Nothing Special   »   [go: up one dir, main page]

JP2017041418A - Bipolar plate, cell frame, cell stack and redox flow cell - Google Patents

Bipolar plate, cell frame, cell stack and redox flow cell Download PDF

Info

Publication number
JP2017041418A
JP2017041418A JP2015164203A JP2015164203A JP2017041418A JP 2017041418 A JP2017041418 A JP 2017041418A JP 2015164203 A JP2015164203 A JP 2015164203A JP 2015164203 A JP2015164203 A JP 2015164203A JP 2017041418 A JP2017041418 A JP 2017041418A
Authority
JP
Japan
Prior art keywords
groove
bipolar plate
cell
grooves
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015164203A
Other languages
Japanese (ja)
Inventor
桑原 雅裕
Masahiro Kuwabara
雅裕 桑原
毅 寒野
Takeshi Kanno
毅 寒野
伊藤 岳文
Takefumi Itou
岳文 伊藤
森内 清晃
Kiyoaki Moriuchi
清晃 森内
山口 英之
Hideyuki Yamaguchi
英之 山口
勇人 藤田
Isato Fujita
勇人 藤田
高輔 白木
Kosuke Shiraki
高輔 白木
清明 林
Kiyoaki Hayashi
清明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015164203A priority Critical patent/JP2017041418A/en
Publication of JP2017041418A publication Critical patent/JP2017041418A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bipolar plate capable of making flow rate distribution of an electrolyte uniform while reducing a pressure loss of the electrolyte within a cell, a cell frame, a cell stack and a redox flow cell.SOLUTION: The present invention relates to a bipolar plate in which a positive electrode is disposed on one side and a negative electrode is disposed on the other side. On at least one surface at a positive electrode side and a negative electrode side, a plurality of grooves are provided which are formed in a circulation direction of an electrolyte. The plurality of grooves include two or more grooves with different lengths. In the bipolar plate, the grooves are formed in such a manner that a difference of a pressure loss between a region with a longer length of the groove and a region with a shorter length of the groove is reduced.SELECTED DRAWING: Figure 1

Description

本発明は、レドックスフロー電池の構成部品である双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池に関する。特に、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる双極板に関する。   The present invention relates to a bipolar plate, a cell frame and a cell stack, which are components of a redox flow battery, and a redox flow battery. In particular, the present invention relates to a bipolar plate that can make the flow rate distribution of the electrolyte uniform while reducing the pressure loss of the electrolyte in the cell.

大容量の蓄電池の一つとして、レドックスフロー電池(以下、「RF電池」と呼ぶ場合がある)が知られている(特許文献1〜3を参照)。レドックスフロー電池の用途としては、負荷平準化用途の他、瞬低補償や非常用電源などの用途、大量導入が進められている太陽光発電や風力発電などの自然エネルギーの出力平滑化用途などが挙げられる。   As one of large-capacity storage batteries, redox flow batteries (hereinafter sometimes referred to as “RF batteries”) are known (see Patent Documents 1 to 3). Applications of redox flow batteries include load leveling applications, applications such as instantaneous voltage drop compensation and emergency power supplies, and smoothing of natural energy output such as solar power generation and wind power generation that are being introduced in large quantities. Can be mentioned.

RF電池は、正極電解液及び負極電解液に酸化還元により価数が変化する金属イオン(活物質)を含有する電解液を使用して充放電を行う電池である。図6に、正極電解液及び負極電解液の活物質にVイオンを含有するバナジウム電解液を使用したバナジウム系RF電池300の動作原理図を示す。図6中の電池セル100内の実線矢印は充電反応を、破線矢印は放電反応をそれぞれ示す。   An RF battery is a battery that performs charge and discharge using an electrolytic solution containing a metal ion (active material) whose valence is changed by oxidation and reduction in a positive electrode electrolyte and a negative electrode electrolyte. FIG. 6 shows an operation principle diagram of a vanadium RF battery 300 using a vanadium electrolyte containing V ions as an active material of the positive electrode electrolyte and the negative electrode electrolyte. The solid line arrow in the battery cell 100 in FIG. 6 indicates a charging reaction, and the broken line arrow indicates a discharging reaction.

RF電池300は、水素イオンを透過させるイオン交換膜101で正極セル102と負極セル103とに分離されたセル100を備える。正極セル102には正極電極104が内蔵され、かつ正極電解液を貯留する正極電解液用タンク106が導管108,110を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極電解液を貯留する負極電解液用タンク107が導管109,111を介して接続されている。そして、ポンプ112,113により、各タンク106,107に貯留される電解液をセル100(正極セル102及び負極セル103)に循環流通させて、充放電を行う。   The RF battery 300 includes a cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by an ion exchange membrane 101 that transmits hydrogen ions. A positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte solution tank 106 for storing the positive electrode electrolyte is connected via conduits 108 and 110. Similarly, a negative electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte solution tank 107 for storing a negative electrode electrolyte is connected via conduits 109 and 111. Then, the electrolytes stored in the tanks 106 and 107 are circulated and circulated to the cell 100 (the positive electrode cell 102 and the negative electrode cell 103) by the pumps 112 and 113 to perform charging and discharging.

上記RF電池300には、通常、複数のセル100が積層されたセルスタックを備える構成が利用されている。図7は、セルスタックの概略構成図である。図7に例示するセルスタック10Sは、双極板21の外周に枠体22が設けられたセルフレーム20、正極電極104、イオン交換膜101、及び負極電極105を複数積層してなり、その積層体を2枚のエンドプレート250,250で挟み込んで締め付けることで形成されている。   The RF battery 300 normally uses a configuration including a cell stack in which a plurality of cells 100 are stacked. FIG. 7 is a schematic configuration diagram of a cell stack. A cell stack 10S illustrated in FIG. 7 is formed by laminating a plurality of cell frames 20, a positive electrode 104, an ion exchange membrane 101, and a negative electrode 105, each having a frame 22 provided on the outer periphery of a bipolar plate 21, and the laminated body. Is sandwiched between two end plates 250 and 250 and tightened.

上記セルスタック10Sでは、双極板21の一面側に正極電極104、他面側に負極電極105が配置され、隣接するセルフレーム20の間に1つのセルが形成されることになる。セルスタック10Sにおける電解液の流通は、枠体22に貫通して設けられたマニホールド200、及び枠体22の表面に形成され、マニホールド200と双極板21との間に設けられたスリット210により行われる。セルスタック10Sでは、正極電解液は、給液マニホールド201から枠体22の一面側(紙面表側)に形成されたスリット211を介して双極板21の正極電極104側に供給され、枠体22の上部に形成されたスリット213を介して排液マニホールド203に排出される。同様に、負極電解液は、給液マニホールド202から枠体22の他面側(紙面裏側)に形成されたスリット212を介して双極板21の負極電極105側に供給され、枠体22の上部に形成されたスリット214を介して排液マニホールド204に排出される。また、枠体22のスリット211〜214が形成された部分に、イオン交換膜101を保護するプラスチック製の保護板30がそれぞれ配置されている。各保護板30は、各マニホールド201〜204に対応する位置に貫通孔が形成され、各スリット211〜214を覆う大きさを有する。スリット211〜214が保護板30で覆われていることで、各スリット211〜214がイオン交換膜101に接触することがなくなり、スリットの凹凸によってイオン交換膜が損傷することを防止できる。   In the cell stack 10 </ b> S, the positive electrode 104 is disposed on one surface side of the bipolar plate 21 and the negative electrode 105 is disposed on the other surface side, and one cell is formed between the adjacent cell frames 20. The electrolyte solution in the cell stack 10S flows through the manifold 200 provided through the frame body 22 and the slit 210 provided between the manifold 200 and the bipolar plate 21 formed on the surface of the frame body 22. Is called. In the cell stack 10 </ b> S, the positive electrode electrolyte is supplied from the liquid supply manifold 201 to the positive electrode 104 side of the bipolar plate 21 through the slit 211 formed on one surface side (paper surface side) of the frame body 22. The liquid is discharged to the drainage manifold 203 through the slit 213 formed in the upper part. Similarly, the negative electrode electrolyte is supplied from the liquid supply manifold 202 to the negative electrode 105 side of the bipolar plate 21 through the slit 212 formed on the other surface side (the back side of the paper) of the frame body 22, and the upper portion of the frame body 22. Then, the liquid is discharged to the drainage manifold 204 through the slit 214 formed in the above. In addition, a plastic protective plate 30 that protects the ion exchange membrane 101 is disposed at a portion of the frame 22 where the slits 211 to 214 are formed. Each protection plate 30 has a through hole formed at a position corresponding to each of the manifolds 201 to 204 and covers each of the slits 211 to 214. Since the slits 211 to 214 are covered with the protective plate 30, the slits 211 to 214 do not come into contact with the ion exchange membrane 101, and the ion exchange membrane can be prevented from being damaged by the unevenness of the slits.

セルフレーム20は、双極板21と、双極板21の外周に設けられる枠体22とを備える。枠体22は、双極板21の外周部を表裏から挟むように形成されており、例えば射出成形により双極板21と一体化されている。セルフレーム20における双極板21の領域は凹部になっており、凹部の形状は、双極板21の形状に対応した形状になっている。この凹部に略同形状の電極(正極電極104又は負極電極105)が収納され、双極板21とイオン交換膜101と枠体22とで囲まれる空間がセル(正極セル又は負極セル)を構成する。   The cell frame 20 includes a bipolar plate 21 and a frame body 22 provided on the outer periphery of the bipolar plate 21. The frame 22 is formed so as to sandwich the outer peripheral portion of the bipolar plate 21 from the front and back sides, and is integrated with the bipolar plate 21 by, for example, injection molding. The region of the bipolar plate 21 in the cell frame 20 is a concave portion, and the shape of the concave portion corresponds to the shape of the bipolar plate 21. An electrode having substantially the same shape (positive electrode 104 or negative electrode 105) is accommodated in the recess, and a space surrounded by the bipolar plate 21, the ion exchange membrane 101, and the frame 22 constitutes a cell (positive electrode or negative electrode cell). .

枠体22に形成されたスリット210の一端はマニホールド200につながり、
他端は枠体22の内縁部につながっており、マニホールド200と上記凹部とはスリット210を介して連通している。図7に例示するセルフレーム20の場合、給液マニホールド201,202から延びるスリット211,212が枠体22(凹部)の下側の内縁部につながっており、排液マニホールド203,204から延びるスリット213,214が枠体22(凹部)の上側の内縁部につながっている。つまり、双極板21(電極)の下側から上記セル内に電解液が供給され、双極板21(電極)の上側から電解液が排出される。通常、枠体22の内縁部には整流部(図示せず)が形成されており、スリット210の他端は整流部につながっている。整流部は、供給された電解液を凹部に収納された電極の縁部に沿って拡散させたり、電極から排出される電解液をスリット210へ集約する機能を有する。この整流部により、双極板21(電極)の一方の縁部(図7では下側の縁部)から他方の縁部(図7では上側の縁部)に向かってセル内を電解液が流れるようになっている。
One end of the slit 210 formed in the frame body 22 is connected to the manifold 200,
The other end is connected to the inner edge portion of the frame body 22, and the manifold 200 and the concave portion communicate with each other through a slit 210. In the case of the cell frame 20 illustrated in FIG. 7, slits 211 and 212 extending from the liquid supply manifolds 201 and 202 are connected to the lower inner edge of the frame 22 (concave portion), and slits extending from the drainage manifolds 203 and 204. 213 and 214 are connected to the inner edge on the upper side of the frame 22 (concave portion). That is, the electrolytic solution is supplied into the cell from the lower side of the bipolar plate 21 (electrode), and the electrolytic solution is discharged from the upper side of the bipolar plate 21 (electrode). Usually, a rectification part (not shown) is formed at the inner edge of the frame 22, and the other end of the slit 210 is connected to the rectification part. The rectifying unit has a function of diffusing the supplied electrolytic solution along the edge portion of the electrode accommodated in the recess, and collecting the electrolytic solution discharged from the electrode into the slit 210. By this rectifying portion, the electrolyte flows in the cell from one edge portion (lower edge portion in FIG. 7) of the bipolar plate 21 (electrode) toward the other edge portion (upper edge portion in FIG. 7). It is like that.

特開2013−80613号公報JP 2013-80613 A 特開2002−246061号公報JP 2002-246061 A 特開2007−305339号公報JP 2007-305339 A

更なるレドックスフロー電池の電池性能の向上が望まれており、その一つとして電池の内部抵抗を低減することが求められている。この内部抵抗を増大させる要因の一つに、電解液の流通抵抗に起因する圧力損失が挙げられる。しかしながら、従来では、セル内での電解液の圧力損失を低減した上で、電解液の流量分布を均一化することについて、必ずしも十分な検討がなされているとは言えなかった。   Further improvement of the battery performance of the redox flow battery is desired, and as one of them, it is required to reduce the internal resistance of the battery. One of the factors that increase the internal resistance is pressure loss due to the flow resistance of the electrolyte. However, in the past, it has not been said that sufficient studies have been made to make the flow rate distribution of the electrolyte uniform while reducing the pressure loss of the electrolyte in the cell.

本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる双極板を提供することにある。また、本発明の別の目的は、上記双極板を備えるセルフレーム及びこのセルフレームを備えるセルスタック、並びにこのセルスタックを備えるレドックスフロー電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a bipolar plate capable of reducing the pressure loss of the electrolytic solution in the cell while making the flow rate distribution of the electrolytic solution uniform. There is to do. Another object of the present invention is to provide a cell frame including the bipolar plate, a cell stack including the cell frame, and a redox flow battery including the cell stack.

本発明の一態様に係る双極板は、一面側に正極電極が配置され、他面側に負極電極が配置される。この双極板は、正極電極側及び負極電極側の少なくとも一方の面に、電解液の流通方向に沿って形成された複数の溝を備え、前記複数の溝は、長さの異なる2以上の溝を有する。そして、溝の長さが長い領域と溝の長さが短い領域との圧力損失の差が小さくなるように前記溝が形成されている。   In the bipolar plate according to one embodiment of the present invention, the positive electrode is disposed on one side and the negative electrode is disposed on the other side. The bipolar plate includes a plurality of grooves formed along the flow direction of the electrolyte on at least one surface of the positive electrode side and the negative electrode side, and the plurality of grooves include two or more grooves having different lengths. Have And the said groove | channel is formed so that the difference of the pressure loss of the area | region where the length of a groove | channel is long and the area | region where a groove | channel length is short may become small.

本発明の一態様に係るセルフレームは、上記本発明の一態様に係る双極板と、前記双極板の外周に設けられる枠体とを備える。   The cell frame which concerns on 1 aspect of this invention is equipped with the bipolar plate which concerns on the said 1 aspect of this invention, and the frame provided in the outer periphery of the said bipolar plate.

本発明の一態様に係るセルスタックは、上記本発明の一態様に係るセルフレームと、正極電極と、イオン交換膜と、負極電極とをそれぞれ複数積層してなる。   A cell stack according to one embodiment of the present invention is formed by stacking a plurality of cell frames according to one embodiment of the present invention, a positive electrode, an ion exchange membrane, and a negative electrode.

本発明の一態様に係るレドックスフロー電池は、上記本発明の一態様に係るセルスタックを備える。   A redox flow battery according to one embodiment of the present invention includes the cell stack according to one embodiment of the present invention.

上記双極板は、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる。上記セルフレーム及びセルスタック、並びにレドックスフロー電池は、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる。   The bipolar plate can reduce the pressure loss of the electrolytic solution in the cell and make the flow rate distribution of the electrolytic solution uniform. The cell frame, the cell stack, and the redox flow battery can reduce the pressure loss of the electrolytic solution in the cell and can make the flow rate distribution of the electrolytic solution uniform.

実施形態1に係る双極板を示す概略平面図である。1 is a schematic plan view showing a bipolar plate according to Embodiment 1. FIG. 図1のII−II線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the II-II line of FIG. 実施形態1に係る双極板の変形例を示す概略断面図である。6 is a schematic cross-sectional view showing a modification of the bipolar plate according to Embodiment 1. FIG. 実施形態2に係る双極板を示す概略平面図である。6 is a schematic plan view showing a bipolar plate according to Embodiment 2. FIG. 図4のV−V線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the VV line of FIG. レドックスフロー電池の動作原理図である。It is an operation | movement principle figure of a redox flow battery. セルスタックの概略構成図である。It is a schematic block diagram of a cell stack. 従来のセルフレームの一例を示す概略平面図である。It is a schematic plan view which shows an example of the conventional cell frame. 従来のセルフレームの別の一例を示す概略平面図である。It is a schematic plan view which shows another example of the conventional cell frame.

[本発明の実施形態の説明]
本発明者らは、レドックスフロー電池において、双極板の電極が配置される面に、電解液の流通方向に沿って複数の溝を形成して流路を構成することで、セル内での電解液の圧力損失を低減することを検討した。
[Description of Embodiment of the Present Invention]
In the redox flow battery, the inventors have formed a plurality of grooves along the flow direction of the electrolytic solution on the surface on which the electrode of the bipolar plate is arranged, thereby constituting a flow path, thereby allowing electrolysis in the cell. We studied to reduce the pressure loss of the liquid.

従来の双極板は矩形状のものが多い。矩形状の双極板を備える従来のセルフレームの場合、図8の矢印で示すように、双極板21の下側縁部から上側縁部に向かってセル内を電解液が流れる。図8に示す矩形状の双極板21では、下側縁部から上側縁部までの距離が幅方向で一定であり、セル内の電解液の流れる長さが双極板21の幅方向に亘って実質的に同じである。そのため、矩形状の双極板21の表面に、電解液の流通方向に沿って同じ断面形状で同じサイズ(同じ溝幅、溝深さ)の複数の溝を等間隔で形成した場合、各溝の長さは同じになる。ここで、各溝での電解液の圧力損失(ΔP)は、次の式1で表され、溝の長さ(L)に比例することから、各溝の長さが同じであれば、各溝の圧力損失も等しくなり、各溝の流量も等しくなる。したがって、矩形状の双極板の場合は、各溝に流れる電解液の流量が均一になるため、セル内における電解液の流量分布を均一化し易い。   Many conventional bipolar plates are rectangular. In the case of a conventional cell frame having a rectangular bipolar plate, the electrolyte flows through the cell from the lower edge of the bipolar plate 21 toward the upper edge as shown by the arrows in FIG. In the rectangular bipolar plate 21 shown in FIG. 8, the distance from the lower edge to the upper edge is constant in the width direction, and the flowing length of the electrolyte in the cell extends in the width direction of the bipolar plate 21. It is substantially the same. Therefore, when a plurality of grooves having the same cross-sectional shape and the same size (same groove width and groove depth) are formed at equal intervals on the surface of the rectangular bipolar plate 21, The length will be the same. Here, the pressure loss (ΔP) of the electrolytic solution in each groove is expressed by the following formula 1, and is proportional to the length (L) of the groove. The groove pressure loss is also equal, and the flow rate of each groove is also equal. Therefore, in the case of a rectangular bipolar plate, the flow rate of the electrolytic solution flowing in each groove is uniform, so that the flow rate distribution of the electrolytic solution in the cell can be easily made uniform.

(式1)ΔP=128×μ×(Q×L)/(π×D
μ:電解液の粘度
Q:電解液の流量
L:溝の長さ
:溝の等価直径(D=4S/l、S:溝の断面積、l=溝の周長)
ここで、溝の長さLとは、双極板を平面視したとき、溝の一端から他端まで溝に沿って測定した長さである。溝の周長lとは、電解液の流通方向に直交する溝の断面における周長を意味し、当該断面において、溝を構成する壁面の周長と、溝の開口部の幅とを合計した長さである。例えば、溝の断面形状が矩形状で、溝幅wが1mm、溝深さhが1mmの場合、溝の周長lは4mmである。また、この場合、溝の断面積Sは1mmであり、溝の等価直径Dは1mmとなる。
(Expression 1) ΔP = 128 × μ × (Q × L) / (π × D e 4 )
μ: electrolyte viscosity Q: electrolyte flow rate L: groove length De : equivalent groove diameter (D e = 4 S / l, S: groove cross-sectional area, l = groove circumference)
Here, the length L of the groove is a length measured along the groove from one end to the other end of the groove when the bipolar plate is viewed in plan. The circumferential length l of the groove means the circumferential length in the cross section of the groove perpendicular to the flowing direction of the electrolyte, and in the cross section, the circumferential length of the wall surface constituting the groove and the width of the opening of the groove are totaled. Length. For example, when the cross-sectional shape of the groove is rectangular, the groove width w is 1 mm, and the groove depth h is 1 mm, the circumferential length l of the groove is 4 mm. In this case, the sectional area S of the groove is 1 mm 2, the equivalent diameter D e of the groove becomes 1 mm.

一方で、特許文献3に示されるような、台形状の双極板を備えるセルフレームの場合、図9の矢印で示すように、セル内を電解液が流れる。図9に示す台形状の双極板21では、下側縁部から上側縁部までの距離が幅方向で異なり、幅方向の両端部での上下縁部間の距離が中央部に比べて長くなる。つまり、幅方向の両端部の領域では、中央部に比べて電解液の流れる長さが長くなる。そのため、台形状の双極板21の表面に、電解液の流通方向に沿って同じ断面形状で同じサイズ(同じ溝幅、溝深さ)の複数の溝を等間隔で形成した場合は、長さの異なる溝が形成されることになる。具体的には、両端部の領域では、溝の長さが中央部に比べて長くなる。上述したように、各溝での電解液の圧力損失(ΔP)は溝の長さに比例することから、両端部の溝の圧力損失は中央部の溝よりも高くなり、両端部の溝への流量が中央部に比べて少なくなる。したがって、台形状の双極板のように、長さの異なる溝が形成される場合は、各溝に流れる電解液の流量が不均一になるため、セル内における電解液の流量分布も不均一になる。セル内において電解液の流量分布が不均一になると、電解液の流量の少ない領域での電解液の供給不足により、セル部材(電極や双極板など)の損傷や、電池性能の低下を招く虞がある。   On the other hand, in the case of a cell frame having a trapezoidal bipolar plate as shown in Patent Document 3, the electrolyte flows in the cell as shown by the arrows in FIG. In the trapezoidal bipolar plate 21 shown in FIG. 9, the distance from the lower edge to the upper edge is different in the width direction, and the distance between the upper and lower edges at both ends in the width direction is longer than that in the center. . That is, in the region at both end portions in the width direction, the flowing length of the electrolytic solution is longer than that in the central portion. Therefore, when a plurality of grooves having the same cross-sectional shape and the same size (same groove width and groove depth) are formed on the surface of the trapezoidal bipolar plate 21 along the flow direction of the electrolytic solution at equal intervals, the length Thus, different grooves are formed. Specifically, in the regions at both ends, the length of the groove is longer than that in the central portion. As described above, the pressure loss (ΔP) of the electrolyte solution in each groove is proportional to the length of the groove, so that the pressure loss of the groove on both ends is higher than that on the center, and the groove on both ends The flow rate is less than in the center. Therefore, when grooves with different lengths are formed, such as a trapezoidal bipolar plate, the flow rate of the electrolyte flowing in each groove is non-uniform, so the flow rate distribution of the electrolyte in the cell is also non-uniform. Become. If the electrolyte flow distribution is uneven in the cell, there is a risk of cell member damage (electrodes, bipolar plates, etc.) and battery performance degradation due to insufficient supply of electrolyte in the low electrolyte flow area. There is.

本発明者らは、以上の点に着目し、双極板に長さの異なる複数の溝が形成される場合でも、セル内における電解液の流量分布を均一化することについて更に検討を進め、本願発明を完成するに至った。以下、本発明の実施態様を列記して説明する。   The present inventors paid attention to the above points, and proceeded further studies on uniformizing the flow rate distribution of the electrolyte in the cell even when a plurality of grooves having different lengths are formed in the bipolar plate. The invention has been completed. Hereinafter, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る双極板は、一面側に正極電極が配置され、他面側に負極電極が配置される。この双極板は、正極電極側及び負極電極側の少なくとも一方の面に、電解液の流通方向に沿って形成された複数の溝を備え、前記複数の溝は、長さの異なる2以上の溝を有する。そして、溝の長さが長い領域と溝の長さが短い領域との圧力損失の差が小さくなるように前記溝が形成されている。   (1) In the bipolar plate according to one aspect of the present invention, the positive electrode is disposed on one side and the negative electrode is disposed on the other side. The bipolar plate includes a plurality of grooves formed along the flow direction of the electrolyte on at least one surface of the positive electrode side and the negative electrode side, and the plurality of grooves include two or more grooves having different lengths. Have And the said groove | channel is formed so that the difference of the pressure loss of the area | region where the length of a groove | channel is long and the area | region where a groove | channel length is short may become small.

上記双極板によれば、電解液の流通方向に沿って複数の溝を備えることで、セル内の電解液の流通抵抗を小さくして、セル内での電解液の圧力損失を低減できる。よって、電池の内部抵抗を低減できる。また、溝の長さが長い領域(即ち、流路の長い領域)と溝の長さが短い領域(即ち、流路の短い領域)とで、圧力損失の差が小さくなるように溝が形成されていることから、領域間の電解液の流量の差を小さくできる。つまり、長さの異なる溝を有する場合であっても、溝(流路)の長い領域への流量を増やして、セル内における電解液の流量分布を均一化できる。そのため、セル内において電解液の供給不足が生じ難く、セル部材の損傷や、電池性能の低下を抑制できる。   According to the bipolar plate, by providing the plurality of grooves along the flow direction of the electrolytic solution, the flow resistance of the electrolytic solution in the cell can be reduced, and the pressure loss of the electrolytic solution in the cell can be reduced. Therefore, the internal resistance of the battery can be reduced. In addition, the groove is formed so that the difference in pressure loss is small between the region where the groove length is long (ie, the region where the flow path is long) and the region where the groove length is short (ie the region where the flow path is short). Therefore, the difference in the electrolyte flow rate between the regions can be reduced. That is, even when the grooves have different lengths, the flow rate distribution of the electrolyte solution in the cell can be made uniform by increasing the flow rate to the long region of the groove (flow path). Therefore, it is difficult for the electrolyte to be insufficiently supplied in the cell, and damage to the cell member and deterioration of the battery performance can be suppressed.

領域間の圧力損失の差は、小さいほど好ましい。具体的には、溝(流路)の長さに応じて、双極板を幅方向に少なくとも2つ以上の領域に等分したとき、溝の長さが最も長い領域と最も短い領域との圧力損失の差が、溝の長さが最も短い領域に対して20%以下、更に10%以下であることが好ましい。各領域の圧力損失は、各領域に設けられた溝の圧力損失を算出し、それを合計して求めることができる。領域間の圧力損失の差は、実質的に0(つまり、溝の長さが長い領域と短い領域での圧力損失が同じ)であることが最も好ましい。   The smaller the difference in pressure loss between the regions, the better. Specifically, when the bipolar plate is equally divided into at least two regions in the width direction according to the length of the groove (channel), the pressure between the longest and shortest regions of the groove The difference in loss is preferably 20% or less, more preferably 10% or less, with respect to the region having the shortest groove length. The pressure loss in each region can be obtained by calculating the pressure loss of the grooves provided in each region and summing them. Most preferably, the difference in pressure loss between the regions is substantially zero (that is, the pressure loss in the long and short regions of the groove is the same).

(2)上記双極板の一形態として、上記複数の溝は、以下の要件を満たす長さの長い溝と短い溝とを含むことが挙げられる。
前記長さの長い溝の等価直径が、前記長さの短い溝の等価直径よりも大きい。
(2) As one form of the bipolar plate, the plurality of grooves include a long groove and a short groove that satisfy the following requirements.
The equivalent diameter of the long groove is larger than the equivalent diameter of the short groove.

溝の圧力損失は、溝の断面積が大きいほど、低くなる。厳密には、溝の圧力損失は、溝の断面積の他、溝の周長にも影響を受け、溝の周長が小さいほど、低くなる。よって、溝の圧力損失は、上記式(1)に示されるように、溝の断面積(S)と周長(l)の比(S/l)で表される等価直径(D)が大きいほど、低くなる。 The groove pressure loss decreases as the groove cross-sectional area increases. Strictly speaking, the pressure loss of the groove is influenced not only by the cross-sectional area of the groove but also by the circumferential length of the groove, and becomes lower as the circumferential length of the groove is smaller. Therefore, the pressure loss of the groove has an equivalent diameter (D e ) represented by the ratio (S / l) of the cross-sectional area (S) of the groove to the circumferential length (l), as shown in the above formula (1). The larger it is, the lower it is.

溝の幅や深さを大きくするなど溝の断面積を大きくしたり、溝の断面積が同じでも溝の形状を変更するなど溝の周長を小さくすることによって、溝の等価直径を大きくすることで、溝の圧力損失を低減できる。したがって、長さの長い溝の等価直径が長さの短い溝の等価直径よりも大きいという要件を満たす長い溝と短い溝とを含むことで、長さの異なる各溝間の圧力損失の差を小さくでき、各溝に流れる電解液の流量の差を小さくできる。つまり、長さの長い溝への流量を増やして、各溝の流量を均一にでき、セル内における電解液の流量分布を均一化できる。より好ましくは、溝の長さに応じて、溝の等価直径が大きくなるように溝を形成することが挙げられる。   Increasing the groove equivalent diameter by increasing the groove cross-sectional area, such as increasing the groove width or depth, or by reducing the groove circumference, such as changing the groove shape even if the groove cross-sectional area is the same. Thus, the pressure loss of the groove can be reduced. Therefore, by including a long groove and a short groove that satisfy the requirement that the equivalent diameter of the long length groove is larger than the equivalent diameter of the short length groove, the difference in pressure loss between the different length grooves can be reduced. The difference in the flow rate of the electrolyte flowing through each groove can be reduced. That is, by increasing the flow rate to the long groove, the flow rate of each groove can be made uniform, and the flow rate distribution of the electrolyte in the cell can be made uniform. More preferably, the groove is formed so that the equivalent diameter of the groove is increased according to the length of the groove.

上記形態では、複数の溝が等間隔に形成されている場合、各溝間の圧力損失差が小さくなるように形成されている。具体的には、最も長い溝と最も短い溝との圧力損失の差が、最も短い溝の圧力損失に対して20%以下、更に10%以下であることが好ましい。特に、各溝間の圧力損失差が実質的に0(つまり、各溝の圧力損失が同じ)であることが最も好ましい。   In the said form, when the some groove | channel is formed at equal intervals, it forms so that the pressure loss difference between each groove | channel may become small. Specifically, the difference in pressure loss between the longest groove and the shortest groove is preferably 20% or less, more preferably 10% or less, with respect to the pressure loss of the shortest groove. In particular, it is most preferable that the pressure loss difference between the grooves is substantially 0 (that is, the pressure loss of each groove is the same).

(3)上記双極板の一形態として、上記複数の溝は、以下の要件を満たす長さの長い溝と短い溝とを含むことが挙げられる。
前記長さの長い溝とそれに隣り合う溝との間隔が、前記長さの短い溝とそれに隣り合う溝との間隔よりも小さい。
(3) As one form of the bipolar plate, the plurality of grooves include a long groove and a short groove that satisfy the following requirements.
The distance between the long groove and the adjacent groove is smaller than the distance between the short groove and the adjacent groove.

隣り合う溝の間隔を小さくすることで、溝が密に設けられた領域が形成され、その領域における溝の本数が増えることから、その領域での圧力損失を低減できる。したがって、長さの長い溝とそれに隣り合う溝との間隔が長さの短い溝とそれに隣り合う溝との間隔よりも小さいという要件を満たす長い溝と短い溝とを含むことで、溝(流路)の長さが異なる領域間の圧力損失の差を小さくでき、各領域に流れる電解液の流量の差を小さくできる。つまり、溝(流路)の長い領域への流量を増やして、セル内における電解液の流量分布を均一化できる。より好ましくは、溝の長さに応じて、隣り合う溝の間隔が小さくなるように溝を形成することが挙げられる。   By reducing the interval between adjacent grooves, a region in which the grooves are densely formed is formed, and the number of grooves in the region increases, so that pressure loss in the region can be reduced. Therefore, by including a long groove and a short groove that satisfy the requirement that the distance between the long groove and the adjacent groove is smaller than the distance between the short groove and the adjacent groove, the groove (flow The difference in pressure loss between regions having different path lengths can be reduced, and the difference in the flow rate of the electrolyte flowing in each region can be reduced. In other words, the flow rate distribution to the long region of the groove (flow path) can be increased, and the flow rate distribution of the electrolytic solution in the cell can be made uniform. More preferably, according to the length of a groove | channel, forming a groove | channel so that the space | interval of an adjacent groove | channel may become small is mentioned.

(4)上記双極板の一形態として、溝の長さが最も長い領域と溝の長さが最も短い領域との圧力損失の差が、前記溝の長さが最も短い領域の圧力損失に対して20%以下であることが挙げられる。   (4) As one form of the bipolar plate, the difference in pressure loss between the region with the longest groove and the region with the shortest groove is less than the pressure loss in the region with the shortest groove. 20% or less.

上記形態によれば、電解液が流通する際、最も長い溝を有する部分の圧力損失と、最も短い溝を有する部分の圧力損失との差を、最も短い溝を有する部分の圧力損失に対して20%以下とすることができる。これにより、セル内における電解液の流量分布を十分に均一化でき、電解液の供給不足に起因するセル部材の損傷や、電池性能の低下を抑制する効果が高い。より好ましい圧力損失の差は、10%以下である。   According to the above aspect, when the electrolyte flows, the difference between the pressure loss of the portion having the longest groove and the pressure loss of the portion having the shortest groove is determined with respect to the pressure loss of the portion having the shortest groove. It can be 20% or less. Thereby, the flow distribution of the electrolyte solution in the cell can be made sufficiently uniform, and the effect of suppressing the damage of the cell member due to the insufficient supply of the electrolyte solution and the deterioration of the battery performance is high. A more preferable difference in pressure loss is 10% or less.

(5)本発明の一態様に係るセルフレームは、上記(1)〜(4)のいずれか1つに記載の双極板と、前記双極板の外周に設けられる枠体とを備える。   (5) The cell frame which concerns on 1 aspect of this invention is equipped with the bipolar plate as described in any one of said (1)-(4), and the frame provided in the outer periphery of the said bipolar plate.

上記セルフレームによれば、本発明の一態様に係る双極板を備えることから、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる。セル内における電解液の流量分布を均一化できるため、電解液の供給不足に起因するセル部材の損傷や、電池性能の低下を抑制できる。   According to the cell frame, since the bipolar plate according to one aspect of the present invention is provided, the flow rate distribution of the electrolytic solution can be made uniform while reducing the pressure loss of the electrolytic solution in the cell. Since the flow distribution of the electrolytic solution in the cell can be made uniform, damage to the cell member due to insufficient supply of the electrolytic solution and a decrease in battery performance can be suppressed.

(6)本発明の一態様に係るセルスタックは、上記(5)に記載のセルフレームと、正極電極と、イオン交換膜と、負極電極とをそれぞれ複数積層してなる。   (6) A cell stack according to one embodiment of the present invention is formed by laminating a plurality of cell frames, positive electrode electrodes, ion exchange membranes, and negative electrode electrodes described in (5) above.

上記セルスタックによれば、本発明の一態様に係るセルフレームを備えることから、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる。セル内における電解液の流量分布を均一化できるため、電解液の供給不足に起因するセル部材の損傷や、電池性能の低下を抑制できる。   According to the cell stack, since the cell frame according to one aspect of the present invention is provided, the flow rate distribution of the electrolytic solution can be made uniform while reducing the pressure loss of the electrolytic solution in the cell. Since the flow distribution of the electrolytic solution in the cell can be made uniform, damage to the cell member due to insufficient supply of the electrolytic solution and a decrease in battery performance can be suppressed.

(7)本発明の一態様に係るレドックスフロー電池は、上記(6)に記載のセルスタックを備える。   (7) The redox flow battery which concerns on 1 aspect of this invention is equipped with the cell stack as described in said (6).

上記レドックスフロー電池によれば、本発明の一態様に係るセルスタックを備えることから、セル内での電解液の圧力損失を低減できながら、電解液の流量分布を均一化できる。セル内における電解液の流量分布を均一化できるため、電解液の供給不足に起因するセル部材の損傷や、電池性能の低下を抑制できる。   According to the redox flow battery, since the cell stack according to one aspect of the present invention is provided, the flow rate distribution of the electrolytic solution can be made uniform while reducing the pressure loss of the electrolytic solution in the cell. Since the flow distribution of the electrolytic solution in the cell can be made uniform, damage to the cell member due to insufficient supply of the electrolytic solution and a decrease in battery performance can be suppressed.

[本発明の実施形態の詳細]
本発明の実施形態に係る双極板の具体例を、以下に図面を参照しつつ説明する。本発明の実施形態に係るセルフレーム、セルスタック及びレドックスフロー電池は、本発明の実施形態に係る双極板を用いたことに特徴があり、それ以外の構成は、図6,図7を参照して説明した従来と同様の構成を採用できる。したがって、以下では、セルフレーム、セルスタック及びレドックスフロー電池について、その詳しい説明を省略する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the bipolar plate according to the embodiment of the present invention will be described below with reference to the drawings. The cell frame, the cell stack, and the redox flow battery according to the embodiment of the present invention are characterized by using the bipolar plate according to the embodiment of the present invention. For other configurations, refer to FIG. 6 and FIG. A configuration similar to the conventional one described above can be employed. Therefore, in the following, detailed descriptions of the cell frame, the cell stack, and the redox flow battery are omitted. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

[実施形態1]
図1,図2を参照して、実施形態1に係る双極板21Aについて説明する。双極板21Aは、図1に示すように平面形状が略六角形状であり、2つの辺と、その2辺に挟まれる角とで構成される一方の縁部(図1では下側の縁部)が電解液の供給側であり、それに対向する他方の縁部(図1では上側の縁部)が電解液の排出側である。双極板21Aは、図中の矢印で示すように、下側縁部から上側縁部に向かって電解液が流れる。そして、双極板21Aは、電極50(図2参照)が配置される面に、電解液の流通方向(図1では上下方向)に沿って形成された複数の溝40を備え、複数の溝40は、長さの異なる少なくとも2以上の溝40を有する。図1では、分かり易くするため、溝40が形成されていない部分にハッチングを付している(後述する図4も同じ)。双極板21Aには、プラスチックカーボン製のものが利用できる。
[Embodiment 1]
A bipolar plate 21A according to the first embodiment will be described with reference to FIGS. As shown in FIG. 1, the bipolar plate 21 </ b> A has a substantially hexagonal planar shape, and one edge portion (a lower edge portion in FIG. 1) composed of two sides and a corner sandwiched between the two sides. ) Is an electrolyte solution supply side, and the other edge portion (the upper edge portion in FIG. 1) facing the electrolyte solution discharge side is an electrolyte solution discharge side. In the bipolar plate 21A, as indicated by the arrows in the figure, the electrolyte flows from the lower edge toward the upper edge. The bipolar plate 21A includes a plurality of grooves 40 formed on the surface on which the electrode 50 (see FIG. 2) is disposed along the flowing direction of the electrolytic solution (vertical direction in FIG. 1). Has at least two or more grooves 40 having different lengths. In FIG. 1, for easy understanding, a portion where the groove 40 is not formed is hatched (the same applies to FIG. 4 described later). The bipolar plate 21A can be made of plastic carbon.

(双極板)
双極板21Aは六角形状であり、下側縁部から上側縁部までの距離が幅方向で異なる。具体的には、上下縁部間の距離が幅方向の中央部で長く、両端部で短くなっており、中央部の領域では、両端部に比べて電解液の流れる長さ(流路長)が長くなる。そのため、電解液の流通方向に沿って複数の溝40を形成した場合、長さの異なる溝40が双極板21Aの幅方向(電解液の流通方向と直交する方向。図1では左右方向)に並列に形成され、中央部の領域では、溝40の長さが両端部に比べて長くなる。
(Bipolar plate)
The bipolar plate 21A has a hexagonal shape, and the distance from the lower edge to the upper edge is different in the width direction. Specifically, the distance between the upper and lower edges is longer at the center in the width direction and shorter at both ends, and in the region of the center, the length (flow path length) in which the electrolyte flows compared to both ends Becomes longer. Therefore, when a plurality of grooves 40 are formed along the flow direction of the electrolytic solution, the grooves 40 having different lengths are formed in the width direction of the bipolar plate 21A (a direction perpendicular to the flow direction of the electrolytic solution, left and right in FIG. 1). The grooves 40 are formed in parallel and the length of the groove 40 is longer than that of both end portions in the central region.

双極板21Aの形状は、上下縁部間の距離が幅方向に異なる形状など、電解液の流通方向に沿って複数の溝40を形成した場合に長さの異なる複数の溝40が形成される形状であることが挙げられる。したがって、双極板21Aの形状は、六角形状の他、三角形状、台形状、菱形状、八角形状などであってもよい。   The shape of the bipolar plate 21A is such that the plurality of grooves 40 having different lengths are formed when the plurality of grooves 40 are formed along the flow direction of the electrolyte, such as a shape in which the distance between the upper and lower edges differs in the width direction. It is mentioned that it is a shape. Therefore, the shape of the bipolar plate 21A may be a hexagonal shape, a triangular shape, a trapezoidal shape, a rhombus shape, an octagonal shape, or the like.

(溝)
双極板21Aは、電解液の流通方向に沿って形成された長さの異なる複数の溝40を備える。実施形態1の双極板21Aでは、電解液の流通方向に沿って等間隔に複数の溝40が形成されており、各溝40の断面形状が略矩形状である(図2参照)。また、この例では、各溝40は、一端が双極板21Aの下側縁部又は上側縁部に連通し、他端が対向する縁部まで一定長さを残して形成されており、双極板21Aの下側縁部に連通する溝40と、双極板21Aの上側縁部に連通する溝40とが交互に並んで形成されている。そして、溝40の長さが長い中央部の領域と溝40の長さが短い両端部の領域との圧力損失の差が小さくなるように溝40が形成されている。具体的には、中央部の領域と両端部の領域との圧力損失の差が、両端部の領域の圧力損失に対して20%以下、更に10%以下となるように、溝40が形成されている。
(groove)
The bipolar plate 21A includes a plurality of grooves 40 having different lengths formed along the flowing direction of the electrolytic solution. In the bipolar plate 21A of the first embodiment, a plurality of grooves 40 are formed at equal intervals along the flow direction of the electrolytic solution, and the cross-sectional shape of each groove 40 is substantially rectangular (see FIG. 2). Further, in this example, each groove 40 is formed such that one end communicates with the lower edge or upper edge of the bipolar plate 21A, and the other end leaves a certain length to the opposite edge. Grooves 40 that communicate with the lower edge of 21A and grooves 40 that communicate with the upper edge of bipolar plate 21A are alternately formed. The groove 40 is formed so that the difference in pressure loss between the central region where the length of the groove 40 is long and the regions at both ends where the length of the groove 40 is short becomes small. Specifically, the groove 40 is formed so that the difference in pressure loss between the central region and both end regions is 20% or less and further 10% or less with respect to the pressure loss in both end regions. ing.

溝40の幅や深さ、隣り合う溝の間隔は、双極板21Aのサイズや厚さなどに応じて適宜選択することができ、特に限定されない。例えば、溝40の幅は0.1mm以上10mm以下、更に5mm以下、溝40の深さは0.1mm以上10mm以下、更に5mm以下、隣り合う溝の間隔は0.2mm以上10mm以下とすることが挙げられる。溝40の断面形状も、特に限定されるものではなく、矩形状の他、三角形状、台形状、半円形状や半楕円形状などであってもよい。   The width and depth of the groove 40 and the interval between adjacent grooves can be appropriately selected according to the size and thickness of the bipolar plate 21A, and are not particularly limited. For example, the width of the groove 40 is 0.1 mm or more and 10 mm or less, further 5 mm or less, the depth of the groove 40 is 0.1 mm or more and 10 mm or less, further 5 mm or less, and the interval between adjacent grooves is 0.2 mm or more and 10 mm or less. Is mentioned. The cross-sectional shape of the groove 40 is not particularly limited, and may be a triangular shape, a trapezoidal shape, a semicircular shape, a semielliptical shape, or the like in addition to a rectangular shape.

流路を構成する複数の溝40は、溝40の長さが長い中央部の領域と溝40の長さが短い両端部の領域との圧力損失の差が小さくなるように、長さの長い溝40の等価直径が長さの短い溝40の等価直径よりも大きくなるように形成されている。具体的には、溝40の長さに応じて等価直径が大きくなるように形成されている。この例では、図2に示すように、長さの長い中央側の溝40ほど、溝40の深さを大きくして断面積を大きくすることによって、溝40の等価直径を大きくしている。これにより、長さの長い溝40の圧力損失を低減できる。具体的には、最も長い溝と最も短い溝との圧力損失の差が最も短い溝の圧力損失に対して20%以下、更に10%以下となるように、各溝40の等価直径が設定されている。特に、各溝40の圧力損失が略等しく、各溝40間の圧力損失差が実質的に0となるように、各溝40の等価直径が設定されていることが好ましい。各溝40の圧力損失を等しくする場合、最も短い溝に対してn倍の長さの溝の等価直径は、上記式(1)から、最も短い溝の等価直径の√n倍に設定すればよい。 The plurality of grooves 40 constituting the flow path have a long length so that the difference in pressure loss between the central area where the length of the groove 40 is long and the areas at both ends where the length of the groove 40 is short becomes small. The equivalent diameter of the groove 40 is formed to be larger than the equivalent diameter of the groove 40 having a short length. Specifically, the equivalent diameter is formed so as to increase according to the length of the groove 40. In this example, as shown in FIG. 2, the longer the central groove 40 is, the larger the equivalent diameter of the groove 40 is by increasing the depth of the groove 40 and increasing the cross-sectional area. Thereby, the pressure loss of the long groove | channel 40 can be reduced. Specifically, the equivalent diameter of each groove 40 is set so that the difference in pressure loss between the longest groove and the shortest groove is 20% or less and further 10% or less with respect to the pressure loss of the shortest groove. ing. In particular, it is preferable that the equivalent diameter of each groove 40 is set so that the pressure loss of each groove 40 is substantially equal and the pressure loss difference between the grooves 40 is substantially zero. When equalizing the pressure loss of each groove 40, the equivalent diameter of n times the length of the groove for the shortest groove, from the equation (1), is set to 4 √n times the equivalent diameter of the shortest groove That's fine.

{作用効果}
実施形態1の双極板21Aによれば、電極50が配置される面に複数の溝40を備えることで、セル内の電解液の流通抵抗を小さくして、セル内での電解液の圧力損失を低減できる。また、長さの長い溝40の等価直径が長さの短い溝40の等価直径よりも大きくなるように形成されていることで、各溝40間の圧力損失の差を小さくでき、各溝40に流れる電解液の流量の差を小さくできる。したがって、溝40の長さが長い中央部の領域と溝40の長さが短い両端部の領域との圧力損失の差を小さくでき、領域間の流量の差を小さくできる。よって、セル内における電解液の流量分布を均一化でき、電解液の供給不足に起因するセル部材(電極や双極板など)の損傷や、電池性能の低下を抑制できる。
{Function and effect}
According to the bipolar plate 21A of the first embodiment, by providing the plurality of grooves 40 on the surface on which the electrode 50 is disposed, the flow resistance of the electrolytic solution in the cell is reduced, and the pressure loss of the electrolytic solution in the cell is reduced. Can be reduced. In addition, since the equivalent diameter of the long groove 40 is formed to be larger than the equivalent diameter of the short length groove 40, the difference in pressure loss between the grooves 40 can be reduced. The difference in the flow rate of the electrolytic solution flowing through can be reduced. Therefore, the difference in pressure loss between the central region where the length of the groove 40 is long and the regions at both ends where the length of the groove 40 is short can be reduced, and the difference in flow rate between the regions can be reduced. Therefore, the flow distribution of the electrolyte solution in the cell can be made uniform, and damage to cell members (electrodes, bipolar plates, etc.) due to insufficient supply of the electrolyte solution and battery performance degradation can be suppressed.

〈変形例〉
図1,図2を参照して説明した実施形態1では、溝40の長さに応じて、溝40の深さを大きくすることによって等価直径を大きくする場合を説明したが、図3に示すように、溝40の幅を大きくすることによっても、溝40の断面積を大きくして等価直径を大きくできる。溝40の長さに応じて幅を大きくする場合(図3参照)は、深さを大きくする場合(図2参照)に比べて、隣り合う溝40の間隔が狭くなり、溝40と溝40との間の畝の幅が狭くなる。そのため、溝40の等価直径を大きくする手段として、溝40の幅を変更する場合は、深さを変更する場合に比べて、双極板21Aと電極50との接触面積が減少する。したがって、双極板21Aと電極50との接触面積を確保して接触抵抗を低減する観点から、溝40の深さを変更する方が好ましい。
<Modification>
In the first embodiment described with reference to FIGS. 1 and 2, the case where the equivalent diameter is increased by increasing the depth of the groove 40 according to the length of the groove 40 is illustrated in FIG. 3. As described above, the equivalent diameter can be increased by increasing the cross-sectional area of the groove 40 by increasing the width of the groove 40. When the width is increased according to the length of the groove 40 (see FIG. 3), the interval between the adjacent grooves 40 is narrower than when the depth is increased (see FIG. 2). The width of the ridge between and becomes narrower. Therefore, when the width of the groove 40 is changed as a means for increasing the equivalent diameter of the groove 40, the contact area between the bipolar plate 21A and the electrode 50 is reduced as compared with the case where the depth is changed. Therefore, it is preferable to change the depth of the groove 40 from the viewpoint of securing the contact area between the bipolar plate 21A and the electrode 50 and reducing the contact resistance.

また、実施形態1では、全ての溝40の断面形状が同じ略矩形状である場合を説明したが、一部の溝40の断面形状を異ならせることも可能である。溝40の等価直径は、溝40の周長を小さくすることによっても大きくできることから、溝40の長さに応じて溝40の周長を小さくすることが考えられる。例えば、実施形態1の双極板21Aにおいて、溝40の長さが長い中央部の領域では溝40の断面形状を半円形状にするなど、溝40の周長を小さくすることによって等価直径を大きくすることが挙げられる。   Moreover, although Embodiment 1 demonstrated the case where the cross-sectional shape of all the grooves 40 was the same substantially rectangular shape, it is also possible to make the cross-sectional shape of a part of groove | channel 40 different. Since the equivalent diameter of the groove 40 can be increased by reducing the circumferential length of the groove 40, it is conceivable to reduce the circumferential length of the groove 40 according to the length of the groove 40. For example, in the bipolar plate 21A of the first embodiment, the equivalent diameter is increased by reducing the circumferential length of the groove 40, such as by making the cross-sectional shape of the groove 40 a semicircular shape in the central region where the length of the groove 40 is long. To do.

[実施形態2]
上述した実施形態1の双極板21Aでは、長さの長い溝40の等価直径が長さの短い溝40の等価直径よりも大きい形態を説明した。実施形態2では、長さの長い溝40とそれに隣り合う溝40との間隔が長さの短い溝40とそれに隣り合う溝40との間隔よりも小さい形態を説明する。以下、図4,図5を参照して、実施形態2に係る双極板21Bについて、実施形態1の双極板21Aとの相違点を中心に説明する。
[Embodiment 2]
In the bipolar plate 21A of the first embodiment described above, the configuration in which the equivalent diameter of the long groove 40 is larger than the equivalent diameter of the short length groove 40 has been described. In the second embodiment, an embodiment in which the distance between the long groove 40 and the adjacent groove 40 is smaller than the distance between the short groove 40 and the adjacent groove 40 will be described. Hereinafter, with reference to FIGS. 4 and 5, the bipolar plate 21 </ b> B according to the second embodiment will be described focusing on differences from the bipolar plate 21 </ b> A of the first embodiment.

実施形態2の双極板21Bでは、全ての溝40の断面形状が同じ矩形状で、かつ、幅や深さなど断面積、等価直径の大きさも同じである。そして、溝40の長さが長い中央部の領域と溝40の長さが短い両端部の領域との圧力損失の差が小さくなるように、長さの長い溝40とそれに隣り合う溝40との間隔が長さの短い溝40とそれに隣り合う溝40との間隔よりも小さくなるように形成されている。具体的には、溝40の長さに応じて隣り合う溝40の間隔が小さくなっている。つまり、長さの長い中央側の溝40ほど、隣り合う溝40との間隔が狭く、中央部の領域では、両端部の領域に比べて溝40と溝40との間の畝の幅が狭くなっている。そのため、中央部の領域は溝40が密に形成された領域となり、中央部の領域の圧力損失を低減できる。したがって、長さの長い溝40とそれに隣り合う溝40との間隔が長さの短い溝40とそれに隣り合う溝40との間隔よりも小さくなるように形成されていることで、溝40の長さが異なる領域間の圧力損失の差を小さくでき、各領域に流れる電解液の流量の差を小さくできる。よって、セル内における電解液の流量分布を均一化できる。   In the bipolar plate 21B of Embodiment 2, the cross-sectional shapes of all the grooves 40 are the same rectangular shape, and the cross-sectional area such as width and depth and the equivalent diameter are the same. Further, the long groove 40 and the groove 40 adjacent thereto are reduced so that the difference in pressure loss between the central region where the length of the groove 40 is long and the regions at both ends where the length of the groove 40 is short is small. Is formed to be smaller than the distance between the groove 40 having a short length and the groove 40 adjacent thereto. Specifically, the interval between adjacent grooves 40 is reduced according to the length of the groove 40. That is, the longer the groove 40 on the central side, the narrower the distance between adjacent grooves 40, and the width of the ridge between the groove 40 and the groove 40 is narrower in the central region than in the regions on both ends. It has become. Therefore, the central region is a region where the grooves 40 are densely formed, and the pressure loss in the central region can be reduced. Accordingly, since the gap between the long groove 40 and the adjacent groove 40 is smaller than the distance between the short length groove 40 and the adjacent groove 40, the length of the groove 40 is increased. Thus, the difference in pressure loss between the regions having different sizes can be reduced, and the difference in the flow rate of the electrolyte flowing in each region can be reduced. Therefore, the flow distribution of the electrolytic solution in the cell can be made uniform.

更に、溝40の長さに応じて、溝40の等価直径を大きくすると共に、隣り合う40の間隔を小さくしてもよく、これにより、溝40の長さが異なる領域間の圧力損失の差を小さくすることも可能である。   Further, according to the length of the groove 40, the equivalent diameter of the groove 40 may be increased, and the interval between the adjacent 40 may be decreased, whereby the difference in pressure loss between the regions where the lengths of the grooves 40 are different. Can be reduced.

本発明の双極板は、レドックスフロー電池に好適に利用可能である。   The bipolar plate of the present invention can be suitably used for a redox flow battery.

100 セル
101 イオン交換膜
102 正極セル 104 正極電極
103 負極セル 105 負極電極
106 正極電解液用タンク
108,110 導管 112 ポンプ
107 負極電解液用タンク
109,111 導管 113 ポンプ
20 セルフレーム
21,21A,21B 双極板
22 枠体
200,201〜204 マニホールド
210,211〜214 スリット
30 保護板
40 溝
50 電極
10S セルスタック
250 エンドプレート
300 レドックスフロー電池(RF電池)
DESCRIPTION OF SYMBOLS 100 cell 101 ion-exchange membrane 102 positive electrode cell 104 positive electrode 103 negative electrode 105 negative electrode 106 positive electrode electrolyte tank 108,110 conduit 112 pump 107 negative electrode electrolyte tank 109,111 conduit 113 pump 20 cell frame 21, 21A, 21B Bipolar plate 22 Frame 200, 201-204 Manifold 210, 211-214 Slit 30 Protection plate 40 Groove 50 Electrode 10S Cell stack 250 End plate 300 Redox flow battery (RF battery)

Claims (7)

一面側に正極電極が配置され、他面側に負極電極が配置される双極板であって、
正極電極側及び負極電極側の少なくとも一方の面に、電解液の流通方向に沿って形成された複数の溝を備え、
前記複数の溝は、長さの異なる2以上の溝を有し、
溝の長さが長い領域と溝の長さが短い領域との圧力損失の差が小さくなるように前記溝が形成されている双極板。
A bipolar plate in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side,
Provided with a plurality of grooves formed along the flow direction of the electrolyte on at least one surface of the positive electrode side and the negative electrode side,
The plurality of grooves have two or more grooves having different lengths,
A bipolar plate in which the groove is formed so that a difference in pressure loss between a region having a long groove length and a region having a short groove length is reduced.
前記複数の溝は、以下の要件を満たす長さの長い溝と短い溝とを含む請求項1に記載の双極板。
前記長さの長い溝の等価直径が、前記長さの短い溝の等価直径よりも大きい。
The bipolar plate according to claim 1, wherein the plurality of grooves include a long groove and a short groove that satisfy the following requirements.
The equivalent diameter of the long groove is larger than the equivalent diameter of the short groove.
前記複数の溝は、以下の要件を満たす長さの長い溝と短い溝とを含む請求項1又は請求項2に記載の双極板。
前記長さの長い溝とそれに隣り合う溝との間隔が、前記長さの短い溝とそれに隣り合う溝との間隔よりも小さい。
The bipolar plate according to claim 1, wherein the plurality of grooves include a long groove and a short groove that satisfy the following requirements.
The distance between the long groove and the adjacent groove is smaller than the distance between the short groove and the adjacent groove.
溝の長さが最も長い領域と溝の長さが最も短い領域との圧力損失の差が、前記溝の長さが最も短い領域の圧力損失に対して20%以下である請求項1〜請求項3のいずれか一項に記載の双極板。   The difference in pressure loss between the region with the longest groove and the region with the shortest groove is 20% or less with respect to the pressure loss in the region with the shortest groove. 4. The bipolar plate according to any one of items 3. 請求項1〜請求項4のいずれか一項に記載の双極板と、前記双極板の外周に設けられる枠体とを備えるセルフレーム。   A cell frame provided with the bipolar plate as described in any one of Claims 1-4, and the frame provided in the outer periphery of the said bipolar plate. 請求項5に記載のセルフレームと、正極電極と、イオン交換膜と、負極電極とをそれぞれ複数積層してなるセルスタック。   A cell stack formed by laminating a plurality of cell frames according to claim 5, a positive electrode, an ion exchange membrane, and a negative electrode. 請求項6に記載のセルスタックを備えるレドックスフロー電池。   A redox flow battery comprising the cell stack according to claim 6.
JP2015164203A 2015-08-21 2015-08-21 Bipolar plate, cell frame, cell stack and redox flow cell Pending JP2017041418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015164203A JP2017041418A (en) 2015-08-21 2015-08-21 Bipolar plate, cell frame, cell stack and redox flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015164203A JP2017041418A (en) 2015-08-21 2015-08-21 Bipolar plate, cell frame, cell stack and redox flow cell

Publications (1)

Publication Number Publication Date
JP2017041418A true JP2017041418A (en) 2017-02-23

Family

ID=58206652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015164203A Pending JP2017041418A (en) 2015-08-21 2015-08-21 Bipolar plate, cell frame, cell stack and redox flow cell

Country Status (1)

Country Link
JP (1) JP2017041418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841873A (en) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 A kind of liquid flow frame suitable for flow cell pile
CN110970632A (en) * 2018-09-29 2020-04-07 中国科学院大连化学物理研究所 Bipolar plate suitable for trapezoidal flow battery and application
CN111224144A (en) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 Flow battery pile structure and application thereof
WO2020136721A1 (en) * 2018-12-25 2020-07-02 住友電気工業株式会社 Battery cell, cell stack, and redox flow battery
CN112447998A (en) * 2019-08-28 2021-03-05 中国科学院大连化学物理研究所 Bipolar plate suitable for flow battery stack and application
CN112534614A (en) * 2018-08-13 2021-03-19 住友电气工业株式会社 Redox flow battery cell and redox flow battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841873A (en) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 A kind of liquid flow frame suitable for flow cell pile
CN109841873B (en) * 2017-11-28 2024-05-10 中国科学院大连化学物理研究所 Liquid flow frame suitable for flow battery pile
CN112534614A (en) * 2018-08-13 2021-03-19 住友电气工业株式会社 Redox flow battery cell and redox flow battery
CN112534614B (en) * 2018-08-13 2023-08-04 住友电气工业株式会社 Redox flow battery monomer and redox flow battery
CN110970632A (en) * 2018-09-29 2020-04-07 中国科学院大连化学物理研究所 Bipolar plate suitable for trapezoidal flow battery and application
CN110970632B (en) * 2018-09-29 2023-07-28 中国科学院大连化学物理研究所 Bipolar plate suitable for trapezoid flow battery and application
CN111224144A (en) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 Flow battery pile structure and application thereof
CN111224144B (en) * 2018-11-26 2024-04-16 中国科学院大连化学物理研究所 Flow battery pile structure and application thereof
WO2020136721A1 (en) * 2018-12-25 2020-07-02 住友電気工業株式会社 Battery cell, cell stack, and redox flow battery
CN112447998A (en) * 2019-08-28 2021-03-05 中国科学院大连化学物理研究所 Bipolar plate suitable for flow battery stack and application
CN112447998B (en) * 2019-08-28 2024-03-26 中国科学院大连化学物理研究所 Bipolar plate suitable for flow battery pile and application

Similar Documents

Publication Publication Date Title
JP6008225B1 (en) Frame, cell frame for redox flow battery, and redox flow battery
JP6008224B1 (en) Frame, cell frame for redox flow battery, and redox flow battery
JP2017041418A (en) Bipolar plate, cell frame, cell stack and redox flow cell
JP6730693B2 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
WO2016072192A1 (en) Galvanic cell and redox flow cell
JP5831112B2 (en) Cell frame, cell stack, and redox flow battery
JP2017010791A (en) Cell frame, cell stack and redox flow cell
WO2018134928A1 (en) Bipolar plate, cell frame, cell stack, and redox flow cell
JP7435479B2 (en) Battery cells, cell stacks, and redox flow batteries
TW202036971A (en) Battery cell, cell stack and redox flow battery
JP6849954B2 (en) Frame, cell frame, cell stack, and redox flow battery
JP2017041452A (en) Frame body, cell frame for redox flow cell, and redox flow cell
US11811105B2 (en) Battery cell, cell stack, and redox flow battery
WO2018134927A1 (en) Bipolar plate, cell frame, cell stack, and redox flow cell