Nothing Special   »   [go: up one dir, main page]

JP2016217213A - エジェクタ - Google Patents

エジェクタ Download PDF

Info

Publication number
JP2016217213A
JP2016217213A JP2015101088A JP2015101088A JP2016217213A JP 2016217213 A JP2016217213 A JP 2016217213A JP 2015101088 A JP2015101088 A JP 2015101088A JP 2015101088 A JP2015101088 A JP 2015101088A JP 2016217213 A JP2016217213 A JP 2016217213A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
space
diffuser
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015101088A
Other languages
English (en)
Other versions
JP6365408B2 (ja
Inventor
中嶋 亮太
Ryota Nakajima
亮太 中嶋
山田 悦久
Etsuhisa Yamada
悦久 山田
照之 堀田
Teruyuki Hotta
照之 堀田
陽一郎 河本
Yoichiro Kawamoto
陽一郎 河本
高野 義昭
Yoshiaki Takano
義昭 高野
和典 水鳥
Kazunori Mizudori
和典 水鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015101088A priority Critical patent/JP6365408B2/ja
Publication of JP2016217213A publication Critical patent/JP2016217213A/ja
Application granted granted Critical
Publication of JP6365408B2 publication Critical patent/JP6365408B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

【課題】適用された冷凍サイクル装置に負荷変動が生じても、高い昇圧能力を発揮可能なエジェクタを提供する。【解決手段】円錐状に形成された通路形成部材35とともに冷媒を減圧させて噴射させるノズル通路13aを形成するノズルボデー32と、通路形成部材35とともに噴射冷媒と吸引冷媒とを混合させて昇圧させるディフューザ通路13cを形成するディフューザボデー33と、さらに、エジェクタ式冷凍サイクルの負荷変動に応じて、ノズルボデー32およびディフューザボデー33を通路形成部材35の中心軸方向に変位させる駆動機構37を備える。これにより、エジェクタ式冷凍サイクルの負荷変動に応じて、ノズル通路13aの通路断面積(最小通路面積部30mにおける通路断面積)およびディフューザ通路13cの通路断面積を適切に調整し、エジェクタ13に高い昇圧能力を発揮させる。【選択図】図3

Description

本発明は、高速度で噴射される噴射流体の吸引作用によって流体を吸引するエジェクタに関する。
従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置に適用されて、高速度で噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と吸引冷媒とを混合させて昇圧させるエジェクタが開示されている。
この特許文献1のエジェクタでは、ボデーの内部に略円錐形状の通路形成部材を配置し、ボデーと通路形成部材の円錐状側面との隙間に断面円環状の冷媒通路を形成している。そして、この冷媒通路のうち、冷媒流れ最上流側の部位を、高圧冷媒を減圧させて噴射するノズル通路として利用し、ノズル通路の冷媒流れ下流側の部位を、噴射冷媒と吸引冷媒とを混合させて昇圧させるディフューザ通路として利用している。
また、特許文献1のエジェクタは、通路形成部材の外周側に配置されて通路形成部材とともにノズル通路を形成するノズルボデー、およびノズルボデーを変位させる駆動手段を備えている。そして、冷凍サイクル装置の負荷変動に応じて、駆動手段がノズルボデーを変位させてノズル通路の通路断面積を適切に変化させることによって、ノズル通路にて冷媒を減圧する際のエネルギ変換効率の低下を抑制している。
さらに、特許文献1のエジェクタでは、ノズルボデーと駆動手段とを連結する連結部材を、ディフューザ通路の外部に配置することによって、連結部材がディフューザ通路を流通する冷媒の通路抵抗になってしまうことを回避している。
特開2014−134196号公報
ところが、特許文献1のエジェクタでは、冷凍サイクル装置の負荷変動に応じて、ノズル通路の通路断面積を変化させることができるものの、ディフューザ通路の通路断面積を変化させることができない。このため、特許文献1のエジェクタでは、冷凍サイクル装置に負荷変動が生じてサイクルを循環する循環冷媒流量が変化すると、ディフューザ通路の昇圧能力が低下してしまうことがある。
本発明は、上記点に鑑み、適用された冷凍サイクル装置に負荷変動が生じても、高い昇圧能力を発揮可能なエジェクタを提供することを目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
冷媒を減圧させる減圧用空間(30b)を形成するノズルボデー(32)と、減圧用空間(30b)から流出した冷媒を流入させる昇圧用空間(30e)を形成するディフューザボデー(33)と、少なくとも一部が減圧用空間(30b)の内部および昇圧用空間(30e)の内部に配置されるとともに、減圧用空間(30b)から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、ノズルボデー(32)、ディフューザボデー(33)、および通路形成部材(35)を収容するとともに、減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)が形成されたボデー(30)と、を備え、
ノズルボデー(32)の減圧用空間(30b)を形成する部位の内周面と通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、ディフューザボデー(33)のうち昇圧用空間(30e)を形成する部位の内周面と通路形成部材(35)の外周面との間に形成される冷媒通路は、ノズル通路(13a)から噴射された噴射冷媒と吸引用通路(13b)を介して吸引された吸引冷媒との混合冷媒を昇圧させるディフューザとして機能するディフューザ通路(13c)であり、
さらに、ノズルボデー(32)、および前記ディフューザボデー(33)を変位させる駆動手段(37)を備えるエジェクタを特徴とする。
これによれば、ノズルボデー(32)およびディフューザボデー(33)の双方を変位させる駆動手段(37)を備えているので、冷凍サイクル装置(10)の負荷変動に応じて、ノズル通路(13a)の通路断面積、およびディフューザ通路(13c)の通路断面積の双方を適切に変化させることができる。
従って、冷凍サイクル装置(10)の負荷変動によらず、ノズル通路(13a)に高いエネルギ変換効率を発揮させることができるとともに、ディフューザ通路(13c)に高い昇圧能力を発揮させることができる。その結果、冷凍サイクル装置(10)の負荷変動によらず、高い昇圧能力を発揮可能なエジェクタを提供することができる。
さらに、上記特徴のエジェクタにおいて、ノズルボデー(32)およびディフューザボデー(33)は、連結されており、駆動手段(37)は、ノズルボデー(32)に連結されていてもよい。
これによれば、駆動手段(37)がノズルボデー(32)に連結されているので、駆動手段(37)とノズルボデー(32)とを連結する連結用の部材をディフューザ通路(13c)の外部に配置しやすい。従って、連結用の部材がディフューザ通路(13c)を横切るように配置されてしまうことを回避して、駆動手段(37)とノズルボデー(32)とを連結するためにディフューザ通路(13c)を流通する冷媒の通路抵抗を増加させてしまうことを回避しやすい。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第1実施形態のエジェクタの軸方向断面図である。 第1実施形態のエジェクタの各冷媒通路の機能を説明するための模式的な断面図である。 図2のVI−VI断面における通路形成部材の拡大断面図である。 第1実施形態のエジェクタ式冷凍サイクルにおける冷媒の状態を示すモリエル線図である。 第2実施形態のエジェクタの軸方向断面図である。
(第1実施形態)
図1〜図5を用いて、本発明の第1実施形態を説明する。本実施形態のエジェクタ13は、図1に示すように、冷媒減圧手段としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。さらに、このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、本実施形態のエジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
また、本実施形態のエジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
まず、エジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。本実施形態の圧縮機11は、車両走行用の駆動力を出力するエンジン(内燃機関)とともにエンジンルーム内に配置されている。さらに、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動されるエンジン駆動式の圧縮機である。
より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された斜板式の可変容量型圧縮機を採用している。この圧縮機11では、吐出容量を変化させるための図示しない吐出容量制御弁を有している。吐出容量制御弁は、後述する制御装置から出力される制御電流によって、その作動が制御される。
圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
より具体的には、この放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器である。
また、冷却ファン12dは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒出口側には、エジェクタ13の冷媒流入口31aが接続されている。
エジェクタ13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させて下流側へ流出させる冷媒減圧手段としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環手段(冷媒輸送手段)としての機能を果たす。
さらに、本実施形態のエジェクタ13は、減圧させた冷媒の気液を分離する気液分離手段としての機能も果たす。つまり、本実施形態のエジェクタ13は、気液分離機能付きエジェクタ(エジェクタモジュール)として構成されている。
エジェクタ13の具体的構成については、図2〜図4を用いて説明する。なお、図2、図3における上下の各矢印は、エジェクタ式冷凍サイクル10を車両用空調装置に搭載した状態における上下の各方向を示している。また、図3は、エジェクタ13の各冷媒通路の機能を説明するための模式的な断面図であって、図2と同一の機能を果たす部分には同一の符号を付している。
まず、本実施形態のエジェクタ13は、図2に示すように、複数の構成部材を組み合わせることによって構成されたボデー30を備えている。ボデー30は、角柱状あるいは円柱状の金属にて形成されてエジェクタ13の外殻を形成するハウジングボデー31を有し、ハウジングボデー31の内部に、ノズルボデー32、ディフューザボデー33、ロワーボデー34、駆動機構37等を収容あるいは固定することによって構成されている。
ハウジングボデー31には、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入側へ流出させる気相冷媒流出口31d等が形成されている。
さらに、本実施形態では、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路に、蒸発器14へ流入させる冷媒を減圧させる減圧手段としてのオリフィス30iを配置している。
ノズルボデー32は、円筒状に形成された筒状部32aと、筒状部32aの上方側端部から外周側へ拡がる円板状部32bとを有する金属製部材である。ノズルボデー32および筒状部32aの内部空間は、いずれも回転体形状に形成されている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。
ノズルボデー32および筒状部32aの内部空間の中心軸は、図2の一点鎖線で示すように、鉛直方向(図2の上下方向)と平行に配置されている。さらに、ノズルボデー32は、後述する駆動機構37から伝達される駆動力によって、ハウジングボデー31内で中心軸方向に変位可能に収容されている。
また、ハウジングボデー31のノズルボデー32の上面に対向する面には、ノズルボデー32から離れる側に凹んだ断面円形状の穴部31fが形成されている。
穴部31fは、筒状部32a内の冷媒流れ上流側の空間と同等の径に形成されている。そして、穴部31fの内部空間と筒状部32a内の冷媒流れ上流側の空間は、冷媒流入口31aから流入した冷媒を中心軸周りに旋回させる旋回空間30aを形成している。従って、穴部31fの内部空間は、冷媒流入口31aに連通している。
冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31eは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31eから旋回空間30aへ流入した冷媒は、旋回空間30aの内壁面に沿って流れ、旋回空間30a内を中心軸周りに旋回する。
ここで、旋回空間30a内で旋回する冷媒には遠心力が作用するので、旋回空間30a内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力となるまで低下させるようにしている。
このような旋回空間30a内の中心軸側の冷媒圧力の調整は、旋回空間30a内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路31eの通路断面積と旋回空間30aの軸方向垂直断面積との面積比を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間30aの最外周部近傍における冷媒の旋回方向の流速を意味している。
筒状部32aの内部空間であって旋回空間30aの冷媒流れ下流側には、旋回空間30aから流出した冷媒を減圧させて下流側へ流出させる減圧用空間30bが形成されている。この減圧用空間30bは、冷媒流れ方向に向かって徐々に断面積が縮小する円錐台形状の空間と、この空間に連続して冷媒流れ方向に向かって徐々に断面積が拡大する円錐台形状の空間とを結合させた回転体形状に形成されている。
減圧用空間30bの内部には、減圧用空間30b内に冷媒通路面積が最も縮小した最小通路面積部30mを形成するとともに、最小通路面積部30mの通路面積を変化させる通路形成部材35の上方側が配置されている。
通路形成部材35は、金属あるいは樹脂にて形成され、冷媒流れ下流側に向かって徐々に広がる略円錐形状に形成されている。通路形成部材35の中心軸は、減圧用空間30b等の中心軸と同軸上に配置されている。つまり、通路形成部材35は、減圧用空間30bから離れるに伴って断面積が拡大する円錐状に形成されている。
従って、ノズルボデー32の減圧用空間30bを形成する部位の内周面と通路形成部材35の上方側の外周面との間に形成される冷媒通路としては、図3に示すように、先細部131および末広部132が形成される。先細部131は、最小通路面積部30mよりも冷媒流れ上流側に形成されて、最小通路面積部30mに至るまでの通路断面積が徐々に縮小する冷媒通路である。末広部132は、最小通路面積部30mから冷媒流れ下流側に形成されて、通路断面積が徐々に拡大する冷媒通路である。
末広部132では、径方向から見たときに減圧用空間30bと通路形成部材35が重合(オーバーラップ)しているので、冷媒通路の軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)となる。さらに、末広部132における通路断面積は、冷媒流れ下流側に向かって徐々に拡大している。
本実施形態では、このような通路形状によって減圧用空間30bの内周面と通路形成部材35の頂部側の外周面との間に形成される冷媒通路をラバールノズルとして機能するノズル通路13aとし、冷媒を減圧させるとともに、冷媒の流速を超音速となるように増速させて噴射している。
次に、ディフューザボデー33は、図2に示すように、中心部に表裏(上下)を貫通する貫通穴が設けられた金属製の円板状部材である。ディフューザボデー33の貫通穴の中心軸は旋回空間30aおよび減圧用空間30bの中心軸と同軸上に配置されている。さらに、ディフューザボデー33は、ノズルボデー32の下方側に配置されて、ノズルボデー32とともに、ハウジングボデー31内で中心軸方向に変位可能に収容されている。
より具体的には、ディフューザボデー33は、連結用部材36を介して、ノズルボデー32に連結されている。このため、ディフューザボデー33は、ノズルボデー32と一体的に変位する。
連結用部材36は、金属製の円筒状部材で形成されている。連結用部材36のディフューザボデー33側の端部は、溶接等の手段によってディフューザボデー33に接合され、連結用部材36のノズルボデー32側の端部は、ノズルボデー32の筒状部32aの外周側に圧入等の手段によって固定されている。
連結用部材36の筒状側面には、その内周側と外周側とを連通させる連通穴が形成されている。これにより、連結用部材36の外周側の冷媒を、連結用部材36の内周側へ流入させることができる。
さらに、ディフューザボデー33は、ハウジングボデー31内に摺動可能に嵌め込まれている。つまり、ディフューザボデー33の外径寸法とハウジングボデー31内のディフューザボデー33が配置される部位の内径寸法は、隙間バメの寸法関係となっている。なお、ディフューザボデー33とハウジングボデー31との隙間には、Oリングからなるシール部材が配置されており、この隙間から冷媒が漏れることはない。
また、ディフューザボデー33の上方側には、冷媒吸引口31bから吸引された冷媒を滞留させる流入空間30cが形成されている。本実施形態では、ノズルボデー32の下方側の先細先端部がディフューザボデー33の貫通穴の内部に位置付けられるため、流入空間30cは、旋回空間30aおよび減圧用空間30bの中心軸方向からみたときに、断面円環状に形成される。
また、ディフューザボデー33の貫通穴のうち、ノズルボデー32の下方側が挿入される範囲、すなわち中心軸に垂直な径方向から見たときにディフューザボデー33とノズルボデー32が重合する範囲では、ノズルボデー32の先細先端部の外周形状に適合するように冷媒通路断面積が冷媒流れ方向に向かって徐々に縮小している。
これにより、貫通穴の内周面とノズルボデー32の下方側の外周面との間には、流入空間30cと減圧用空間30bの冷媒流れ下流側とを連通させる吸引通路30dが形成される。つまり、本実施形態では、流入空間30cおよび吸引通路30dによって、中心軸の外周側から内周側へ向かって吸引冷媒が流れる吸引用通路13bが形成されることになる。この吸引用通路13bの中心軸垂直断面も断面円環状に形成される。
また、ディフューザボデー33の貫通穴のうち、吸引通路30dの冷媒流れ下流側には、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された昇圧用空間30eが形成されている。昇圧用空間30eは、上述したノズル通路13aから噴射された噴射冷媒、および吸引通路30dから吸引された吸引冷媒を流入させる空間である。昇圧用空間30eの中心軸は旋回空間30aおよび減圧用空間30bの中心軸と同軸上に配置されている。
昇圧用空間30eの内部には、通路形成部材35の下方側が配置されている。さらに、ディフューザボデー33の昇圧用空間30eを形成する部位の内周面と通路形成部材35の下方側の外周面との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。これにより、この冷媒通路では、噴射冷媒と吸引冷媒との混合冷媒の速度エネルギを圧力エネルギに変換させることができる。
従って、昇圧用空間30eを形成するディフューザボデー33の内周面と通路形成部材35の下方側の外周面との間に形成される冷媒通路は、図3に示すように、噴射冷媒および吸引冷媒を混合して昇圧させるディフューザ(昇圧部)として機能するディフューザ通路13cを形成している。このディフューザ通路13cも、吸引用通路13b等と同様に、断面円環状に形成されている。
さらに、通路形成部材35のディフューザ通路13cを形成する部位には、ディフューザ通路13cを流通する冷媒の旋回流れを促進する旋回促進手段である複数の整流板38が配置(固定)されている。複数の整流板38は、通路形成部材35の軸方向に広がる板状部材である。複数の整流板38は、図4に示すように、それぞれ旋回流れ方向に沿って湾曲した形状に形成されており、中心軸周りに等角度間隔で円環状に配置されている。
次に、駆動機構37について説明する。駆動機構37は、ノズルボデー32およびディフューザボデー33を変位させる駆動力を出力する駆動手段である。本実施形態の駆動機構37は、円環状に形成されて、ハウジングボデー31に固定されている。
より詳細には、駆動機構37は、ノズルボデー32の筒状部32aの外周側、かつ、流入空間30cの上方側に、圧入等の手段によって固定されている。つまり、駆動機構37は、流入空間30c内に配置されている。換言すると、駆動機構37の外表面の少なくとも一部は、流入空間30cの壁面を形成している。このため、駆動機構37には、流入空間30c内の冷媒の温度が伝達される。
また、駆動機構37は、圧力応動部材である薄板状のダイヤフラム37a、およびダイヤフラム37aとともに感温媒体が封入される封入空間37cを形成する封入空間形成部材37bを有している。
封入空間形成部材37bは、断面コの字形状の円環状の金属製部材である。封入空間形成部材37bの開口部は、ノズルボデー32の円板状部32b側(図2では、上方側)に設けられている。ダイヤフラム37aは、円環状に形成されており、封入空間形成部材37bの開口部を密閉するように、接着、溶接等の手段によって封入空間形成部材37bに接合されている。
封入空間形成部材37bの内部には、ダイヤフラム37aによって密閉された封入空間37cが形成されている。封入空間37cは、蒸発器14流出冷媒の温度に応じて圧力変化する感温媒体が封入される空間である。この封入空間37cには、エジェクタ式冷凍サイクル10を循環する冷媒と同一あるいは同等の組成の感温媒体が、予め定めた密度となるように封入されている。従って、本実施形態における感温媒体は、R134aを主成分とする媒体である。
さらに、駆動機構37は、前述の如く、流入空間30c内に配置されているので、封入空間37c内の感温媒体には、封入空間形成部材37bの底面を介して、流入空間30cへ流入した蒸発器14流出冷媒の温度が伝達される。従って、封入空間37cの内圧は、蒸発器14流出冷媒の温度に応じた圧力となる。
そして、ダイヤフラム37aは、封入空間37cの内圧から流入空間30cへ流入した蒸発器14流出冷媒の圧力を減算した差圧に応じて変形する。このため、ダイヤフラム37aは弾性に富み、かつ熱伝導が良好で、強靱な材質にて形成することが好ましい。例えば、ダイヤフラム37aとして、ステンレス(SUS304)等の金属薄板を採用してもよいし、耐圧性およびシール性に優れる基布入りEPDM(エチレンプロピレンジエン共重合ゴム)等のゴム製のものを採用してもよい。
さらに、ダイヤフラム37aのノズルボデー32の円板状部32b側の面は、溶接、接着等の手段によって、ノズルボデー32の円板状部32bに接合されている。これにより、ダイヤフラム37aとノズルボデー32とが連結され、ダイヤフラム37aの変位に伴ってノズルボデー32が変位して、ノズル通路13aの冷媒通路面積(最小通路面積部30mにおける通路断面積)が調整される。
より具体的には、流入空間30cへ流入した蒸発器14流出冷媒の温度(過熱度)が上昇すると、封入空間37cに封入された感温媒体の飽和圧力が上昇し、封入空間37cの内圧が上昇する。これにより、封入空間37cの内圧から流入空間30cへ流入した蒸発器14流出冷媒の圧力を減算した差圧が増加して、ダイヤフラム37aがノズルボデー32の円板状部32b側(図2では、上方側)へ変位する。
このダイヤフラム37aの円板状部32b側への変位によって、ノズルボデー32が上方側(最小通路面積部30mにおける冷媒通路面積を拡大させる側)へ変位する。さらに、連結用部材36を介してノズルボデー32に連結されたディフューザボデー33が上方側(ディフューザ通路13cの通路断面積を拡大させる側))へ変位する。
一方、流入空間30cへ流入した蒸発器14流出冷媒の温度(過熱度)が低下すると、封入空間37cに封入された感温媒体の飽和圧力が低下して、封入空間37cの内圧が低下する。これにより、封入空間37cの内圧から流入空間30cへ流入した蒸発器14流出冷媒の圧力を減算した差圧が減少して、ダイヤフラム37aが封入空間37c側(図2では、下方側)へ変位する。
このダイヤフラム37aの封入空間37c側への変位によって、ノズルボデー32が下方側(最小通路面積部30mにおける冷媒通路面積を縮小させる側)へ変位する。さらに、連結用部材36を介してノズルボデー32に連結されたディフューザボデー33が下方側(ディフューザ通路13cの通路断面積を縮小させる側)へ変位する。
本実施形態では、蒸発器14流出冷媒の過熱度に応じて駆動機構37(ダイヤフラム37a)がノズルボデー32を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、最小通路面積部30mにおける冷媒通路面積を調整することができる。
さらに、ハウジングボデー31とノズルボデー32の円板状部32bとの間にコイルバネや板バネ等の弾性部材を配置し、ノズルボデー32に対して通路形成部材35に近づく側(最小通路面積部30mにおける冷媒通路面積を縮小する側)へ付勢する荷重をかけてもよい。これによれば、弾性部材の荷重を調整することで、基準過熱度を変更することができる。
次に、ロワーボデー34は、円柱状の金属部材で形成されており、ハウジングボデー31の底面を閉塞するように、ハウジングボデー31内にネジ止め等の手段によって固定されている。ロワーボデー34の上方側とミドルボデー33との間には、昇圧用空間30e内に形成されたディフューザ通路13cから流出した冷媒の気液を分離する気液分離空間30fが形成されている。
この気液分離空間30fは、略円柱状の回転体形状の空間として形成されており、気液分離空間30fの中心軸も、旋回空間30a、減圧用空間30b、昇圧用空間30e等の中心軸と同軸上に配置されている。
また、本実施形態では、ディフューザ通路13c内に整流板38が配置されているので、ディフューザ通路13cから気液分離空間30fへ流出する冷媒は、中心軸周りに旋回する旋回方向の速度成分を有している。従って、気液分離空間30f内では遠心力の作用によって冷媒の気液が分離される。
さらに、この気液分離空間30fの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。
ロワーボデー34の中心部には、気液分離空間30fに対して同軸上に配置されて、上方側へ向かって延びる円筒状のパイプ34aが設けられている。そして、気液分離空間30fにて分離された液相冷媒は、パイプ34aの外周側に一時的に滞留して、液相冷媒流出口31cから流出する。また、パイプ34aの内部には、気液分離空間30fにて分離された気相冷媒をハウジングボデー31の気相冷媒流出口31dへ導く気相冷媒流出通路34bが形成されている。
さらに、パイプ34aの上端部には、その表裏を連通させる複数の連通孔が設けられたプレート部材が配置されており、このプレート部材には通路形成部材35の底面に設けられた円柱状部35bが固定されている。また、ロワーボデー34の気液分離空間30fの底面を形成する部位には、液相冷媒中の冷凍機油を気相冷媒流出通路34bを介して圧縮機11内へ戻すオイル戻し穴34cが形成されている。
また、エジェクタ13の液相冷媒流出口31cには、図1に示すように、蒸発器14の冷媒入口側が接続されている。蒸発器14は、エジェクタ13にて減圧された低圧冷媒と送風ファン14aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
送風ファン14aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器14の出口側には、エジェクタ13の冷媒吸引口31bが接続されている。さらに、エジェクタ13の気相冷媒流出口31dには圧縮機11の吸入側が接続されている。
次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ11、12d、14a等の作動を制御する。
また、制御装置には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、蒸発器14の吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ、放熱器12出口側冷媒の温度を検出する出口側温度センサおよび放熱器12出口側冷媒の圧力を検出する出口側圧力センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御手段を構成している。例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御する構成が吐出能力制御手段を構成している。
次に、上記構成における本実施形態の作動を図5のモリエル線図を用いて説明する。図5のモリエル線図の縦軸には、図3のP0、P1、P2に対応する圧力が示されている。まず、操作パネルの作動スイッチが投入(ON)されると、制御装置が圧縮機11の吐出容量制御弁、冷却ファン12d、送風ファン14a等を作動させる。そして、エンジンから出力される回転駆動力が圧縮機11に伝達されると、圧縮機11が冷媒を吸入し、圧縮して吐出する。
圧縮機11から吐出された高温高圧冷媒(図5のa点)は、放熱器12の凝縮部12aへ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図5のa点→b点)。
放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタ13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される(図5のb点→c点)。この際、減圧用空間30bの最小通路面積部30mにおける通路断面積は、蒸発器14出口側冷媒(図5のh点)の過熱度が予め定めた基準過熱度に近づくように調整される。
そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒(図5のh点)が、冷媒吸引口31bおよび吸引用通路13b(より詳細には、流入空間30cおよび吸引通路30d)を介して吸引される。ノズル通路13aから噴射された噴射冷媒および吸引通路13d等を介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する(図5のc点→d点、h’点→d点)。
ここで、吸引通路30dは、通路断面積が徐々に縮小する形状に形成されている。このため、吸引通路30dを通過する吸引冷媒は、その圧力を低下させながら(図5のh点→h’点)、流速を増加させる。これにより、吸引冷媒と噴射冷媒との速度差を縮小し、ディフューザ通路13cにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。
ディフューザ通路13cでは冷媒通路断面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図5のd点→e点)。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される(図5のe点→f点、e点→g点)。
気液分離空間30fにて分離された液相冷媒は、オリフィス30iにて減圧されて(図5のg点→g’点)、蒸発器14へ流入する。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図5のg’点→h点)。これにより、送風空気が冷却される。気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される(図5のf点→a点)。
本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。
この際、本実施形態のエジェクタ式冷凍サイクル10では、ディフューザ通路13cにて昇圧された冷媒を圧縮機11へ吸入させている。従って、エジェクタ式冷凍サイクル10によれば、蒸発器における冷媒蒸発圧力と圧縮機吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
また、本実施形態のエジェクタ13によれば、旋回空間30aにて冷媒を旋回させることで、旋回空間30a内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させることができる。これにより、旋回中心軸の外周側よりも内周側に気相冷媒が多く存在するようにして、旋回空間30a内の旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とすることができる。
このように二相分離状態となった冷媒がノズル通路13aへ流入することで、ノズル通路13aの先細部131では、円環状の冷媒通路の外周側壁面から冷媒が剥離する際に生じる壁面沸騰および円環状の冷媒通路の中心軸側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって冷媒の沸騰が促進される。これにより、ノズル通路13aの最小通路面積部30mへ流入する冷媒が、気相と液相が均質に混合した気液混合状態となる。
そして、最小通路面積部30mの近傍で気液混合状態の冷媒の流れに閉塞(チョーキング)が生じ、このチョーキングによって音速に到達した気液混合状態の冷媒が末広部132にて加速されて噴射される。このように、壁面沸騰および界面沸騰の双方による沸騰促進によって、気液混合状態の冷媒を音速となるまで効率よく加速できることで、ノズル通路13aにおけるエネルギ変換効率を向上させることができる。
また、本実施形態のエジェクタ13では、ノズルボデー32およびディフューザボデー33の双方を変位させる駆動機構37を備えているので、エジェクタ式冷凍サイクル10に負荷変動に応じて、ノズル通路13aの通路断面積(最小通路面積部30mにおける通路断面積)、およびディフューザ通路13cの通路断面積の双方を適切に調整することができる。
従って、エジェクタ式冷凍サイクル10に負荷変動が生じてサイクルを循環する循環冷媒流量が変化しても、ノズル通路13aにおけるエネルギ変換効率の低下を抑制することができるとともに、ディフューザ通路13cの昇圧能力の低下を抑制することができる。その結果、エジェクタ式冷凍サイクル10の負荷変動によらず、エジェクタ13に高い昇圧能力を発揮させることができる。
また、本実施形態のエジェクタ13では、ノズルボデー32とディフューザボデー33が、連結用部材36を介して連結されており、さらに、駆動機構37のダイヤフラム37aとノズルボデー32の円板状部32bが直接連結されている。
従って、駆動機構37とノズルボデー32とを連結する連結部を、ノズル通路13aあるいはディフューザ通路13cの外部に配置することができる。つまり、連結部がノズル通路13aあるいはディフューザ通路13cを横切るように配置されてしまうことを回避して、ノズル通路13aあるいはディフューザ通路13cを流通する冷媒の通路抵抗を増加させてしまうことを回避することができる。
さらに、本実施形態のエジェクタ13では、ダイヤフラム37aおよび封入空間形成部材37bからなる円環状の駆動機構37を、ノズルボデー32とディフューザボデー33との間に形成される流入空間30c内に配置している。従って、極めて容易に、駆動機構37とノズルボデー32とを連結する連結部あるいは連結用の部材を、ノズル通路13aあるいはディフューザ通路13cの外部に配置することができる。
また、本実施形態のエジェクタ13では、旋回促進手段としての整流板38を備えているので、エジェクタ式冷凍サイクル10の負荷変動によらず、ディフューザ通路13cを流通する冷媒の中心軸周りの旋回流れを促進できる。
従って、ディフューザ通路13c内に形成される螺旋状の冷媒流路が短くなってしまうことを抑制し、エジェクタ13の昇圧性能が低下してしまうことを抑制できる。さらに、ディフューザ通路13cから流出する冷媒の旋回流れを促進することができるので、気液分離空間30fにおける気液分離性能を向上させることができる。
また、本実施形態のエジェクタ13では、整流板38を通路形成部材35に固定しているので、整流板38にて冷媒の旋回流れを促進しても、駆動機構37の作動に影響を及ぼすことがない。
より詳細には、整流板38が通路形成部材35に固定されていると、整流板38が冷媒から受ける反力によって、通路形成部材35にも冷媒の旋回方向とは逆向きの荷重がかかる。これに対して、本実施形態では、駆動機構37と通路形成部材35が連結されていないので、通路形成部材35にかかる旋回方向とは逆向きの荷重が駆動機構37に作用して、駆動機構37の作動に悪影響を及ぼすことがない。
(第2実施形態)
本実施形態では、図6の断面図に示すように、駆動機構37の配置を変更した例を説明する。なお、図6では、第1実施形態の図2に対応する断面図であって、図2と同一もしくは均等部分には同一の符号を付している。
より具体的には、本実施形態の駆動機構37は、ディフューザボデー33の流入空間30c側(上方側)に設けられた筒状部の外周側、かつ、流入空間30cの下方側に、圧入等の手段によって固定されている。従って、駆動機構37は、流入空間30c内に配置されている。
さらに、ダイヤフラム37aの流入空間30c側の面は、複数(本実施形態では、3本)の作動棒37dを介して、ノズルボデー32の円板状部32bに接合されている。これにより、ダイヤフラム37aとノズルボデー32とが連結されている。なお、作動棒37dは、ダイヤフラム37aの変位を均等にノズルボデー32へ伝えるために、中心軸方向から見たときに等角度間隔に配置されていることが望ましい。
その他のエジェクタ13およびエジェクタ式冷凍サイクルの構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ13においても、第1実施形態と同様に作動して、第1実施形態と同様の効果を得ることができる。すなわち、エジェクタ式冷凍サイクル10の負荷変動によらず、エジェクタ13に高い昇圧能力を発揮させることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、ノズルボデー32を変位させる駆動手段として、封入空間37c内の感温媒体の圧力に応じて変位するダイヤフラム37aを有する駆動機構37を採用した例を説明したが、駆動手段はこれに限定されない。例えば、感温媒体として温度によって体積変化するサーモワックスを採用してもよい。
さらに、上述の実施形態では、封入空間形成部材37bの内部に封入空間37cを形成した例を説明したが、封入空間形成部材37bの内部に封入空間に加えて、蒸発器14出口側冷媒を導入させる導入空間を形成してもよい。そして、封入空間と導入空間とを仕切るようにダイヤフラムを配置し、封入空間内の感温媒体の圧力と導入空間内の冷媒の圧力との圧力差に応じてダイヤフラムを変位させるようにしてもよい。
また、駆動手段として、形状記憶合金性の弾性部材を有して構成されたものを採用してもよいし、電動モータやソレノイド等の電気的機構を採用してもよい。
また、上述の実施形態では、ノズルボデー32とディフューザボデー33とを連結し、さらに、駆動機構37とノズルボデー32とを連結した例を説明したが、もちろん、駆動機構37とディフューザボデー33とを連結してもよい。この場合は、ダイヤフラム37aとディフューザボデー33とを連結する作動棒を、封入空間37cを貫通するように配置してもよい。
また、上述の実施形態では、駆動機構37を流入空間内に配置した例を説明したが、駆動機構37の配置はこれに限定されない。例えば、ボデー30の外部の上方側(旋回空間30a側)に配置してもよい。
(2)上述の実施形態では、旋回促進手段として中心軸周りに円環状に配置された整流板38を採用した例を説明したが、ディフューザ通路13cを流通する冷媒の旋回流れを促進できれば、平板状に形成された整流板を採用してもよい。さらに、複数の整流板は、ディフューザボデー33に配置されていてもよい。
また、複数の整流板は、冷媒流れ出口側の整流板同士の間隔が入口側の整流板同士の間隔よりも広くなる、いわゆる減速翼列配置としてもよい。これによれば、隣り合う整流板38同士の間に形成される冷媒通路の通路断面積を徐々に拡大させて、冷媒の速度エネルギを圧力エネルギに変換させるディフューザとして機能させることができる。
さらに、複数の整流板は、冷媒流れ出口側の整流板同士の間隔が入口側の整流板同士の間隔よりも狭くなる、いわゆる増速翼列配置(加速翼列配置)としてもよい。これによれば、隣り合う整流板38同士の間に形成される冷媒通路の通路断面積を徐々に縮小させて、冷媒の旋回方向の流速を増速させることができる。
また、旋回促進手段は、整流板に限定されることなく、通路形成部材35あるいはディフューザボデー33のディフューザ通路13cを形成する面に形成された螺旋状の溝部によって構成してもよい。
(3)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機11として、エンジン駆動式の可変容量型圧縮機を採用した例を説明したが、圧縮機11として、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用してもよい。さらに、固定容量型圧縮機構と電動モータとを備え、電力を供給されることによって作動する電動圧縮機を採用してもよい。電動圧縮機では、電動モータの回転数を調整することによって、冷媒吐出能力を制御することができる。
また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を一体化させたレシーバ一体型の凝縮器を採用してもよい。
さらに、上述のエジェクタ式冷凍サイクル10に対して、放熱器12から流出した冷媒と圧縮機11へ吸入される冷媒とを熱交換させて、エジェクタ13へ流入する冷媒のエンタルピを低下させる内部熱交換器を追加してもよい。
また、上述の実施形態では、冷媒としてR134aあるいはR1234yf等を採用可能であることを説明したが、冷媒はこれに限定されない。例えば、R600a、R410A、R404A、R32、R407C、R1234ze、R1234zd等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
(4)上述の実施形態では、本発明のエジェクタ13を備えるエジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、本発明のエジェクタ13を備える冷凍サイクル装置の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。
また、上述の実施形態では、エジェクタ式冷凍サイクル10の放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器14を送風空気を冷却する利用側熱交換器としている。これに対して、蒸発器14を外気等の熱源から吸熱する室外側熱交換器として用い、放熱器12を空気あるいは水等の被加熱流体を加熱する利用側熱交換器として用いてもよい。
10 エジェクタ式冷凍サイクル
13 エジェクタ
13a ノズル通路
13b 吸引用通路
13c ディフューザ通路
30 ボデー
32 ノズルボデー
33 ディフューザボデー
37 駆動機構(駆動手段)

Claims (5)

  1. 蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
    冷媒を減圧させる減圧用空間(30b)を形成するノズルボデー(32)と、
    前記減圧用空間(30b)から流出した冷媒を流入させる昇圧用空間(30e)を形成するディフューザボデー(33)と、
    少なくとも一部が前記減圧用空間(30b)の内部および前記昇圧用空間(30e)の内部に配置されるとともに、前記減圧用空間(30b)から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、
    前記ノズルボデー(32)、前記ディフューザボデー(33)、および前記通路形成部材(35)を収容するとともに、前記減圧用空間(30b)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(13b)が形成されたボデー(30)と、を備え、
    前記ノズルボデー(32)の前記減圧用空間(30b)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
    前記ディフューザボデー(33)のうち前記昇圧用空間(30e)を形成する部位の内周面と前記通路形成部材(35)の外周面との間に形成される冷媒通路は、前記ノズル通路(13a)から噴射された噴射冷媒と前記吸引用通路(13b)を介して吸引された吸引冷媒との混合冷媒を昇圧させるディフューザとして機能するディフューザ通路(13c)であり、
    さらに、前記ノズルボデー(32)、および前記ディフューザボデー(33)を変位させる駆動手段(37)を備えることを特徴とするエジェクタ。
  2. 前記ノズルボデー(32)および前記ディフューザボデー(33)は、連結されており、
    さらに、前記駆動手段(37)は、前記ノズルボデー(32)に連結されていることを特徴とする請求項1に記載のエジェクタ。
  3. 前記吸引用通路(13b)として、前記ノズルボデー(32)および前記ディフューザボデー(33)の間に配置された流入空間(30c)が設けられており、
    前記駆動手段(37)は、前記流入空間(30c)内の冷媒の温度に応じて圧力変化する感温媒体が封入される封入空間(37c)を形成する封入空間形成部材(37b)、および前記封入空間形成部材(37b)とともに前記封入空間(37c)を形成して前記感温媒体の圧力応じて変位する圧力応動部材(37a)を有し、
    さらに、前記駆動手段(37)の外表面の少なくとも一部は、前記流入空間(30c)の壁面を形成していることを特徴とする請求項1または2に記載のエジェクタ。
  4. 前記ボデー(30)には、前記減圧用空間(30b)へ流入する冷媒に旋回流れを生じさせる旋回空間(30a)が形成されていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ。
  5. 前記ディフューザ通路(13c)を流通する冷媒の旋回流れを促進する旋回促進手段(38)を備えることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ。
JP2015101088A 2015-05-18 2015-05-18 エジェクタ Expired - Fee Related JP6365408B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101088A JP6365408B2 (ja) 2015-05-18 2015-05-18 エジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101088A JP6365408B2 (ja) 2015-05-18 2015-05-18 エジェクタ

Publications (2)

Publication Number Publication Date
JP2016217213A true JP2016217213A (ja) 2016-12-22
JP6365408B2 JP6365408B2 (ja) 2018-08-01

Family

ID=57580580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101088A Expired - Fee Related JP6365408B2 (ja) 2015-05-18 2015-05-18 エジェクタ

Country Status (1)

Country Link
JP (1) JP6365408B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159320A1 (ja) * 2017-03-02 2018-09-07 株式会社デンソー エジェクタモジュール

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341804A (en) * 1976-09-27 1978-04-15 Shibaura Eng Works Ltd Jet pumps
JPS54106050U (ja) * 1978-01-12 1979-07-26
JP2003004319A (ja) * 2001-06-20 2003-01-08 Denso Corp エジェクタサイクル
JP2003279657A (ja) * 2002-01-17 2003-10-02 Kenji Miura フィルム窓を持つワイヤーチェンバーの急速ガス−交換システム
JP2004044411A (ja) * 2002-07-09 2004-02-12 Ishikawajima Harima Heavy Ind Co Ltd 可変昇圧エゼクタ
JP2014134196A (ja) * 2012-12-13 2014-07-24 Denso Corp エジェクタ
JP2015045477A (ja) * 2013-08-29 2015-03-12 株式会社デンソー エジェクタ式冷凍サイクルおよびエジェクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341804A (en) * 1976-09-27 1978-04-15 Shibaura Eng Works Ltd Jet pumps
JPS54106050U (ja) * 1978-01-12 1979-07-26
JP2003004319A (ja) * 2001-06-20 2003-01-08 Denso Corp エジェクタサイクル
JP2003279657A (ja) * 2002-01-17 2003-10-02 Kenji Miura フィルム窓を持つワイヤーチェンバーの急速ガス−交換システム
JP2004044411A (ja) * 2002-07-09 2004-02-12 Ishikawajima Harima Heavy Ind Co Ltd 可変昇圧エゼクタ
JP2014134196A (ja) * 2012-12-13 2014-07-24 Denso Corp エジェクタ
JP2015045477A (ja) * 2013-08-29 2015-03-12 株式会社デンソー エジェクタ式冷凍サイクルおよびエジェクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159320A1 (ja) * 2017-03-02 2018-09-07 株式会社デンソー エジェクタモジュール
JP2018146141A (ja) * 2017-03-02 2018-09-20 株式会社デンソー エジェクタモジュール

Also Published As

Publication number Publication date
JP6365408B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5999050B2 (ja) エジェクタ式冷凍サイクルおよびエジェクタ
JP6248499B2 (ja) エジェクタ式冷凍サイクル
JP6003844B2 (ja) エジェクタ
JP6398802B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP5962571B2 (ja) エジェクタ
JP6610313B2 (ja) エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
JP2014224626A (ja) エジェクタ
JP6365408B2 (ja) エジェクタ
JP2017089964A (ja) エジェクタ式冷凍サイクル
WO2016185664A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP2015031405A (ja) エジェクタ
JP6070465B2 (ja) エジェクタ
JP6399009B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP2016166549A (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6481679B2 (ja) エジェクタ
JP6380122B2 (ja) エジェクタ
JP6485550B2 (ja) エジェクタ
JP2017031975A (ja) エジェクタ
JP6011484B2 (ja) エジェクタ
JP6582950B2 (ja) エジェクタ
JP2017053290A (ja) エジェクタ
JP6398883B2 (ja) エジェクタ
JP6511997B2 (ja) エジェクタ
JP2016133084A (ja) エジェクタ
JP2017032272A (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees