Nothing Special   »   [go: up one dir, main page]

JP2017054976A - Light-emitting element, manufacturing method thereof, and light-emitting/receiving module employing the same - Google Patents

Light-emitting element, manufacturing method thereof, and light-emitting/receiving module employing the same Download PDF

Info

Publication number
JP2017054976A
JP2017054976A JP2015178729A JP2015178729A JP2017054976A JP 2017054976 A JP2017054976 A JP 2017054976A JP 2015178729 A JP2015178729 A JP 2015178729A JP 2015178729 A JP2015178729 A JP 2015178729A JP 2017054976 A JP2017054976 A JP 2017054976A
Authority
JP
Japan
Prior art keywords
conductivity type
type electrode
light emitting
light
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015178729A
Other languages
Japanese (ja)
Other versions
JP6637704B2 (en
Inventor
嘉孝 門脇
Yoshitaka Kadowaki
嘉孝 門脇
隆司 新木
Takashi Araki
隆司 新木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015178729A priority Critical patent/JP6637704B2/en
Publication of JP2017054976A publication Critical patent/JP2017054976A/en
Application granted granted Critical
Publication of JP6637704B2 publication Critical patent/JP6637704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element having a substantially rectangular shape in plan view, capable of blocking the whole of side light traveling toward at least one side.SOLUTION: A light-emitting element 100 that is formed substantially rectangular in plan view comprises: a conductive layer 20 having a surface including a light-emitting laminate formation region RL and a first conductivity type electrode formation region RE; a light-emitting laminate 30 provided on the region RL; a second conductivity type electrode 40 provided on a surface of a second conductivity type semiconductor layer 33; and a first conductivity type electrode 50 provided on the region RE. A groove part T is formed between the first conductivity type electrode 50 and the light-emitting laminate 30. The light-emitting laminate 30 faces the first conductivity type electrode 50 with the groove part T interposed therebetween. The first conductivity type electrode 50 blocks the whole of side light of the light-emitting laminate 30, traveling toward at least one of four sides of an outer edge of the substantially rectangular shape in plan view.SELECTED DRAWING: Figure 1

Description

本発明は、発光素子およびその製造方法、ならびにそれを用いた受発光モジュールに関する。   The present invention relates to a light emitting device, a method for manufacturing the same, and a light emitting / receiving module using the same.

従来、赤外線データ通信や近接センサなど、種々の用途で受発光モジュールが利用されている。一般的に、受発光モジュールには、絶縁基板上にLEDチップからなる発光素子と、フォトダイオードからなる受光素子とが配置される。   Conventionally, light receiving and emitting modules are used in various applications such as infrared data communication and proximity sensors. Generally, in a light receiving / emitting module, a light emitting element made of an LED chip and a light receiving element made of a photodiode are arranged on an insulating substrate.

例えば近接センサに用いる受発光モジュールは、発光素子が赤外線を照射し、受発光モジュールに近づいた物体によって反射された赤外線を受光素子が受光することによって、物体の接近を非接触で検出する。   For example, in a light emitting / receiving module used for a proximity sensor, a light emitting element emits infrared rays, and an infrared ray reflected by an object approaching the light emitting / receiving module is received by a light receiving element, thereby detecting the approach of an object in a non-contact manner.

ところで、発光素子により照射される赤外線は、発光素子の正面および側方にも照射される。側方への照射光(側光)が受発光モジュールとしての誤作動の原因となり得ることは、例えば特許文献1においても知られている。   By the way, the infrared rays irradiated by the light emitting element are also irradiated to the front and side of the light emitting element. It is also known, for example, in Patent Document 1 that light emitted to the side (side light) can cause malfunction as a light emitting / receiving module.

このような側光による誤作動を防止するため、特許文献1では、基板と、該基板に搭載された発光素子と、前記基板に搭載され、前記発光素子から発せられる波長の光に対して光電変換機能を有する受光素子と、樹脂パッケージと、を備える受発光モジュールにおいて、前記樹脂パッケージを、上記発光素子を覆う発光側部分と、上記受光素子を覆う受光側部分とに分割し、前記樹脂パッケージを覆い、かつ前記発光側部分と前記受光側部分との間に位置する隔壁を有するカバーをさらに設けることを提案している。   In order to prevent such a malfunction due to side light, in Patent Document 1, photoelectric conversion is performed on a substrate, a light emitting element mounted on the substrate, and light having a wavelength mounted on the substrate and emitted from the light emitting element. In a light emitting / receiving module comprising a light receiving element having a conversion function and a resin package, the resin package is divided into a light emitting side part covering the light emitting element and a light receiving side part covering the light receiving element, and the resin package And providing a cover having a partition wall located between the light emitting side portion and the light receiving side portion.

また、特許文献2では、赤外線発光素子、赤外線受光素子、およびICチップを備えて、かつこれらが基板に搭載されて封止樹脂により覆われている赤外線データ通信モジュールにおいて、前記基板に、グランド接続された金属層によって内面が覆われた凹部を形成し、かつこの凹部内に、前記発光素子を配置することにより、側光によるICチップの誤作動を防止することを提案している。   Further, in Patent Document 2, in an infrared data communication module that includes an infrared light emitting element, an infrared light receiving element, and an IC chip, and these are mounted on a substrate and covered with a sealing resin, a ground connection is made to the substrate. It has been proposed to prevent a malfunction of the IC chip due to side light by forming a recess whose inner surface is covered with the formed metal layer and disposing the light emitting element in the recess.

特開2008−277488号公報JP 2008-277488 A 特開2005−191189号公報JP 2005-191189 A

特許文献1に記載の受発光モジュールは、発光側部分と前記受光側部分との間に位置する隔壁を設けることで、前述の側光に起因する誤作動を防ごうとするものである。また、特許文献2に記載の受発光モジュールは、モジュール中に凹部を設けて、該凹部内に発光素子を配置することにより、側光に起因する誤作動を防ごうとするものである。   The light receiving / emitting module described in Patent Document 1 intends to prevent malfunction caused by the side light described above by providing a partition located between the light emitting side portion and the light receiving side portion. The light receiving and emitting module described in Patent Document 2 is intended to prevent malfunction caused by side light by providing a recess in the module and disposing the light emitting element in the recess.

近年、スマートフォンなどの携帯端末に光学センサとして組み込むために受発光モジュールの小型化が求められている。特許文献1,2のいずれも、誤作動を防止するために受発光モジュール全体の構造に改善を加えることに着目しているが、上記隔壁の形成や、上記凹部の形成では、受発光モジュールのさらなる小型化には限界がある。   In recent years, downsizing of a light emitting / receiving module has been required in order to be incorporated as an optical sensor in a mobile terminal such as a smartphone. Both Patent Documents 1 and 2 focus on improving the overall structure of the light receiving and emitting module in order to prevent malfunction. However, in the formation of the partition wall and the formation of the recess, There is a limit to further miniaturization.

そこで本発明は、受発光モジュールのさらなる小型化を実現するため、受発光モジュールに供して好適な発光素子およびその製造方法、ならびにそれを用いた受発光モジュールを提供することを目的とする。   Accordingly, an object of the present invention is to provide a light emitting element suitable for use in the light emitting / receiving module, a method for manufacturing the light emitting element, and a light receiving / emitting module using the light emitting element in order to realize further downsizing of the light emitting / receiving module.

本発明者らは、上記課題を解決する方途について鋭意検討し、発光素子からの側光そのものを遮蔽すれば、前述の隔壁の形成や、凹部の形成が不要となり、受発光モジュールの小型化に資するのではないかと考えた。ここで、発光素子の発光強度は、側光を含む放射光全体の強度として評価される。そのため、発光効率の向上が求められる発光素子に対して、発光効率の低下に繋がる側光の遮蔽が求められるという課題認識はこれまでのところ存在しなかった。しかしながら、本発明者らは上記課題認識を着想し、発光素子の電極形状を適切化することで側光を遮蔽すれば、受発光モジュールの誤作動を防止できると共に、受発光モジュールの小型化に資することを知見し、本発明を完成するに至った。   The inventors of the present invention diligently studied how to solve the above problems, and if the side light itself from the light emitting element is shielded, the formation of the above-mentioned partition walls and the formation of the recesses are unnecessary, and the light receiving and emitting module can be downsized. I thought it would help. Here, the light emission intensity of the light emitting element is evaluated as the intensity of the entire radiation light including the side light. For this reason, there has been no recognition of the problem that light-emitting elements that are required to improve luminous efficiency are required to shield side light that leads to a decrease in luminous efficiency. However, the present inventors have conceived the recognition of the above problem, and can prevent malfunction of the light emitting / receiving module and reduce the size of the light receiving / emitting module if the side light is blocked by optimizing the electrode shape of the light emitting element. As a result, the present invention has been completed.

すなわち、本発明の要旨構成は以下の通りである。
(1)平面視略四角形状の発光素子であって、支持基板と、該支持基板上に形成された、表面が発光積層体形成領域および、該発光積層体形成領域と離隔した第1導電型電極形成領域を含む導電層と、前記発光積層体形成領域上に形成された、第1導電型半導体層、発光層および第2導電型半導体層をこの順に備える発光積層体と、前記発光積層体の前記第2導電型半導体層表面上に形成された、該第2導電型半導体層と同じ導電型の第2導電型電極と、前記第1導電型電極形成領域上に形成された、前記第1導電型半導体層と同じ導電型の第1導電型電極と、を有し、
前記第1導電型電極と前記発光積層体との間で溝部を構成し、該溝部を介して前記発光積層体と前記第1導電型電極とが対面し、該第1導電型電極が、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう前記発光積層体の側光の全部を遮蔽することを特徴とする発光素子。
That is, the gist of the present invention is as follows.
(1) A light-emitting element having a substantially square shape in plan view, and a first conductive type formed on the support substrate, the surface of which is separated from the light-emitting laminate forming region and the surface thereof. A conductive layer including an electrode formation region, a light-emitting laminate including a first conductive semiconductor layer, a light-emitting layer, and a second conductive semiconductor layer formed in this order on the light-emitting laminate formation region, and the light-emitting laminate A second conductivity type electrode of the same conductivity type as the second conductivity type semiconductor layer, formed on the surface of the second conductivity type semiconductor layer, and the first conductivity type electrode formation region. A first conductivity type electrode of the same conductivity type as the one conductivity type semiconductor layer,
A groove is formed between the first conductivity type electrode and the light emitting laminate, the light emitting laminate and the first conductivity type electrode face each other through the groove, and the first conductivity type electrode is A light-emitting element that blocks all side light of the light-emitting laminated body that faces at least one side adjacent to the first conductivity type electrode formation region among four sides of an outer edge that is substantially rectangular in plan view.

(2)前記第1導電型電極の高さは、前記発光積層体の前記導電層からの高さよりも高く、前記発光積層体の上面の、前記第1導電型電極側の端部における、前記第1導電型電極への仰角θが30度以上である、前記(1)に記載の発光素子。 (2) The height of the first conductivity type electrode is higher than the height of the light emitting stack from the conductive layer, and the top surface of the light emitting stack is at the end on the first conductivity type electrode side. The light emitting device according to (1), wherein an elevation angle θ to the first conductivity type electrode is 30 degrees or more.

(3)前記第1導電型電極は、前記平面視略四角形状の外縁の四辺のうち、前記少なくとも一辺以外の辺の一部に向かう前記発光積層体の側光をさらに遮蔽する、前記(1)または(2)に記載の発光素子。 (3) The first conductivity type electrode further shields the side light of the light emitting laminate that is directed to a part of the side other than the at least one side among the four sides of the outer edge having a substantially rectangular shape in plan view. ) Or (2).

(4)前記第1導電型電極は、前記第1導電型電極形成領域上に形成された、前記第1導電型半導体層と同種の第1層と、前記発光層と同種の第2層と、前記第2導電型半導体層と同種の第3層と、をこの順に備える構造体と接し、前記構造体の上面と前記導電層とを電気的に接続し、前記構造体の少なくとも一部を被覆する金属部である、前記(1)〜(3)のいずれかに記載の発光素子。 (4) The first conductivity type electrode includes a first layer of the same type as the first conductivity type semiconductor layer, a second layer of the same type as the light emitting layer, formed on the first conductivity type electrode formation region. A third layer of the same type as the second conductive type semiconductor layer is in contact with the structure, and the upper surface of the structure is electrically connected to the conductive layer, and at least a part of the structure is The light emitting device according to any one of (1) to (3), which is a metal part to be coated.

(5)前記第1導電型電極が前記構造体の全部を被覆する、前記(4)に記載の発光素子。 (5) The light emitting device according to (4), wherein the first conductivity type electrode covers the entire structure.

(6)前記発光積層体形成領域が平面視凸形状であり、前記第1導電型電極形成領域が平面視凹形状である、前記(1)〜(5)のいずれかに記載の発光素子。 (6) The light emitting element according to any one of (1) to (5), wherein the light emitting stacked body formation region has a convex shape in plan view, and the first conductivity type electrode formation region has a concave shape in plan view.

(7)前記第1導電型電極上にはんだが設けられる、前記(1)〜(6)のいずれか1項に記載の発光素子。 (7) The light emitting device according to any one of (1) to (6), wherein solder is provided on the first conductivity type electrode.

(8)前記導電層は導電体および絶縁体からなるパターン形状を有する、前記(1)〜(7)のいずれかに記載の発光素子。 (8) The light-emitting element according to any one of (1) to (7), wherein the conductive layer has a pattern shape including a conductor and an insulator.

(9)平面視略四角形状の発光素子の製造方法であって、成長用基板上に、第2導電型半導体層、発光層および第1導電型半導体層を順次形成してなる積層体を形成する工程と、前記第1導電型半導体層上に導電層を形成する工程と、前記導電層および支持基板を接合する工程と、前記成長用基板を剥離する工程と、前記積層体の表面を第1領域および第2領域に区画し、前記第2領域における前記積層体の全部を、前記導電層が露出するまで除去する除去工程と、該除去工程の後、前記積層体の前記第1領域上に、前記第2導電型半導体層と同じ導電型の第2導電型電極を形成する第2導電型電極形成工程と、前記露出した前記導電層の第1導電型電極形成領域上に、前記第1導電型半導体層と同じ導電型の第1導電型電極の少なくとも一部を形成する第1導電型電極形成工程と、を有し、
前記第1導電型電極形成工程において、前記第1導電型電極と前記積層体との間で構成される溝部を介して、前記積層体と前記第1導電型電極とが対面し、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう前記積層体の側光の全部が前記第1導電型電極によって遮蔽されるように前記第1導電型電極を形成することを特徴とする発光素子の製造方法。
(9) A method of manufacturing a light emitting element having a substantially rectangular shape in plan view, wherein a stacked body is formed by sequentially forming a second conductive semiconductor layer, a light emitting layer, and a first conductive semiconductor layer on a growth substrate. A step of forming a conductive layer on the first conductive type semiconductor layer, a step of bonding the conductive layer and the support substrate, a step of peeling off the growth substrate, and a surface of the laminate. A removal step of partitioning into one region and a second region, and removing the entire stacked body in the second region until the conductive layer is exposed; and after the removing step, on the first region of the stacked body A second conductivity type electrode forming step of forming a second conductivity type electrode of the same conductivity type as the second conductivity type semiconductor layer; and on the exposed first conductivity type electrode formation region of the conductive layer, At least one of the first conductivity type electrodes of the same conductivity type as the one conductivity type semiconductor layer. A first conductivity type electrode forming step of forming a has,
In the first conductivity type electrode forming step, the laminate and the first conductivity type electrode face each other through a groove formed between the first conductivity type electrode and the laminate, and the plan view Of the four sides of the substantially rectangular outer edge, the first conductivity type is such that all of the side light of the laminate directed to at least one side adjacent to the first conductivity type electrode forming region is shielded by the first conductivity type electrode. The manufacturing method of the light emitting element characterized by forming an electrode.

(10)平面視略四角形状の発光素子の製造方法であって、成長用基板上に、第2導電型半導体層、発光層および第1導電型半導体層を順次形成してなる積層体を形成する工程と、前記第1導電型半導体層上に導電層を形成する工程と、前記導電層および支持基板を接合する工程と、前記成長用基板を剥離する工程と、前記積層体の表面を第1領域および第2領域に区画し、前記第2領域における前記積層体の一部を前記導電層が露出するまで除去する除去工程と、該除去工程の後、前記第1領域側の前記積層体の前記第2導電型半導体層上に、該第2導電型半導体層と同じ導電型の第2導電型電極を形成する第2導電型電極形成工程と、前記露出した前記導電層の第1導電型電極形成領域上に、前記第1導電型半導体層と同じ導電型の第1導電型電極を、前記第2領域側の前記積層体の少なくとも一部を被覆して形成する第1導電型電極形成工程と、を有し、
前記除去工程の後、前記第1領域側の前記積層体と、前記第2領域側の前記積層体とは離隔し、前記第1導電型電極形成工程において、前記第1導電型電極と前記第1領域側の前記積層体との間で構成される溝部を介して、前記第1領域側の前記積層体と前記第1導電型電極とが対面し、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう前記第1領域側の前記積層体の側光の全部が前記第1導電型電極によって遮蔽されるように前記第1導電型電極を形成することを特徴とする発光素子の製造方法。
(10) A method for manufacturing a light emitting element having a substantially square shape in plan view, wherein a stacked body is formed by sequentially forming a second conductive semiconductor layer, a light emitting layer, and a first conductive semiconductor layer on a growth substrate. A step of forming a conductive layer on the first conductive type semiconductor layer, a step of bonding the conductive layer and the support substrate, a step of peeling off the growth substrate, and a surface of the laminate. A removal step of partitioning into one region and a second region and removing a part of the laminate in the second region until the conductive layer is exposed; and after the removal step, the laminate on the first region side A second conductivity type electrode forming step of forming a second conductivity type electrode of the same conductivity type as the second conductivity type semiconductor layer on the second conductivity type semiconductor layer, and a first conductivity of the exposed conductive layer. A first electrode of the same conductivity type as the first conductivity type semiconductor layer on the mold electrode forming region; The conductivity type electrode having a first conductivity type electrode forming step of forming by coating at least a portion of the laminate of the second region side,
After the removing step, the stacked body on the first region side and the stacked body on the second region side are separated from each other. In the first conductive electrode forming step, the first conductive electrode and the first conductive layer are separated from each other. The laminated body on the first region side and the first conductivity type electrode face each other through a groove formed between the laminated body on the one region side, and the four sides of the outer edge having a substantially rectangular shape in plan view The first conductivity type electrode so that all of the side light of the stacked body on the first region side facing at least one side adjacent to the first conductivity type electrode forming region is shielded by the first conductivity type electrode. Forming a light emitting element.

(11)前記(1)〜(8)のいずれかに記載の発光素子と、受光素子とを有し、前記発光素子の前記側光が遮蔽される側に、前記受光素子が配置されることを特徴とする受発光モジュール。 (11) The light-emitting element according to any one of (1) to (8) and a light-receiving element, wherein the light-receiving element is arranged on a side where the side light of the light-emitting element is shielded. Light emitting / receiving module characterized by the above.

本発明によれば、平面視略四角形状の発光素子において、所定方向に向かう側光を遮蔽するよう第1導電型電極を適切に設けたので、受発光モジュールに供して好適な発光素子を提供することができる。   According to the present invention, in the light emitting element having a substantially square shape in plan view, the first conductivity type electrode is appropriately provided so as to shield the side light directed in the predetermined direction. can do.

本発明の第1実施形態に従う発光素子100を説明する模式図であり、(A)は模式断面図であり、(B)はその平面図である。It is a schematic diagram explaining the light emitting element 100 according to 1st Embodiment of this invention, (A) is a schematic cross section, (B) is the top view. 本発明の第1実施形態に従う発光素子110の模式図であり、(A)は模式断面図であり、(B)はその平面図である。It is the schematic diagram of the light emitting element 110 according to 1st Embodiment of this invention, (A) is a schematic cross section, (B) is the top view. 本発明の第2実施形態に従う発光素子200の模式図であり、(A)は模式断面図であり、(B)はその平面図である。It is the schematic diagram of the light emitting element 200 according to 2nd Embodiment of this invention, (A) is a schematic cross section, (B) is the top view. 本発明の第2実施形態に従う発光素子210の模式図であり、(A)は模式断面図であり、(B)はその平面図である。It is a schematic diagram of the light emitting element 210 according to 2nd Embodiment of this invention, (A) is a schematic cross section, (B) is the top view. (A)〜(E)は、本発明の一実施形態に従う発光素子の平面図である。(A)-(E) are the top views of the light emitting element according to one Embodiment of this invention. 本発明の第1実施形態に従う発光素子100の製造方法を説明するためのフローチャートである。3 is a flowchart for illustrating a method of manufacturing light emitting device 100 according to the first embodiment of the present invention. 本発明の第2実施形態に従う発光素子200の製造方法を説明するためのフローチャートである。6 is a flowchart illustrating a method for manufacturing light emitting device 200 according to the second embodiment of the present invention.

以下、図面を参照して本発明の実施形態について説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。また、各図面では、説明の便宜上、各層の縦横の比率を実際の比率から誇張して示している。予め、図1〜図4の対応関係を説明すると、図1(A)は、図1(B)のI−I断面図であり、図2(A)は、図2(B)のII−II断面図であり、図3(A)は、図3(B)のIII−III断面図であり、図4(A)は、図4(B)のIV−IV断面図である。また、図1〜図5中の二点鎖線はダイシング用の取りしろを意味する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In principle, the same components are denoted by the same reference numerals, and description thereof is omitted. In each drawing, for convenience of explanation, the vertical / horizontal ratio of each layer is exaggerated from the actual ratio. 1 to 4 will be described in advance. FIG. 1A is a cross-sectional view taken along the line II in FIG. 1B, and FIG. 2A is a cross-sectional view taken along the line II- in FIG. FIG. 3A is a sectional view taken along line II, FIG. 3A is a sectional view taken along line III-III in FIG. 3B, and FIG. 4A is a sectional view taken along line IV-IV in FIG. Moreover, the dashed-two dotted line in FIGS. 1-5 means the allowance for dicing.

(発光素子)
図1(A),(B)に示すように、本発明の第1実施形態に従う発光素子100は、平面視略四角形状である。発光素子100は、支持基板10と、支持基板10上に形成された、表面が発光積層体形成領域RLおよび、発光積層体形成領域RLと離隔した第1導電型電極形成領域REを含む導電層20と、発光積層体形成領域RL上に形成された、第1導電型半導体層31、発光層32および第2導電型半導体層33をこの順に備える発光積層体30と、発光積層体30の第2導電型半導体層33表面に形成された第2導電型電極40と、第1導電型電極形成領域RE上に形成された、第1導電型電極50と、を有する。なお、第1導電型電極50は、第1導電型半導体層31と同じ導電型であり、第2導電型電極40は、第2導電型半導体層33と同じ導電型であり、第1導電型半導体層31と、第2導電型半導体層33とは導電型が異なる。例えば第1導電型半導体層31がn型の場合、第2導電型半導体層はp型となる。同様に、第1導電型半導体層31がp型の場合、第2導電型半導体層はn型となる。各層および各電極は、半導体発光素子(LED)において用いられる一般的な材料から構成することができ、発光積層体30により放射される光の波長も、発光素子100の用途に応じて各層の材料を適宜選択することによって、赤外光、可視光および紫外光のいずれとすることもできる。
(Light emitting element)
As shown in FIGS. 1A and 1B, the light emitting device 100 according to the first embodiment of the present invention has a substantially square shape in plan view. The light emitting element 100 includes a support substrate 10, a conductive layer formed on the support substrate 10, and includes a light emitting laminate forming region RL and a first conductivity type electrode forming region RE separated from the light emitting laminate forming region RL. 20, the light emitting stacked body 30 including the first conductive semiconductor layer 31, the light emitting layer 32, and the second conductive semiconductor layer 33 formed in this order on the light emitting stacked body formation region RL, and the first of the light emitting stacked body 30. It has the 2nd conductivity type electrode 40 formed in the 2 conductivity type semiconductor layer 33 surface, and the 1st conductivity type electrode 50 formed on the 1st conductivity type electrode formation area | region RE. The first conductivity type electrode 50 has the same conductivity type as the first conductivity type semiconductor layer 31, and the second conductivity type electrode 40 has the same conductivity type as the second conductivity type semiconductor layer 33. The semiconductor layer 31 and the second conductivity type semiconductor layer 33 have different conductivity types. For example, when the first conductivity type semiconductor layer 31 is n-type, the second conductivity type semiconductor layer is p-type. Similarly, when the first conductive semiconductor layer 31 is p-type, the second conductive semiconductor layer is n-type. Each layer and each electrode can be composed of a general material used in a semiconductor light emitting device (LED), and the wavelength of light emitted by the light emitting laminate 30 is also determined depending on the use of the light emitting device 100. By appropriately selecting, any of infrared light, visible light and ultraviolet light can be obtained.

なお、導電層20の表面が発光積層体形成領域RLおよび第1導電型電極形成領域REを「含む」とは、導電層20の表面を互いに重なり合わない所定の領域RL,REに区切ることを意味し、領域RLおよび領域RE以外の領域もこの表面には存在してもよい。ただし、発光積層体形成領域RLおよび第1導電型電極形成領域RE間は電気的に接続されるものとする。さらに、第1導電型電極形成領域REとは、その領域の直上に第1導電型電極50が形成される領域を意味し、第1導電型電極50は第1導電型電極形成領域RE以外の導電層20の上方に他の構成を介して延在していてもよい(例えば後述の図2参照)。発光積層体形成領域RLも同様に、その領域の直上に発光積層体30が形成される領域を意味する。   Note that “the surface of the conductive layer 20 includes the light emitting laminate formation region RL and the first conductivity type electrode formation region RE” means that the surface of the conductive layer 20 is divided into predetermined regions RL and RE that do not overlap each other. Meaning, regions other than region RL and region RE may also be present on this surface. However, the light emitting laminate formation region RL and the first conductivity type electrode formation region RE are electrically connected. Further, the first conductivity type electrode formation region RE means a region where the first conductivity type electrode 50 is formed immediately above the region, and the first conductivity type electrode 50 is a region other than the first conductivity type electrode formation region RE. The conductive layer 20 may be extended through another configuration (for example, see FIG. 2 described later). Similarly, the light emitting laminate formation region RL means a region where the light emitting laminate 30 is formed immediately above the region.

以下、本実施形態では簡単のため、第1導電型半導体層31をp型半導体層31(「p層31」と略記する。)とし、第2導電型半導体層33をn型半導体層33(「n層33」と略記する。)と表記する。同様に、第2導電型電極40をn型電極40とし、第1導電型電極50をp型電極50と表記する。ただし、上記各層および各電極のp型およびn型を入れ替えてもよいことは勿論である。なお、本明細書でいう「略四角形状」には、四角形が含まれることは勿論のこと、四角形の角部を面取り等して丸みを付けたものであってもよいことを意味する。後者の場合、丸みが付けられていないと仮想化したときの四角形の四辺を、平面視略四角形状のそれぞれの辺とみなす。   Hereinafter, for the sake of simplicity in this embodiment, the first conductive semiconductor layer 31 is referred to as a p-type semiconductor layer 31 (abbreviated as “p layer 31”), and the second conductive semiconductor layer 33 is referred to as an n-type semiconductor layer 33 ( (Abbreviated as “n layer 33”). Similarly, the second conductivity type electrode 40 is referred to as an n-type electrode 40, and the first conductivity type electrode 50 is referred to as a p-type electrode 50. However, it goes without saying that the p-type and n-type of each layer and each electrode may be interchanged. Note that the “substantially square shape” in this specification includes not only a square shape but also a corner portion of the square that is rounded by chamfering or the like. In the latter case, the four sides of the quadrangle when virtualized when not rounded are regarded as the respective sides of a substantially quadrangular shape in plan view.

さらに、発光素子100において、p型電極50と発光積層体30との間で溝部Tを構成し、該溝部Tを介して発光積層体30とp型電極50とが対面する。p型電極50が、平面視略四角形状の外縁の四辺のうち第1導電型電極形成領域REに隣接する少なくとも一辺に向かう発光積層体30の側光Lの全部を遮蔽する。図1(B)に示す一例では、p型電極50は、コの字型に配置され、四角形の右辺に向かう側光Lの全部がp型電極50により遮蔽されるとともに、上辺および下辺でも遮蔽される。ここで、本明細書における「側光」とは、基板面に対して水平方向に取り出される光をいう。第1導電型電極50の高さは発光積層体30の導電層20からの高さよりも高く形成することが好ましい。さらに、発光積層体30の上面の、第1導電型電極側の端部における、第1導電型電極50への仰角θが30度以上であることが好ましい。換言すれば、図1(A)の一実施形態において、第1導電型電極50と発光積層体30との高さの差をΔH、溝部Tの幅をtとすると、tanθ=ΔH/tについて、tanθ≧1/√3(θは30度以上)であることが好ましい。こうすることで、発光積層体30の側面から第1導電型電極50に向かう側光がより確実に遮蔽される。水平方向より斜め上方への光については、θが30度以上であれば、この角度を超えて第1導電型電極より上方に抜ける光の成分は受光素子へ光が直接届く方向ではない(但し、対象物に当たって反射した光を除く)ため、受光素子への悪影響を考慮する必要がないためである。この場合、第1導電型電極50と発光積層体30との高さの差ΔHを1〜100μmとすることができ、溝部Tの幅tを1〜50μmとすることができる。例えば、ΔHを10μm、tを10μm、θを45度とすることができる。なお、図2(A)を用いて後述する発光素子110のように、p型電極50の一部が発光積層体30の上面の、第1導電型電極側の端部を被覆しているような場合には、θは90度であるとみなす。   Further, in the light emitting element 100, a groove portion T is formed between the p-type electrode 50 and the light emitting laminate 30, and the light emitting laminate 30 and the p-type electrode 50 face each other through the groove portion T. The p-type electrode 50 shields all of the side light L of the light-emitting stacked body 30 toward at least one side adjacent to the first conductivity type electrode formation region RE among the four sides of the outer edge having a substantially rectangular shape in plan view. In the example shown in FIG. 1B, the p-type electrode 50 is arranged in a U-shape, and all of the side light L toward the right side of the quadrangle is shielded by the p-type electrode 50, and is also shielded at the upper and lower sides. Is done. Here, “side light” in this specification means light extracted in a horizontal direction with respect to the substrate surface. The height of the first conductivity type electrode 50 is preferably formed higher than the height of the light emitting laminate 30 from the conductive layer 20. Furthermore, it is preferable that the elevation angle θ to the first conductivity type electrode 50 at the end of the upper surface of the light emitting laminate 30 on the first conductivity type electrode side is 30 degrees or more. In other words, in one embodiment of FIG. 1A, tanθ = ΔH / t, where ΔH is the height difference between the first conductivity type electrode 50 and the light emitting laminate 30, and t is the width of the groove T. Tan θ ≧ 1 / √3 (θ is 30 degrees or more). By doing so, side light from the side surface of the light emitting laminate 30 toward the first conductivity type electrode 50 is more reliably shielded. For light obliquely upward from the horizontal direction, if θ is 30 degrees or more, the component of the light that passes above this angle and passes above the first conductivity type electrode is not in the direction in which the light directly reaches the light receiving element (however, This is because there is no need to consider the adverse effect on the light receiving element. In this case, the height difference ΔH between the first conductivity type electrode 50 and the light emitting laminate 30 can be 1 to 100 μm, and the width t of the groove T can be 1 to 50 μm. For example, ΔH can be 10 μm, t can be 10 μm, and θ can be 45 degrees. 2A, a part of the p-type electrode 50 seems to cover the end portion of the upper surface of the light-emitting laminate 30 on the first conductivity type electrode side, as in the light-emitting element 110 described later with reference to FIG. In this case, θ is considered to be 90 degrees.

n型電極40およびp型電極50に電圧が印加されると、導電層20を介して発光積層体30に電流が流れ(発光素子100は、いわゆる「横型」の発光素子と言える。)、発光積層体30から光が放射される。p型電極50は既述のとおりであるため、図1(B)の実施形態では、右辺に向かう側光Lの全てが遮蔽される。そのため、受発光モジュールに用いた場合に、受光素子を側光Lが遮蔽される側(本実施形態では右辺側)に配置すれば、その誤作動が防止できると共に、受発光モジュールの小型化に資するため、受発光モジュールに供して好適である。   When a voltage is applied to the n-type electrode 40 and the p-type electrode 50, a current flows through the light-emitting stack 30 through the conductive layer 20 (the light-emitting element 100 can be said to be a so-called “lateral” light-emitting element), and light emission. Light is emitted from the stacked body 30. Since the p-type electrode 50 is as described above, in the embodiment of FIG. 1B, all of the side light L toward the right side is shielded. Therefore, when used in a light emitting / receiving module, if the light receiving element is arranged on the side where the side light L is shielded (the right side in this embodiment), the malfunction can be prevented and the light receiving / emitting module can be downsized. Therefore, it is suitable for use in a light emitting / receiving module.

ここで、p型電極50は、図1(B)に例示するように、平面視略四角形状の外縁の四辺のうち、前記少なくとも一辺以外の辺の一部に向かう前記発光積層体の側光をさらに遮蔽することが好ましい。既述のとおり、図1(B)に示す一例では、コの字型に配置されたp型電極50が、四角形の右辺に向かう側光Lを遮蔽するとともに、上辺および下辺でも遮蔽する。発光積層体30の側光をより確実に遮蔽することができるためである。さらに、溝部Tは導電層20を露出することが好ましい。溝部Tが第1導電型半導体層31を残すように形成された場合の、残存する第1導電型半導体層31を経由した側光Lの漏れを防ぎ、側光Lをより確実に遮蔽できるためである。   Here, as illustrated in FIG. 1B, the p-type electrode 50 is a side light of the light-emitting laminate that is directed to a part of the sides other than the at least one side among the four sides of the outer edge having a substantially rectangular shape in plan view. Is preferably further shielded. As described above, in the example shown in FIG. 1B, the p-type electrode 50 arranged in a U-shape shields the side light L toward the right side of the quadrangle, and also shields the upper and lower sides. This is because the side light of the light emitting laminate 30 can be more reliably shielded. Furthermore, it is preferable that the trench T exposes the conductive layer 20. When the groove T is formed so as to leave the first conductivity type semiconductor layer 31, leakage of the side light L via the remaining first conductivity type semiconductor layer 31 can be prevented, and the side light L can be more reliably shielded. It is.

また、上述の第1実施形態に従う発光素子100の変形態様として、図2に示すように、溝部Tが保護膜60によって充填された発光素子110を挙げることができる(図2(A))。発光素子100では、p型電極50が全て第1導電型(p型)電極形成領域REの上方のみに形成されていたが、発光素子110では、p型電極50の一部は、発光積層体形成領域RLの上方に、保護膜60を介して延在して設けられている。なお、本明細書における発光積層体30とp型電極50とが「対面する」とは、図2(A)に示す発光素子110のように、保護膜60などの他の構成を介して発光積層体30とp型電極50(の少なくとも一部)とが対面する場合も含むものとする。   Further, as a modification of the light emitting device 100 according to the first embodiment described above, a light emitting device 110 in which the groove T is filled with the protective film 60 can be cited as shown in FIG. 2 (FIG. 2A). In the light emitting element 100, the p-type electrode 50 is all formed only above the first conductivity type (p-type) electrode formation region RE. However, in the light emitting element 110, a part of the p-type electrode 50 is formed of the light emitting laminate. Above the formation region RL, it extends through the protective film 60. Note that the term “facing” the light-emitting stack 30 and the p-type electrode 50 in this specification means that light is emitted through another structure such as the protective film 60 as in the light-emitting element 110 illustrated in FIG. The case where the laminated body 30 and the p-type electrode 50 (at least a part thereof) face each other is also included.

図2(B)に図示する発光素子110においては、平面視略四角形状の外縁の四辺のうち、左辺の全部(と共に、上辺および下辺の少なくとも一部)に向かう発光積層体30の側光が取り出される。そして、p型電極50と発光積層体30との間で溝部Tを構成し、該溝部Tを介して発光積層体30とp型電極50とが対面する。発光素子110では、p型電極50が、(ダイシング用の取りしろ部分を除き)発光素子110の右辺全てを覆っているので、右辺に向かう発光積層体30の側光Lの全部を確実に遮蔽することができる。また、p型電極50が発光積層体30の一部を覆っているので、該覆った部分の光を遮蔽できる点でも好ましい。なお、保護膜60には、例えばSiO2膜を用いることができる。 In the light-emitting element 110 illustrated in FIG. 2B, the side light of the light-emitting stack 30 toward the entire left side (and at least a part of the upper side and the lower side) out of the four sides of the outer edge that is substantially rectangular in plan view. It is taken out. And the groove part T is comprised between the p-type electrode 50 and the light emitting laminated body 30, and the light emitting laminated body 30 and the p-type electrode 50 face through this groove part T. FIG. In the light emitting element 110, since the p-type electrode 50 covers all of the right side of the light emitting element 110 (except for a portion for dicing), all of the side light L of the light emitting laminate 30 toward the right side is surely shielded. can do. Further, since the p-type electrode 50 covers a part of the light emitting laminate 30, it is also preferable in that the light of the covered part can be shielded. As the protective film 60, for example, a SiO 2 film can be used.

なお、図1には図示しないが、発光素子110と同様に、保護膜60は、発光素子100の溝部Tの一部または全部を充填してもよく、発光積層体を被覆することも好ましい。p型電極50と、発光積層体30との絶縁性を高め短絡を抑制することができる。   Although not illustrated in FIG. 1, like the light emitting element 110, the protective film 60 may fill a part or all of the groove T of the light emitting element 100, and preferably covers the light emitting laminate. The insulation between the p-type electrode 50 and the light emitting laminate 30 can be increased and a short circuit can be suppressed.

さらに、図3(A),(B)に示すように、本発明の第2実施形態に従う発光素子200は、導電層20の発光積層体形成領域RL以外の領域上の、例えば第1導電型電極形成領域REに囲まれた領域上に、第1導電型半導体層31(p層31)と同種の第1層31’と、発光層32と同種の第2層32’と、第2導電型半導体層33(n層33)と同種の第3層33’をこの順に備える構造体30’が形成されていてもよい。そして、第1導電型電極50(p型電極50)は構造体30’と接し、かつ、構造体30’の上面と導電層20とを電気的に接続し、さらに、構造体30’の少なくとも一部を被覆する金属部であることも好ましい。図3(A)は、p型電極50が構造体30’の全部を被覆する場合の例である。また、図4(A),(B)に示すように、p型電極50が構造体30’の一部のみを被覆してもよく、この場合、構造体30’は、発光積層体形成領域RL以外の領域上の、第1導電型電極形成領域REと接し、かつ、領域RLと離隔した領域上に形成することができる。発光素子200,210のいずれも、n型電極40およびp型電極に電圧が印加されると、導電層20を介して発光積層体30に電流が流れ、発光積層体30から光が放射される。なお、構造体30’は第1導電型電極50により短絡しているため、発光しない。   Further, as shown in FIGS. 3A and 3B, the light emitting device 200 according to the second embodiment of the present invention has, for example, a first conductivity type on a region other than the light emitting laminate formation region RL of the conductive layer 20. On the region surrounded by the electrode formation region RE, a first layer 31 ′ of the same type as the first conductive type semiconductor layer 31 (p layer 31), a second layer 32 ′ of the same type as the light emitting layer 32, and a second conductive A structure 30 ′ including a third layer 33 ′ of the same type as the type semiconductor layer 33 (n layer 33) may be formed in this order. The first conductivity type electrode 50 (p-type electrode 50) is in contact with the structure 30 ′, electrically connects the upper surface of the structure 30 ′ and the conductive layer 20, and further includes at least the structure 30 ′. It is also preferable that the metal part covers a part. FIG. 3A shows an example in which the p-type electrode 50 covers the entire structure 30 ′. Further, as shown in FIGS. 4A and 4B, the p-type electrode 50 may cover only a part of the structure 30 ′. In this case, the structure 30 ′ has a light emitting laminate formation region. It can be formed on a region other than the RL, in contact with the first conductivity type electrode formation region RE and separated from the region RL. In both of the light emitting elements 200 and 210, when a voltage is applied to the n-type electrode 40 and the p-type electrode, a current flows through the light emitting stack 30 through the conductive layer 20, and light is emitted from the light emitting stack 30. . Note that the structure 30 ′ is short-circuited by the first conductivity type electrode 50 and thus does not emit light.

なお、第1導電型半導体層31と、第1層31’が「同種」であるとは、両者の極性、組成および厚みが同じまたは略等しいことを意味し、第2層32’および第3層33’についても同様である。構造体30’の技術的意義については後述する。   The first conductive semiconductor layer 31 and the first layer 31 ′ being “same type” means that the polarity, composition and thickness of both are the same or substantially equal, and the second layer 32 ′ and the third layer 31 ′ are the same. The same applies to the layer 33 ′. The technical significance of the structure 30 'will be described later.

また、詳述しないが、発光素子110と同様に、第2実施形態に従う発光素子200,210においても、溝部Tの一部または全部に保護膜60が充填されていてもよい。   Further, although not described in detail, in the light emitting elements 200 and 210 according to the second embodiment as well as the light emitting element 110, the protective film 60 may be filled in a part or all of the groove T.

さらに、本発明のn型電極40およびp型電極50の電極形状は、図1〜図4の形状に何ら制限されるものではなく、発光積層体30に流れる電流を適正化するために、例えば、図5(A)〜(E)に示すような、種々の電極形状を取ることができる。   Furthermore, the electrode shapes of the n-type electrode 40 and the p-type electrode 50 of the present invention are not limited to the shapes of FIGS. 1 to 4, and in order to optimize the current flowing through the light emitting laminate 30, for example, Various electrode shapes as shown in FIGS. 5A to 5E can be taken.

図5(A)は、断面図としては図1(A)と同様の電極形状であるが、平面視したときに、p型電極50が、発光積層体形成領域RLおよび溝部Tを除く領域の全面に渡り形成されている。この場合、右辺、上辺および下辺の3辺への側光を遮蔽することができ、好ましい。以下、本段落では、光を取り出す側の辺を「左辺」とし、側光Lの全部を遮蔽する辺を「右辺」とする。遮蔽すべき右辺以外の、例えば上辺または下辺から斜方に漏れた光が反射して右辺方向に周り込む場合を防ぐため、図5(A)のように、左辺の端部から背後に漏れる方向の光の過半を防ぐ形状であることが好ましい。また、図5(B)に示すように、右辺側全てと、上辺および下辺の、右辺側の一部が覆われるようにp型電極50を設けることも好ましく、この場合も反射による側光Lの右辺側への回り込みを抑制することができる。また、図5(C)では、発光積層体30(すなわち発光積層体形成領域RL)が平面視凸形状であり、p型電極50(すなわち第1導電型電極形成領域RE)が平面視凹形状である。図5(D)も、図5(C)と同様に、発光積層体形成領域RLが平面視凸形状であり、第1導電型電極形成領域REが平面視凹形状となっているが、発光積層体形成領域RLの凸部に丸みが設けられており、直線部と曲線部から凸部が形成されている。図5(E)も、図5(C)と同様に、発光積層体形成領域RLが平面視凸形状であり、第1導電型電極形成領域REが平面視凹形状となっているが、発光積層体形成領域RLの凸部が放物線上の丸みを有している。また、図5(C)〜(E)では、n型電極40が複数設けられている。このように、n型電極40およびp型電極50の形状は、所望に応じて適宜設計することができる。   5A is an electrode shape similar to that of FIG. 1A as a cross-sectional view, but when viewed in plan, the p-type electrode 50 has a region excluding the light emitting laminate formation region RL and the trench T. It is formed over the entire surface. In this case, side light to the three sides of the right side, the upper side, and the lower side can be blocked, which is preferable. Hereinafter, in this paragraph, the side from which light is extracted is referred to as a “left side”, and the side that blocks all of the side light L is referred to as a “right side”. In order to prevent light leaking obliquely from the upper side or the lower side, for example, from the upper side or the lower side, other than the right side to be shielded, the direction of leaking from the end of the left side to the back as shown in FIG. 5A It is preferable that the shape prevent the majority of light. Further, as shown in FIG. 5B, it is also preferable to provide the p-type electrode 50 so as to cover all of the right side and a part on the right side of the upper side and the lower side. Can be suppressed. 5C, the light emitting laminate 30 (ie, the light emitting laminate forming region RL) has a convex shape in plan view, and the p-type electrode 50 (ie, the first conductivity type electrode forming region RE) has a concave shape in plan view. It is. 5D, as in FIG. 5C, the light emitting laminate formation region RL has a convex shape in plan view, and the first conductivity type electrode formation region RE has a concave shape in plan view. A round portion is provided in the convex portion of the stacked body forming region RL, and the convex portion is formed from the straight portion and the curved portion. 5E, similarly to FIG. 5C, the light emitting laminate formation region RL has a convex shape in plan view, and the first conductivity type electrode formation region RE has a concave shape in plan view. The convex part of the laminated body formation region RL has a roundness on a parabola. 5C to 5E, a plurality of n-type electrodes 40 are provided. As described above, the shapes of the n-type electrode 40 and the p-type electrode 50 can be appropriately designed as desired.

なお、本発明に従う発光素子はフリップチップ型およびワイヤーボンディング型のいずれにも適用可能であり、第1導電型電極50(p型電極50)上にはんだが設けられることが好ましい。   The light emitting device according to the present invention can be applied to both a flip chip type and a wire bonding type, and it is preferable that solder is provided on the first conductivity type electrode 50 (p type electrode 50).

また、支持基板10は導電層20を介して基板接合またはメッキ形成が可能であり、かつ、発光積層体30を支持できる材料であればどのようなものでもよいが、発光積層体30との間の熱膨張係数が近い材料であることが好ましい。発光積層体30の材料に合わせて、例えば、Si基板やSiC基板、GaAs基板、GaNやAlN等の基板、Cu、W、Mo等の金属や合金材料など、また、エポキシやポリイミドなどの樹脂、ガラス基板等の透光性基板を支持基板10に用いることができる。導電層20は、発光積層体形成領域RLと第1導電型電極形成領域REとの間の電気的な接続が維持される形態であれば、導電体および絶縁体からなるパターン形状(図示せず)を有してもよい。   The support substrate 10 may be any material as long as it can be bonded to the substrate or formed by plating via the conductive layer 20 and can support the light emitting laminate 30. It is preferable that the material has a close thermal expansion coefficient. In accordance with the material of the light emitting laminate 30, for example, a Si substrate, a SiC substrate, a GaAs substrate, a substrate such as GaN or AlN, a metal or alloy material such as Cu, W, or Mo, a resin such as epoxy or polyimide, A light-transmitting substrate such as a glass substrate can be used for the support substrate 10. The conductive layer 20 has a pattern shape (not shown) made of a conductor and an insulator as long as the electrical connection between the light emitting laminate formation region RL and the first conductivity type electrode formation region RE is maintained. ).

以下、各構成を例示するが、本実施形態は発光素子に用いることのできる種々の材料を適用することができ、以下の具体例に何ら制限されるものではない。   Hereinafter, although each structure is illustrated, this embodiment can apply the various material which can be used for a light emitting element, and is not restrict | limited to the following specific examples at all.

まず、支持基板10には、例えばSi基板を用いることができる。図示しないが、支持基板10と、導電層20との間には、支持基板10および導電層20を接合するためのSi基板側の接合層および導電層側の反射接合層が設けられていることが好ましい。この接合層には、例えばTi、Pt、Auおよびこれらの金属より選択される合金、ならびにこれらの積層構造を用いることができる。また、反射接合層には、発光波長に対して高反射率を有する材料である例えばAl、Au、Pt、Cuなどの金属、およびこれらの金属より選択される合金、ならびにこれらの積層構造を用いることができる。接合層および反射接合層の接合面にあたる表面は、Auのような酸化しない金属を用いることが接合強度の点から望ましい。また、半田系の材料を用いて接合することも可能である。導電層が前述の絶縁体を含むパターン形状を有する場合、斯かる絶縁体には例えばSiO2を用いることができる。 First, for example, a Si substrate can be used as the support substrate 10. Although not shown, between the support substrate 10 and the conductive layer 20, a Si substrate-side bonding layer and a conductive layer-side reflective bonding layer for bonding the support substrate 10 and the conductive layer 20 are provided. Is preferred. For this bonding layer, for example, Ti, Pt, Au, an alloy selected from these metals, and a laminated structure thereof can be used. The reflective bonding layer is made of a material having a high reflectance with respect to the emission wavelength, for example, a metal such as Al, Au, Pt, or Cu, an alloy selected from these metals, and a laminated structure thereof. be able to. It is desirable from the viewpoint of bonding strength that the surface corresponding to the bonding surface of the bonding layer and the reflective bonding layer is made of a metal that does not oxidize such as Au. It is also possible to join using a solder material. In the case where the conductive layer has a pattern shape including the aforementioned insulator, for example, SiO 2 can be used for such an insulator.

p層31、発光層32およびn層33からなる発光積層体30の各層には、例えば発光積層体30が赤外光を放射する場合には、GaAs材料,AlGaAs材料,InGaAs材料,AlGaInAs材料およびInGaAsP材料などから、組成を適宜選択して用いることができる。発光積層体30はバッファ層を有していてもよいし、発光層32は多重量子井戸構造を有していてもよい。n型およびp型の不純物も一般的なものを使用することができる。   For example, when the light emitting laminate 30 emits infrared light, each layer of the light emitting laminate 30 including the p layer 31, the light emitting layer 32, and the n layer 33 includes a GaAs material, an AlGaAs material, an InGaAs material, an AlGaInAs material, and the like. The composition can be appropriately selected from InGaAsP materials and the like. The light emitting laminate 30 may have a buffer layer, and the light emitting layer 32 may have a multiple quantum well structure. Common n-type and p-type impurities can also be used.

また、n型電極40にはn層33と良好なコンタクトを形成する材料が用いられ、例えばAu、Ge、Ni、Ti、Pt、Cu、Sn、Agおよびこれらの金属より選択される合金、ならびにこれらの積層構造を用いることができる。例えば、n型電極40のオーミック電極としてAu、Ge、Niを、半田めっきの材料としてCu、Sn、Agを、これらの間のシードまたはバリア層としてTi、Ni、Ptを用いることができる。なお、p型電極50には、発光積層体30から放射される光を透過しない材料を用いる。例えばAu、Ni、Ti、Pt、Cu、Sn、Agおよびその合金、ならびにこれらの積層構造を用いることができる。また、オーミック電極としてAuZnを用いることができ、シードまたはバリア層としてのTi、Ni、Ptを、半田めっきの材料としてCu、Sn、Agを用いることができる。   The n-type electrode 40 is made of a material that forms a good contact with the n-layer 33. For example, Au, Ge, Ni, Ti, Pt, Cu, Sn, Ag, and alloys selected from these metals, and These laminated structures can be used. For example, Au, Ge, Ni can be used as the ohmic electrode of the n-type electrode 40, Cu, Sn, Ag can be used as a material for solder plating, and Ti, Ni, Pt can be used as a seed or barrier layer therebetween. The p-type electrode 50 is made of a material that does not transmit light emitted from the light emitting laminate 30. For example, Au, Ni, Ti, Pt, Cu, Sn, Ag and an alloy thereof, and a laminated structure thereof can be used. Further, AuZn can be used as an ohmic electrode, Ti, Ni, and Pt can be used as a seed or barrier layer, and Cu, Sn, and Ag can be used as a solder plating material.

(発光素子の製造方法)
次に、これまで説明してきた本発明の第1実施形態に従う発光素子100の製造方法の一実施形態を、図6を用いて説明する。なお、図1〜5では、ダイシング用の取りしろを二点鎖線で表記したが、簡単のため図6および後述の図7では表記しない。平面視略四角形状である発光素子100の製造方法は、成長用基板90(図6(A))上に、第2導電型半導体層33、発光層32および第1導電型半導体層31を順次形成してなる積層体30を形成する工程(図6(B))と、第1導電型半導体層31上に導電層20を形成する工程(図6(C))と、導電層20および支持基板10を接合する工程(図6(D))と、成長用基板90を剥離する工程(図6(E))と、積層体30の表面を第1領域R1および第2領域R2に区画し、第2領域R2における積層体30の全部を、導電層20が露出するまで除去する除去工程(図6(F))と、該除去工程の後、積層体30の第2導電型半導体層33上に、第2導電型半導体層33と同じ導電型の第2導電型電極40を形成する第2導電型電極形成工程と、前記露出した導電層20の第1導電型電極形成領域RE上に、第1導電型半導体層31と同じ導電型の第1導電型電極50の少なくとも一部を形成する第1導電型電極形成工程(図6(G)〜(H))と、を有する。なお、ここでいう積層体30の表面を第1領域R1および第2領域R2に「区画する」とは、積層体30の表面を所定の領域に二分することを意味し、他の領域は含まないものとする。
(Manufacturing method of light emitting element)
Next, an embodiment of a method for manufacturing the light emitting device 100 according to the first embodiment of the present invention described so far will be described with reference to FIG. 1 to 5, the dicing margin is indicated by a two-dot chain line, but for simplicity, it is not indicated in FIG. 6 and FIG. 7 described later. In the method of manufacturing the light emitting element 100 having a substantially square shape in plan view, the second conductive semiconductor layer 33, the light emitting layer 32, and the first conductive semiconductor layer 31 are sequentially formed on the growth substrate 90 (FIG. 6A). The step of forming the formed laminate 30 (FIG. 6B), the step of forming the conductive layer 20 on the first conductive type semiconductor layer 31 (FIG. 6C), the conductive layer 20 and the support A step of bonding the substrate 10 (FIG. 6D), a step of peeling the growth substrate 90 (FIG. 6E), and a surface of the stacked body 30 are divided into a first region R1 and a second region R2. Then, a removal step (FIG. 6F) of removing all of the stacked body 30 in the second region R2 until the conductive layer 20 is exposed, and after the removing step, the second conductive type semiconductor layer 33 of the stacked body 30. A second conductivity type that forms a second conductivity type electrode 40 of the same conductivity type as the second conductivity type semiconductor layer 33 on the second conductivity type electrode A first forming step of forming at least a part of the first conductivity type electrode 50 of the same conductivity type as the first conductivity type semiconductor layer 31 on the first conductivity type electrode formation region RE of the exposed conductive layer 20 in the pole forming step; A conductive electrode forming step (FIGS. 6G to 6H). Here, “partitioning” the surface of the laminated body 30 into the first region R1 and the second region R2 means that the surface of the laminated body 30 is divided into two predetermined regions, and other regions are included. Make it not exist.

ここで、第1導電型電極形成工程において、第1導電型電極50と積層体30との間で構成される溝部Tを介して、積層体30と第1導電型電極50とが対面し、前記平面視略四角形状の外縁の四辺のうち第1導電型電極形成領域REに隣接する少なくとも一辺に向かう積層体30の側光の全部が第1導電型電極50によって遮蔽されるように第1導電型電極50を形成する。こうして作製された発光素子100は、受発光モジュールに用いた場合に、受光素子を側光が遮蔽される側に配置すれば、その誤作動が防止できると共に、受発光モジュールの小型化に資するため、受発光モジュールに供して好適である。各工程については、MOCVD法、スパッタリング法、めっき成長法などの常法を適用することが可能であり、以下の説明はその具体例および好適な例に過ぎない。   Here, in the first conductivity type electrode forming step, the multilayer body 30 and the first conductivity type electrode 50 face each other through the groove T formed between the first conductivity type electrode 50 and the multilayer body 30. The first conductive type electrode 50 shields all of the side light of the stacked body 30 toward at least one side adjacent to the first conductive type electrode formation region RE out of the four sides of the outer edge having a substantially rectangular shape in plan view. Conductive electrode 50 is formed. When the light emitting device 100 manufactured in this way is used in a light receiving and emitting module, if the light receiving device is arranged on the side where the side light is shielded, the malfunction can be prevented and the light receiving and emitting module can be downsized. It is suitable for use in a light emitting / receiving module. For each step, conventional methods such as MOCVD, sputtering, and plating growth can be applied, and the following description is merely a specific example and a preferred example.

成長用基板90には、例えばGaAs基板を用いることができる。成長用基板90を剥離する工程(図6(E))を容易に行うため、積層体30を形成する工程(図6(B))に先立ち、成長用基板に対して適切なエッチング選択比を有するエッチングストップ層を形成してもよい。この場合、剥離する工程(図6(E))においては、エッチングにより成長用基板を除去して剥離することができる。また、レーザー照射等によって成長用基板を剥離してもよい。   As the growth substrate 90, for example, a GaAs substrate can be used. In order to easily perform the step of peeling the growth substrate 90 (FIG. 6E), an appropriate etching selectivity with respect to the growth substrate is set prior to the step of forming the stacked body 30 (FIG. 6B). An etching stop layer may be formed. In this case, in the step of peeling (FIG. 6E), the growth substrate can be removed by etching to be peeled off. Further, the growth substrate may be peeled off by laser irradiation or the like.

除去工程(図6(F))においては、例えばフォトレジスト等を第2導電型半導体層33表面に塗布してマスクを形成し、第1領域R1および第2領域R2に区画して、リン酸および過酸化水素等を用いてエッチングを行うことができる。   In the removing step (FIG. 6F), for example, a photoresist or the like is applied to the surface of the second conductivity type semiconductor layer 33 to form a mask, which is partitioned into a first region R1 and a second region R2, and phosphoric acid Etching can be performed using hydrogen peroxide or the like.

電極形成工程(図6(G)〜(H))においては、まずTi、Cuなどのめっきシード層41,51を積層体30および露出した導電層20表面に形成する。次いでレジストパターンを形成した後に、めっき成長法により第2導電型電極42および第1導電型電極52をそれぞれのシード層41,51上にめっき成長させて、第2導電型電極40および第1導電型電極50を形成することができる。なお、本実施形態の場合、電極の高さを揃えるため、別々に第2導電型電極42および第1導電型電極52を成長させることが好ましい。なお、めっき成長後、不要な部分のシード層41、51をエッチングにより除去する。既述のとおり、第1導電型電極50が、所定の一辺側に向かう積層体30の側光を遮蔽するように形成する限りは、種々の電極形状とすることができる。また、発光素子100,200の説明において既述のとおり、保護膜60を設けてもよい。   In the electrode formation step (FIGS. 6G to 6H), first, plating seed layers 41 and 51 such as Ti and Cu are formed on the laminate 30 and the exposed conductive layer 20 surface. Next, after forming a resist pattern, the second conductivity type electrode 42 and the first conductivity type electrode 52 are plated and grown on the seed layers 41 and 51 by a plating growth method, and the second conductivity type electrode 40 and the first conductivity type are then grown. A mold electrode 50 can be formed. In the case of this embodiment, it is preferable to grow the second conductivity type electrode 42 and the first conductivity type electrode 52 separately in order to make the heights of the electrodes uniform. After the plating growth, unnecessary portions of the seed layers 41 and 51 are removed by etching. As described above, as long as the first conductivity type electrode 50 is formed so as to shield the side light of the stacked body 30 toward the predetermined one side, various electrode shapes can be used. Further, as described above in the description of the light emitting elements 100 and 200, the protective film 60 may be provided.

また、本発明の製造方法の変形態様として、第2実施形態に従う発光素子200の製造方法を、図6,7を用いて説明する。平面視略四角形状である発光素子100の製造方法は、成長用基板90(図6(A))上に、第2導電型半導体層33、発光層32および第1導電型半導体層31を順次形成してなる積層体30を形成する工程(図6(B))と、第1導電型半導体層31上に導電層20を形成する工程(図6(C))と、導電層20および支持基板10を接合する工程(図6(D))と、成長用基板90を剥離する工程(図6(E),図7(A))と、積層体30の表面を第1領域R1および第2領域R2に区画し、第2領域R2における積層体30の一部を導電層20が露出するまで除去する除去工程(図7(B))と、該除去工程の後、第1領域R1側の積層体30の第2導電型半導体層33上に、該第2導電型半導体層33と同じ導電型の第2導電型電極40を形成する第2導電型電極形成工程と、前記露出した導電層20の第1導電型電極形成領域RE上に、第1導電型半導体層31と同じ導電型の第1導電型電極50を、第2領域R2側の積層体の少なくとも一部を被覆して形成する第1導電型電極形成工程(図7(C)〜(D))と、を有する。ここで、便宜上、除去工程(図7(B))の後、第2領域R2側に残留した積層体を積層体30’と表記する。除去工程(図7(B))の後、第1領域R1側の積層体30と、第2領域R2側の積層体30’とは離隔する。第2領域R2側の第1半導体層が前述の第1層31’となり、同様に、発光層が前述の第2層32’となり、第2半導体層が第3層33’となる。なお、図7の実施形態の場合、積層体30’の上面で第1導電型電極50が延在してつながっており、積層体の全部を被覆している。   As a modification of the manufacturing method of the present invention, a manufacturing method of the light emitting device 200 according to the second embodiment will be described with reference to FIGS. In the method of manufacturing the light emitting element 100 having a substantially square shape in plan view, the second conductive semiconductor layer 33, the light emitting layer 32, and the first conductive semiconductor layer 31 are sequentially formed on the growth substrate 90 (FIG. 6A). The step of forming the formed laminate 30 (FIG. 6B), the step of forming the conductive layer 20 on the first conductive type semiconductor layer 31 (FIG. 6C), the conductive layer 20 and the support The step of bonding the substrate 10 (FIG. 6D), the step of peeling the growth substrate 90 (FIG. 6E, FIG. 7A), and the surface of the stacked body 30 with the first region R1 and the first A removal step (FIG. 7B) that divides into two regions R2 and removes part of the stacked body 30 in the second region R2 until the conductive layer 20 is exposed, and after the removal step, the first region R1 side The second conductivity type of the same conductivity type as the second conductivity type semiconductor layer 33 on the second conductivity type semiconductor layer 33 of the stacked body 30 of A second conductivity type electrode forming step for forming the pole 40 and a first conductivity type electrode 50 of the same conductivity type as the first conductivity type semiconductor layer 31 on the exposed first conductivity type electrode formation region RE of the conductive layer 20. Including a first conductivity type electrode forming step (FIGS. 7C to 7D) that covers and forms at least a part of the laminate on the second region R2 side. Here, for convenience, the stacked body remaining on the second region R2 side after the removing step (FIG. 7B) is referred to as a stacked body 30 '. After the removing step (FIG. 7B), the stacked body 30 on the first region R1 side is separated from the stacked body 30 'on the second region R2 side. The first semiconductor layer on the second region R2 side is the first layer 31 ', and similarly, the light emitting layer is the second layer 32', and the second semiconductor layer is the third layer 33 '. In the case of the embodiment of FIG. 7, the first conductivity type electrode 50 is extended and connected on the upper surface of the multilayer body 30 ', and covers the entire multilayer body.

第1導電型電極形成工程において、第1導電型電極50と第1領域R1側の積層体30との間で構成される溝部Tを介して、第1領域R1側の積層体30と第1導電型電極50とが対面し、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう第1領域R1側の積層体30の側光の全部が第1導電型電極50によって遮蔽されるように第1導電型電極50を形成する。   In the first conductivity type electrode forming step, the first layer R1 side laminate 30 and the first region R1 side laminate 30 are formed via the groove T formed between the first conductivity type electrode 50 and the first region R1 side laminate 30. All of the side light of the laminated body 30 on the first region R1 side facing the conductive electrode 50 and facing at least one side adjacent to the first conductive type electrode forming region among the four sides of the outer edge having a substantially rectangular shape in plan view. The first conductivity type electrode 50 is formed so as to be shielded by the first conductivity type electrode 50.

こうして作製された発光素子200は、受発光モジュールに用いた場合に、受光素子を側光が遮蔽される側に配置すれば、その誤作動が防止できると共に、受発光モジュールの小型化に資するため、受発光モジュールに供して好適である。   When the light emitting element 200 manufactured in this way is used in a light receiving / emitting module, if the light receiving element is arranged on the side where the side light is shielded, the malfunction can be prevented and the light receiving / emitting module can be downsized. It is suitable for use in a light emitting / receiving module.

また、本実施形態の場合、前述の発光素子100の製造方法の実施形態と異なり、積層体30と、積層体30’との高さが揃っているため、第2導電型電極40および第1導電型電極50の高さを揃えるためにめっき成長を別々に行う必要がなく、工程数を減少させることができ、好ましい。   Further, in the case of the present embodiment, unlike the above-described embodiment of the method for manufacturing the light emitting device 100, the heights of the stacked body 30 and the stacked body 30 ′ are uniform. It is not necessary to perform plating growth separately in order to make the heights of the conductive electrodes 50 uniform, and the number of steps can be reduced, which is preferable.

(受発光モジュール)
本発明の一実施形態に従う受発光モジュールは、前述の発光素子と、受光素子とを有し、前記発光素子の前記遮蔽される前記一辺の側に、前記受光素子が配置されることを特徴とする。例えば、透光性基板上に回路を形成し、回路の一方に前述の発光素子の第1導電型電極と第2導電型電極の位置を合わせて半田等を用いて実装し、回路の他方に受光素子を実装する。これにより透光性基板を透過して出射した発光素子の光が、対象物に反射して透光性基板に入射し、受光素子によって検出されることになる。本発明の特徴部によって、透光性基板の回路を形成する側においては、発光素子と受光素子との間の誤作動防止措置が発光素子自体に備えられているため、発光素子と受光素子との間の遮光構造は不要であり、より小型の受発光モジュール設計が可能となる。
(Light emitting / receiving module)
A light emitting / receiving module according to an embodiment of the present invention includes the above light emitting element and a light receiving element, and the light receiving element is disposed on the side of the light shielding element that is shielded. To do. For example, a circuit is formed over a light-transmitting substrate, the first conductive type electrode and the second conductive type electrode of the light-emitting element are aligned with one side of the circuit and mounted using solder or the like, and the other side of the circuit is mounted. Mount the light receiving element. As a result, the light emitted from the light-emitting element that has been transmitted through the light-transmitting substrate is reflected by the object, enters the light-transmitting substrate, and is detected by the light-receiving element. According to the feature of the present invention, on the side where the circuit of the translucent substrate is formed, the light emitting element itself is provided with a malfunction prevention measure between the light emitting element and the light receiving element. Therefore, a light receiving / emitting module design can be made smaller.

本発明によれば、受発光モジュールに供して好適な発光素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can use for a light emitting / receiving module and can provide a suitable light emitting element.

10 支持基板
20 導電層
30 発光積層体(積層体)
31 第1導電型半導体層(p層)
32 発光層
33 第2導電型半導体層(n層)
40 第2導電型電極(n型電極)
50 第1導電型電極(p型電極)
90 成長用基板
100 発光素子
L 側光
RL 発光積層体形成領域
RE 第1導電型電極形成領域
T 溝部
DESCRIPTION OF SYMBOLS 10 Support substrate 20 Conductive layer 30 Light emitting laminated body (laminated body)
31 1st conductivity type semiconductor layer (p layer)
32 Light emitting layer 33 Second conductive type semiconductor layer (n layer)
40 Second conductivity type electrode (n-type electrode)
50 First conductivity type electrode (p-type electrode)
90 growth substrate 100 light emitting element L side light RL light emitting laminate forming region RE first conductivity type electrode forming region T groove

Claims (11)

平面視略四角形状の発光素子であって、
支持基板と、
該支持基板上に形成された、表面が発光積層体形成領域および、該発光積層体形成領域と離隔した第1導電型電極形成領域を含む導電層と、
前記発光積層体形成領域上に形成された、第1導電型半導体層、発光層および第2導電型半導体層をこの順に備える発光積層体と、
前記発光積層体の前記第2導電型半導体層表面上に形成された、該第2導電型半導体層と同じ導電型の第2導電型電極と、
前記第1導電型電極形成領域上に形成された、前記第1導電型半導体層と同じ導電型の第1導電型電極と、を有し、
前記第1導電型電極と前記発光積層体との間で溝部を構成し、該溝部を介して前記発光積層体と前記第1導電型電極とが対面し、該第1導電型電極が、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう前記発光積層体の側光の全部を遮蔽することを特徴とする発光素子。
A light emitting device having a substantially rectangular shape in plan view,
A support substrate;
A conductive layer formed on the support substrate, the surface including a light emitting laminate forming region and a first conductivity type electrode forming region separated from the light emitting laminate forming region;
A light emitting laminate including a first conductive semiconductor layer, a light emitting layer, and a second conductive semiconductor layer formed in this order on the light emitting laminate forming region;
A second conductivity type electrode of the same conductivity type as the second conductivity type semiconductor layer formed on the surface of the second conductivity type semiconductor layer of the light emitting laminate;
A first conductivity type electrode formed on the first conductivity type electrode formation region and having the same conductivity type as the first conductivity type semiconductor layer;
A groove is formed between the first conductivity type electrode and the light emitting laminate, the light emitting laminate and the first conductivity type electrode face each other through the groove, and the first conductivity type electrode is A light-emitting element that blocks all side light of the light-emitting laminated body that faces at least one side adjacent to the first conductivity type electrode formation region among four sides of an outer edge that is substantially rectangular in plan view.
前記第1導電型電極の高さは、前記発光積層体の前記導電層からの高さよりも高く、
前記発光積層体の上面の、前記第1導電型電極側の端部における、前記第1導電型電極への仰角θが30度以上である、請求項1に記載の発光素子。
The height of the first conductivity type electrode is higher than the height of the light emitting laminate from the conductive layer,
2. The light emitting device according to claim 1, wherein an elevation angle θ with respect to the first conductivity type electrode at an end of the upper surface of the light emitting laminate on the first conductivity type electrode side is 30 degrees or more.
前記第1導電型電極は、前記平面視略四角形状の外縁の四辺のうち、前記少なくとも一辺以外の辺の一部に向かう前記発光積層体の側光をさらに遮蔽する、請求項1または2に記載の発光素子。   The said 1st conductivity type electrode further shields the side light of the said light emitting laminated body which goes to a part of sides other than the said at least one side among the four sides of the outer edge of the substantially rectangular shape in the plan view. The light emitting element of description. 前記第1導電型電極は、前記第1導電型電極形成領域上に形成された、前記第1導電型半導体層と同種の第1層と、前記発光層と同種の第2層と、前記第2導電型半導体層と同種の第3層と、をこの順に備える構造体と接し、
前記構造体の上面と前記導電層とを電気的に接続し、
前記構造体の少なくとも一部を被覆する金属部である、請求項1〜3のいずれか1項に記載の発光素子。
The first conductivity type electrode is formed on the first conductivity type electrode formation region, the first type of the same type as the first conductivity type semiconductor layer, the second layer of the same type as the light emitting layer, In contact with a structure including a second conductivity type semiconductor layer and a third layer of the same kind in this order,
Electrically connecting the upper surface of the structure and the conductive layer;
The light emitting element of any one of Claims 1-3 which is a metal part which coat | covers at least one part of the said structure.
前記第1導電型電極が前記構造体の全部を被覆する、請求項4に記載の発光素子。   The light emitting device according to claim 4, wherein the first conductivity type electrode covers the entire structure. 前記発光積層体形成領域が平面視凸形状であり、前記第1導電型電極形成領域が平面視凹形状である、請求項1〜5のいずれか1項に記載の発光素子。   The light emitting element of any one of Claims 1-5 whose said light emitting laminated body formation area is planar view convex shape, and whose said 1st conductivity type electrode formation area is planar view concave shape. 前記第1導電型電極上にはんだが設けられる、請求項1〜6のいずれか1項に記載の発光素子。   The light emitting device according to claim 1, wherein solder is provided on the first conductivity type electrode. 前記導電層は導電体および絶縁体からなるパターン形状を有する、請求項1〜7のいずれか1項に記載の発光素子。   The light emitting device according to claim 1, wherein the conductive layer has a pattern shape including a conductor and an insulator. 平面視略四角形状の発光素子の製造方法であって、
成長用基板上に、第2導電型半導体層、発光層および第1導電型半導体層を順次形成してなる積層体を形成する工程と、
前記第1導電型半導体層上に導電層を形成する工程と、
前記導電層および支持基板を接合する工程と、
前記成長用基板を剥離する工程と、
前記積層体の表面を第1領域および第2領域に区画し、前記第2領域における前記積層体の全部を、前記導電層が露出するまで除去する除去工程と、
該除去工程の後、前記積層体の前記第1領域上に、前記第2導電型半導体層と同じ導電型の第2導電型電極を形成する第2導電型電極形成工程と、
前記露出した前記導電層の第1導電型電極形成領域上に、前記第1導電型半導体層と同じ導電型の第1導電型電極の少なくとも一部を形成する第1導電型電極形成工程と、を有し、
前記第1導電型電極形成工程において、前記第1導電型電極と前記積層体との間で構成される溝部を介して、前記積層体と前記第1導電型電極とが対面し、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう前記積層体の側光の全部が前記第1導電型電極によって遮蔽されるように前記第1導電型電極を形成することを特徴とする発光素子の製造方法。
A method of manufacturing a light emitting element having a substantially square shape in plan view,
Forming a laminated body formed by sequentially forming a second conductive semiconductor layer, a light emitting layer and a first conductive semiconductor layer on a growth substrate;
Forming a conductive layer on the first conductive semiconductor layer;
Bonding the conductive layer and the support substrate;
Peeling the growth substrate;
A step of dividing the surface of the multilayer body into a first region and a second region, and removing all of the multilayer body in the second region until the conductive layer is exposed;
A second conductivity type electrode forming step of forming a second conductivity type electrode of the same conductivity type as the second conductivity type semiconductor layer on the first region of the stacked body after the removing step;
A first conductivity type electrode forming step of forming at least a part of a first conductivity type electrode of the same conductivity type as the first conductivity type semiconductor layer on the exposed first conductivity type electrode formation region of the conductive layer; Have
In the first conductivity type electrode forming step, the laminate and the first conductivity type electrode face each other through a groove formed between the first conductivity type electrode and the laminate, and the plan view Of the four sides of the substantially rectangular outer edge, the first conductivity type is such that all of the side light of the laminate directed to at least one side adjacent to the first conductivity type electrode forming region is shielded by the first conductivity type electrode. The manufacturing method of the light emitting element characterized by forming an electrode.
平面視略四角形状の発光素子の製造方法であって、
成長用基板上に、第2導電型半導体層、発光層および第1導電型半導体層を順次形成してなる積層体を形成する工程と、
前記第1導電型半導体層上に導電層を形成する工程と、
前記導電層および支持基板を接合する工程と、
前記成長用基板を剥離する工程と、
前記積層体の表面を第1領域および第2領域に区画し、前記第2領域における前記積層体の一部を前記導電層が露出するまで除去する除去工程と、
該除去工程の後、前記第1領域側の前記積層体の前記第2導電型半導体層上に、該第2導電型半導体層と同じ導電型の第2導電型電極を形成する第2導電型電極形成工程と、
前記露出した前記導電層の第1導電型電極形成領域上に、前記第1導電型半導体層と同じ導電型の第1導電型電極を、前記第2領域側の前記積層体の少なくとも一部を被覆して形成する第1導電型電極形成工程と、を有し、
前記除去工程の後、前記第1領域側の前記積層体と、前記第2領域側の前記積層体とは離隔し、
前記第1導電型電極形成工程において、前記第1導電型電極と前記第1領域側の前記積層体との間で構成される溝部を介して、前記第1領域側の前記積層体と前記第1導電型電極とが対面し、前記平面視略四角形状の外縁の四辺のうち前記第1導電型電極形成領域に隣接する少なくとも一辺に向かう前記第1領域側の前記積層体の側光の全部が前記第1導電型電極によって遮蔽されるように前記第1導電型電極を形成することを特徴とする発光素子の製造方法。
A method of manufacturing a light emitting element having a substantially square shape in plan view,
Forming a laminated body formed by sequentially forming a second conductive semiconductor layer, a light emitting layer and a first conductive semiconductor layer on a growth substrate;
Forming a conductive layer on the first conductive semiconductor layer;
Bonding the conductive layer and the support substrate;
Peeling the growth substrate;
Removing the surface of the multilayer body into a first region and a second region, and removing a part of the multilayer body in the second region until the conductive layer is exposed;
After the removing step, a second conductivity type for forming a second conductivity type electrode of the same conductivity type as the second conductivity type semiconductor layer on the second conductivity type semiconductor layer of the stacked body on the first region side An electrode forming step;
A first conductivity type electrode of the same conductivity type as the first conductivity type semiconductor layer is disposed on the exposed first conductivity type electrode formation region of the conductive layer, and at least a part of the stacked body on the second region side is disposed. A first conductivity type electrode forming step of covering and forming,
After the removing step, the stacked body on the first region side is separated from the stacked body on the second region side,
In the first conductivity type electrode forming step, the stack on the first region side and the first through the groove portion formed between the first conductivity type electrode and the stack on the first region side. All of the side light of the laminate on the first region side facing the first conductivity type electrode and facing at least one side adjacent to the first conductivity type electrode forming region among the four sides of the substantially rectangular outer edge in plan view. Forming the first conductive type electrode so that the first conductive type electrode is shielded by the first conductive type electrode.
請求項1〜8のいずれか1項に記載の発光素子と、受光素子とを有し、
前記発光素子の前記側光が遮蔽される側に、前記受光素子が配置されることを特徴とする受発光モジュール。
A light-emitting element according to any one of claims 1 to 8 and a light-receiving element,
The light receiving and emitting module, wherein the light receiving element is disposed on a side of the light emitting element where the side light is shielded.
JP2015178729A 2015-09-10 2015-09-10 Light emitting device, method of manufacturing the same, and light receiving / emitting module using the same Active JP6637704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178729A JP6637704B2 (en) 2015-09-10 2015-09-10 Light emitting device, method of manufacturing the same, and light receiving / emitting module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178729A JP6637704B2 (en) 2015-09-10 2015-09-10 Light emitting device, method of manufacturing the same, and light receiving / emitting module using the same

Publications (2)

Publication Number Publication Date
JP2017054976A true JP2017054976A (en) 2017-03-16
JP6637704B2 JP6637704B2 (en) 2020-01-29

Family

ID=58321142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178729A Active JP6637704B2 (en) 2015-09-10 2015-09-10 Light emitting device, method of manufacturing the same, and light receiving / emitting module using the same

Country Status (1)

Country Link
JP (1) JP6637704B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022210A (en) * 1998-06-30 2000-01-21 Sharp Corp Semiconductor light emitting element and semiconductor light emitting device
JP2004179347A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor light emitting element
JP2005156549A (en) * 2003-11-05 2005-06-16 Sendai Nikon:Kk Optical encoder
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
US20080157097A1 (en) * 2006-12-29 2008-07-03 Epitech Technology Corporation Light-emitting diode structure and method for manufacturing the same
JP2011159722A (en) * 2010-01-29 2011-08-18 Dowa Electronics Materials Co Ltd Semiconductor element and manufacturing method therefor
JP2014022607A (en) * 2012-07-19 2014-02-03 Rohm Co Ltd Light-emitting element, light-emitting element unit and light-emitting element package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022210A (en) * 1998-06-30 2000-01-21 Sharp Corp Semiconductor light emitting element and semiconductor light emitting device
JP2004179347A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor light emitting element
JP2005156549A (en) * 2003-11-05 2005-06-16 Sendai Nikon:Kk Optical encoder
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
US20080157097A1 (en) * 2006-12-29 2008-07-03 Epitech Technology Corporation Light-emitting diode structure and method for manufacturing the same
JP2011159722A (en) * 2010-01-29 2011-08-18 Dowa Electronics Materials Co Ltd Semiconductor element and manufacturing method therefor
JP2014022607A (en) * 2012-07-19 2014-02-03 Rohm Co Ltd Light-emitting element, light-emitting element unit and light-emitting element package

Also Published As

Publication number Publication date
JP6637704B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
TWI529970B (en) Semiconductor light emitting device and method for manufacturing same
JP5985782B1 (en) Nitride semiconductor ultraviolet light emitting device and nitride semiconductor ultraviolet light emitting device
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US9773950B2 (en) Semiconductor device structure
KR102276207B1 (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP6182050B2 (en) Semiconductor light emitting device
TWI699011B (en) Semiconductor light emitting device
KR20160046538A (en) Light emitting device and method of fabricating the same
JP2015056650A (en) Light-emitting device
JP6149878B2 (en) Light emitting element
KR20150036050A (en) Optoelectronic semiconductor chip and method for fabricating an optoelectronic semiconductor chip
CN108040503B (en) Light emitting device
JP6219177B2 (en) Semiconductor light emitting device
KR20190042092A (en) Semiconductor device
CN106159073B (en) Light emitting element and method for manufacturing the same
KR101753750B1 (en) Semiconductor light emitting device
JP2016134423A (en) Semiconductor light emitting element, light emitting device and semiconductor light emitting element manufacturing method
TWI594455B (en) Photoelectric semiconductor chip and its manufacturing method
JP2015156484A (en) Light emitting element
JP6637704B2 (en) Light emitting device, method of manufacturing the same, and light receiving / emitting module using the same
KR101428774B1 (en) Semiconductor light emitting device and manufacturing method of the same
US10347792B2 (en) Optoelectronic component
JP2015103590A (en) Semiconductor light emitting device
JP2019145819A (en) Light emitting device and light emitting device package
JP5503799B2 (en) Compound semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6637704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250