JP2017047466A - Ni-PLATED STEEL FOIL, BATTERY CONDUCTIVE MEMBER, AND MANUFACTURING METHOD OF Ni-PLATED STEEL FOIL - Google Patents
Ni-PLATED STEEL FOIL, BATTERY CONDUCTIVE MEMBER, AND MANUFACTURING METHOD OF Ni-PLATED STEEL FOIL Download PDFInfo
- Publication number
- JP2017047466A JP2017047466A JP2015174778A JP2015174778A JP2017047466A JP 2017047466 A JP2017047466 A JP 2017047466A JP 2015174778 A JP2015174778 A JP 2015174778A JP 2015174778 A JP2015174778 A JP 2015174778A JP 2017047466 A JP2017047466 A JP 2017047466A
- Authority
- JP
- Japan
- Prior art keywords
- plated steel
- layer
- rolling
- steel foil
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明はNiめっき鋼箔及びそれを用いた電池導電部材に関する。 The present invention relates to a Ni-plated steel foil and a battery conductive member using the same.
リチウムイオン二次電池(以下「LiB」という)は、小型で高出力が可能ため、スマートフォンやノートパソコンなどの小型電子機器から、ハイブリッドカーや災害時の補助電源などの大型機器まで幅広く使用されている。現在もさらなる小型化及び高出力化が進んでいるため、今後も適用分野はさらに広がる期待されている。 Lithium ion secondary batteries (hereinafter referred to as “LiB”) are small and capable of high output, so they are widely used from small electronic devices such as smartphones and laptop computers to large devices such as hybrid cars and auxiliary power supplies in times of disaster. Yes. Since further miniaturization and higher output are progressing now, the application field is expected to further expand in the future.
このLiB用部品の1つである負極リード材には導電性、耐食性、外装缶との溶接性が求められるため、多くの場合純Niが使用されている。しかし純NiはFeやCuと比較し高価であり、安価な代替材が求められている。 Since the negative electrode lead material which is one of the parts for LiB is required to have conductivity, corrosion resistance, and weldability with an outer can, pure Ni is often used. However, pure Ni is more expensive than Fe and Cu, and an inexpensive alternative material is required.
多くの場合、LiBの外装缶にはSUSやNiめっき鋼が使用される。純Niより安価なFeやCuは、純Niと比較し外装缶との溶接性や耐食性に劣るので、負極リード材として不適である。一方、耐食性や外装缶との溶接性に優れるSUSは、純Niと比較し導電性において著しく劣るので、負極リード材として不適である。 In many cases, SUS or Ni-plated steel is used for the outer can of LiB. Fe or Cu, which is cheaper than pure Ni, is not suitable as a negative electrode lead material because it is inferior in weldability and corrosion resistance to an outer can compared to pure Ni. On the other hand, SUS, which is excellent in corrosion resistance and weldability with an outer can, is not suitable as a negative electrode lead material because it is significantly inferior in conductivity as compared with pure Ni.
現行負極リード材に使用されている純Niの代替材としては、安価かつSUSより優れた導電性を持つFeを母材とし、耐食性や外装缶との溶接性を被覆Niで補完した、NiとFeの積層材が有望である。 As an alternative to pure Ni used in the current negative electrode lead material, Fe is a base material made of Fe, which is cheaper and has better conductivity than SUS, and Ni and its corrosion resistance and weldability with external cans are complemented by Ni. Fe laminates are promising.
特許文献1には、NiとFeを接合圧延によってNi/Fe/Ni積層材を製造する方法が開示されている。しかし、この方法では、Niめっき法と比較しNi層が厚くなるため、コスト的に不利である。さらに、接合圧延法であるため、常に接合界面への異物混入のおそれがある。 Patent Document 1 discloses a method of manufacturing a Ni / Fe / Ni laminated material by joining and rolling Ni and Fe. However, this method is disadvantageous in cost because the Ni layer is thicker than the Ni plating method. Furthermore, since it is a joining rolling method, there is a possibility that foreign matter is always mixed into the joining interface.
特許文献2には、鋼鈑にNiめっきを施す製造方法が開示されており、Niめっき後に焼鈍することでNiめっきと鋼鈑との間にNi−Fe合金層を形成させること、焼鈍によりNiめっきの圧延性が向上することが開示されている。しかし、めっき時に不可避的に発生するピンホール(めっきが施されなかった箇所)については開示されていない。また、めっき後の圧延についても開示されていないため、圧延時に不可避的に発生するめっきのピンホールの影響や対策について開示されていない。 Patent Document 2 discloses a manufacturing method in which Ni plating is applied to a steel plate. An Ni-Fe alloy layer is formed between the Ni plating and the steel plate by annealing after Ni plating, and Ni is formed by annealing. It is disclosed that the rolling property of plating is improved. However, pinholes that are inevitably generated during plating (locations where plating has not been performed) are not disclosed. Moreover, since the rolling after plating is not disclosed, the influence of plating pinholes inevitably generated during rolling and countermeasures are not disclosed.
特許文献3には、圧延性に優れた鋼板を箔まで圧延した後、Niめっきを施す製造方法が開示されている。しかし、ある程度の厚さ(0.5mm厚程度)の鋼鈑にNiめっきした後に箔まで圧延する方が、この方法より効率よく、低コストでNiめっき箔を製造することが可能である。 Patent Document 3 discloses a manufacturing method in which a steel plate excellent in rollability is rolled to a foil and then Ni plating is performed. However, it is more efficient and lower cost to manufacture a Ni-plated foil if Ni is plated on a steel sheet of a certain thickness (about 0.5 mm thick) and then rolled to a foil, more efficiently than this method.
低コストでNiめっき鋼箔を製造する方法としては、前述したように、ある程度の厚さの鋼鈑にNiめっきを施した後に、焼鈍することによりピンホールを撲滅させ、その後箔まで圧延する方法が有効である。 As described above, as a method for producing Ni-plated steel foil at a low cost, after plating Ni to a steel plate of a certain thickness, the pinholes are eradicated by annealing and then rolled to foil Is effective.
しかしながら、本発明者らが焼鈍した0.5mm厚のNiめっき鋼板を0.1mm厚の箔まで圧延し、その後、めっきの健全性を確認するためSEM観察したところ、めっきの割れ部が確認された。割れ部をEDXで分析したところ、Fe分が80質量%を超えており、ピンホールであることが明らかとなった。Niめっき後の熱処理によりピンホールは消滅しているため、このピンホールは箔までの圧延時に形成されたことが分かる。 However, a 0.5 mm thick Ni-plated steel sheet annealed by the present inventors was rolled to a 0.1 mm thick foil, and then SEM observation was performed to confirm the soundness of the plating. It was. When the cracked portion was analyzed by EDX, the Fe content exceeded 80% by mass, and it was revealed that it was a pinhole. Since the pinhole has disappeared due to the heat treatment after Ni plating, it can be seen that this pinhole was formed during the rolling up to the foil.
しかし、焼鈍したNiめっき鋼をリロールし、リード材として適用するのは少数であり、鋼板を箔までの圧延する際に再形成されるピンホールに対する対策方法は確立していない。 However, few Ni-plated steels that have been annealed are rerolled and applied as lead materials, and no countermeasures have been established for pinholes that are re-formed when the steel sheet is rolled to foil.
加えて、LIB負極リード材は抵抗溶接または超音波溶接し使用されるため、溶接性に影響を与える表面粗度は重要な因子である。しかしながら、表面粗度について言及したNiめっき鋼箔の文献は無い。 In addition, since the LIB negative electrode lead material is used after resistance welding or ultrasonic welding, the surface roughness affecting the weldability is an important factor. However, there is no literature on Ni-plated steel foil that mentions surface roughness.
本発明は、上記の事情に鑑み、Niより安価な代替材として、耐食性と溶接性に優れたNiめっき鋼箔を提供することを目的とする。 An object of this invention is to provide Ni plating steel foil excellent in corrosion resistance and weldability as an alternative material cheaper than Ni in view of said situation.
本発明者らは、耐食性と溶接性に優れたNiめっき鋼箔を得る方法について鋭意検討した。 The inventors diligently studied a method for obtaining a Ni-plated steel foil excellent in corrosion resistance and weldability.
本発明者らは、ピンホールがNiめっき鋼板を圧延し箔とする際に再形成されていることから、Niめっき層の構成と圧延性との関係に注目した。また、高い耐食性を得られるNiめっき層の構成を調査した。加えて、優れた溶接性を得られる表面粗度を調査した。 The present inventors paid attention to the relationship between the structure of the Ni-plated layer and the rollability because the pinhole was re-formed when the Ni-plated steel sheet was rolled into a foil. Moreover, the structure of the Ni plating layer which can obtain high corrosion resistance was investigated. In addition, the surface roughness with which excellent weldability was obtained was investigated.
その結果、Niめっき鋼板を圧延し箔とする前に、Niめっき鋼板を適切な条件で焼鈍し、Niめっき層の構成を適切にすることで、箔まで圧延する際に不可避的に再形成されるピンホールを抑制でき、優れた耐食性が得られることを知見した。さらに、表面を低粗度とする独特の圧延法により、優れた抵抗溶接性と外観を確保できることを知見した。 As a result, before rolling the Ni-plated steel sheet to form a foil, the Ni-plated steel sheet is annealed under appropriate conditions, and the Ni plating layer is appropriately configured so that it is unavoidably re-formed when rolling to foil. It has been found that excellent pinholes can be suppressed and excellent corrosion resistance can be obtained. Furthermore, it has been found that excellent resistance weldability and appearance can be ensured by a unique rolling method in which the surface has a low roughness.
本発明は、上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1)表面から順に、厚さが0.5〜3μmであり、Niを90%超含有するNi層と、厚さが0.1〜2μmであり、Niを50〜90%含有するNi−Fe層を備え、Ni層とNi−Fe層の厚さの合計が1μm以上であり、圧延方向に垂直に測定した最大高さ粗さRzが0.9μm以下であることを特徴とするNiめっき鋼箔。 (1) In order from the surface, the Ni layer has a thickness of 0.5 to 3 μm and contains more than 90% of Ni, and the Ni— has a thickness of 0.1 to 2 μm and contains 50 to 90% of Ni. Ni plating comprising an Fe layer, wherein the total thickness of the Ni layer and the Ni—Fe layer is 1 μm or more, and the maximum height roughness Rz measured perpendicular to the rolling direction is 0.9 μm or less Steel foil.
(2)厚さが0.04〜0.20mmであることを特徴とする前記(1)のNiめっき鋼箔 (2) The Ni-plated steel foil of (1) above, wherein the thickness is 0.04 to 0.20 mm
(3)前記(1)又は(2)のNiめっき鋼箔を備えたことを特徴とする電池導電部材。 (3) A battery conductive member comprising the Ni-plated steel foil of (1) or (2).
(4)鋼片を熱間圧延及び冷間圧延を施し冷延鋼板とする工程、上記冷延鋼板にNiめっきを施しNiめっき鋼板とする工程、上記Niめっき鋼板に750〜900℃で10〜30秒保持する焼鈍を施す工程、及び焼鈍後のNiめっき鋼板を圧延してNiめっき鋼箔とする工程を備え、上記Niめっき鋼板を圧延する工程において、最終の2パス以上の圧延を、凝着Niが存在しないロールを用いて行うことを特徴とするNiめっき鋼箔の製造方法。 (4) A step of subjecting the steel slab to hot rolling and cold rolling to obtain a cold-rolled steel plate, a step of applying Ni plating to the cold-rolled steel plate to obtain a Ni-plated steel plate, and the Ni-plated steel plate at 750 to 900 ° C. at 10 to 10 ° C. A step of performing annealing for 30 seconds and a step of rolling the Ni-plated steel sheet after annealing to form a Ni-plated steel foil. In the step of rolling the Ni-plated steel sheet, the rolling of the final two passes or more is performed. A method for producing a Ni-plated steel foil, which is performed using a roll having no deposited Ni.
(5)前記凝着Niが存在しないロールは未使用又は再研磨済みのロールであることを特徴とする前記(4)のNiめっき鋼箔の製造方法。 (5) The method for producing a Ni-plated steel foil according to (4) above, wherein the roll in which the adhered Ni is not present is an unused or repolished roll.
本発明によれば、Niと比較し安価な代替材としてNiめっき鋼箔を提供することができる。本発明によるNiめっき鋼箔は、従来のNiめっき鋼箔より安価に製造可能であり、さらに耐食性と溶接性に優れており、特に、電池導電部材用の鋼箔として好適である。 According to the present invention, Ni-plated steel foil can be provided as an inexpensive alternative material compared to Ni. The Ni-plated steel foil according to the present invention can be manufactured at a lower cost than the conventional Ni-plated steel foil, and is excellent in corrosion resistance and weldability, and is particularly suitable as a steel foil for battery conductive members.
以下、本発明について詳細に説明する。はじめに、Niめっき層の構成について説明する。本発明の電池導電部材用箔は、表面から順に、Niを90%超含有するNi層と、Niを50〜90%含有するNi−Fe層を備える。 Hereinafter, the present invention will be described in detail. First, the configuration of the Ni plating layer will be described. The foil for a battery conductive member of the present invention includes, in order from the surface, a Ni layer containing more than 90% Ni and a Ni-Fe layer containing 50 to 90% Ni.
耐食性を劣化させるピンホールの再形成を抑制するには、上記のNi層、Ni−Fe層(50≦Ni(質量%)≦90)、及び鋼鈑層と比較して著しく硬い、Ni−Fe層(5≦Ni(質量%)<50)の影響を減少させる必要がある。Ni層、Ni−Fe層(50≦質量%Ni≦90)、鋼鈑層のビッカース硬さは100前後であるが、Ni−Fe層(5≦質量%Ni<50)は最大200程度になる。そのため、Ni−Fe層(5≦Ni(質量%)<50)は他の層と圧延追従性に大きな差が生じ、箔までの圧延中にピンホールの再形成を促進すると考えられる。ピンホールの再形成を抑制し、耐食性を保つためには上述のめっき層構成にする必要がある。 In order to suppress the re-formation of pinholes that deteriorate the corrosion resistance, the Ni-Fe layer (50 ≦ Ni (mass%) ≦ 90) and the steel layer are significantly harder than the above-described Ni layer, Ni—Fe layer. It is necessary to reduce the influence of the layer (5 ≦ Ni (mass%) <50). The Vickers hardness of the Ni layer, Ni-Fe layer (50 ≦ mass% Ni ≦ 90) and steel sheet layer is around 100, but the Ni—Fe layer (5 ≦ mass% Ni <50) is about 200 at the maximum. . Therefore, it is considered that the Ni—Fe layer (5 ≦ Ni (mass%) <50) has a large difference in rolling followability from other layers, and promotes the re-formation of pinholes during rolling up to the foil. In order to suppress re-formation of pinholes and maintain corrosion resistance, it is necessary to have the above-described plating layer configuration.
Ni−Fe層は、鋼板にNiめっきを施す際に不可避的に発生するピンホールを撲滅させ、鋼板との密着性を向上させるために必要であり、Niめっき後の鋼板に焼鈍を施すことにより形成させる。 The Ni-Fe layer is necessary to eradicate pinholes that are inevitably generated when Ni plating is applied to the steel sheet and to improve the adhesion with the steel sheet, and by annealing the steel sheet after Ni plating Let it form.
焼鈍は、鋼板とNiめっきを再結晶させ圧延性を向上させるために施す。本発明において、焼鈍条件は、Ni層の構成を制御するために非常に重要である。 Annealing is performed in order to recrystallize the steel plate and the Ni plating and improve the rollability. In the present invention, the annealing condition is very important for controlling the configuration of the Ni layer.
鋼板を圧延し箔とする際に再形成されるピンホールを抑制し、耐食性を維持するためには、箔とした際のNi層が0.5μm以上、Ni−Fe層(50%≦Ni≦90%)が0.1以上、Ni層とNi−Fe層の合計が1μm以上必要である。経済的な観点から、Ni層は3μm以下、Ni−Fe層は2μm以下とする。 In order to suppress pinholes re-formed when rolling the steel sheet into a foil and maintain corrosion resistance, the Ni layer in the foil is 0.5 μm or more, Ni—Fe layer (50% ≦ Ni ≦ 90%) is 0.1 or more, and the total of the Ni layer and the Ni—Fe layer is 1 μm or more. From an economical viewpoint, the Ni layer is 3 μm or less, and the Ni—Fe layer is 2 μm or less.
焼鈍により、Ni−Fe層(50%≦Ni≦90%)の下層に拡散層であるNi−Fe層(5≦Ni(質量%)<50)が不可避的に形成される。上述のとおり、Ni−Fe層(5≦Ni(質量%)<50)は硬く、箔までの圧延中にピンホールの再形成を促進するが、Ni−Fe層(5≦Ni(質量%)<50)が十分に薄い場合、具体的には、箔とした際にNi層+Ni−Fe層(50≦Ni(質量%)≦90)の合計厚みの75%以下且つ1.5μm以下であれば、悪影響を及ぼさない。 By annealing, a Ni—Fe layer (5 ≦ Ni (mass%) <50), which is a diffusion layer, is inevitably formed below the Ni—Fe layer (50% ≦ Ni ≦ 90%). As described above, the Ni—Fe layer (5 ≦ Ni (mass%) <50) is hard and promotes the re-formation of pinholes during rolling to foil, but the Ni—Fe layer (5 ≦ Ni (mass%)) When <50) is sufficiently thin, specifically, it is 75% or less and 1.5 μm or less of the total thickness of the Ni layer + Ni—Fe layer (50 ≦ Ni (mass%) ≦ 90) when the foil is formed. Will not have any adverse effects.
Ni−Fe層(5≦Ni(質量%)<50)を十分に薄くするためには、Ni層、Ni−Fe層(50%≦Ni≦90%)の厚さのバランスを上述した適切な範囲とするように焼鈍条件を設定する必要があり、そのためには、焼鈍温度は750〜900℃、保持時間は10〜30秒とする必要がある。 In order to make the Ni—Fe layer (5 ≦ Ni (mass%) <50) sufficiently thin, the balance of the thicknesses of the Ni layer and the Ni—Fe layer (50% ≦ Ni ≦ 90%) must be adjusted as described above. It is necessary to set the annealing conditions so as to be in the range. For that purpose, the annealing temperature needs to be 750 to 900 ° C., and the holding time needs to be 10 to 30 seconds.
なお、Niめっきは鋼板に電気めっきを施すことにより形成する。電気めっきによれば、めっきの厚さは電流密度と時間を制御することにより、必要な厚さにすることができる。鋼箔において上記の必要なめっき厚が得られるように、鋼板のめっき厚を調整すればよい。 The Ni plating is formed by electroplating the steel plate. According to electroplating, the plating thickness can be set to a required thickness by controlling the current density and time. What is necessary is just to adjust the plating thickness of a steel plate so that said required plating thickness can be obtained in steel foil.
次に、表面粗度について説明する。 Next, the surface roughness will be described.
表面粗度、特に最大高さ粗さRzが高いと、溶接面に不均一な接触を生じ、抵抗溶接において不良を生じやすくなる。本発明における圧延法では最終2パス以上に、圧延中に凝着したNiが存在しないロール、より具体的には、未使用又は再研磨済みのロールを使用することにより圧延方向に垂直に測定した最大高さ粗さRz0.9μm以下の抵抗溶接性に優れ、また美麗な外観を有することができる。凝着Niが存在しない清浄なロールで圧延することは、ピンホール抑制にも有効である。 When the surface roughness, particularly the maximum height roughness Rz, is high, non-uniform contact is caused on the weld surface, and defects are likely to occur in resistance welding. In the rolling method of the present invention, the measurement was performed perpendicular to the rolling direction by using a roll in which Ni adhered during rolling does not exist, more specifically, a roll that has not been used or has been repolished, in the final two passes or more. It has excellent resistance weldability with a maximum height roughness Rz of 0.9 μm or less, and can have a beautiful appearance. Rolling with a clean roll having no adhered Ni is also effective for pinhole suppression.
本発明のNiめっき鋼箔は、厚みが0.04〜0.20mmであることが好ましい。厚みが0.04mm厚未満であると、製造工程で破断又は表面に亀裂が発生する場合がある。厚みが0.20mm厚を超えてもリチウムイオン二次電池用負極リード材としての特性上の不具合は無いが、組み込まれる電池の大型化、重量増加を招く。 The Ni-plated steel foil of the present invention preferably has a thickness of 0.04 to 0.20 mm. If the thickness is less than 0.04 mm, the production process may be broken or cracks may occur on the surface. Even if the thickness exceeds 0.20 mm, there is no problem in characteristics as a negative electrode lead material for a lithium ion secondary battery, but this leads to an increase in the size and weight of the battery to be incorporated.
極低炭素鋼を使用し、熱間圧延、冷間圧延(以下、冷延と記す)を経て板厚0.5mm厚の冷延鋼板を得た。得られた冷延鋼板に、電気めっき法で種々の厚さのNiめっきを施した。その後、比較例10を除き、750℃〜900℃×10〜30秒で焼鈍し、Niめっき層と鋼鈑との間に種々の厚さのNi−Fe合金層を形成させた。焼鈍によりNiめっきピンホール部にNi−Fe合金が形成されるので、箔への圧延前の時点ではピンホールは存在しない。 Using extremely low carbon steel, a cold rolled steel sheet having a thickness of 0.5 mm was obtained through hot rolling and cold rolling (hereinafter referred to as cold rolling). The obtained cold-rolled steel sheet was subjected to Ni plating with various thicknesses by electroplating. Thereafter, except for Comparative Example 10, annealing was performed at 750 ° C. to 900 ° C. × 10 to 30 seconds, and Ni—Fe alloy layers having various thicknesses were formed between the Ni plating layer and the steel plate. Since the Ni—Fe alloy is formed in the Ni plated pinhole portion by annealing, there is no pinhole at the time before rolling to the foil.
引き続き箔までの圧延工程においては、1回目の圧延パスの圧下率を30%以下とし、4回目の圧延パスにおける累積圧下率を70%以下とした。その後、圧延機のロールを未使用又は研磨したNiの凝着の無いロールに変更し、最終パスの2つ前の圧延パスにおける累積圧下率と最終パスにおける累積圧下率との差を5%以下として圧延し、0.1mm厚のNiめっき鋼箔を製造した。 Subsequently, in the rolling process up to the foil, the rolling reduction in the first rolling pass was 30% or less, and the cumulative rolling reduction in the fourth rolling pass was 70% or less. Thereafter, the roll of the rolling mill is changed to an unused or polished roll without Ni adhesion, and the difference between the cumulative reduction rate in the rolling pass two steps before the final pass and the cumulative reduction rate in the final pass is 5% or less. As a result, a 0.1 mm thick Ni-plated steel foil was produced.
負極リード材は、電圧がかかった状態で電解液による金属イオン溶出(腐食)環境にさらされる。この事情に鑑み、本発明者らは以下の試験方法を考案し、負極リード材としての耐食性を調査した。 The negative electrode lead material is exposed to a metal ion elution (corrosion) environment by an electrolytic solution in a state where voltage is applied. In view of this situation, the present inventors devised the following test method and investigated the corrosion resistance as a negative electrode lead material.
電解液を1mol/LのLiPF6、溶媒をエチレンカーボネート:エチルメチルカーボネート=1:3としたラミネートセルを製造した。電圧をかければセル内の負極箔の金属イオン溶出(腐食)環境は、負極リード材の金属イオン溶出環境と同様となる。そのため、本試験において金属イオンの溶出が起きないサンプルは、負極リード材として使用可能と判断できる。 A laminate cell in which the electrolytic solution was 1 mol / L LiPF 6 and the solvent was ethylene carbonate: ethyl methyl carbonate = 1: 3 was produced. When voltage is applied, the metal ion elution (corrosion) environment of the negative electrode foil in the cell is the same as the metal ion elution environment of the negative electrode lead material. Therefore, it can be judged that a sample in which elution of metal ions does not occur in this test can be used as a negative electrode lead material.
加電圧は金属Li箔極で制御した。また、セル内で金属イオンの溶出が起こればセル内の電流値が上がる。本試験においては1mAの電流が流れることで「金属イオンの溶出有り」と判断した。 The applied voltage was controlled by a metal Li foil electrode. Further, if metal ions are eluted in the cell, the current value in the cell increases. In this test, a current of 1 mA was passed, and it was determined that “metal ions were eluted”.
現行、負極リード材として使用されている純Niに、25℃で上記試験を実施したところ、3.4V以下では12h間溶出しなかった。しかし、3.5Vでは8hほどで溶出した。よって、25℃で3.4Vの加電圧下で12h溶出しなければ、現行使用されている純Niと同様の性能を持つと判断した。また、比較用にFeに対し同様の試験を実施したところ、12h以内に溶出した。純NiとFeの耐食性の違いが明瞭に確認できることより、本試験方法はリード材の耐食性調査試験として妥当であると判断できた。 When the above test was performed on pure Ni currently used as a negative electrode lead material at 25 ° C., it was not eluted for 12 hours at 3.4 V or less. However, it eluted at about 8 h at 3.5 V. Therefore, it was judged that it had the same performance as the currently used pure Ni if it did not elute for 12 h under an applied voltage of 3.4 V at 25 ° C. Moreover, when the same test was implemented with respect to Fe for comparison, it eluted within 12 hours. From the fact that the difference in corrosion resistance between pure Ni and Fe can be clearly confirmed, this test method can be judged to be appropriate as a corrosion resistance investigation test for lead materials.
Niめっき層の構成は、グロー放電質量分析法(以下GDSと表記)で調査した。加えて、各層のビッカース硬さを測定した。その結果、焼鈍したNi層と鋼鈑層のビッカース硬さは100弱でほぼ同等であり、Ni−Fe層(50≦質量%Ni≦90)のビッカース硬さは120であった。しかし、Ni−Fe層(5≦質量%Ni<50)のビッカース硬さは120〜200と他の層と比較して著しく硬く、圧延追従性の違いからピンホール再形成を促進すると考えられる。 The structure of the Ni plating layer was investigated by glow discharge mass spectrometry (hereinafter referred to as GDS). In addition, the Vickers hardness of each layer was measured. As a result, the Vickers hardness of the annealed Ni layer and the steel sheet layer was almost equal to a little less than 100, and the Vickers hardness of the Ni—Fe layer (50 ≦% by mass Ni ≦ 90) was 120. However, the Vickers hardness of the Ni—Fe layer (5 ≦ mass% Ni <50) is 120 to 200, which is remarkably hard as compared with other layers, and it is considered that pinhole re-formation is promoted due to the difference in rolling followability.
表1に本発明例と比較例の試験結果を示す。本発明例1〜8においては、金属イオンの溶出は起きなかった。これは、適切なめっき構成により、圧延に追従できずNi層の表層が部分的に引きちぎられても、Niめっき層が十分に厚いためピンホールとならず耐食性を保てたためと判断できる。 Table 1 shows the test results of the inventive examples and the comparative examples. In Inventive Examples 1 to 8, elution of metal ions did not occur. It can be judged that this is because, with an appropriate plating configuration, even if the rolling cannot be followed and the surface layer of the Ni layer is partially torn off, the Ni plating layer is sufficiently thick so that it does not become a pinhole but maintains corrosion resistance.
比較例9はNi層が薄すぎたため、圧延中に再形成されたピンホールがFe母材に到達し溶出が生じたと考えられる。 In Comparative Example 9, since the Ni layer was too thin, it is considered that pinholes re-formed during rolling reached the Fe base material and elution occurred.
比較例10はNiめっき後に焼鈍をしなかったため圧延性が悪く、さらにNi−Fe合金層による圧延前のピンホールの撲滅も行なわれなかった。加えて箔までの圧延時にピンホールが多く形成され、耐食性が低下したと考えられる。 Since Comparative Example 10 was not annealed after Ni plating, the rollability was poor, and furthermore, pinholes before rolling were not eradicated by the Ni—Fe alloy layer. In addition, it is thought that many pinholes were formed during rolling up to the foil, and the corrosion resistance was lowered.
比較例11はNi層を全てNi−Fe合金相にしたため硬質なNi−Fe層(5≦質量%Ni<50)も増加していまい、圧延中にピンホールの再形成が促進され耐食性が低下したと考えられる。 In Comparative Example 11, since the Ni layer was entirely made of the Ni—Fe alloy phase, the hard Ni—Fe layer (5 ≦ mass% Ni <50) also increased, and the pinhole re-formation was promoted during rolling, resulting in a decrease in corrosion resistance. It is thought that.
比較例12と13はめっき層の総厚が1μm未満のため圧延中に再形成されたピンホールがFe母材に到達し、溶出が生じたと考えられる。 In Comparative Examples 12 and 13, since the total thickness of the plating layer is less than 1 μm, it is considered that the pinholes re-formed during rolling reached the Fe base material and elution occurred.
続けて、前述した本発明例1と、箔までの圧延においてロール変更のタイミングを変化させた番号14〜16の抵抗溶接性を調査した。各番号のサンプルを同じ条件で0.3mm厚のSUSに抵抗溶接し、その後T字型剥離試験により溶接性を調査した。サンプル数はそれぞれ10個とし、全てのサンプルに置いて「Niめっき鋼箔が破断」したものを溶接性良好、1つでも「Niめっき鋼箔とSUS板が剥離」したものを溶接性不良と判断した。また、圧延方向に垂直な最大高さ粗さRzは10個のサンプルの平均値とした。 Continuously, the resistance weldability of Nos. 14 to 16 in which the timing of roll change was changed in the above-described Example 1 of the present invention and rolling to foil was investigated. Each number of samples was resistance-welded to 0.3 mm thick SUS under the same conditions, and then the weldability was examined by a T-shaped peel test. The number of samples is 10 each, and all samples are placed with “Ni-plated steel foil ruptured” with good weldability, and even with one “Ni-plated steel foil and SUS plate peeled” as poor weldability It was judged. Moreover, the maximum height roughness Rz perpendicular to the rolling direction was an average value of 10 samples.
結果を表2に示す。最大高さ粗さRzが高い比較例15、16は剥離するサンプルが多く、また、抵抗溶接中に火花が散ることが多かった。これは、粗度が高く不均一な接触が生じ、溶接電流が安定しなかったためと考えられる。 The results are shown in Table 2. In Comparative Examples 15 and 16 having a high maximum height roughness Rz, many samples were peeled off, and sparks were often scattered during resistance welding. This is thought to be because the roughness was high and non-uniform contact occurred and the welding current was not stable.
Claims (5)
厚さが0.5〜3μmであり、Niを90%超含有するNi層と、
厚さが0.1〜2μmであり、Niを50〜90%含有するNi−Fe層
を備え、
Ni層とNi−Fe層の厚さの合計が1μm以上であり、
圧延方向に垂直に測定した最大高さ粗さRzが0.9μm以下である
ことを特徴とするNiめっき鋼箔。 From the surface,
A Ni layer having a thickness of 0.5-3 μm and containing more than 90% of Ni;
It has a thickness of 0.1 to 2 μm and a Ni—Fe layer containing 50 to 90% of Ni,
The total thickness of the Ni layer and the Ni—Fe layer is 1 μm or more,
A Ni-plated steel foil, wherein the maximum height roughness Rz measured perpendicularly to the rolling direction is 0.9 μm or less.
上記冷延鋼板にNiめっきを施しNiめっき鋼板とする工程、
上記Niめっき鋼板に750〜900℃で10〜30秒保持する焼鈍を施す工程、及び
焼鈍後のNiめっき鋼板を圧延してNiめっき鋼箔とする工程
を備え、
上記Niめっき鋼板を圧延する工程において、最終の2パス以上の圧延を、凝着Niが存在しないロールを用いて行う
ことを特徴とするNiめっき鋼箔の製造方法。 A step of subjecting the steel slab to hot rolling and cold rolling to form a cold rolled steel sheet,
Applying Ni plating to the cold-rolled steel sheet to form a Ni-plated steel sheet,
A step of annealing the Ni-plated steel sheet at 750 to 900 ° C. for 10 to 30 seconds, and a step of rolling the Ni-plated steel sheet after annealing to form a Ni-plated steel foil,
In the step of rolling the Ni-plated steel sheet, a method for producing a Ni-plated steel foil is characterized in that the rolling of the final two passes or more is performed using a roll having no adhered Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174778A JP6610098B2 (en) | 2015-09-04 | 2015-09-04 | Ni-plated steel foil, battery conductive member, and method for producing Ni-plated steel foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174778A JP6610098B2 (en) | 2015-09-04 | 2015-09-04 | Ni-plated steel foil, battery conductive member, and method for producing Ni-plated steel foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017047466A true JP2017047466A (en) | 2017-03-09 |
JP6610098B2 JP6610098B2 (en) | 2019-11-27 |
Family
ID=58278449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015174778A Active JP6610098B2 (en) | 2015-09-04 | 2015-09-04 | Ni-plated steel foil, battery conductive member, and method for producing Ni-plated steel foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6610098B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021075253A1 (en) * | 2019-10-16 | 2021-04-22 | 東洋鋼鈑株式会社 | Electrolytic foil and battery current collector |
WO2022231009A1 (en) * | 2021-04-28 | 2022-11-03 | 東洋鋼鈑株式会社 | Surface treated steel foil for current collector and method for manufacturing same |
WO2022231007A1 (en) * | 2021-04-28 | 2022-11-03 | 東洋鋼鈑株式会社 | Surface-treated steel foil |
WO2022231008A1 (en) * | 2021-04-28 | 2022-11-03 | 東洋鋼鈑株式会社 | Surface-treated steel foil for current collectors |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452294A (en) * | 1990-06-20 | 1992-02-20 | Katayama Tokushu Kogyo Kk | Cold rolled steel sheet coated with ni, cu and production thereof |
JP2000273609A (en) * | 1999-03-24 | 2000-10-03 | Nippon Steel Corp | Hot dip aluminized steel sheet excellent in resistance weldability and corrosion resistance |
JP2003048002A (en) * | 2001-07-31 | 2003-02-18 | Nkk Corp | Temper rolling method |
JP2004360019A (en) * | 2003-06-05 | 2004-12-24 | Nippon Steel Corp | HOT DIP Sn-Zn BASED PLATED STEEL SHEET HAVING EXCELLENT JOINING PROPERTY |
JP2010073348A (en) * | 2008-09-16 | 2010-04-02 | Sumitomo Wiring Syst Ltd | Terminal metal fitting, and electric wire with terminal metal fitting |
JP2010073349A (en) * | 2008-09-16 | 2010-04-02 | Nissan Motor Co Ltd | Lithium ion secondary battery |
WO2013157600A1 (en) * | 2012-04-19 | 2013-10-24 | 新日鐵住金株式会社 | Steel foil and method for producing same |
-
2015
- 2015-09-04 JP JP2015174778A patent/JP6610098B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452294A (en) * | 1990-06-20 | 1992-02-20 | Katayama Tokushu Kogyo Kk | Cold rolled steel sheet coated with ni, cu and production thereof |
JP2000273609A (en) * | 1999-03-24 | 2000-10-03 | Nippon Steel Corp | Hot dip aluminized steel sheet excellent in resistance weldability and corrosion resistance |
JP2003048002A (en) * | 2001-07-31 | 2003-02-18 | Nkk Corp | Temper rolling method |
JP2004360019A (en) * | 2003-06-05 | 2004-12-24 | Nippon Steel Corp | HOT DIP Sn-Zn BASED PLATED STEEL SHEET HAVING EXCELLENT JOINING PROPERTY |
JP2010073348A (en) * | 2008-09-16 | 2010-04-02 | Sumitomo Wiring Syst Ltd | Terminal metal fitting, and electric wire with terminal metal fitting |
JP2010073349A (en) * | 2008-09-16 | 2010-04-02 | Nissan Motor Co Ltd | Lithium ion secondary battery |
WO2013157600A1 (en) * | 2012-04-19 | 2013-10-24 | 新日鐵住金株式会社 | Steel foil and method for producing same |
Non-Patent Citations (2)
Title |
---|
表面処理鋼板, JPN7019000446, 2012, ISSN: 0003980471 * |
高橋武寛、石塚清和、川西孝二: "電池ケース用Niめっき鋼板の諸特性", 新日鉄住金技報, JPN7019000445, 2014, pages 70 - 74, ISSN: 0003980470 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021075253A1 (en) * | 2019-10-16 | 2021-04-22 | 東洋鋼鈑株式会社 | Electrolytic foil and battery current collector |
JPWO2021075253A1 (en) * | 2019-10-16 | 2021-04-22 | ||
CN114555868A (en) * | 2019-10-16 | 2022-05-27 | 东洋钢钣株式会社 | Electrolytic foil and current collector for battery |
CN114555868B (en) * | 2019-10-16 | 2023-09-08 | 东洋钢钣株式会社 | Electrolytic foil and current collector for battery |
JP7495425B2 (en) | 2019-10-16 | 2024-06-04 | 東洋鋼鈑株式会社 | Electrolytic foil and battery current collector |
TWI845768B (en) * | 2019-10-16 | 2024-06-21 | 日商東洋鋼鈑股份有限公司 | Electrolytic foil and battery collector |
WO2022231009A1 (en) * | 2021-04-28 | 2022-11-03 | 東洋鋼鈑株式会社 | Surface treated steel foil for current collector and method for manufacturing same |
WO2022231007A1 (en) * | 2021-04-28 | 2022-11-03 | 東洋鋼鈑株式会社 | Surface-treated steel foil |
WO2022231008A1 (en) * | 2021-04-28 | 2022-11-03 | 東洋鋼鈑株式会社 | Surface-treated steel foil for current collectors |
JP7578802B2 (en) | 2021-04-28 | 2024-11-06 | 東洋鋼鈑株式会社 | Surface-treated steel foil for current collector and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6610098B2 (en) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6182088B2 (en) | Method for manufacturing a terminal material for a lithium ion secondary battery having a three-layer cladding structure | |
JP5334485B2 (en) | Current collector and negative electrode material for lithium ion secondary battery | |
JP6592946B2 (en) | Clad material for battery negative electrode lead material and method for producing clad material for battery negative electrode lead material | |
JP5908194B1 (en) | Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container | |
JP6610098B2 (en) | Ni-plated steel foil, battery conductive member, and method for producing Ni-plated steel foil | |
CN108136729A (en) | Metallic laminate and its manufacturing method | |
WO2013157598A1 (en) | Steel foil and method for producing same | |
EP3473736B1 (en) | Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery | |
JPWO2013161726A1 (en) | Aluminum alloy foil for electrode current collector, method for producing the same, and lithium ion secondary battery | |
JP2010257695A (en) | Clad material for negative electrode current collector for lithium ion battery, and method for manufacturing the same | |
JP2011077018A (en) | Method of manufacturing fuel cell separator | |
JP2013014837A (en) | Method for producing aluminum alloy foil and aluminum alloy foil | |
JP6623663B2 (en) | Ni-plated steel foil and battery conductive member coated with end face, method for producing Ni-plated steel foil | |
JP2015225847A (en) | Clad material for battery collectors, and electrode | |
WO2015015847A1 (en) | Method for producing surface-treated steel sheet for battery containers | |
TW201448338A (en) | Copper foil, anode for lithium ion battery, and lithium ion secondary battery | |
WO2020137874A1 (en) | Ni-PLATED STEEL SHEET HAVING EXCELLENT POST-PROCESSING CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR | |
JP2010236055A (en) | Aluminum alloy foil for lithium ion secondary battery, and method for producing the same | |
JP2014114480A (en) | Electrode collector aluminum alloy foil and method for manufacturing the same | |
WO2021200506A1 (en) | Ni-PLATED STEEL FOIL FOR NICKEL HYDROGEN SECONDARY BATTERY COLLECTORS, NICKEL HYDROGEN SECONDARY BATTERY COLLECTOR, AND NICKEL HYDROGEN SECONDARY BATTERY | |
JP2005085479A (en) | Nickel plated steel sheet for nonaqueous electrolytic battery case, and battery case using the steel sheet | |
WO2017155027A1 (en) | Aluminum alloy foil | |
JP5668709B2 (en) | Surface-treated steel sheet for lithium ion battery case with excellent press formability and manufacturing method thereof | |
JP7078185B2 (en) | Ni-plated steel sheet and its manufacturing method | |
WO2018180088A1 (en) | Rolled copper foil for lithium ion battery current collector and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191014 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6610098 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |