing end of the N-type sugar chain. Therefore, amino acid residues involved in Endo-Om sugar chain scission activity are thought to exist near the site of action.
On the other hand, W295 present on the opposite side and far from the point of cleaving action may be an amino acid residue that is not related to the cleaving activity and that exclusively determines the substrate specificity.
Endo-Om is active on biantennary complex-type sugar chains in which GlcNAc is β1,2 linked to α1,3-linked mannose, but GlcNAc is linked to α1,3-linked mannose by β1,2 and β1,4 bonds. It has been clarified that the tribranched glycan linked with two molecules shows no reactivity. From the results of sugar chain fitting, Endo-Om's 295th tryptophan (W295) is the α1,3-linked mannose of the N-type sugar chain that is the substrate, and N-acetylglucosamine that binds β1,2 to the mannose It was predicted to be located near the (GlcNAc) residue. Therefore, it was estimated that the substrate specificity of Endo-Om was defined by W295.
Therefore, in order to further expand the substrate specificity of the Endo-Om complex sugar chain, the present inventors have made steric hindrance so that even a bulky three-branched complex sugar chain that Endo-Om cannot cleave is brought closer to the cleavage site. Attempts were made to replace the tryptophan (W) residue with an amino acid residue having a functional group with less steric hindrance.
(実施例2)大腸菌での組換えEndo-Omの発現
大腸菌でEndo-Om(配列番号1、2)を発現させるため、下記のプラスミドを構築した。Endo-OmのN-末端側に10個のヒスチジン残基が結合するようにするため、
プライマーA:
5’-AAGGAGATATACATATGCATCACCATCACCATCACCATCACCATCACGACTACAAAGACCATGACGG-3’ (配列番号3)及び、
プライマーB:
5’-TGCTCGAGTGCGGCCGCTCACACCCAAACCTCACTC-3’ (配列番号4)
を合成し、特許文献1にあるpOMEA1-6H3F-Endo-OmをテンプレートとしてPCRを行なった。増幅したDNA断片をNdeIおよびNotIで切断し、pET30a(Novagen社)のNdeI-NotI部位に挿入した。得られたプラスミドをpET30-10H3F-EOmと命名した。
次にQuickChange site-directed mutagenesis kit(Agilent社)を利用してpET30-10H3F-EOmに対して遺伝子変異を導入し、それぞれの変異体発現ベクターを作製した。
変異導入のために、W295Fは、
プライマーC:
5’- GACGTCTTCGGCCGTGGAACGCTGGTT-3’ (配列番号5)および
プライマーD:
5’- ACGGCCGAAGACGTCGTAGCCGACGTA -3’ (配列番号6)を、
W295Yは、
プライマーE:
5’- GACGTCTACGGCCGTGGAACGCTGGTT -3’ (配列番号7)および
プライマーF:
5’- ACGGCCGTAGACGTCGTAGCCGACGTA -3’ (配列番号8)を、
W295Aは、
プライマーG:5’- GACGTCGCCGGCCGTGGAACGCTGGTT -3’ (配列番号9)および
プライマーH:5’- ACGGCCGGCGACGTCGTAGCCGACGTA -3’) (配列番号10)を、
W295Qは、
プライマーI:5’- GACGTCCAAGGCCGTGGAACGCTGGTT -3’ (配列番号11)および
プライマーJ:5’- ACGGCCTTGGACGTCGTAGCCGACGTA -3’ (配列番号12)を、
W295Eは、
プライマーK:5’- GACGTCGAGGGCCGTGGAACGCTGGTT -3’ (配列番号13)および
プライマーL:5’- ACGGCCCTCGACGTCGTAGCCGACGTA -3’ (配列番号14)
を使用した。得られた発現ベクターは大腸菌内で増幅後、DNAシークエンシングを行ない、変異導入を確認した。
それぞれの発現ベクターを利用し、ヒートショック法を用いて大腸菌BL21 (DE3) pLysS(バイオダイナミクス研究所)の形質転換を行なった。得られた形質転換体を50 μg/mlのカナマイシンと 34 μg/mlのクロラムフェニコールを含むLB培地(Difco)で37℃、一晩培養後、100 ml のOvernight Express Instant LB medium(Merck Millipore)に移し、16℃、2日間培養した。培養後、細胞を遠心して回収し、ストレージバッファー(500 mM 塩化ナトリウム、50 mM イミダゾール、1 mM フッ化フェニルメチルスルホニルを含む20 mM リン酸ナトリウム緩衝液 (pH 7.4 ))に懸濁した。超音波破砕はQ125超音波ホモジナイザー(Qsonica社 )を用い、破砕条件はAmplitude 40%、1 sec pulse, 4 sec interval を6回繰り返すこととした。破砕液を 4℃、15,000×gで20分間遠心し、不要物を取り除いた。可溶性画分を50 mMのイミダゾールを含むストレージバッファーで平衡化したHisTrap HP (1 mL、GE ヘルスケア)に供し、200 mMのイミダゾールを含むストレージバッファーで洗浄後、500 mMのイミダゾールを含むストレージバッファーでEndo-Omを含む画分を溶出した。得られたW295の各種アミノ酸変異体画分をそれぞれストレージバッファーで透析し、各変異体が均一に精製できていることをSDS-PAGEで確認した(図3)後、-80℃で保存した。
(Example 2) Expression of recombinant Endo-Om in E. coli In order to express Endo-Om (SEQ ID NOs: 1 and 2) in E. coli, the following plasmids were constructed. To make 10 histidine residues bind to the N-terminal side of Endo-Om,
Primer A:
5'-AAGGAGATATACATATGCATCACCATCACCATCACCATCACCATCACGACTACAAAGACCATGACGG-3 '(SEQ ID NO: 3) and
Primer B:
5'-TGCTCGAGTGCGGCCGCTCACACCCAAACCTCACTC-3 '(SEQ ID NO: 4)
Then, PCR was performed using pOMEA1-6H3F-Endo-Om in Patent Document 1 as a template. The amplified DNA fragment was cleaved with NdeI and NotI and inserted into the NdeI-NotI site of pET30a (Novagen). The obtained plasmid was designated as pET30-10H3F-EOm.
Next, gene mutations were introduced into pET30-10H3F-EOm using a QuickChange site-directed mutagenesis kit (Agilent) to prepare each mutant expression vector.
For mutagenesis, W295F
Primer C:
5'-GACGTCTTCGGCCGTGGAACGCTGGTT-3 '(SEQ ID NO: 5) and primer D:
5'-ACGGCCGAAGACGTCGTAGCCGACGTA-3 '(SEQ ID NO: 6)
W295Y
Primer E:
5'-GACGTCTACGGCCGTGGAACGCTGGTT-3 '(SEQ ID NO: 7) and primer F:
5'-ACGGCCGTAGACGTCGTAGCCGACGTA-3 '(SEQ ID NO: 8)
W295A
Primer G: 5'-GACGTCGCCGGCCGTGGAACGCTGGTT-3 '(SEQ ID NO: 9) and Primer H: 5'-ACGGCCGGCGACGTCGTAGCCGACGTA-3') (SEQ ID NO: 10)
W295Q
Primer I: 5′-GACGTCCAAGGCCGTGGAACGCTGGTT-3 ′ (SEQ ID NO: 11) and Primer J: 5′-ACGGCCTTGGACGTCGTAGCCGACGTA-3 ′ (SEQ ID NO: 12)
W295E
Primer K: 5'-GACGTCGAGGGCCGTGGAACGCTGGTT-3 '(SEQ ID NO: 13) and Primer L: 5'-ACGGCCCTCGACGTCGTAGCCGACGTA-3' (SEQ ID NO: 14)
It was used. The obtained expression vector was amplified in E. coli and then subjected to DNA sequencing to confirm the introduction of mutation.
Using each expression vector, E. coli BL21 (DE3) pLysS (Biodynamics Laboratory) was transformed using the heat shock method. The resulting transformant was cultured overnight at 37 ° C in LB medium (Difco) containing 50 μg / ml kanamycin and 34 μg / ml chloramphenicol, and then 100 ml Overnight Express Instant LB medium (Merck Millipore ) And cultured at 16 ° C. for 2 days. After culturing, the cells were collected by centrifugation and suspended in a storage buffer (20 mM sodium phosphate buffer (pH 7.4) containing 500 mM sodium chloride, 50 mM imidazole, 1 mM phenylmethylsulfonyl fluoride). For ultrasonic crushing, a Q125 ultrasonic homogenizer (Qsonica) was used, and crushing conditions were determined to repeat Amplitude 40%, 1 sec pulse, 4 sec interval 6 times. The crushed liquid was centrifuged at 15,000 × g for 20 minutes at 4 ° C. to remove unnecessary materials. The soluble fraction was subjected to HisTrap HP (1 mL, GE Healthcare) equilibrated with a storage buffer containing 50 mM imidazole, washed with a storage buffer containing 200 mM imidazole, and then washed with a storage buffer containing 500 mM imidazole. The fraction containing Endo-Om was eluted. The obtained amino acid variant fractions of W295 were each dialyzed with a storage buffer, and it was confirmed by SDS-PAGE that each variant was purified uniformly (FIG. 3), and then stored at −80 ° C.
(実施例3)Endo-Omの295番目のトリプトファンの置換体の解析
W295について他のアミノ酸残基へ置換し、酵素活性や基質特異性の変化を解析した。活性測定はPA(ピリジルアミノ)化糖鎖(タカラバイオ社)を利用し特許文献1に記載の方法で行なった。その結果を(表1)に示す。W295A、W295E、W295Qはいずれの基質にも活性を示さなかったのに対し、W295Y、W295Fでは変異導入前のWYと同じ基質に対する活性が存在し、W295Yのagalacto biantennaryに対する特異性を除き、基質特異性を変化させなかったことを確認した。
(表1)の変異導入前のWY、W295F及びW295YのMan3GlcNAc2-PA(M3B)に対する各糖鎖への相対活性を(表2)に示す。
また、(表3)としては、W295F及びW295Yの各糖鎖への活性をWYとの相対活性で示した。
(Example 3) Analysis of a substitution product of the 295th tryptophan of Endo-Om
Substitution of W295 for other amino acid residues was performed, and changes in enzyme activity and substrate specificity were analyzed. The activity was measured by the method described in Patent Document 1 using a PA (pyridylamino) sugar chain (Takara Bio Inc.). The results are shown in (Table 1). W295A, W295E, and W295Q did not show activity against any of the substrates, whereas W295Y and W295F had the same activity against the same substrate as that of WY before mutagenesis. Except for the specificity of W295Y for agalacto biantennary, substrate specificity It was confirmed that the sex was not changed.
(Table 2) shows the relative activities of WY, W295F and W295Y in Table 1 with respect to each sugar chain with respect to Man3GlcNAc2-PA (M3B).
Moreover, as (Table 3), the activity with respect to each sugar chain of W295F and W295Y was shown by the relative activity with WY.
以上の結果、W295Fは、WTと同様の傾向、すなわち高マンノース型糖鎖のうちのM5A及び2分岐複合型糖鎖(agalacto biantennary)は低く、他の高マンノース型糖鎖への活性が高いという傾向はあるものの、2分岐複合型糖鎖も含め、全ての糖鎖への相対活性がWYよりも高まっていることが確認された。一方、W295Yは、WYと比較して2分岐複合型糖鎖の相対活性が高まっているという傾向を示した。そして、W295F及びW295Y以外の他のアミノ酸変異体(W295A,W295E,W295Q)の場合は、いずれも全く活性を示さなかった(表1)。
具体的には、W295F及びW295Yの各糖鎖への相対活性を変異導入前の酵素活性を100%とした場合でみると(表3)、W295Fの場合は、高マンノース型糖鎖及び2分岐複合型糖鎖いずれに対しても2〜3倍以上の高い比活性を示した。W295Yでは、高マンノース型糖鎖に対する活性は変異前の酵素活性には及ばないが、従来型のEndo-Mの比活性値(非特許文献2)と比較すれば遜色はなく、2分岐複合型糖鎖に対してはもとのEndo-Omの2.34倍もの比活性を示し、これは、Endo-Mからは約8倍に相当する。
As a result of the above, W295F has the same tendency as WT, that is, M5A of high mannose type sugar chain and agaracto biantennary are low, and the activity to other high mannose type sugar chains is high. Although there is a tendency, it was confirmed that the relative activity to all sugar chains including the bifurcated complex type sugar chain was higher than that of WY. On the other hand, W295Y showed a tendency that the relative activity of the biantennary complex type sugar chain was higher than that of WY. None of the amino acid mutants other than W295F and W295Y (W295A, W295E, W295Q) showed any activity (Table 1).
Specifically, when the relative activity to each sugar chain of W295F and W295Y is assumed to be 100% of the enzyme activity before mutagenesis (Table 3), in the case of W295F, a high mannose-type sugar chain and two branches The specific activity was 2 to 3 times higher than that of any complex type sugar chain. In W295Y, the activity against high mannose-type sugar chains does not reach the enzyme activity before mutation, but it is not inferior to the specific activity value of conventional Endo-M (Non-patent Document 2), and is a bifurcated complex type. The specific activity of sugar chains is 2.34 times that of the original Endo-Om, which is about 8 times that of Endo-M.
(実施例4)Endo-Om W295F、W295Yの糖タンパク質に対する反応性
実施例3において、W295F、W295Y変異酵素のPA化糖鎖に対する比活性が少なくとも複合型糖鎖に対して増加していたため、高マンノース型糖鎖を有するリボヌクレアーゼ(RNase)Bおよび複合型糖鎖を有するトランスフェリンに対する反応性を検討した。未変性のRNaseBに対し酵素を反応させた場合、変異導入前の酵素に比べ、W295Fは糖鎖が切断されたRNaseBの割合が増加していた。一方、W295Yでは変異導入前の酵素と同等以下であった。変性したRNaseBについてはいずれの酵素でも糖鎖が切断されたRNaseBが同程度に確認された。
未変性のトランスフェリンについてもW295Fは変異導入前の酵素に比較し、糖鎖が切断されたトランスフェリンの量が増加していた。更にシアリダーゼ処理により非還元末端側のシアル酸を除去してから反応を行なったところ、W295Fではより顕著に糖鎖が切断されたトランスフェリンが増加した。変性後のトランスフェリンに対しては、変異導入前の酵素に比較し、W295F、W295Yはより効率よく糖鎖を切断した。一方シアリダーゼ処理後の変性トランスフェリンに対しては、いずれの酵素も同程度に糖鎖を切断した。以上のことから、変異導入前のEndo-Omに比較し、Endo-Om W295Fは特に未変性の糖タンパク質のN-型糖鎖を効率よく切断することが確認された(図4)。
(Example 4) Reactivity of Endo-Om W295F and W295Y to glycoprotein In Example 3, the specific activity of W295F and W295Y mutant enzymes with respect to PA sugar chains increased at least with respect to complex sugar chains. The reactivity to ribonuclease (RNase) B having a mannose sugar chain and transferrin having a complex sugar chain was examined. When the enzyme was reacted with native RNaseB, W295F had an increased proportion of RNaseB whose sugar chain was cleaved compared to the enzyme before mutation introduction. On the other hand, W295Y was less than or equal to the enzyme before the mutation introduction. As for denatured RNase B, RNase B with the sugar chain cleaved by any enzyme was confirmed to the same extent.
With regard to native transferrin, W295F also had an increased amount of transferrin with the sugar chain cleaved, compared to the enzyme before mutation introduction. Furthermore, when the reaction was carried out after removing the sialic acid on the non-reducing end side by sialidase treatment, transferrin with the sugar chain cleaved more markedly increased in W295F. For denatured transferrin, W295F and W295Y cleaved sugar chains more efficiently than the enzyme before mutation introduction. On the other hand, with respect to denatured transferrin after sialidase treatment, all enzymes cleaved sugar chains to the same extent. From the above, it was confirmed that Endo-Om W295F efficiently cleaves the N-type sugar chain of the native glycoprotein in comparison with Endo-Om before the introduction of mutation (FIG. 4).
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181066A JP2017055675A (en) | 2015-09-14 | 2015-09-14 | Modified complex-type sugar chain hydrolyzing enzymes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181066A JP2017055675A (en) | 2015-09-14 | 2015-09-14 | Modified complex-type sugar chain hydrolyzing enzymes |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017055675A true JP2017055675A (en) | 2017-03-23 |
Family
ID=58388582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015181066A Pending JP2017055675A (en) | 2015-09-14 | 2015-09-14 | Modified complex-type sugar chain hydrolyzing enzymes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017055675A (en) |
-
2015
- 2015-09-14 JP JP2015181066A patent/JP2017055675A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI717319B (en) | Fucosidase from bacteroides and methods using the same | |
JP6752203B2 (en) | New EndoS mutant enzyme | |
Ramakrishnan et al. | Crystal structure of β1, 4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site | |
Qasba et al. | Substrate-induced conformational changes in glycosyltransferases | |
Fan et al. | Remarkable transglycosylation activity of glycosynthase mutants of endo-D, an endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae | |
Ramakrishnan et al. | Structural snapshots of β-1, 4-galactosyltransferase-I along the kinetic pathway | |
Dragosits et al. | Recombinant Aspergillus β-galactosidases as a robust glycomic and biotechnological tool | |
Jamaluddin et al. | Conformational changes Induced by Binding UDP-2F-galactose to α-1, 3 Galactosyltransferase-implications for catalysis | |
JPWO2020040257A1 (en) | Enzyme synthesis method of β-glycoside of lacto-N-biose I or galacto-N-biose using modified phosphorylase | |
JP6744738B2 (en) | Glycosynthase | |
Janesch et al. | Comparison of α2, 6-sialyltransferases for sialylation of therapeutic proteins | |
Takashima et al. | Novel endo-β-N-acetylglucosaminidases from Tannerella species hydrolyze multibranched complex-type N-glycans with different specificities | |
WO2010143713A1 (en) | Novel protein and gene that codes therefor | |
JP2017055675A (en) | Modified complex-type sugar chain hydrolyzing enzymes | |
JP7510249B2 (en) | Method for releasing complex glycans | |
Kim et al. | Marine invertebrate sialyltransferase of the sea squirt Ciona savignyi sialylated core 1 O-linked glycans | |
Ding et al. | Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei | |
KR100527437B1 (en) | Method for producing β-1,4-galactosyltransferase | |
Mandawe | Engineering of hyaluronic acid synthases from Streptococcus equi subsp. zooepidemicus and Pasteurella multocida towards improved HA chain length and titer | |
Peng et al. | Enhanced soluble expression and characterization of human N-acetylglucosaminyltransferase IVa in Escherichia coli | |
JPWO2002068661A1 (en) | Fusion protein having β1,2-N-acetylglucosaminyltransferase II activity and method for producing the same | |
Banana-Dube | Investigation of a polyprenyl/dolichyl phosphate mannose synthase involved in bacterial protein mannosylation | |
Kim et al. | Sialidases of corynebacteria and their biotechnological applications | |
Lim | Synthesis of O-Linked glycopeptides using enzymatic catalysis. | |
Giddens | Chemoenzymatic synthesis of homogenous glycopeptides and glycoproteins using bacterial endoglycosidases |